1
|
Maral-Gül D, Eltem R. Evaluation of Bacillus isolates as a biological control agents against soilborne phytopathogenic fungi. Int Microbiol 2025; 28:75-89. [PMID: 38376639 DOI: 10.1007/s10123-024-00490-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 01/03/2024] [Accepted: 02/07/2024] [Indexed: 02/21/2024]
Abstract
Pesticides, used in agriculture to control plant diseases, pose risks to the environment and human health. To address this, there's a growing focus on biocontrol, using microorganisms instead of chemicals. In this study, we aimed to identify Bacillus isolates as potential biological control agents. We tested 1574 Bacillus isolates for antifungal effects against pathogens like Botrytis cinerea, Fusarium solani, and Rhizoctonia solani. Out of these, 77 isolates formed inhibition zones against all three pathogens. We then investigated their lytic enzyme activities (protease, chitinase, and chitosanase) and the production of antifungal metabolites (siderophore and hydrogen cyanide). Coagulase activity was also examined to estimate potential pathogenicity in humans and animals. After evaluating all mechanisms, 19 non-pathogenic Bacillus isolates with significant antifungal effects were chosen. Molecular identification revealed they belonged to B. subtilis (n = 19) strains. The 19 native Bacillus strains, demonstrating strong antifungal effects in vitro, have the potential to form the basis for biocontrol product development. This could address challenges in agricultural production, marking a crucial stride toward sustainable agriculture.
Collapse
Affiliation(s)
- Derya Maral-Gül
- Graduate School of Natural and Applied Sciences, Department of Bioengineering, Ege University, 35100, Bornova-Izmir, Türkiye.
| | - Rengin Eltem
- Faculty of Engineering, Department of Bioengineering, Ege University, Izmir, Türkiye
| |
Collapse
|
2
|
Alnaimat SM, Abushattal S, Dmour SM, Al-Awaida WJ, Ayyash AM, Goh KW. Genomic insights into the taxonomic status and bioactive gene cluster profiling of Bacillus velezensis RVMD2 isolated from desert rock varnish in Ma'an, Jordan. PLoS One 2025; 20:e0319345. [PMID: 40273114 PMCID: PMC12021177 DOI: 10.1371/journal.pone.0319345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 01/30/2025] [Indexed: 04/26/2025] Open
Abstract
Extreme environments like arid and semi-arid deserts harbor unique microbial diversity, offering rich sources of specialized microbial metabolites. This study explores Bacillus velezensis RVMD2, a strain isolated from rock varnish in the Ma'an Desert, Jordan. The genome was sequenced using the Illumina NextSeq 2000 platform, resulting in a 4,212,579 bp assembly with a GC content of 45.94%. The assembled genome comprises 112 contigs and encodes 4,250 proteins, 77 tRNA genes, and 4 rRNA genes. Phylogenetic analysis of the 16S rRNA gene indicated a 99.84% similarity to previously identified B. velezensis strains. Whole-genome phylogeny using EzBiome, MiGA, and TYGS confirmed its classification as B. velezensis. Functional annotation identified genes involved in carbohydrate metabolism, including 324 carbohydrate-active enzyme (CAZyme) genes, stress response, and secondary metabolite biosynthesis. The genome also contains 50 genes associated with heavy metal resistance and plant growth promotion. Analysis using AntiSMASH identified 12 biosynthetic gene clusters involved in the production of secondary metabolites, including fengycin, surfactin, polyketides, terpenes, and bacteriocins. Notably, several clusters did not match any known sequences, suggesting the presence of potentially novel antimicrobial compounds. The genomic features of RVMD2 highlight its adaptability to extreme environments and its potential for biotechnological applications, including bioremediation and the discovery of novel bioactive metabolites.
Collapse
Affiliation(s)
- Sulaiman M. Alnaimat
- Department of Medical Analysis, Princess Aisha Bint Al-Hussein College of Nursing and Health Sciences, Al-Hussein Bin Talal University, Ma’an, Jordan
| | - Saqr Abushattal
- Department of Medical Analysis, Princess Aisha Bint Al-Hussein College of Nursing and Health Sciences, Al-Hussein Bin Talal University, Ma’an, Jordan
| | - Saif M. Dmour
- Department of Medical Analysis, Princess Aisha Bint Al-Hussein College of Nursing and Health Sciences, Al-Hussein Bin Talal University, Ma’an, Jordan
| | - Wajdy J. Al-Awaida
- Department of Biology and Biotechnology, Faculty of Science, American University of Madaba, Madaba, Jordan
| | - Amani M. Ayyash
- Department of Pharmacy, Faculty of Health Sciences, American University of Madaba, Madaba, Jordan
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai, Malaysia
| |
Collapse
|
3
|
Ríos Sosa A, Prado Barragán LA, Ríos Reyes A, Aréchiga Carvajal ET. Genomic analysis and potential polyhydroxybutyrate (PHB) production from Bacillus strains isolated from extreme environments in Mexico. BMC Microbiol 2025; 25:15. [PMID: 39799315 PMCID: PMC11724563 DOI: 10.1186/s12866-024-03713-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 12/13/2024] [Indexed: 01/15/2025] Open
Abstract
BACKGROUND Plastic pollution is a significant environmental problem caused by its high resistance to degradation. One potential solution is polyhydroxybutyrate (PHB), a microbial biodegradable polymer. Mexico has great uncovered microbial diversity with high potential for biotechnological applications. The best polymer producers tend to be isolated from environments that require survival adaptations from microorganisms, the high-producing Bacillus cereus strain saba.zh comes from refinery wastewater, the costs of production have been a limiting factor for biopolymer production, and one of the focuses of interest has been finding novel strains with better production or singular traits that help in industrial processes. RESULTS The isolates were taxonomically classified as Bacillus cereus MSF4 and Bacillus inaquosorum MSD1 from Mina, Nuevo Leon; B. cereus S07C; and Paenibacillis dendritiformis from the active volcano "El Chichonal" on Chiapas. The strains had growth temperatures ranging from 35 to 50 °C and pH tolerance values ranging from 3 to 9. The best PHB-producing strain, B. cereus MSF4, produced 0.43 g/kg PHB on orange peels, followed by B. inaquosorum MSD1 at 0.40 g/kg, B. cereus S07C at 0.23 g/kg and P. dendritiformis at 0.26 g/kg. CONCLUSIONS The findings of this study affirm the potential of the Mexican isolated strains as PHB-producing organisms, enabling further studies to test their viability as industrial producers. The ability of P. dendritiformis and B. inaquosorum to synthetize PHB was also confirmed by the observations made providing novel evidence to consider these species as potential producers.
Collapse
Affiliation(s)
- Alvaro Ríos Sosa
- Unidad de Manipulación Genética, Facultad de Ciencias Biológicas, Departamento de Microbiología e Inmunología, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, México
| | - Lilia A Prado Barragán
- Departamento de Biotecnología, Universidad Autónoma Metropolitana, Ciencias Biológicas y de la Salud, Ciudad de, México
| | - Alvaro Ríos Reyes
- Facultad de Ciencias Biológicas, Departamento de Biología Vegetal, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, México
| | - Elva T Aréchiga Carvajal
- Unidad de Manipulación Genética, Facultad de Ciencias Biológicas, Departamento de Microbiología e Inmunología, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, México.
| |
Collapse
|
4
|
Rosić I, Nikolić I, Anteljević M, Marić I, Ranković T, Stanković S, Berić T, Medić O. Diversity and activity of AHL-lactonases in Bacillus spp. from various environments. FEMS Microbiol Lett 2025; 372:fnaf038. [PMID: 40194945 DOI: 10.1093/femsle/fnaf038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Accepted: 04/04/2025] [Indexed: 04/09/2025] Open
Abstract
Disrupting quorum sensing (QS) pathways in animal and plant pathogenic bacteria is an effective strategy to mitigate infections without promoting antibiotic and pesticide resistance. This approach inhibits the production of virulence factors, biofilm formation, and toxin production, reducing bacterial pathogenicity. In plant health protection, Bacillus spp. are extensively researched and utilized as biocontrol agents; however, the potential of their AHL-lactonase-producing ability, which plays a key role as a QS inhibitor of Gram-negative pathogens, remains largely unexplored. This study examined the activity and diversity of QQ enzymes from Bacillus spp. isolates obtained from various natural sources, confirming their presence in previously unreported environments associated with agricultural fields (straw and manure). Our findings show that AiiA lactonase is the most dominant and highly conserved AHL-lactonase among Bacillus isolates from bulk soil, manure, and straw. Despite its sequence conservation, we observed significant variation in AiiA lactonase activities toward the N-hexanoyl-DL-homoserine lactone (C6-HSL) substrate. Furthermore, in silico analysis suggested that the Bacillus sp. YtnP lactonase may have a lower affinity for C6-HSL compared to AiiA lactonase. Finally, this research presents a selection of Bacillus isolates with high AiiA lactonase activity for potential testing against plant pathogens.
Collapse
Affiliation(s)
- Iva Rosić
- Faculty of Biology, Center for Biological Control and Plant Growth Promotion, University of Belgrade, Studentski Trg 16, 11000 Belgrade, Serbia
- Institute of Physics Belgrade, National Institute of the Republic of Serbia, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia
| | - Ivan Nikolić
- Faculty of Biology, Center for Biological Control and Plant Growth Promotion, University of Belgrade, Studentski Trg 16, 11000 Belgrade, Serbia
| | - Marina Anteljević
- Faculty of Biology, Center for Biological Control and Plant Growth Promotion, University of Belgrade, Studentski Trg 16, 11000 Belgrade, Serbia
- Institute of Physics Belgrade, National Institute of the Republic of Serbia, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia
| | - Ivana Marić
- Faculty of Biology, Center for Biological Control and Plant Growth Promotion, University of Belgrade, Studentski Trg 16, 11000 Belgrade, Serbia
- Institute of Physics Belgrade, National Institute of the Republic of Serbia, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia
| | - Tamara Ranković
- Faculty of Biology, Center for Biological Control and Plant Growth Promotion, University of Belgrade, Studentski Trg 16, 11000 Belgrade, Serbia
| | - Slaviša Stanković
- Faculty of Biology, Center for Biological Control and Plant Growth Promotion, University of Belgrade, Studentski Trg 16, 11000 Belgrade, Serbia
| | - Tanja Berić
- Faculty of Biology, Center for Biological Control and Plant Growth Promotion, University of Belgrade, Studentski Trg 16, 11000 Belgrade, Serbia
- Institute of Physics Belgrade, National Institute of the Republic of Serbia, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia
| | - Olja Medić
- Faculty of Biology, Center for Biological Control and Plant Growth Promotion, University of Belgrade, Studentski Trg 16, 11000 Belgrade, Serbia
| |
Collapse
|
5
|
Xu L, Shang Q, Nicolaisen M, Zeng R, Gao S, Gao P, Song Z, Dai F, Zhang J. Biocontrol Potential of Rhizospheric Bacillus Strains Against Sclerotinia minor Jagger Causing Lettuce Drop. Microorganisms 2025; 13:68. [PMID: 39858836 PMCID: PMC11767259 DOI: 10.3390/microorganisms13010068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/24/2024] [Accepted: 12/25/2024] [Indexed: 01/27/2025] Open
Abstract
Phytopathogenic Sclerotinia minor Jagger causes lettuce drop, a destructive soil-borne disease. As potential biocontrol agents for this disease, 2 of 31 bacterial strains isolated from soil samples from fields containing S. minor Jagger were identified using in vitro antagonistic assays against S. minor Jagger. Bioactivity experiments showed that Bac20 had higher inhibitory activity against S. minor Jagger than Bac45. Based on 16S rRNA sequences and phylogenetic analysis of a combination of sequences from gyrA, rpoB, purH, polC, and groEL, Bac20 and Bac45 were identified as Bacillus velezensis and Bacillus subtilis, respectively. Lipopeptide compounds produced by each strain were identified using matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) analysis. Both strains produced three types of lipopeptides, namely surfactins, iturins, and fengycins, whereas Bac20 showed the strongest intensity in its production of iturins, more than that of Bac45. Bac20 inhibited oxalic acid formation in early-stage lettuce leaves infected with S. minor Jagger, delaying pathogen infestation. Greenhouse experiments for controlling lettuce drop demonstrated that inoculation with Bac20 controlled lettuce drop by 71.7%. In conclusion, this study revealed that B. velezensis Bac20 has high potential for use as a biocontrol agent for controlling the lettuce drop caused by S. minor Jagger.
Collapse
Affiliation(s)
- Lihui Xu
- Institute of Eco-Environmental Protection, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (L.X.); (R.Z.); (S.G.); (P.G.); (Z.S.)
- Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai 201403, China
- Shanghai Engineering Research Centre of Low-carbon Agriculture (SERCLA), Shanghai 201415, China
| | - Qinghua Shang
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China;
| | - Mogens Nicolaisen
- Department of Agroecology, Faculty of Technical Sciences, Aarhus University, 4200 Slagelse, Denmark;
| | - Rong Zeng
- Institute of Eco-Environmental Protection, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (L.X.); (R.Z.); (S.G.); (P.G.); (Z.S.)
- Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai 201403, China
- Shanghai Engineering Research Centre of Low-carbon Agriculture (SERCLA), Shanghai 201415, China
| | - Shigang Gao
- Institute of Eco-Environmental Protection, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (L.X.); (R.Z.); (S.G.); (P.G.); (Z.S.)
- Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai 201403, China
- Shanghai Engineering Research Centre of Low-carbon Agriculture (SERCLA), Shanghai 201415, China
| | - Ping Gao
- Institute of Eco-Environmental Protection, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (L.X.); (R.Z.); (S.G.); (P.G.); (Z.S.)
- Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai 201403, China
- Shanghai Engineering Research Centre of Low-carbon Agriculture (SERCLA), Shanghai 201415, China
| | - Zhiwei Song
- Institute of Eco-Environmental Protection, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (L.X.); (R.Z.); (S.G.); (P.G.); (Z.S.)
- Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai 201403, China
- Shanghai Engineering Research Centre of Low-carbon Agriculture (SERCLA), Shanghai 201415, China
| | - Fuming Dai
- Institute of Eco-Environmental Protection, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (L.X.); (R.Z.); (S.G.); (P.G.); (Z.S.)
- Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai 201403, China
- Shanghai Engineering Research Centre of Low-carbon Agriculture (SERCLA), Shanghai 201415, China
| | - Jingze Zhang
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China;
| |
Collapse
|
6
|
Liu Y, Yin C, Zhu M, Zhan Y, Lin M, Yan Y. Comparative Genomic Analysis of Bacillus velezensis BRI3 Reveals Genes Potentially Associated with Efficient Antagonism of Sclerotinia sclerotiorum (Lib.) de Bary. Genes (Basel) 2024; 15:1588. [PMID: 39766855 PMCID: PMC11675273 DOI: 10.3390/genes15121588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/04/2024] [Accepted: 12/07/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/OBJECTIVES Bacillus velezensis has recently received increased attention as a potential biological agent because of its broad-spectrum antagonistic capacity against harmful bacteria and fungi. This study aims to thoroughly analyze the genomic characteristics of B. velezensis BRI3, thereby providing theoretical groundwork for the agronomic utilization of this strain. METHODS In this work, we evaluated the beneficial traits of the newly isolated strain B. velezensis BRI3 via in vitro experiments, whole-genome sequencing, functional annotation, and comparative genomic analysis. RESULTS B. velezensis BRI3 exhibits broad-spectrum antifungal activity against various soilborne pathogens, displays inhibitory effects comparable to those of the type strain FZB42, and exhibits particularly effective antagonism against Sclerotinia sclerotiorum (Lib.) de Bary. Whole-genome sequencing and assembly revealed that the genome of BRI3 contains one chromosome and two plasmids, which carry a large amount of genetic information. Moreover, 13 biosynthetic gene clusters (BGCs) involved in the biosynthesis of secondary metabolites were predicted within the BRI3 genome. Among these, two unique BGCs (cluster 11 and cluster 13), which were not previously reported in the genomes of other strains and could potentially encode novel metabolic products, were identified. The results of the comparative genomic analysis demonstrated the genomic structural conservation and genetic homogeneity of BRI3. CONCLUSIONS The unique characteristics and genomic data provide insights into the potential application of BRI3 as a biocontrol and probiotic agent.
Collapse
Affiliation(s)
| | | | | | | | | | - Yongliang Yan
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
7
|
Posada LF, Arteaga-Figueroa LA, Adarve-Rengifo I, Cadavid M, Zapata S, Álvarez JC. Endophytic microbial diversity associated with commercial cultivar and crop wild relative banana variety could provide clues for microbial community management. Microbiol Res 2024; 287:127862. [PMID: 39121704 DOI: 10.1016/j.micres.2024.127862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/09/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024]
Abstract
Endophytes, microorganisms inhabiting internal plant tissues, play a pivotal role in plant growth and disease resistance. Moreover, previous studies have established that Musa plants derive disease protective functions from their microbiome. Notably, one of the crop wild relatives of banana, the Calcutta 4 variety, exhibits resistance to various phytopathogens such as Pseudocercospora fijiensis (P. fijiensis), while the Williams commercial cultivar (cv.) is highly susceptible. Therefore, this study aims primarily to characterize and compare the endophytic microbiota composition of Calcutta 4 and Williams banana plants when grown sympatrically. Alongside, differences in endophytic microbiome between plant sections (shoot or roots), growth phases (in vitro or greenhouse) and fitness factors such as the addition of plant growth-promoting bacteria Bacillus subtilis EA-CB0575 (T2 treatment) or infection by P. fijiensis (T3 treatment) were examined. Both culture-dependent and -independent techniques were used to evaluate these differences and assess the culturability of banana endophytes under varying conditions. Microbial cultures resulted in 331 isolates distributed across 54 genera when all treatments were evaluated, whereas 16 S sequencing produced 9510 ASVs assigned in 1456 genera. Alpha and beta diversity exhibited significant differences based on plant section, with an increase in phylogenetic diversity observed in plants with pathogen infection (T3) compared to control plants (T1). Additionally, four differentially abundant genera associated with nitrogen metabolism were identified in T3 plants and seven genera showed differential abundance when comparing varieties. When culture-dependent and -independent methods were compared, it was found that isolates represented 3.7 % of the genera detected by culture-independent methods, accounting for 12-41 % of the total data depending on the treatment. These results are crucial for proposing management strategies derived from crop wild relatives to enhance the resilience of susceptible commercial varieties against fitness factors affecting crop development. Additionally, they help to decipher the pathogenic effects of P. fijiensis in banana plants and advance the understanding of how plant domestication influences the endosphere.
Collapse
Affiliation(s)
- Luisa F Posada
- Grupo de Investigación Zentech. Pontificia Universidad Javeriana. Facultad de Ingeniería. Departamento de Ingeniería Industrial, Carrera 7 # 40-62, Bogotá, Colombia
| | - Luis A Arteaga-Figueroa
- Grupo de Investigación CIBIOP. Universidad EAFIT. Biological Sciences Department, Carrera 49 # 7 sur-50, Medellín, Colombia
| | - Isabel Adarve-Rengifo
- Grupo de Investigación CIBIOP. Universidad EAFIT. Biological Sciences Department, Carrera 49 # 7 sur-50, Medellín, Colombia
| | - Maria Cadavid
- Grupo de Investigación CIBIOP. Universidad EAFIT. Biological Sciences Department, Carrera 49 # 7 sur-50, Medellín, Colombia
| | | | - Javier C Álvarez
- Grupo de Investigación CIBIOP. Universidad EAFIT. Biological Sciences Department, Carrera 49 # 7 sur-50, Medellín, Colombia.
| |
Collapse
|
8
|
Diniz GDFD, Figueiredo JEF, Canuto KM, Cota LV, Souza ASDQ, Simeone MLF, Tinoco SMDS, Ribeiro PRV, Ferreira LVS, Marins MS, de Oliveira-Paiva CA, Dos Santos VL. Chemical and genetic characterization of lipopeptides from Bacillus velezensis and Paenibacillus ottowii with activity against Fusarium verticillioides. Front Microbiol 2024; 15:1443327. [PMID: 39252841 PMCID: PMC11381237 DOI: 10.3389/fmicb.2024.1443327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/02/2024] [Indexed: 09/11/2024] Open
Abstract
Introduction The fungus Fusarium verticillioides significantly threatens maize crops in tropical soils. In light of this, biological control has emerged as a promising strategy to reduce fungicide costs and environmental risks. In this study, we aimed to test the antifungal activity of cell-free supernatant (CFS) from three Bacillus velezensis (CT02, IM14, and LIS05) and one Paenibacillus ottowii (LIS04) against F. verticillioides, thereby contributing to the development of effective biocontrol measures. Methods The research employed a comprehensive approach. The antifungal activity of the bacterial strains was tested using cell-free supernatant (CFS) from three Bacillus velezensis (CT02, IM14, and LIS05) and one Paenibacillus ottowii (LIS04). The UPLC-MS evaluated the CFS to identify the main bioactive molecules involved in the inhibitory effect on F. verticillioides. Scanning electron microscopy (SEM) was used to assess the impact of CFS on spores and hyphae, and genome sequencing was conducted to identify the genes involved in biological control. These robust methodologies ensure the reliability and validate our findings. Results The CFS of the four strains demonstrated significant inhibition of fungal growth. The UPLC-MS analysis revealed the presence of lipopeptides with antifungal activity, including surfactin and fengycins A and B expressed by the three strains of Bacillus velezensis and iturin A expressed by strains LIS05 and IM14. For Paenibacillus ottowii, fusaricidins, ABCDE, and five previously unreported lipopeptides were detected. Scanning electron microscopy (SEM) showed that treatments with CFS led to significant distortion and breakage of the F. verticillioides hyphae, in addition to the formation of cavities in the membrane. Genome mining confirmed the presence of genes coding for the lipopeptides identified by UPLC-MS, including the gene for iturin in CTO2. Genomic sequencing revealed that CT02, IM14, and LIS05 belong to different strains of Bacillus velezensis, and LIS04 belongs to Paenibacillus ottowii, a species recently described. Discussion The four bacterial strains, including three novel strains identified as Bacillus velezensis and one as the recently described species Paenibacillus ottowii, demonstrate significant potential as biocontrol agents for managing fungal disease. This finding underscores the novelty and potential impact of our research.
Collapse
Affiliation(s)
| | | | - Kirley Marques Canuto
- Multiuser Laboratory of Chemistry of Natural Products (LMQPN), Embrapa Tropical Agroindustry, Fortaleza, CE, Brazil
| | - Luciano Viana Cota
- Phytopathology Laboratory, Embrapa Maize and Sorghum, Sete Lagoas, MG, Brazil
| | - Ana Sheila de Queiroz Souza
- Multiuser Laboratory of Chemistry of Natural Products (LMQPN), Embrapa Tropical Agroindustry, Fortaleza, CE, Brazil
| | | | - Sylvia Morais de Sousa Tinoco
- Molecular Biology Laboratory, Embrapa Maize and Sorghum, Sete Lagoas, MG, Brazil
- Federal University of São João del-Rei, São João del Rei, MG, Brazil
| | | | | | - Mikaely Sousa Marins
- Department of Agricultural Microbiology, Federal University of Lavras, Lavras, MG, Brazil
| | | | - Vera Lúcia Dos Santos
- Department of Microbiology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
9
|
Tamura H. Bacterial Pesticides: Mechanism of Action, Possibility of Food Contamination, and Residue Analysis Using MS. JOURNAL OF PESTICIDE SCIENCE 2024; 49:135-147. [PMID: 39398503 PMCID: PMC11464265 DOI: 10.1584/jpestics.d24-006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 06/02/2024] [Indexed: 10/15/2024]
Abstract
As Sustainable Development Goals (SDGs) and the realities of climate change become widely accepted around the world, the next-generation of integrated pest management will become even more important for establishing a sustainable food production system. To meet the current challenge of food security and climate change, biological control has been developed as one sustainable crop protection technology. However, most registered bacteria are ubiquitous soil-borne bacteria that are closely related to food poisoning and spoilage bacteria. Therefore, this review outlined (1) the mechanism of action of bacterial pesticides, (2) potential concerns about secondary contamination sources associated with past food contamination, and, as a prospective solution, focused on (3) principles and methods of bacterial identification, and (4) the possibility of identifying residual bacteria based on mass spectrometry.
Collapse
|
10
|
Dhanabalan S, Muthusamy K, Iruthayasamy J, Kumaresan PV, Ravikumar C, Kandasamy R, Natesan S, Periyannan S. Unleashing Bacillus species as versatile antagonists: Harnessing the biocontrol potentials of the plant growth-promoting rhizobacteria to combat Macrophomina phaseolina infection in Gloriosa superba. Microbiol Res 2024; 283:127678. [PMID: 38503218 DOI: 10.1016/j.micres.2024.127678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/14/2024] [Accepted: 03/05/2024] [Indexed: 03/21/2024]
Abstract
Charcoal rot caused by Macrophomina phaseolina is one of the most devastating diseases that cause severe yield loss in Gloriosa superba cultivation. Plant growth-promoting rhizobacteria (PGPR) are extensively harnessed as biocontrol agents due to their effectiveness in combating a wide array of plant pathogens through a multifaceted approach. The present study delved into the mechanisms underlying its ability to inhibit root rot pathogen and its capacity to promote plant growth in G. superba, commonly known as glory lily. PGPR isolated from the rhizosphere of glory lily were subjected to in vitro assessments using the dual plate technique. The isolated Bacillus subtilis BGS-10 and B. velezensis BGS-21 showed higher mycelial inhibition (61%) against M. phaseolina. These strains also promote plant growth by producing indole-3-acetic acid, siderophore, ammonia, amylase, cellulase, pectinase, xylanase, and lipase chemicals. Genome screening of BGS-10 and BGS-21 revealed the presence of antimicrobial peptide genes such as Iturin (ituD gene), surfactin (srfA and sfp genes) along with the mycolytic enzyme β-1,3-glucanase. Further, the presence of secondary metabolites in the bacterial secretome was identified through gas chromatography-mass spectrometry (GC/MS) analysis. Notably, pyrrolo[1,2-a] pyrazine-1,4-dione, hexahydro-3-(2-methylpropyl), 9 H-pyrido[3,4-b] indole and L-leucyl-D-leucine exhibited the highest docking score against enzymes responsible for pathogen growth and plant cell wall degradation. Under glasshouse conditions, tuber treatment and soil application of talc-based formulation of B. subtilis BGS-10 and B. velezensis BGS-21 suppress the root rot incidence with a minimal disease incidence of 27.78% over untreated control. Concurrently, there was a notable induction of defense-related enzymes, including peroxidase (PO), polyphenol oxidase (PPO), and phenylalanine ammonia-lyase (PAL), in glory lily. Therefore, it can be concluded that plant growth-promoting Bacillus strains play a significant role in fortifying the plant's defense mechanisms against the root rot pathogen.
Collapse
Affiliation(s)
- Shanmugapriya Dhanabalan
- Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641003, India
| | - Karthikeyan Muthusamy
- Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641003, India; Centre for Crop Health, School of Agriculture and Environmental Science, University of Southern Queensland, Toowoomba, Queensland 4350, Australia.
| | - Johnson Iruthayasamy
- Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641003, India
| | - Parthiban V Kumaresan
- Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641003, India
| | - Caroline Ravikumar
- Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641003, India
| | - Rajamani Kandasamy
- Department of Floriculture and Landscape, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641003, India
| | - Senthil Natesan
- Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641003, India
| | - Sambasivam Periyannan
- Centre for Crop Health, School of Agriculture and Environmental Science, University of Southern Queensland, Toowoomba, Queensland 4350, Australia.
| |
Collapse
|
11
|
Wang T, Shi Y, Zheng M, Zheng J. Comparative Genomics Unveils Functional Diversity, Pangenome Openness, and Underlying Biological Drivers among Bacillus subtilis Group. Microorganisms 2024; 12:986. [PMID: 38792815 PMCID: PMC11124052 DOI: 10.3390/microorganisms12050986] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/04/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
The Bacillus subtilis group (Bs group), with Bacillus subtilis as its core species, holds significant research and economic value in various fields, including science, industrial production, food, and pharmaceuticals. However, most studies have been confined to comparative genomics analyses and exploration within individual genomes at the level of species, with few conducted within groups across different species. This study focused on Bacillus subtilis, the model of Gram-positive bacteria, and 14 other species with significant research value, employing comparative pangenomics as well as population enrichment analysis to ascertain the functional enrichment and diversity. Through the quantification of pangenome openness, this work revealed the underlying biological drivers and significant correlation between pangenome openness and various factors, including the distribution of toxin-antitoxin- and integrase-related genes, as well as the number of endonucleases, recombinases, repair system-related genes, prophages, integrases, and transfer mobile elements. Furthermore, the functional enrichment results indicated the potential for secondary metabolite, probiotic, and antibiotic exploration in Bacillus licheniformis, Bacillus paralicheniformis, and Bacillus spizizenii, respectively. In general, this work systematically exposed the quantification of pangenome openness, biological drivers, the pivotal role of genomic instability factors, and mobile elements, providing targeted exploration guidance for the Bs group.
Collapse
Affiliation(s)
- Taiquan Wang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (T.W.); (Y.S.); (M.Z.)
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Yiling Shi
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (T.W.); (Y.S.); (M.Z.)
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Mengzhuo Zheng
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (T.W.); (Y.S.); (M.Z.)
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinshui Zheng
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (T.W.); (Y.S.); (M.Z.)
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
12
|
Liu X, Lian M, Zhao M, Huang M. Advances in recombinant protease production: current state and perspectives. World J Microbiol Biotechnol 2024; 40:144. [PMID: 38532149 DOI: 10.1007/s11274-024-03957-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/13/2024] [Indexed: 03/28/2024]
Abstract
Proteases, enzymes that catalyze the hydrolysis of peptide bonds in proteins, are important in the food industry, biotechnology, and medical fields. With increasing demand for proteases, there is a growing emphasis on enhancing their expression and production through microbial systems. However, proteases' native hosts often fall short in high-level expression and compatibility with downstream applications. As a result, the recombinant production of proteases has become a significant focus, offering a solution to these challenges. This review presents an overview of the current state of protease production in prokaryotic and eukaryotic expression systems, highlighting key findings and trends. In prokaryotic systems, the Bacillus spp. is the predominant host for proteinase expression. Yeasts are commonly used in eukaryotic systems. Recent advancements in protease engineering over the past five years, including rational design and directed evolution, are also highlighted. By exploring the progress in both expression systems and engineering techniques, this review provides a detailed understanding of the current landscape of recombinant protease research and its prospects for future advancements.
Collapse
Affiliation(s)
- Xiufang Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou, 510650, China
| | - Mulin Lian
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou, 510650, China
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou, 510650, China
| | - Mingtao Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China.
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou, 510650, China.
| |
Collapse
|
13
|
Chouaia B, Dittmer J. A 2000-Year-Old Bacillus stercoris Strain Sheds Light on the Evolution of Cyclic Antimicrobial Lipopeptide Synthesis. Microorganisms 2024; 12:338. [PMID: 38399742 PMCID: PMC10893106 DOI: 10.3390/microorganisms12020338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Some bacteria (notably the genera Bacillus and Clostridium) have the capacity to form endospores that can survive for millions of years in isolated habitats. The genomes of such ancient bacteria provide unique opportunities to understand bacterial evolution and metabolic capabilities over longer time scales. Herein, we sequenced the genome of a 2000-year-old bacterial strain (Mal05) isolated from intact apple seeds recovered during archaeological excavations of a Roman villa in Italy. Phylogenomic analyses revealed that this strain belongs to the species Bacillus stercoris and that it is placed in an early-branching position compared to most other strains of this species. Similar to other Bacillus species, B. stercoris Mal05 had been previously shown to possess antifungal activity. Its genome encodes all the genes necessary for the biosynthesis of fengycin and surfactin, two cyclic lipopeptides known to play a role in the competition of Bacilli with other microorganisms due to their antimicrobial activity. Comparative genomics and analyses of selective pressure demonstrate that these genes are present in all sequenced B. stercoris strains, despite the fact that they are not under strong purifying selection. Hence, these genes may not be essential for the fitness of these bacteria, but they can still provide a competitive advantage against other microorganisms present in the same environment.
Collapse
Affiliation(s)
- Bessem Chouaia
- Department of Environmental Sciences, Informatics and Statistics, Ca’ Foscari University of Venice, 30172 Venice, Italy
| | - Jessica Dittmer
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, 39100 Bolzano, Italy;
- UMR 1345, Institut Agro, INRAE, IRHS, SFR Quasav, Université d’Angers, 49070 Beaucouzé, France
| |
Collapse
|
14
|
Bozsó Z, Lapat V, Ott PG, Móricz ÁM. Disparate Effects of Two Clerodane Diterpenes of Giant Goldenrod ( Solidago gigantea Ait.) on Bacillus spizizenii. Int J Mol Sci 2024; 25:1531. [PMID: 38338810 PMCID: PMC10855248 DOI: 10.3390/ijms25031531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
New substances with antimicrobial properties are needed to successfully treat emerging human, animal, or plant pathogens. Seven clerodane diterpenes, previously isolated from giant goldenrod (Solidago gigantea) root, were tested against Gram-positive Bacillus subtilis, Bacillus spizizenii and Rhodococcus fascians by measuring minimal bactericidal concentration (MBC), minimal inhibitory concentration (MIC) and half-maximal inhibitory concentration (IC50). Two of them, Sg3a (a dialdehyde) and Sg6 (solidagoic acid B), were proved to be the most effective and were selected for further study. Bacillus spizizenii was incubated with the two diterpenes for shorter (1 h) or longer (5 h) periods and then subjected to genome-wide transcriptional analyses. Only a limited number of common genes (28 genes) were differentially regulated after each treatment, and these were mainly related to the restoration of cell membrane integrity and to membrane-related transports. Changes in gene activity indicated that, among other things, K+ and Na+ homeostasis, pH and membrane electron transport processes may have been affected. Activated export systems can be involved in the removal of harmful molecules from the bacterial cells. Inhibition of bacterial chemotaxis and flagellar assembly, as well as activation of genes for the biosynthesis of secondary metabolites, were observed as a general response. Depending on the diterpenes and the duration of the treatments, down-regulation of the protein synthesis-related, oxidative phosphorylation, signal transduction and transcription factor genes was found. In other cases, up-regulation of the genes of oxidation-reduction processes, sporulation and cell wall modification could be detected. Comparison of the effect of diterpenes with the changes induced by different environmental and nutritional conditions revealed several overlapping processes with stress responses. For example, the Sg6 treatment seems to have caused a starvation-like condition. In summary, there were both common and diterpene-specific changes in the transcriptome, and these changes were also dependent on the length of treatments. The results also indicated that Sg6 exerted its effect more slowly than Sg3a, but ultimately its effect was greater.
Collapse
Affiliation(s)
| | | | | | - Ágnes M. Móricz
- Plant Protection Institute, HUN-REN Centre for Agricultural Research, Herman Ottó Str. 15, H-1022 Budapest, Hungary; (Z.B.); (P.G.O.)
| |
Collapse
|
15
|
Nikolaidis M, Oliver SG, Amoutzias GD. pyPGCF: A Python Software for Phylogenomic Analysis, Species Demarcation, Identification of Core, and Fingerprint Proteins of Bacterial Genomes That Are Important for Plants. Methods Mol Biol 2024; 2788:139-155. [PMID: 38656512 DOI: 10.1007/978-1-0716-3782-1_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
This computational protocol describes how to use pyPGCF, a python software package that runs in the linux environment, in order to analyze bacterial genomes and perform: (i) phylogenomic analysis, (ii) species demarcation, (iii) identification of the core proteins of a bacterial genus and its individual species, (iv) identification of species-specific fingerprint proteins that are found in all strains of a species and, at the same time, are absent from all other species of the genus, (v) functional annotation of the core and fingerprint proteins with eggNOG, and (vi) identification of secondary metabolite biosynthetic gene clusters (smBGCs) with antiSMASH. This software has already been implemented to analyze bacterial genera and species that are important for plants (e.g., Pseudomonas, Bacillus, Streptomyces). In addition, we provide a test dataset and example commands showing how to analyze 165 genomes from 55 species of the genus Bacillus. The main advantages of pyPGCF are that: (i) it uses adjustable orthology cut-offs, (ii) it identifies species-specific fingerprints, and (iii) its computational cost scales linearly with the number of genomes being analyzed. Therefore, pyPGCF is able to deal with a very large number of bacterial genomes, in reasonable timescales, using widely available levels of computing power.
Collapse
Affiliation(s)
- Marios Nikolaidis
- Bioinformatics Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, Greece
| | - Stephen G Oliver
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Grigorios D Amoutzias
- Bioinformatics Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, Greece.
| |
Collapse
|
16
|
Brescia F, Sillo F, Franchi E, Pietrini I, Montesano V, Marino G, Haworth M, Zampieri E, Fusini D, Schillaci M, Papa R, Santamarina C, Vita F, Chitarra W, Nerva L, Petruzzelli G, Mennone C, Centritto M, Balestrini R. The 'microbiome counterattack': Insights on the soil and root-associated microbiome in diverse chickpea and lentil genotypes after an erratic rainfall event. ENVIRONMENTAL MICROBIOLOGY REPORTS 2023; 15:459-483. [PMID: 37226644 PMCID: PMC10667653 DOI: 10.1111/1758-2229.13167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 05/05/2023] [Indexed: 05/26/2023]
Abstract
Legumes maintain soil fertility thanks to their associated microbiota but are threatened by climate change that causes soil microbial community structural and functional modifications. The core microbiome associated with different chickpea and lentil genotypes was described after an unexpected climatic event. Results showed that chickpea and lentil bulk soil microbiomes varied significantly between two sampling time points, the first immediately after the rainfall and the second 2 weeks later. Rhizobia were associated with the soil of the more productive chickpea genotypes in terms of flower and fruit number. The root-associated bacteria and fungi were surveyed in lentil genotypes, considering that several parcels showed disease symptoms. The metabarcoding analysis revealed that reads related to fungal pathogens were significantly associated with one lentil genotype. A lentil core prokaryotic community common to all genotypes was identified as well as a genotype-specific one. A higher number of specific bacterial taxa and an enhanced tolerance to fungal diseases characterized a lentil landrace compared to the commercial varieties. This outcome supported the hypothesis that locally adapted landraces might have a high recruiting efficiency of beneficial soil microbes.
Collapse
Affiliation(s)
- Francesca Brescia
- Institute for Sustainable Plant ProtectionNational Research Council of ItalyTurinItaly
| | - Fabiano Sillo
- Institute for Sustainable Plant ProtectionNational Research Council of ItalyTurinItaly
| | - Elisabetta Franchi
- Eni S.p.A.R&D Environmental & Biological LaboratoriesSan Donato MilaneseItaly
| | - Ilaria Pietrini
- Eni S.p.A.R&D Environmental & Biological LaboratoriesSan Donato MilaneseItaly
| | - Vincenzo Montesano
- Institute for Sustainable Plant ProtectionNational Research Council of ItalyBernalda (MT)Italy
| | - Giovanni Marino
- Institute for Sustainable Plant ProtectionNational Research Council of ItalySesto FiorentinoItaly
| | - Matthew Haworth
- Institute for Sustainable Plant ProtectionNational Research Council of ItalySesto FiorentinoItaly
| | - Elisa Zampieri
- Institute for Sustainable Plant ProtectionNational Research Council of ItalyTurinItaly
| | - Danilo Fusini
- Eni S.p.A.R&D Environmental & Biological LaboratoriesSan Donato MilaneseItaly
| | - Martino Schillaci
- Institute for Sustainable Plant ProtectionNational Research Council of ItalyTurinItaly
| | - Roberto Papa
- Department of Agricultural, Food and Environmental SciencesPolytechnic University of MarcheAnconaItaly
| | - Chiara Santamarina
- Department of Agricultural, Food and Environmental SciencesPolytechnic University of MarcheAnconaItaly
| | - Federico Vita
- Department of Bioscience, Biotechnology and EnvironmentUniversity of Bari Aldo MoroBariItaly
| | - Walter Chitarra
- Research Centre for Viticulture and EnologyCouncil for Agricultural Research and EconomicsConeglianoItaly
| | - Luca Nerva
- Research Centre for Viticulture and EnologyCouncil for Agricultural Research and EconomicsConeglianoItaly
| | | | - Carmelo Mennone
- Azienda Pantanello, ALSIA Research Center Metapontum AgrobiosBernalda (MT)Italy
| | - Mauro Centritto
- Institute for Sustainable Plant ProtectionNational Research Council of ItalySesto FiorentinoItaly
- ENI‐CNR Water Research Center ‘Hypatia of Alexandria’ALSIA Research Center Metapontum AgrobiosBernaldaItaly
| | - Raffaella Balestrini
- Institute for Sustainable Plant ProtectionNational Research Council of ItalyTurinItaly
- ENI‐CNR Water Research Center ‘Hypatia of Alexandria’ALSIA Research Center Metapontum AgrobiosBernaldaItaly
| |
Collapse
|
17
|
Cheng Y, Han J, Song M, Zhang S, Cao Q. Serine peptidase Vpr forms enzymatically active fibrils outside Bacillus bacteria revealed by cryo-EM. Nat Commun 2023; 14:7503. [PMID: 37980359 PMCID: PMC10657474 DOI: 10.1038/s41467-023-43359-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/08/2023] [Indexed: 11/20/2023] Open
Abstract
Bacteria develop a variety of extracellular fibrous structures crucial for their survival, such as flagella and pili. In this study, we use cryo-EM to identify protein fibrils surrounding lab-cultured Bacillus amyloiquefaciens and discover an unreported fibril species in addition to the flagellar fibrils. These previously unknown fibrils are composed of Vpr, an extracellular serine peptidase. We find that Vpr assembles into fibrils in an enzymatically active form, potentially representing a strategy of enriching Vpr activities around bacterial cells. Vpr fibrils are also observed under other culture conditions and around other Bacillus bacteria, such as Bacillus subtilis, which may suggest a general mechanism across all Bacillus bacterial groups. Taken together, our study reveals fibrils outside the bacterial cell and sheds light on the physiological role of these extracellular fibrils.
Collapse
Affiliation(s)
- Yijia Cheng
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Jianting Han
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Meinai Song
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Shuqin Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Qin Cao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200030, China.
| |
Collapse
|
18
|
de Los Santos Villalobos S, Félix Pablos CM, Valenzuela Ruiz V, Parra Cota FI. Bacillus mexicanus sp. nov., a biological control bacterium isolated from the common bean ( Phaseolus vulgaris L.) crop in Sinaloa, Mexico. Int J Syst Evol Microbiol 2023; 73. [PMID: 37916690 DOI: 10.1099/ijsem.0.006110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023] Open
Abstract
Strain FSQ1T was isolated from the rhizosphere of the common bean (Phaseolus vulgaris L.) crop sampled in a commercial field located in the Gabriel Leyva Solano community, which belongs to the Guasave municipality (state of Sinaloa, Mexico). Based on its full-length 16S rRNA gene sequence, strain FSQ1T was assigned to the genus Bacillus (100 % similarity). This taxonomic affiliation was supported by its morphological and metabolic traits. Strain FSQ1T was a Gram-stain-positive bacterium with the following characteristics: rod-shaped cells, strictly aerobic, spore forming, catalase positive, reduced nitrate to nitrite, hydrolysed starch and casein, grew in the presence of lysozyme and 2 % NaCl, utilized citrate, grew at pH 6.0-8.0, produced acid from glucose, was unable to produce indoles from tryptophan, and presented biological control against Sclerotinia sclerotiorum. The whole-genome phylogenetic results showed that strain FSQ1T formed an individual clade in comparison with highly related Bacillus species. In addition, the maximum values for average nucleotide identity and from Genome-to-Genome Distance Calculator analysis were 91.57 and 44.20 %, respectively, with Bacillus spizizenii TU-B-10T. Analysis of its fatty acid content showed the ability of strain FSQ1T to produce fatty acids that are not present in closely related Bacillus species, such as C18 : 0 and C20 : 0. Thus, these results provide strong evidence that strain FSQ1T represents a novel species of the genus Bacillus, for which the name Bacillus mexicanus sp. nov. is proposed. The type strain is FSQ1T (CM-CNRG TB51T=LBPCV FSQ1T).
Collapse
Affiliation(s)
- Sergio de Los Santos Villalobos
- Laboratorio de Biotecnología del Recurso Microbiano, Instituto Tecnológico de Sonora, 5 de febrero 818 Sur, C.P.85000, Col. Centro, Ciudad 9 Obregón, Sonora, México
| | - Carmen María Félix Pablos
- Laboratorio de Biotecnología del Recurso Microbiano, Instituto Tecnológico de Sonora, 5 de febrero 818 Sur, C.P.85000, Col. Centro, Ciudad 9 Obregón, Sonora, México
| | - Valeria Valenzuela Ruiz
- Laboratorio de Biotecnología del Recurso Microbiano, Instituto Tecnológico de Sonora, 5 de febrero 818 Sur, C.P.85000, Col. Centro, Ciudad 9 Obregón, Sonora, México
| | - Fannie I Parra Cota
- Campo Experimental Norman E. Borlaug, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), Km. 12, C. P. 85000, Cd., Obregón, Sonora, México
| |
Collapse
|
19
|
Yuan H, Shi B, Wang Z, Qin G, Hou H, Tu H, Wang L. Exploration of the Biocontrol Activity of Bacillus atrophaeus Strain HF1 against Pear Valsa Canker Caused by Valsa pyri. Int J Mol Sci 2023; 24:15477. [PMID: 37895155 PMCID: PMC10607598 DOI: 10.3390/ijms242015477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
Valsa pyri-induced pear Valsa canker is among the most prevalent diseases to impact pear quality and yields. Biocontrol strategies to control plant disease represent an attractive alternative to the application of fungicides. In this study, the potential utility of Bacillus atrophaeus strain HF1 was assessed as a biocontrol agent against pear Valsa canker. Strain HF1 suppressed V. pyri mycelium growth by 61.20% and induced the development of malformed hyphae. Both culture filtrate and volatile organic compounds (VOCs) derived from strain HF1 were able to antagonize V. pyri growth. Treatment with strain HF1-derived culture filtrate or VOCs also induced the destruction of hyphal cell membranes. Headspace mixtures prepared from strain HF1 were analyzed, leading to the identification of 27 potential VOCs. Of the thirteen pure chemicals tested, iberverin, hexanoic acid, and 2-methylvaleraldehyde exhibited the strongest antifungal effects on V. pyri, with respective EC50 values of 0.30, 6.65, and 74.07 μL L-1. Fumigation treatment of pear twigs with each of these three compounds was also sufficient to prevent the development of pear Valsa canker. As such, these results demonstrate that B. atrophaeus strain HF1 and the volatile compounds iberverin, hexanoic acid, and 2-methylvaleraldehyde exhibit promise as novel candidate biocontrol agents against pear Valsa canker.
Collapse
Affiliation(s)
- Hongbo Yuan
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (H.Y.); (B.S.); (Z.W.); (G.Q.); (H.H.); (H.T.)
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Bingke Shi
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (H.Y.); (B.S.); (Z.W.); (G.Q.); (H.H.); (H.T.)
| | - Zhuoni Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (H.Y.); (B.S.); (Z.W.); (G.Q.); (H.H.); (H.T.)
| | - Genhong Qin
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (H.Y.); (B.S.); (Z.W.); (G.Q.); (H.H.); (H.T.)
| | - Hui Hou
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (H.Y.); (B.S.); (Z.W.); (G.Q.); (H.H.); (H.T.)
| | - Hongtao Tu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (H.Y.); (B.S.); (Z.W.); (G.Q.); (H.H.); (H.T.)
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang 453004, China
| | - Li Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (H.Y.); (B.S.); (Z.W.); (G.Q.); (H.H.); (H.T.)
| |
Collapse
|
20
|
Hashimoto T, Yahiro T, Khan S, Kimitsuki K, Hiramatsu K, Nishizono A. Bacillus subtilis Bacteremia from Gastrointestinal Perforation after Natto Ingestion, Japan. Emerg Infect Dis 2023; 29:2171-2172. [PMID: 37735785 PMCID: PMC10521625 DOI: 10.3201/eid2910.230084] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023] Open
Abstract
We report a case of Bacillus subtilis variant natto bacteremia from a gastrointestinal perforation in a patient who ingested natto. Genotypic methods showed the bacteria in a blood sample and the ingested natto were the same strains. Older or immunocompromised patients could be at risk for bacteremia from ingesting natto.
Collapse
|
21
|
Wang JY, Jayasinghe H, Cho YT, Tsai YC, Chen CY, Doan HK, Ariyawansa HA. Diversity and Biocontrol Potential of Endophytic Fungi and Bacteria Associated with Healthy Welsh Onion Leaves in Taiwan. Microorganisms 2023; 11:1801. [PMID: 37512973 PMCID: PMC10386586 DOI: 10.3390/microorganisms11071801] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/07/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Foliar diseases caused by Stemphylium and Colletotrichum species are among the major biotic factors limiting Welsh onion production in Taiwan. Owing to concerns about the environment and the development of pathogen resistance to existing fungicides, biological control using endophytes is emerging as an eco-friendly alternative to chemical control. The aim of the present study was to isolate endophytes from healthy Welsh onion leaves and investigate their antagonistic potential against the major phytopathogenic fungi associated with Welsh onion plants in Taiwan. A total of 109 bacterial and 31 fungal strains were isolated from healthy Welsh onion leaves and assigned to 16 bacterial and nine fungal genera using morphological and molecular characterization based on DNA sequence data obtained from nuclear internal transcribed spacer (nrITS) (fungi) and 16S rRNA (bacteria). Evaluation of these endophytic isolates for biocontrol activity against leaf blight pathogens Colletotrichum spaethianum strain SX15-2 and Stemphylium vesicarium strain SX20-2 by dual culture assay and greenhouse experiments resulted in the identification of two bacterial isolates (GFB08 and LFB28) and two fungal isolates (GFF06 and GFF08) as promising antagonists to leaf blight pathogens. Among the four selected isolates, Bacillus strain GFB08 exhibited the highest disease control in the greenhouse study. Therefore, Bacillus strain GFB08 was further evaluated to understand the mechanism underlying its biocontrol efficacy. A phylogenetic analysis based on six genes identified Bacillus strain GFB08 as B. velezensis. The presence of antimicrobial peptide genes (baer, bamC, bmyB, dfnA, fenD, ituC, mlna, and srfAA) and the secretion of several cell wall degrading enzymes (CWDEs), including cellulase and protease, confirmed the antifungal nature of B. velezensis strain GFB08. Leaf blight disease suppression by preventive and curative assays indicated that B. velezensis strain GFB08 has preventive efficacy on C. spaethianum strain SX15-2 and both preventive and curative efficacy on S. vesicarium strain SX20-2. Overall, the current study revealed that healthy Welsh onion leaves harbour diverse bacterial and fungal endophytes, among which the endophytic bacterial strain, B. velezensis strain GFB08, could potentially be used as a biocontrol agent to manage the leaf blight diseases of Welsh onion in Taiwan.
Collapse
Affiliation(s)
- Jian-Yuan Wang
- Department of Plant Pathology and Microbiology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei 106319, Taiwan
| | - Himanshi Jayasinghe
- Department of Plant Pathology and Microbiology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei 106319, Taiwan
| | - Yi-Tun Cho
- Department of Plant Pathology and Microbiology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei 106319, Taiwan
| | - Yi-Chen Tsai
- Hualien District Agricultural Research and Extension Station, Hualien 973044, Taiwan
| | - Chao-Ying Chen
- Department of Plant Pathology and Microbiology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei 106319, Taiwan
| | - Hung Kim Doan
- Small Farms & Specialty Crops Advisor, University of California Cooperative Extension, 2980 Washington Street, Riverside, CA 92504, USA
| | - Hiran A Ariyawansa
- Department of Plant Pathology and Microbiology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei 106319, Taiwan
| |
Collapse
|
22
|
Boiu-Sicuia OA, Toma RC, Diguță CF, Matei F, Cornea CP. In Vitro Evaluation of Some Endophytic Bacillus to Potentially Inhibit Grape and Grapevine Fungal Pathogens. PLANTS (BASEL, SWITZERLAND) 2023; 12:2553. [PMID: 37447114 DOI: 10.3390/plants12132553] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/20/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023]
Abstract
Romania has a long history of grapevine culturing and winemaking. However, like any agricultural sector, viticulture faces devastating biological threats. Fungi responsible for grapevine trunk diseases (GTDs) and grape spoilage lead to considerable yield losses and a decline in grapevine quality. In the actual context, many countries, including Romania, have reoriented their approaches to minimize chemical inputs, which have been proven to be toxic and to have negative impacts on the environment, and to replace them with sustainable biocontrol strategies for the wine-growing sector. Within biocontrol strategies, Bacillus spp. is a well-known plant-protective bacteria with antifungal properties. Within this paper, six endophytic bacteria from various plant sources were studied. The bacterial strains were identified as B. pumilus, B. subtilis, and B. velezensis by sequencing their 16S rDNA region. Regardless of the in vitro test methods (using living bacterial cells, bacterial-cell-free supernatant (CFS), and volatile active compounds (VOCs)), B. velezensis strains revealed strong and broad antifungal activity against grape and grapevine fungal pathogens such as Aspergillus spp., Botrytis cinerea, Penicillium expansum, Diplodia seriata, Eutypa lata, Fusarium spp., Clonostachys rosea, Neofusicoccum parvum, and Stereum hirsutum. The functional antifungal genes encoding for difficidin, fengycin, iturins, macrolactin, and mycosubtilin were molecularly detected, which could support the proven antifungal activity of the endophytic strains. Lytic enzymes involved in fungal growth inhibition, such as chitinase, cellulase, and proteases, were also revealed to be produced by some of these bacterial strains. Various other in vitro tests, such as phosphate and phytate solubilization, phytohormone synthesis, the production of enzymes involved in the polyamine biosynthetic pathway, and pH as well as temperature tolerance tests were carried out to reveal the plant-beneficial potential of these bacterial strains. These results revealed that the B. velezensis strains, especially BAHs1, are the most suitable endophytes for grapevine biologic control, which could lead to the future development of sustainable management strategies.
Collapse
Affiliation(s)
- Oana-Alina Boiu-Sicuia
- Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59, Mărăști Blvd., District 1, 011464 Bucharest, Romania
- Research-Development Institute for Plant Protection, 8 Ion Ionescu de la Brad Blvd., District 1, 013813 Bucharest, Romania
| | - Radu Cristian Toma
- Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59, Mărăști Blvd., District 1, 011464 Bucharest, Romania
| | - Camelia Filofteia Diguță
- Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59, Mărăști Blvd., District 1, 011464 Bucharest, Romania
| | - Florentina Matei
- Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59, Mărăști Blvd., District 1, 011464 Bucharest, Romania
| | - Călina Petruța Cornea
- Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59, Mărăști Blvd., District 1, 011464 Bucharest, Romania
| |
Collapse
|
23
|
Gangwal A, Kumar N, Sangwan N, Dhasmana N, Dhawan U, Sajid A, Arora G, Singh Y. Giving a signal: how protein phosphorylation helps Bacillus navigate through different life stages. FEMS Microbiol Rev 2023; 47:fuad044. [PMID: 37533212 PMCID: PMC10465088 DOI: 10.1093/femsre/fuad044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/30/2023] [Accepted: 08/01/2023] [Indexed: 08/04/2023] Open
Abstract
Protein phosphorylation is a universal mechanism regulating a wide range of cellular responses across all domains of life. The antagonistic activities of kinases and phosphatases can orchestrate the life cycle of an organism. The availability of bacterial genome sequences, particularly Bacillus species, followed by proteomics and functional studies have aided in the identification of putative protein kinases and protein phosphatases, and their downstream substrates. Several studies have established the role of phosphorylation in different physiological states of Bacillus species as they pass through various life stages such as sporulation, germination, and biofilm formation. The most common phosphorylation sites in Bacillus proteins are histidine, aspartate, tyrosine, serine, threonine, and arginine residues. Protein phosphorylation can alter protein activity, structural conformation, and protein-protein interactions, ultimately affecting the downstream pathways. In this review, we summarize the knowledge available in the field of Bacillus signaling, with a focus on the role of protein phosphorylation in its physiological processes.
Collapse
Affiliation(s)
- Aakriti Gangwal
- Department of Zoology, University of Delhi, Faculty of Science, Delhi- 110007, India
| | - Nishant Kumar
- Department of Zoology, University of Delhi, Faculty of Science, Delhi- 110007, India
| | - Nitika Sangwan
- Department of Zoology, University of Delhi, Faculty of Science, Delhi- 110007, India
- Department of Biomedical Science, Bhaskaracharya College of Applied Sciences, University of Delhi, New Delhi-110075, India
| | - Neha Dhasmana
- School of Medicine, New York University, 550 First Avenue New York-10016, New York, United States
| | - Uma Dhawan
- Department of Biomedical Science, Bhaskaracharya College of Applied Sciences, University of Delhi, New Delhi-110075, India
| | - Andaleeb Sajid
- 300 Cedar St, Yale School of Medicine, Yale University, New Haven, Connecticut 06520, New Haven CT, United States
| | - Gunjan Arora
- 300 Cedar St, Yale School of Medicine, Yale University, New Haven, Connecticut 06520, New Haven CT, United States
| | - Yogendra Singh
- Department of Zoology, University of Delhi, Faculty of Science, Delhi- 110007, India
- Delhi School of Public Health, Institution of Eminence, University of Delhi, Delhi-110007, India
| |
Collapse
|
24
|
Li X, Ma S, Meng Y, Wei W, Peng C, Ling C, Fan S, Liu Z. Characterization of Antagonistic Bacteria Paenibacillus polymyxa ZYPP18 and the Effects on Plant Growth. PLANTS (BASEL, SWITZERLAND) 2023; 12:2504. [PMID: 37447065 DOI: 10.3390/plants12132504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/24/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023]
Abstract
Paenibacillus polymyxa is a plant growth-promoting rhizobacteria (PGPR) that has significant biocontrol properties. Wheat sheath blight caused by Rhizoctonia cerealis is a significant soil-borne disease of wheat that causes significant losses in wheat production, and the biological control against the disease has received extensive attention. P. polymyxa ZYPP18 was identified using morphological and molecular characterization. An antagonistic activity experiment verified that ZYPP18 inhibits the growth of R. cerealis on artificial growth media. A detached leaf assay verified that ZYPP18 inhibits the expansion of wheat sheath blight on the detached leaf. ZYPP18 has been found to possess plant growth-promoting properties, as well as the ability to solubilize phosphate and generate indole-3-acetic acid. Results from hydroponic experiments showed that wheat seedlings treated with ZYPP18 grew faster. Additionally, pot experiments and field experiments demonstrated that ZYPP18 effectively controls the occurrence of wheat sheath blight. ZYPP18 reduced the incidence of wheat sheath blight in wheat seedlings by 37.37% and 37.90%, respectively. The control effect of ZYPP18 on wheat sheath blight was 56.30% and 65.57%, respectively. These findings provide evidence that P. polymyxa ZYPP18 is an effective biological factor that can control disease and promote plant growth.
Collapse
Affiliation(s)
- Xiangying Li
- College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| | - Sujing Ma
- College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| | - Yuan Meng
- College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| | - Wei Wei
- College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| | - Chen Peng
- College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| | - Chunli Ling
- Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Susu Fan
- Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Zhenyu Liu
- College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| |
Collapse
|
25
|
Thanh Tam LT, Jähne J, Luong PT, Phuong Thao LT, Nhat LM, Blumenscheit C, Schneider A, Blom J, Kim Chung LT, Anh Minh PL, Thanh HM, Hoat TX, Hoat PC, Son TC, Weinmann M, Herfort S, Vater J, Van Liem N, Schweder T, Lasch P, Borriss R. Two plant-associated Bacillus velezensis strains selected after genome analysis, metabolite profiling, and with proved biocontrol potential, were enhancing harvest yield of coffee and black pepper in large field trials. FRONTIERS IN PLANT SCIENCE 2023; 14:1194887. [PMID: 37426979 PMCID: PMC10327441 DOI: 10.3389/fpls.2023.1194887] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/01/2023] [Indexed: 07/11/2023]
Abstract
Elimination of chemically synthesized pesticides, such as fungicides and nematicides, in agricultural products is a key to successful practice of the Vietnamese agriculture. We describe here the route for developing successful biostimulants based on members of the Bacillus subtilis species complex. A number of endospore-forming Gram-positive bacterial strains with antagonistic action against plant pathogens were isolated from Vietnamese crop plants. Based on their draft genome sequence, thirty of them were assigned to the Bacillus subtilis species complex. Most of them were assigned to the species Bacillus velezensis. Whole genome sequencing of strains BT2.4 and BP1.2A corroborated their close relatedness to B. velezensis FZB42, the model strain for Gram-positive plant growth-promoting bacteria. Genome mining revealed that at least 15 natural product biosynthesis gene clusters (BGCs) are well conserved in all B. velezensis strains. In total, 36 different BGCs were identified in the genomes of the strains representing B. velezensis, B. subtilis, Bacillus tequilensis, and Bacillus. altitudinis. In vitro and in vivo assays demonstrated the potential of the B. velezensis strains to enhance plant growth and to suppress phytopathogenic fungi and nematodes. Due to their promising potential to stimulate plant growth and to support plant health, the B. velezensis strains TL7 and S1 were selected as starting material for the development of novel biostimulants, and biocontrol agents efficient in protecting the important Vietnamese crop plants black pepper and coffee against phytopathogens. The results of the large-scale field trials performed in the Central Highlands in Vietnam corroborated that TL7 and S1 are efficient in stimulating plant growth and protecting plant health in large-scale applications. It was shown that treatment with both bioformulations resulted in prevention of the pathogenic pressure exerted by nematodes, fungi, and oomycetes, and increased harvest yield in coffee, and pepper.
Collapse
Affiliation(s)
- Le Thi Thanh Tam
- Division of Pathology and Phyto-Immunology, Plant Protection Research Institute (PPRI), Ha Noi, Vietnam
| | - Jennifer Jähne
- Proteomics and Spectroscopy Unit (ZBS6), Center for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Pham Thi Luong
- Division of Pathology and Phyto-Immunology, Plant Protection Research Institute (PPRI), Ha Noi, Vietnam
| | - Le Thi Phuong Thao
- Division of Pathology and Phyto-Immunology, Plant Protection Research Institute (PPRI), Ha Noi, Vietnam
| | - Le Mai Nhat
- Science and International Co-operation Department, Plant Protection Research Institute (PPRI), Ha Noi, Vietnam
| | - Christian Blumenscheit
- Proteomics and Spectroscopy Unit (ZBS6), Center for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Andy Schneider
- Proteomics and Spectroscopy Unit (ZBS6), Center for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Jochen Blom
- Bioinformatics and Systems Biology, Justus-Liebig-Universität Giessen, Giessen, Germany
| | - Le Thi Kim Chung
- Institute for Preventive Medicine and Public Health, Hanoi Medical University, Ha Noi, Vietnam
| | - Pham Le Anh Minh
- Department of Biotechnology, Vietnam National University of Agriculture, Ha Noi, Vietnam
| | - Ha Minh Thanh
- Division of Pathology and Phyto-Immunology, Plant Protection Research Institute (PPRI), Ha Noi, Vietnam
| | - Trinh Xuan Hoat
- Science and International Co-operation Department, Plant Protection Research Institute (PPRI), Ha Noi, Vietnam
| | - Pham Cong Hoat
- Department of Science and Technology for Economic Technical Branches, Ministry of Science and Technology (MOST), Hanoi, Vietnam
| | - Tran Cao Son
- Laboratory of Food Toxicology and Allergens, National Institute for Food Control (NIFC), Ha Noi, Vietnam
| | - Markus Weinmann
- Ernährungsphysiologie Der Kulturpflanzen, University of Hohenheim, Stuttgart, Germany
| | - Stefanie Herfort
- Proteomics and Spectroscopy Unit (ZBS6), Center for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Joachim Vater
- Proteomics and Spectroscopy Unit (ZBS6), Center for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Nguyen Van Liem
- Science and International Co-operation Department, Plant Protection Research Institute (PPRI), Ha Noi, Vietnam
| | - Thomas Schweder
- Institute of Marine Biotechnology e.V. (IMaB), Greifswald, Germany
- Pharmaceutical Biotechnology, University of Greifswald, Greifswald, Germany
| | - Peter Lasch
- Proteomics and Spectroscopy Unit (ZBS6), Center for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Rainer Borriss
- Institute of Marine Biotechnology e.V. (IMaB), Greifswald, Germany
- Institute of Biology, Humboldt University, Berlin, Germany
| |
Collapse
|
26
|
Guo Q, Li S, Dong L, Su Z, Wang P, Liu X, Ma P. Screening Biocontrol Agents for Cash Crop Fusarium Wilt Based on Fusaric Acid Tolerance and Antagonistic Activity against Fusarium oxysporum. Toxins (Basel) 2023; 15:381. [PMID: 37368682 DOI: 10.3390/toxins15060381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/29/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Fusarium wilt, caused by Fusarium oxysporum, is one of the most notorious diseases of cash crops. The use of microbial fungicides is an effective measure for controlling Fusarium wilt, and the genus Bacillus is an important resource for the development of microbial fungicides. Fusaric acid (FA) produced by F. oxysporum can inhibit the growth of Bacillus, thus affecting the control efficacy of microbial fungicides. Therefore, screening FA-tolerant biocontrol Bacillus may help to improve the biocontrol effect on Fusarium wilt. In this study, a method for screening biocontrol agents against Fusarium wilt was established based on tolerance to FA and antagonism against F. oxysporum. Three promising biocontrol bacteria, named B31, F68, and 30833, were obtained to successfully control tomato, watermelon, and cucumber Fusarium wilt. Strains B31, F68, and 30833 were identified as B. velezensis by phylogenetic analysis of the 16S rDNA, gyrB, rpoB, and rpoC gene sequences. Coculture assays revealed that strains B31, F68, and 30833 showed increased tolerance to F. oxysporum and its metabolites compared with B. velezensis strain FZB42. Further experiments confirmed that 10 µg/mL FA completely inhibited the growth of strain FZB42, while strains B31, F68, and 30833 maintained normal growth at 20 µg/mL FA and partial growth at 40 µg/mL FA. Compared with strain FZB42, strains B31, F68, and 30833 exhibited significantly greater tolerance to FA.
Collapse
Affiliation(s)
- Qinggang Guo
- Institute of Plant Protection, Hebei Academy of Agricultural and Forestry Sciences, Integrated Pest Management Innovation Centre of Hebei Province, Baoding 071000, China
| | - Shixin Li
- Institute of Plant Protection, Hebei Academy of Agricultural and Forestry Sciences, Integrated Pest Management Innovation Centre of Hebei Province, Baoding 071000, China
| | - Lihong Dong
- Institute of Plant Protection, Hebei Academy of Agricultural and Forestry Sciences, Integrated Pest Management Innovation Centre of Hebei Province, Baoding 071000, China
| | - Zhenhe Su
- Institute of Plant Protection, Hebei Academy of Agricultural and Forestry Sciences, Integrated Pest Management Innovation Centre of Hebei Province, Baoding 071000, China
| | - Peipei Wang
- Institute of Plant Protection, Hebei Academy of Agricultural and Forestry Sciences, Integrated Pest Management Innovation Centre of Hebei Province, Baoding 071000, China
| | - Xiaomeng Liu
- Institute of Plant Protection, Hebei Academy of Agricultural and Forestry Sciences, Integrated Pest Management Innovation Centre of Hebei Province, Baoding 071000, China
| | - Ping Ma
- Institute of Plant Protection, Hebei Academy of Agricultural and Forestry Sciences, Integrated Pest Management Innovation Centre of Hebei Province, Baoding 071000, China
| |
Collapse
|
27
|
Cuellar-Gaviria TZ, García-Botero C, Ju KS, Villegas-Escobar V. The genome of Bacillus tequilensis EA-CB0015 sheds light into its epiphytic lifestyle and potential as a biocontrol agent. Front Microbiol 2023; 14:1135487. [PMID: 37051516 PMCID: PMC10083409 DOI: 10.3389/fmicb.2023.1135487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 03/06/2023] [Indexed: 03/29/2023] Open
Abstract
Different Bacillus species have successfully been used as biopesticides against a broad range of plant pathogens. Among these, Bacillus tequilensis EA-CB0015 has shown to efficiently control Black sigatoka disease in banana plants, presumably by mechanisms of adaptation that involve modifying the phyllosphere environment. Here, we report the complete genome of strain EA-CB0015, its precise taxonomic identity, and determined key genetic features that may contribute to its effective biocontrol of plant pathogens. We found that B. tequilensis EA-CB0015 harbors a singular 4 Mb circular chromosome, with 3,951 protein-coding sequences. Multi-locus sequence analysis (MLSA) and average nucleotide identity (ANI) analysis classified strain EA-CB0015 as B. tequilensis. Encoded within its genome are biosynthetic gene clusters (BGCs) for surfactin, iturin, plipastatin, bacillibactin, bacilysin, subtilosin A, sporulation killing factor, and other natural products that may facilitate inter-microbial warfare. Genes for indole-acetic acid (IAA) synthesis, the use of diverse carbon sources, and a multicellular lifestyle involving motility, biofilm formation, quorum sensing, competence, and sporulation suggest EA-CB0015 is adept at colonizing plant surfaces. Defensive mechanisms to survive invading viral infections and preserve genome integrity include putative type I and type II restriction modification (RM) and toxin/antitoxin (TA) systems. The presence of bacteriophage sequences, genomic islands, transposable elements, virulence factors, and antibiotic resistance genes indicate prior occurrences of genetic exchange. Altogether, the genome of EA-CB0015 supports its function as a biocontrol agent against phytopathogens and suggest it has adapted to thrive within phyllosphere environments.
Collapse
Affiliation(s)
- Tatiana Z. Cuellar-Gaviria
- CIBIOP Group, Department of Biological Sciences, Universidad EAFIT, Medellin, Colombia
- Department of Microbiology, The Ohio State University, Columbus, OH, United States
- Banana Research Center, Augura, Conjunto Residencial Los Almendros, Carepa, Colombia
| | - Camilo García-Botero
- CIBIOP Group, Department of Biological Sciences, Universidad EAFIT, Medellin, Colombia
| | - Kou-San Ju
- Department of Microbiology, The Ohio State University, Columbus, OH, United States
- Division of Medicinal Chemistry and Pharmacognosy, The Ohio State University, Columbus, OH, United States
- Center for Applied Plant Sciences, The Ohio State University, Columbus, OH, United States
- Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States
- *Correspondence: Kou-San Ju, ; Valeska Villegas-Escobar,
| | - Valeska Villegas-Escobar
- CIBIOP Group, Department of Biological Sciences, Universidad EAFIT, Medellin, Colombia
- *Correspondence: Kou-San Ju, ; Valeska Villegas-Escobar,
| |
Collapse
|
28
|
Guillén-Navarro K, López-Gutiérrez T, García-Fajardo V, Gómez-Cornelio S, Zarza E, De la Rosa-García S, Chan-Bacab M. Broad-Spectrum Antifungal, Biosurfactants and Bioemulsifier Activity of Bacillus subtilis subsp. spizizenii-A Potential Biocontrol and Bioremediation Agent in Agriculture. PLANTS (BASEL, SWITZERLAND) 2023; 12:1374. [PMID: 36987062 PMCID: PMC10056679 DOI: 10.3390/plants12061374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/11/2023] [Accepted: 03/14/2023] [Indexed: 06/19/2023]
Abstract
In this study, the antifungal, biosurfactant and bioemulsifying activity of the lipopeptides produced by the marine bacterium Bacillus subtilis subsp. spizizenii MC6B-22 is presented. The kinetics showed that at 84 h, the highest yield of lipopeptides (556 mg/mL) with antifungal, biosurfactant, bioemulsifying and hemolytic activity was detected, finding a relationship with the sporulation of the bacteria. Based on the hemolytic activity, bio-guided purification methods were used to obtain the lipopeptide. By TLC, HPLC and MALDI-TOF, the mycosubtilin was identified as the main lipopeptide, and it was further confirmed by NRPS gene clusters prediction based on the strain's genome sequence, in addition to other genes related to antimicrobial activity. The lipopeptide showed a broad-spectrum activity against ten phytopathogens of tropical crops at a minimum inhibitory concentration of 400 to 25 μg/mL and with a fungicidal mode of action. In addition, it exhibited that biosurfactant and bioemulsifying activities remain stable over a wide range of salinity and pH and it can emulsify different hydrophobic substrates. These results demonstrate the potential of the MC6B-22 strain as a biocontrol agent for agriculture and its application in bioremediation and other biotechnological fields.
Collapse
Affiliation(s)
- Karina Guillén-Navarro
- Grupo Académico de Biotecnología Ambiental, Departamento de Ciencias de la Sustentabilidad, El Colegio de la Frontera Sur Unidad Tapachula, Carretera Antiguo Aeropuerto km 2.5, Tapachula 30700, Chiapas, Mexico; (K.G.-N.); (E.Z.)
| | - Tomás López-Gutiérrez
- Facultad de Ciencias Biologicas, Universidad Autónoma de Campeche, Av. Agustín Melgar s/n, Col. Buenavista, Campeche 24030, Campeche, Mexico
| | - Verónica García-Fajardo
- Grupo Académico de Biotecnología Ambiental, Departamento de Ciencias de la Sustentabilidad, El Colegio de la Frontera Sur Unidad Tapachula, Carretera Antiguo Aeropuerto km 2.5, Tapachula 30700, Chiapas, Mexico; (K.G.-N.); (E.Z.)
| | - Sergio Gómez-Cornelio
- Ingeniería en Biotecnología, Universidad Politécnica del Centro, Carretera Federal Villahermosa-Teapa km 22.5, Villahermosa 86290, Tabasco, Mexico;
- Laboratorio de Nanotecnología-CICTAT, División Académica de Ingeniería y Arquitectura, Universidad Juárez Autónoma de Tabasco, Carr. Cunduacán-Jalpa de Méndez km 1, Cunduacán 86690, Tabasco, Mexico
| | - Eugenia Zarza
- Grupo Académico de Biotecnología Ambiental, Departamento de Ciencias de la Sustentabilidad, El Colegio de la Frontera Sur Unidad Tapachula, Carretera Antiguo Aeropuerto km 2.5, Tapachula 30700, Chiapas, Mexico; (K.G.-N.); (E.Z.)
- Investigadora CONACyT—El Colegio de la Frontera Sur. Av. Insurgentes Sur 1582, Col. Crédito Constructor, Benito Juárez, Mexico City 03940, Mexico City, Mexico
| | - Susana De la Rosa-García
- Laboratorio de Microbiología Aplicada, División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Carretera Villahermosa-Cárdenas km 0.5, Villahermosa 86000, Tabasco, Mexico
| | - Manuel Chan-Bacab
- Departamento de Microbiología Ambiental y Biotecnología, Universidad Autónoma de Campeche, Av. Agustín Melgar s/n, Col. Buenavista, Campeche 24030, Campeche, Mexico
| |
Collapse
|
29
|
Vásquez E, Millones C. Isolation and Identification of Bacteria of Genus Bacillus from Composting Urban Solid Waste and Palm Forest in Northern Peru. Microorganisms 2023; 11:microorganisms11030751. [PMID: 36985324 PMCID: PMC10055787 DOI: 10.3390/microorganisms11030751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/26/2023] [Accepted: 03/07/2023] [Indexed: 03/17/2023] Open
Abstract
A technical challenge for composting in Peruvian cities with annual temperatures below 20 °C is that the degradation of municipal solid waste (MSW) is slow, so the identification of cold-adapted bacteria would be interesting for use as inoculants in places with these climatic conditions. This study isolated, identified, and evaluated bacterial strains with cellulolytic and amylolytic activities at low temperatures. Bacterial strains were isolated from the Chachapoyas Municipal Composting Plant and soil from the Ocol Palm Forest in northern Peru. The screening was carried out to evaluate the extracellular enzyme activity of the strains at low temperatures, grouping those with cellulolytic and cellulolytic/amylolytic activities. The DNA-barcoding using 16S rRNA and enzyme activity allowed the identification and selection of five species with enzymatic activity at 15 and 20 °C of the genus Bacillus, three with cellulolytic/amylolytic activity (B. wiedmanii, B. subtilis, and B. velezensis), and two with cellulolytic activity (B. safensis subsp. safensis, and B. subtilis). These strains showed tolerance to temperatures below optimum and could be used in further studies as inoculants for composting organic wastes at temperatures below 20 °C.
Collapse
|
30
|
Wang B, Yang B, Peng H, Lu J, Fu P. Genome sequence and comparative analysis of fungal antagonistic strain Bacillus velezensis LJBV19. Folia Microbiol (Praha) 2023; 68:73-86. [PMID: 35913660 DOI: 10.1007/s12223-022-00996-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 07/06/2022] [Indexed: 11/29/2022]
Abstract
Bacillus species as fungal antagonistic agents have been widely used in the agriculture and considered as safe products for the management of plant pathogens. In this study, we reported the whole genome sequence of strain LJBV19 isolated from grapevine rhizosphere soil. Strain LJBV19 was identified as Bacillus velezensis through morphological, physicochemical, molecular analysis and genome comparison. Bacillus velezensis LJBV19 had a significant inhibitory effect on the growth of Magnaporthe oryzae with an inhibition ratio up to 75.55% and showed broad spectrum of activity against fungal phytopathogens. The 3,973,013-bp circular chromosome with an average GC content of 46.5% consisted of 3993 open reading frames (ORFs), and 3308 ORFs were classified into 19 cluster of orthologous groups of proteins (COG) categories. Genes related to cell wall degrading enzymes were predicted by Carbohydrate-Active enZYmes (CAZy) database and validated at the metabolic level, producing 0.53 ± 0.00 U/mL cellulose, 0.14 ± 0.01 U/mL chitinase, and 0.11 ± 0.01 U/mL chitosanase. Genome comparison confirmed the taxonomic position of LJBV19, conserved genomic structure, and genetic homogeneity. Moreover, 13 gene clusters for biosynthesis of secondary metabolites in LJBV19 genome were identified and two unique clusters (clusters 2 and 12) shown to direct an unknown compound were only present in strain LJBV19. In general, our results will provide insights into the antifungal mechanisms of Bacillus velezensis LJBV19 and further application of the strain.
Collapse
Affiliation(s)
- Bo Wang
- Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Bohan Yang
- Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Hang Peng
- Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jiang Lu
- Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Peining Fu
- Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
31
|
Isolation and Identification of a Bacillus sp. from Freshwater Sediment Displaying Potent Activity Against Bacteria and Phytopathogen Fungi. Curr Microbiol 2022; 79:398. [DOI: 10.1007/s00284-022-03090-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 10/14/2022] [Indexed: 11/10/2022]
|
32
|
Chen T, Zhang Z, Li W, Chen J, Chen X, Wang B, Ma J, Dai Y, Ding H, Wang W, Long Y. Biocontrol potential of Bacillus subtilis CTXW 7-6-2 against kiwifruit soft rot pathogens revealed by whole-genome sequencing and biochemical characterisation. Front Microbiol 2022; 13:1069109. [PMID: 36532498 PMCID: PMC9751376 DOI: 10.3389/fmicb.2022.1069109] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/14/2022] [Indexed: 09/05/2023] Open
Abstract
Soft rot causes significant economic losses in the kiwifruit industry. This study isolated strain CTXW 7-6-2 from healthy kiwifruit tissue; this was a gram-positive bacterium that produced the red pigment pulcherrimin. The phylogenetic tree based on 16S ribosomal RNA, gyrA, rpoB, and purH gene sequences identified CTXW 7-6-2 as a strain of Bacillus subtilis. CTXW 7-6-2 inhibited hyphal growth of pathogenic fungi that cause kiwifruit soft rot, namely, Botryosphaeria dothidea, Phomopsis sp., and Alternaria alternata, by 81.76, 69.80, and 32.03%, respectively. CTXW 7-6-2 caused the hyphal surface to become swollen and deformed. Volatile compounds (VOC) produced by the strain inhibited the growth of A. alternata and Phomopsis sp. by 65.74 and 54.78%, respectively. Whole-genome sequencing revealed that CTXW 7-6-2 possessed a single circular chromosome of 4,221,676 bp that contained 4,428 protein-coding genes, with a guanine and cytosine (GC) content of 43.41%. Gene functions were annotated using the National Center for Biotechnology Information (NCBI) non-redundant protein, Swiss-Prot, Kyoto Encyclopedia of Genes and Genomes, Clusters of Orthologous Groups of proteins, Gene Ontology, Pathogen-Host Interactions, Carbohydrate-Active enZYmes, and Rapid Annotations using Subsystem Technology databases, revealing non-ribosomal pathways associated with antifungal mechanisms, biofilm formation, chemotactic motility, VOC 3-hydroxy-2-butanone, cell wall-associated enzymes, and synthesis of various secondary metabolites. antiSMASH analysis predicted that CTXW 7-6-2 can produce the active substances bacillaene, bacillibactin, subtilosin A, bacilysin, and luminmide and has four gene clusters of unknown function. Quantitative real-time PCR (qRT-PCR) analysis verified that yvmC and cypX, key genes involved in the production of pulcherrimin, were highly expressed in CTXW 7-6-2. This study elucidates the mechanism by which B. subtilis strain CTXW 7-6-2 inhibits pathogenic fungi that cause kiwifruit soft rot, suggesting the benefit of further studying its antifungal active substances.
Collapse
Affiliation(s)
- Tingting Chen
- Research Center for Engineering Technology of Kiwifruit, College of Agriculture, Institute of Crop Protection, Guizhou University, Guiyang, China
| | - Zhuzhu Zhang
- Research Center for Engineering Technology of Kiwifruit, College of Agriculture, Institute of Crop Protection, Guizhou University, Guiyang, China
| | - Wenzhi Li
- Research Center for Engineering Technology of Kiwifruit, College of Agriculture, Institute of Crop Protection, Guizhou University, Guiyang, China
| | - Jia Chen
- Research Center for Engineering Technology of Kiwifruit, College of Agriculture, Institute of Crop Protection, Guizhou University, Guiyang, China
| | - Xuetang Chen
- Research Center for Engineering Technology of Kiwifruit, College of Agriculture, Institute of Crop Protection, Guizhou University, Guiyang, China
| | - Bince Wang
- Research Center for Engineering Technology of Kiwifruit, College of Agriculture, Institute of Crop Protection, Guizhou University, Guiyang, China
| | - Jiling Ma
- Research Center for Engineering Technology of Kiwifruit, College of Agriculture, Institute of Crop Protection, Guizhou University, Guiyang, China
| | - Yunyun Dai
- Research Center for Engineering Technology of Kiwifruit, College of Agriculture, Institute of Crop Protection, Guizhou University, Guiyang, China
| | - Haixia Ding
- Research Center for Engineering Technology of Kiwifruit, College of Agriculture, Institute of Crop Protection, Guizhou University, Guiyang, China
- Department of Plant Pathology, Guizhou University, Guiyang, China
| | - Weizhen Wang
- Research Center for Engineering Technology of Kiwifruit, College of Agriculture, Institute of Crop Protection, Guizhou University, Guiyang, China
| | - Youhua Long
- Research Center for Engineering Technology of Kiwifruit, College of Agriculture, Institute of Crop Protection, Guizhou University, Guiyang, China
- Teaching Experimental Factory, Guizhou University, Guiyang, China
| |
Collapse
|
33
|
Saggese A, Giglio R, D’Anzi N, Baccigalupi L, Ricca E. Comparative Genomics and Physiological Characterization of Two Aerobic Spore Formers Isolated from Human Ileal Samples. Int J Mol Sci 2022; 23:14946. [PMID: 36499272 PMCID: PMC9739757 DOI: 10.3390/ijms232314946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/25/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022] Open
Abstract
Spore formers are ubiquitous microorganisms commonly isolated from most environments, including the gastro-intestinal tract (GIT) of insects and animals. Spores ingested as food and water contaminants safely transit the stomach and reach the intestine, where some of them germinate and temporarily colonize that niche. In the lower part of the GIT, they re-sporulate and leave the body as spores, therefore passing through their entire life cycle in the animal body. In the intestine, both un-germinated spores and germination-derived cells interact with intestinal and immune cells and have health-beneficial effects, which include the production of useful compounds, protection against pathogenic microorganisms, contribution to the development of an efficient immune system and modulation of the gut microbial composition. We report a genomic and physiological characterization of SF106 and SF174, two aerobic spore former strains previously isolated from ileal biopsies of healthy human volunteers. SF106 and SF174 belong respectively to the B. subtilis and Alkalihalobacillus clausii (formerly Bacillus clausii) species, are unable to produce toxins or other metabolites with cytotoxic activity against cultured human cells, efficiently bind mucin and human epithelial cells in vitro and produce molecules with antimicrobial and antibiofilm activities.
Collapse
Affiliation(s)
- Anella Saggese
- Department of Biology, Federico II University of Naples, 80125 Naples, Italy
| | | | | | - Loredana Baccigalupi
- Department of Molecular Medicine and Medical Biotechnology, Federico II University of Naples, 80131 Naples, Italy
| | - Ezio Ricca
- Department of Biology, Federico II University of Naples, 80125 Naples, Italy
| |
Collapse
|
34
|
Bustamante MI, Elfar K, Eskalen A. Evaluation of the Antifungal Activity of Endophytic and Rhizospheric Bacteria against Grapevine Trunk Pathogens. Microorganisms 2022; 10:microorganisms10102035. [PMID: 36296311 PMCID: PMC9611468 DOI: 10.3390/microorganisms10102035] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/13/2022] [Accepted: 10/13/2022] [Indexed: 11/08/2022] Open
Abstract
Grapevine trunk diseases (GTDs) are caused by multiple unrelated fungal pathogens, and their management remains difficult worldwide. Biocontrol is an attractive and sustainable strategy given the current need for a cleaner viticulture. In this study, twenty commercial vineyards were sampled across California to isolate endophytic and rhizospheric bacteria from different grapevine cultivars with the presence and absence of GTD symptoms. A collection of 1344 bacterial isolates were challenged in vitro against Neofusicoccum parvum and Diplodia seriata, from which a subset of 172 isolates exerted inhibition levels of mycelial growth over 40%. Bacterial isolates were identified as Bacillus velezensis (n = 154), Pseudomonas spp. (n = 12), Serratia plymuthica (n = 2) and others that were later excluded (n = 4). Representative isolates of B. velezensis, P. chlororaphis, and S. plymuthica were challenged against six other fungal pathogens responsible for GTDs. Mycelial inhibition levels were consistent across bacterial species, being slightly higher against slow-growing fungi than against Botryosphaeriaceae. Moreover, agar-diffusible metabolites of B. velezensis strongly inhibited the growth of N. parvum and Eutypa lata, at 1, 15, and 30% v/v. The agar-diffusible metabolites of P. chlororaphis and S. plymuthica, however, caused lower inhibition levels against both pathogens, but their volatile organic compounds showed antifungal activity against both pathogens. These results suggest that B. velezensis, P. chlororaphis and S. plymuthica constitute potential biocontrol agents (BCAs) against GTDs and their application in field conditions should be further evaluated.
Collapse
|
35
|
A Comparative Analysis of the Core Proteomes within and among the Bacillus subtilis and Bacillus cereus Evolutionary Groups Reveals the Patterns of Lineage- and Species-Specific Adaptations. Microorganisms 2022; 10:microorganisms10091720. [PMID: 36144322 PMCID: PMC9505155 DOI: 10.3390/microorganisms10091720] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022] Open
Abstract
By integrating phylogenomic and comparative analyses of 1104 high-quality genome sequences, we identify the core proteins and the lineage-specific fingerprint proteins of the various evolutionary clusters (clades/groups/species) of the Bacillus genus. As fingerprints, we denote those core proteins of a certain lineage that are present only in that particular lineage and absent in any other Bacillus lineage. Thus, these lineage-specific fingerprints are expected to be involved in particular adaptations of that lineage. Intriguingly, with a few notable exceptions, the majority of the Bacillus species demonstrate a rather low number of species-specific fingerprints, with the majority of them being of unknown function. Therefore, species-specific adaptations are mostly attributed to highly unstable (in evolutionary terms) accessory proteomes and possibly to changes at the gene regulation level. A series of comparative analyses consistently demonstrated that the progenitor of the Cereus Clade underwent an extensive genomic expansion of chromosomal protein-coding genes. In addition, the majority (76–82%) of the B. subtilis proteins that are essential or play a significant role in sporulation have close homologs in most species of both the Subtilis and the Cereus Clades. Finally, the identification of lineage-specific fingerprints by this study may allow for the future development of highly specific vaccines, therapeutic molecules, or rapid and low-cost molecular tests for species identification.
Collapse
|
36
|
Nøhr-Meldgaard K, Struve C, Ingmer H, Agersø Y. Intrinsic tet(L) sub-class in Bacillus velezensis and Bacillus amyloliquefaciens is associated with a reduced susceptibility toward tetracycline. Front Microbiol 2022; 13:966016. [PMID: 35992677 PMCID: PMC9387203 DOI: 10.3389/fmicb.2022.966016] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Annotations of non-pathogenic bacterial genomes commonly reveal putative antibiotic resistance genes and the potential risks associated with such genes is challenging to assess. We have examined a putative tetracycline tet(L) gene (conferring low level tetracycline resistance), present in the majority of all publicly available genomes of the industrially important operational group Bacillus amyloliquefaciens including the species B. amyloliquefaciens, Bacillus siamensis and Bacillus velezensis. The aim was to examine the risk of transfer of the putative tet(L) in operational group B. amyloliquefaciens through phylogenetic and genomic position analysis. These analyses furthermore included tet(L) genes encoded by transferable plasmids and other Gram-positive and -negative bacteria, including Bacillus subtilis. Through phylogenetic analysis, we could group chromosomally and plasmid-encoded tet(L) genes into four phylogenetic clades. The chromosomally encoded putative tet(L) from operational group B. amyloliquefaciens formed a separate phylogenetic clade; was positioned in the same genomic region in the three species; was not flanked by mobile genetic elements and was not found in any other bacterial species suggesting that the gene has been present in a common ancestor before species differentiation and is intrinsic. Therefore the gene is not considered a safety concern, and the risk of transfer to and expression of resistance in other non-related species is considered negligible. We suggest a subgrouping of the tet(L) class into four groups (tet(L)1.1, tet(L)1.2 and tet(L)2.1, tet(L)2.2), corresponding with the phylogenetic grouping and tet(L) from operational group B. amyloliquefaciens referred to as tet(L)2.2. Phylogenetic analysis is a useful tool to correctly differentiate between intrinsic and acquired antibiotic resistance genes.
Collapse
Affiliation(s)
- Katrine Nøhr-Meldgaard
- Chr. Hansen A/S, Hørsholm, Denmark
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Hanne Ingmer
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Yvonne Agersø
- Chr. Hansen A/S, Hørsholm, Denmark
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
- *Correspondence: Yvonne Agersø,
| |
Collapse
|
37
|
Chahar M, Gollop R, Kroupitski Y, Shemesh M, Sela Saldinger S. Control of Salmonella in mung bean sprouts by antagonistic spore-forming bacilli. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
38
|
Genetic Characteristics and Enzymatic Activities of Bacillus velezensis KS04AU as a Stable Biocontrol Agent against Phytopathogens. INTERNATIONAL JOURNAL OF PLANT BIOLOGY 2022. [DOI: 10.3390/ijpb13030018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Bacillus velezensis has a broad application in the agricultural and industrial sectors for its biocontrol properties and its potential active secondary metabolites. The defined phenotypic characteristics of a strain vary according to its ecosystem. We report the complete genomic analysis of B. velezensis KS04AU compared to four strains of B. velezensis (SRCM102752, ONU-553, FZB42, and JS25R) and two closely related Bacillus amyloliquefaciens (LL3 and IT-45). A total of 4771 protein coding genes comprises the KS04AU genome, in comparison with 3334 genes core genes found in the six other strains and the remaining 1437 shell genes. Average nucleotide identity of the target strain to the six other strains showed 99.65% to B. velezensis ONU-553, sharing 60 orthologous genes. Secondary metabolite gene cluster analysis of all strains showed that KS04AU has a mersacidin cluster gene, which is absent in the genome of the other strains. PHASTER analysis also showed KS04AU harboring two phages (Aeribacllus AP45 NC_048651 and Paenibacillus_Tripp NC_028930), which were also unique in comparison with the other strains. Analysis on anti-microbial resistance genes showed no difference in the genome of KS04AU to any of the other genomes, with the exception of B. amyloliquefaciens IT-45 which had one unique small multidrug-resistance antibiotic efflux-pump gene (qacJ). The CRISPR-Cas systems in the strains were also compared showing one CRISPR gene found only in KS04AU. Hydrolytic activity, antagonistic activity against phytopathogens (Fusarium oxysporum, Fusarium graminearum, Alternaria alternata and Pseudomonas syringae) and biocontrol against tomato foot and root rot experiments were carried out. B. velezensis KS04AU inhibits the growth of all phytopathogens tested, produces hydrolytic activity, and reduces Fusarium oxysporum f.sp. radicis-lycopersici (Forl) ZUM2407 lesions up to 46.02 ± 0.12%. The obtained results confirm B. velezensis KS04AU as a potential biocontrol strain for plant protection.
Collapse
|
39
|
Rahman MM, Lim SJ, Park YC. Molecular Identification of Bacillus Isolated from Korean Water Deer (Hydropotes inermis argyropus) and Striped Field Mouse (Apodemus agrarius) Feces by Using an SNP-Based 16S Ribosomal Marker. Animals (Basel) 2022; 12:ani12080979. [PMID: 35454225 PMCID: PMC9031142 DOI: 10.3390/ani12080979] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Wildlife is a great concern because of its free-ranging movements. They carry bacterial zoonoses in their feces, such as Bacillus species. In this study, we developed a 16S Bacillus species-specific 16S ribosomal RNA (rRNA) molecular marker for species identification. For discrimination of genetically similar members of Bacillus cereus group, including Bacillus cereus, B. anthrax, and B. thuringiensis, a single nucleotide polymorphism (SNP)-based marker was developed. We altered an artificial base at the 3′-end of SNP sites in each SNP-based 16S rRNA primer sequence to improve the ability of SNP-based primers to bind the PCR template sequence, thereby improving the allele-specific detection of target B. cereus strains. SNP analysis in high-quality DNA sequences could facilitate identification and discrimination of closely related bacterial species. Abstract Ambiguous, heterogeneous, endospore-forming Bacillus species, notably Bacillus cereus, often produce fatal toxins that threaten human health. We identified Bacillus from wild animal fecal samples (n = 80), including the Korean water deer (n = 25) and striped field mouse (n = 55). Using traditional culture-based methods, 25 animal fecal samples (31.25%; 25/80) were found to be positive for Bacillus species, whereas using molecular techniques, 19 samples (23.75%; 19/80) were found to be positive for the same. In addition, we designed a Bacillus species-specific 16S ribosomal RNA (rRNA) gene marker and utilized it to identify 19 samples by means of PCR amplification and sequencing, using at least one colony from the 19 Bacillus positive samples. The recovered sequences were matched to sequences of three Bacillus species (B. cereus, B. amyloliquefaciens, and B. megaterium) from the GenBank database. Moreover, the phylogenetic tree generated in this study established specific clades for the Bacillus group. In addition, to differentiate between B. cereus, B. anthracis, and B. thuringiensis, we designed a single nucleotide polymorphism (SNP)-based primer by identifying SNPs in the alignment of 16S rRNA gene sequences of B. cereus group strains. The SNPs were used to design primer sets for discrimination between highly similar species from the B. cereus group. The study could be used in surveillance of agricultural fresh-produce-associated Bacillus outbreaks, for accurate identification of each Bacillus species, and in the development of control measures.
Collapse
Affiliation(s)
- Md-Mafizur Rahman
- Division of Forest Science, Kangwon National University, Chuncheon 24341, Korea;
- Department Biotechnology and Genetic Engineering, Faculty of Biological Science, Islamic University, Kushtia 7003, Bangladesh
| | - Sang-Jin Lim
- Institute of Forest Science, Kangwon National University, Chuncheon 24341, Korea
- Correspondence: (S.-J.L.); (Y.-C.P.)
| | - Yung-Chul Park
- Division of Forest Science, Kangwon National University, Chuncheon 24341, Korea;
- Correspondence: (S.-J.L.); (Y.-C.P.)
| |
Collapse
|
40
|
Didion EM, Doyle M, Benoit JB. Bacterial Communities of Lab and Field Northern House Mosquitoes (Diptera: Culicidae) Throughout Diapause. JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:648-658. [PMID: 34747999 PMCID: PMC8924969 DOI: 10.1093/jme/tjab184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Indexed: 05/03/2023]
Abstract
Diapause is a hormonally driven response which is triggered by environmental cues that signal impending adverse conditions and prompts metabolic, developmental, and behavioral changes to allow survival until the return of favorable conditions. Microbial symbionts have been shown to influence the metabolism, development, and behavior of their host organisms, all of which are common diapause-associated characteristics. Surveys of bacterial components in relation to diapause have been examined in few systems, of which the species are usually inactive during dormancy, such as eggs or pupae. This is specifically intriguing as adult female diapause in Culex pipiens (Diptera: Culicidae) can last between 4 and 7 mo and females remain mobile within their hibernacula. Furthermore, it is unknown how microbiota changes associated with prolonged dormancy are different between the lab and field for insect systems. This study aims to characterize how the microbiota of C. pipiens changes throughout diapause under both field and lab settings when provided identical food and water resources. Based on these studies, C. pipiens microbiota shifts as diapause progresses and there are considerable differences between field and lab individuals even when provided the same carbohydrate and water sources. Specific bacterial communities have more association with different periods of diapause, field and lab rearing conditions, and nutritional reserve levels. These studies highlight that diapausing mosquito microbiota studies ideally should occur in field mesocosms and at multiple locations, to increase applicability to wild C. pipiens as prolonged exposure to artificial rearing conditions could impact metrics related to diapause-microbiome interactions. Additionally, these findings suggest that it would be worthwhile to establish if the microbiota shift during diapause impacts host physiology and whether this shift is critical to diapause success.
Collapse
Affiliation(s)
- Elise M Didion
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
- Corresponding authors, e-mail: ;
| | - Megan Doyle
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
- Corresponding authors, e-mail: ;
| |
Collapse
|
41
|
Kohm K, Floccari VA, Lutz VT, Nordmann B, Mittelstädt C, Poehlein A, Dragoš A, Commichau FM, Hertel R. The Bacillus phage SPβ and its relatives: a temperate phage model system reveals new strains, species, prophage integration loci, conserved proteins and lysogeny management components. Environ Microbiol 2022; 24:2098-2118. [PMID: 35293111 DOI: 10.1111/1462-2920.15964] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 03/02/2022] [Indexed: 11/28/2022]
Abstract
The Bacillus phage SPβ has been known for about 50 years, but only a few strains are available. We isolated four new wild-type strains of the SPbeta species. Phage vB_BsuS-Goe14 introduces its prophage into the spoVK locus, previously not observed to be used by SPβ-like phages. Sequence data revealed the genome replication strategy and the genome packaging mode of SPβ-like phages. We extracted 55 SPβ-like prophages from public Bacillus genomes, thereby discovering three more integration loci and one additional type of integrase. The identified prophages resemble four new species clusters and three species orphans in the genus Spbetavirus. The determined core proteome of all SPβ-like prophages consists of 38 proteins. The integration cassette proved to be not conserved, even though, present in all strains. It consists of distinct integrases. Analysis of SPβ transcriptomes revealed three conserved genes, yopQ, yopR, and yokI, to be transcribed from a dormant prophage. While yopQ and yokI could be deleted from the prophage without activating the prophage, damaging of yopR led to a clear-plaque phenotype. Under the applied laboratory conditions, the yokI mutant showed an elevated virion release implying the YokI protein being a component of the arbitrium system.
Collapse
Affiliation(s)
- Katharina Kohm
- FG Synthetic Microbiology, Institute for Biotechnology, BTU Cottbus-Senftenberg, Senftenberg, 01968, Germany
| | | | - Veronika T Lutz
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, 1870, Denmark
| | - Birthe Nordmann
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University, Göttingen, 37077, Germany
| | - Carolin Mittelstädt
- FG Synthetic Microbiology, Institute for Biotechnology, BTU Cottbus-Senftenberg, Senftenberg, 01968, Germany
| | - Anja Poehlein
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University, Göttingen, 37077, Germany
| | - Anna Dragoš
- Biotechnical Faculty, University of Ljubljana, Ljubljana, 1000, Slovenia
| | - Fabian M Commichau
- FG Synthetic Microbiology, Institute for Biotechnology, BTU Cottbus-Senftenberg, Senftenberg, 01968, Germany
| | - Robert Hertel
- FG Synthetic Microbiology, Institute for Biotechnology, BTU Cottbus-Senftenberg, Senftenberg, 01968, Germany
| |
Collapse
|
42
|
Comparative Genome Analysis Reveals Phylogenetic Identity of Bacillus velezensis HNA3 and Genomic Insights into Its Plant Growth Promotion and Biocontrol Effects. Microbiol Spectr 2022; 10:e0216921. [PMID: 35107331 PMCID: PMC8809340 DOI: 10.1128/spectrum.02169-21] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Bacillus velezensis HNA3, a potential plant growth promoter and biocontrol rhizobacterium, was isolated from plant rhizosphere soils in our previous work. Here, we sequenced the entire genome of the HNA3 strain and performed a comparative genome analysis. We found that HNA3 has a 3,929-kb chromosome with 46.5% GC content and 4,080 CDSs. We reclassified HNA3 as a Bacillus velezensis strain by core genome analysis between HNA3 and 74 previously defined Bacillus strains in the evolutionary tree. A comparative genomic analysis among Bacillus velezensis HNA3, Bacillus velezensis FZB42, Bacillus amyloliquefaciens DSM7, and Bacillus subtilis 168 showed that only HNA3 has one predicated secretory protein feruloyl esterase that catalyzes the hydrolysis of plant cell wall polysaccharides. The analysis of gene clusters revealed that whole biosynthetic gene clusters type Lanthipeptide was exclusively identified in HNA3 and might lead to the synthesis of new bioactive compounds. Twelve gene clusters were detected in HNA3 responsible for the synthesis of 14 secondary metabolites including Bacillaene, Fengycin, Bacillomycin D, Surfactin, Plipastatin, Mycosubtilin, Paenilarvins, Macrolactin, Difficidin, Amylocyclicin, Bacilysin, Iturin, Bacillibactin, Paenibactin, and others. HNA3 has 77 genes encoding for possible antifungal and antibacterial secreting carbohydrate active enzymes. It also contains genes involved in plant growth promotion, such as 11 putative indole acetic acid (IAA)-producing genes, spermidine and polyamine synthase genes, volatile compound producing genes, and multiple biofilm related genes. HNA3 also has 19 phosphatase genes involved in phosphorus solubilization. Our results provide insights into the genetic characteristics responsible for the bioactivities and potential application of HNA3 as plant growth-promoting strain in ecological agriculture. IMPORTANCE This study is the primary initiative to identify Bacillus velezensis HNA3 whole genome sequence and reveal its genomic properties as an effective biocontrol agent against plant pathogens and a plant growth stimulator. HNA3 genetic profile can be used as a reference for future studies that can be applied as a highly effective biofertilizer and biofungicide inoculum to improve agriculture productivity. HNA3 reclassified in the phylogenetic tree which may be helpful for highly effective strain engineering and taxonomy. The genetic comparison among HNA3 and closely similar species B. velezensis FZB42, B. amyloliquefaciens DSM7, and B. subtilis 168 demonstrates some distinctive genetic properties of HNA3 and provides a basis for the genetic diversity of the Bacillus genus, which allows developing more effective eco-friendly resources for agriculture and separation of Bacillus velezensis as distinct species in the phylogenetic tree.
Collapse
|
43
|
Yuan H, Shi B, Wang L, Huang T, Zhou Z, Hou H, Tu H. Isolation and Characterization of Bacillus velezensis Strain P2-1 for Biocontrol of Apple Postharvest Decay Caused by Botryosphaeria dothidea. Front Microbiol 2022; 12:808938. [PMID: 35058916 PMCID: PMC8764377 DOI: 10.3389/fmicb.2021.808938] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/10/2021] [Indexed: 11/13/2022] Open
Abstract
Botryosphaeria dothidea causes apple ring rot, which is among the most prevalent postharvest diseases of apples and causes significant economic loss during storage. In this study, we investigated the biocontrol activity and possible mechanism of Bacillus velezensis strain P2-1 isolated from apple branches against B. dothidea in postharvest apple fruit. The results showed strain P2-1, one of the 80 different endophytic bacterial strains from apple branches, exhibited strong inhibitory effects against B. dothidea growth and resulted in hyphal deformity. B. velezensis P2-1 treatment significantly reduced the ring rot caused by B. dothidea. Additionally, the supernatant of strain P2-1 exhibited antifungal activity against B. dothidea. Re-isolation assay indicated the capability of strain P2-1 to colonize and survive in apple fruit. PCR and qRT-PCR assays revealed that strain P2-1 harbored the gene clusters required for biosynthesis of antifungal lipopeptides and polyketides. Strain P2-1 treatment significantly enhanced the expression levels of pathogenesis-related genes (MdPR1 and MdPR5) but did not significantly affect apple fruit qualities (measured in fruit firmness, titratable acid, ascorbic acid, and soluble sugar). Thus, our results suggest that B. velezensis strain P2-1 is a biocontrol agent against B. dothidea-induced apple postharvest decay. It acts partially by inhibiting mycelial growth of B. dothidea, secreting antifungal substances, and inducing apple defense responses.
Collapse
Affiliation(s)
- Hongbo Yuan
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Bingke Shi
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Li Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China.,Key Lab of Horticultural Plant Biology, Ministry of Education, and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Tianxiang Huang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Zengqiang Zhou
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Hui Hou
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Hongtao Tu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| |
Collapse
|
44
|
Kamali M, Guo D, Naeimi S, Ahmadi J. Perception of Biocontrol Potential of Bacillus inaquosorum KR2-7 against Tomato Fusarium Wilt through Merging Genome Mining with Chemical Analysis. BIOLOGY 2022; 11:biology11010137. [PMID: 35053135 PMCID: PMC8773019 DOI: 10.3390/biology11010137] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/10/2022] [Accepted: 01/10/2022] [Indexed: 12/31/2022]
Abstract
Simple Summary Bacillus is a bacterial genus that is widely used as a promising alternative to chemical pesticides due to its protective activity toward economically important plant pathogens. Fusarium wilt of tomato is a serious fungal disease limiting tomato production worldwide. Recently, the newly isolated B. inaquosorum strain KR2-7 considerably suppressed Fusarium wilt of tomato plants. The present study was performed to perceive potential direct and indirect biocontrol mechanisms implemented by KR2-7 against this disease through genome and chemical analysis. The potential direct biocontrol mechanisms of KR2-7 were determined through the identification of genes involved in the synthesis of antibiotically active compounds suppressing tomato Fusarium wilt. Furthermore, the indirect mechanisms of this bacterium were perceived through recognizing genes that contributed to the resource acquisition or modulation of plant hormone levels. This is the first study that aimed at the modes of actions of B. inaquosorum against Fusarium wilt of tomatoes and the results strongly indicate that strain KR2-7 could be a good candidate for microbial biopesticide formulations to be used for biological control of plant diseases and plant growth promotion. Abstract Tomato Fusarium wilt, caused by Fusarium oxysporum f. sp. lycopersici (Fol), is a destructive disease that threatens the agricultural production of tomatoes. In the present study, the biocontrol potential of strain KR2-7 against Fol was investigated through integrated genome mining and chemical analysis. Strain KR2-7 was identified as B. inaquosorum based on phylogenetic analysis. Through the genome mining of strain KR2-7, we identified nine antifungal and antibacterial compound biosynthetic gene clusters (BGCs) including fengycin, surfactin and Bacillomycin F, bacillaene, macrolactin, sporulation killing factor (skf), subtilosin A, bacilysin, and bacillibactin. The corresponding compounds were confirmed through MALDI-TOF-MS chemical analysis. The gene/gene clusters involved in plant colonization, plant growth promotion, and induced systemic resistance were also identified in the KR2-7 genome, and their related secondary metabolites were detected. In light of these results, the biocontrol potential of strain KR2-7 against tomato Fusarium wilt was identified. This study highlights the potential to use strain KR2-7 as a plant-growth promotion agent.
Collapse
Affiliation(s)
- Maedeh Kamali
- College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China;
| | - Dianjing Guo
- State Key Laboratory of Agrobiotechnology and School of Life Sciences, Chinese University of Hong Kong, Hong Kong, China
- Correspondence: ; Tel.: +852-3943-6298
| | - Shahram Naeimi
- Department of Biological Control Research, Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization (AREEO), Tehran 19858-13111, Iran;
| | - Jafar Ahmadi
- Department of Genetics and Plant Breeding, Imam Khomeini International University, Qazvin 34149-16818, Iran;
| |
Collapse
|
45
|
Abd Alamer IS, Tomah AA, Ahmed T, Li B, Zhang J. Biosynthesis of Silver Chloride Nanoparticles by Rhizospheric Bacteria and Their Antibacterial Activity against Phytopathogenic Bacterium Ralstonia solanacearum. Molecules 2021; 27:224. [PMID: 35011455 PMCID: PMC8746595 DOI: 10.3390/molecules27010224] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/23/2021] [Accepted: 12/28/2021] [Indexed: 11/17/2022] Open
Abstract
Ralstonia solanacearum is the most destructive pathogen, causing bacterial wilt disease of eggplant. The present study aimed to develop green synthesis and characterization of silver chloride nanoparticles (AgCl-NPs) by using a native bacterial strain and subsequent evaluation of their antibacterial activity against R. solanacearum. Here, a total of 10 bacterial strains were selected for the biosynthesis of AgCl-NPs. Among them, the highest yield occurred in the synthesis of AgCl-NPs using a cell-free aqueous filtrate of strain IMA13. Ultrastructural observation revealed that the AgCl-NPs were spherical and oval with smooth surfaces and 5-35 nm sizes. XRD analysis studies revealed that these particles contained face-centered cubic crystallites of metallic Ag and AgCl. Moreover, FTIR analysis showed the presence of capping proteins, carbohydrates, lipids, and lipopeptide compounds and crystalline structure of AgCl-NPs. On the basis of phylogenetic analysis using a combination of six gene sequences (16S, gyrA, rpoB, purH, polC, and groEL), we identified strain IMA13 as Bacillus mojavensis. Three kinds of lipopeptide compounds, namely, bacillomycin D, iturin, and fengycin, forming cell-free supernatant produced by strain IAM13, were identified by MALDI-TOF mass spectrometry. Biogenic AgCl-NPs showed substantial antibacterial activity against R. solanacearum at a concentration of 20 µg/mL-1. Motility assays showed that the AgCl-NPs significantly inhibited the swarming and swimming motility (61.4 and 55.8%) against R. solanacearum. Moreover, SEM and TEM analysis showed that direct interaction of AgCl-NPs with bacterial cells caused rupture of cell wall and cytoplasmic membranes, as well as leakage of nucleic acid materials, which ultimately resulted in the death of R. solanacearum. Overall, these findings will help in developing a promising nanopesticide against phytopathogen plant disease management.
Collapse
Affiliation(s)
- Iman Sabah Abd Alamer
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (I.S.A.A.); (A.A.T.); (T.A.); (B.L.)
- Plant Protection, Agriculture Directorate, AL-Amarah 62001, Iraq
| | - Ali Athafah Tomah
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (I.S.A.A.); (A.A.T.); (T.A.); (B.L.)
- Plant Protection, College of Agriculture, University of Misan, AL-Amarah 62001, Iraq
| | - Temoor Ahmed
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (I.S.A.A.); (A.A.T.); (T.A.); (B.L.)
| | - Bin Li
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (I.S.A.A.); (A.A.T.); (T.A.); (B.L.)
| | - Jingze Zhang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (I.S.A.A.); (A.A.T.); (T.A.); (B.L.)
| |
Collapse
|
46
|
Bacillus velezensis: A Treasure House of Bioactive Compounds of Medicinal, Biocontrol and Environmental Importance. FORESTS 2021. [DOI: 10.3390/f12121714] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Bacillus velezensis gram-positive bacterium, is frequently isolated from diverse niches mainly soil, water, plant roots, and fermented foods. B. velezensis is ubiquitous, non-pathogenic and endospore forming. Being frequently isolated from diverse plant holobionts it is considered host adapted microorganism and recognized of high economic importance given its ability to promote plant growth under diverse biotic and abiotic stress conditions. Additionally, the species suppress many plant diseases, including bacterial, oomycete, and fungal diseases. It is also able after plant host root colonization to induce unique physiological situation of host plant called primed state. Primed host plants are able to respond more rapidly and/or effectively to biotic or abiotic stress. Moreover, B. velezenis have the ability to resist diverse environmental stresses and help host plants to cope with, including metal and xenobiotic stresses. Within species B. velezensis strains have unique abilities allowing them to adopt different life styles. Strain level abilities knowledge is warranted and could be inferred using the ever-expanding new genomes list available in genomes databases. Pangenome analysis and subsequent identification of core, accessory and unique genomes is actually of paramount importance to decipher species full metabolic capacities and fitness across diverse environmental conditions shaping its life style. Despite the crucial importance of the pan genome, its assessment among large number of strains remains sparse and systematic studies still needed. Extensive knowledge of the pan genome is needed to translate genome sequencing efforts into developing more efficient biocontrol agents and bio-fertilizers. In this study, a genome survey of B. velezensis allowed us to (a) highlight B. velezensis species boundaries and show that Bacillus suffers taxonomic imprecision that blurs the debate over species pangenome; (b) identify drivers of their successful acquisition of specific life styles and colonization of new niches; (c) describe strategies they use to promote plant growth and development; (d) reveal the unlocked strain specific orphan secondary metabolite gene clusters (biosynthetic clusters with corresponding metabolites unknown) that product identification is still awaiting to amend our knowledge of their putative role in suppression of pathogens and plant growth promotion, and (e) to describe a dynamic pangenome with a secondary metabolite rich accessory genome.
Collapse
|
47
|
Petrillo C, Castaldi S, Lanzilli M, Selci M, Cordone A, Giovannelli D, Isticato R. Genomic and Physiological Characterization of Bacilli Isolated From Salt-Pans With Plant Growth Promoting Features. Front Microbiol 2021; 12:715678. [PMID: 34589073 PMCID: PMC8475271 DOI: 10.3389/fmicb.2021.715678] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/10/2021] [Indexed: 12/23/2022] Open
Abstract
Massive application of chemical fertilizers and pesticides has been the main strategy used to cope with the rising crop demands in the last decades. The indiscriminate use of chemicals while providing a temporary solution to food demand has led to a decrease in crop productivity and an increase in the environmental impact of modern agriculture. A sustainable alternative to the use of agrochemicals is the use of microorganisms naturally capable of enhancing plant growth and protecting crops from pests known as Plant-Growth-Promoting Bacteria (PGPB). Aim of the present study was to isolate and characterize PGPB from salt-pans sand samples with activities associated to plant fitness increase. To survive high salinity, salt-tolerant microbes produce a broad range of compounds with heterogeneous biological activities that are potentially beneficial for plant growth. A total of 20 halophilic spore-forming bacteria have been screened in vitro for phyto-beneficial traits and compared with other two members of Bacillus genus recently isolated from the rhizosphere of the same collection site and characterized as potential biocontrol agents. Whole-genome analysis on seven selected strains confirmed the presence of numerous gene clusters with PGP and biocontrol functions and of novel secondary-metabolite biosynthetic genes, which could exert beneficial impacts on plant growth and protection. The predicted biocontrol potential was confirmed in dual culture assays against several phytopathogenic fungi and bacteria. Interestingly, the presence of predicted gene clusters with known biocontrol functions in some of the isolates was not predictive of the in vitro results, supporting the need of combining laboratory assays and genome mining in PGPB identification for future applications.
Collapse
Affiliation(s)
- Claudia Petrillo
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Naples, Italy
| | - Stefany Castaldi
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Naples, Italy
| | | | - Matteo Selci
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Naples, Italy
| | - Angelina Cordone
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Naples, Italy
| | - Donato Giovannelli
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Naples, Italy.,National Research Council - Institute of Marine Biological Resources and Biotechnologies (CNR-IRBIM), Ancona, Italy.,Department of Marine and Coastal Science, Rutgers University, New Brunswick, NJ, United States.,Department of Marine Chemistry & Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, United States.,Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
| | - Rachele Isticato
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Naples, Italy.,Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology (BAT Center), Portici, Italy
| |
Collapse
|
48
|
Draft Genome Sequence of Bacillus velezensis Strain Marseille-Q1230, Isolated from a Stool Sample from a Severely Malnourished Child. Microbiol Resour Announc 2021; 10:e0051421. [PMID: 34410162 PMCID: PMC8375478 DOI: 10.1128/mra.00514-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Bacillus velezensis, a species first described in 2005, has been mostly associated with plants and the environment. To date, there is no genome available for this species from human samples. In this announcement, we present the genome of Bacillus velezensis strain Marseille-Q1230, which was isolated from a stool sample from a child suffering from severe acute malnutrition. The genome assembled into 15 contigs and had a size of 3,861,152 bp, with a GC content of 46.6%. A total of 3,716 protein-coding genes, including 3 antibiotic resistance genes and 92 RNAs, were predicted.
Collapse
|
49
|
Mullins AJ, Li Y, Qin L, Hu X, Xie L, Gu C, Mahenthiralingam E, Liao X, Webster G. Reclassification of the biocontrol agents Bacillus subtilis BY-2 and Tu-100 as Bacillus velezensis and insights into the genomic and specialized metabolite diversity of the species. MICROBIOLOGY-SGM 2021; 166:1121-1128. [PMID: 33205747 PMCID: PMC7819358 DOI: 10.1099/mic.0.000986] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The genomes of two historical Bacillus species strains isolated from the roots of oilseed rape and used routinely in PR China as biocontrol agents to suppress Sclerotinia disease were sequenced. Average nucleotide identity (ANI) and digital DNA–DNA hybridization analyses demonstrated that they were originally misclassified as Bacillus subtilis and now belong to the bacterial species Bacillus velezensis. A broader ANI analysis of available Bacillus genomes identified 292 B. velezensis genomes that were then subjected to core gene analysis and phylogenomics. Prediction and dereplication of specialized metabolite biosynthetic gene clusters (BGCs) defined the prevalence of multiple antimicrobial-associated BGCs and highlighted the natural product potential of B. velezensis. By defining the core and accessory antimicrobial biosynthetic capacity of the species, we offer an in-depth understanding of B. velezensis natural product capacity to facilitate the selection and testing of B. velezensis strains for use as biological control agents.
Collapse
Affiliation(s)
- Alex J Mullins
- Microbiomes, Microbes and Informatics Group, Organisms and Environment Division, School of Biosciences, Cardiff University, Cardiff, CF10 3AX, Wales, UK
| | - Yinshui Li
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China
| | - Lu Qin
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China
| | - Xiaojia Hu
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China
| | - Lihua Xie
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China
| | - Chiming Gu
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China
| | - Eshwar Mahenthiralingam
- Microbiomes, Microbes and Informatics Group, Organisms and Environment Division, School of Biosciences, Cardiff University, Cardiff, CF10 3AX, Wales, UK
| | - Xing Liao
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China
| | - Gordon Webster
- Microbiomes, Microbes and Informatics Group, Organisms and Environment Division, School of Biosciences, Cardiff University, Cardiff, CF10 3AX, Wales, UK
| |
Collapse
|
50
|
Abstract
Phages are viruses of bacteria and are the smallest and most common biological entities in the environment. They can reproduce immediately after infection or integrate as a prophage into their host genome. SPβ is a prophage of the Gram-positive model organism Bacillus subtilis 168, and it has been known for more than 50 years. It is sensitive to dsDNA damage and is induced through exposure to mitomycin C or UV radiation. When induced from the prophage, SPβ requires 90 min to produce and release about 30 virions. Genomes of sequenced related strains range between 128 and 140 kb, and particle-packed dsDNA exhibits terminal redundancy. Formed particles are of the Siphoviridae morphotype. Related isolates are known to infect other B. subtilis clade members. When infecting a new host, SPβ presumably follows a two-step strategy, adsorbing primarily to teichoic acid and secondarily to a yet unknown factor. Once in the host, SPβ-related phages pass through complex lysis-lysogeny decisions and either enter a lytic cycle or integrate as a dormant prophage. As prophages, SPβ-related phages integrate at the host chromosome's replication terminus, and frequently into the spsM or kamA gene. As a prophage, it imparts additional properties to its host via phage-encoded proteins. The most notable of these functional proteins is sublancin 168, which is used as a molecular weapon by the host and ensures prophage maintenance. In this review, we summarise the existing knowledge about the biology of the phage regarding its life cycle and discuss its potential as a research object.
Collapse
Affiliation(s)
- Katharina Kohm
- FG Synthetic Microbiology, Institute for Biotechnology, BTU Cottbus-Senftenberg, 01968, Senftenberg, Germany
| | - Robert Hertel
- FG Synthetic Microbiology, Institute for Biotechnology, BTU Cottbus-Senftenberg, 01968, Senftenberg, Germany.
| |
Collapse
|