1
|
Shen C, Salazar-Morales AI, Jung W, Erwin J, Gu Y, Coelho A, Gupta K, Yalcin SE, Samatey FA, Malvankar NS. A widespread and ancient bacterial machinery assembles cytochrome OmcS nanowires essential for extracellular electron transfer. Cell Chem Biol 2025; 32:239-254.e7. [PMID: 39818215 PMCID: PMC11845295 DOI: 10.1016/j.chembiol.2024.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 09/02/2024] [Accepted: 12/20/2024] [Indexed: 01/18/2025]
Abstract
Microbial extracellular electron transfer (EET) drives various globally important environmental phenomena and has biotechnology applications. Diverse prokaryotes have been proposed to perform EET via surface-displayed "nanowires" composed of multi-heme cytochromes. However, the mechanism that enables only a few cytochromes to polymerize into nanowires is unclear. Here, we identify a highly conserved omcS-companion (osc) cluster that drives the formation of cytochrome OmcS nanowires in Geobacter sulfurreducens. Through a combination of genetic, biochemical, and biophysical methods, we establish that prolyl isomerase-containing chaperon OscH, channel-like OscEFG, and β-propeller-like OscD are involved in the folding, secretion, and morphology maintenance of OmcS nanowires, respectively. OscH and OscG can interact with OmcS. Furthermore, overexpression of oscG accelerates EET by overproducing nanowires in an ATP-dependent manner. Heme loading splits OscD; ΔoscD accelerates cell growth, bundles nanowires into cables. Our findings establish the mechanism and prevalence of a specialized and modular assembly system for nanowires across phylogenetically diverse species and environments.
Collapse
Affiliation(s)
- Cong Shen
- Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA; Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06511, USA; Department of Microbial Pathogenesis, Yale University, New Haven, CT 06536, USA.
| | - Aldo I Salazar-Morales
- Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA; Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Wonhyeuk Jung
- Department of Cell Biology, Yale University, New Haven, CT 06520, USA; Nanobiology Institute, Yale University, West Haven, CT 06516, USA
| | - Joey Erwin
- Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA; Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Yangqi Gu
- Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA; Department of Molecular, Cellular & Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Anthony Coelho
- Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA; Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Kallol Gupta
- Department of Cell Biology, Yale University, New Haven, CT 06520, USA; Nanobiology Institute, Yale University, West Haven, CT 06516, USA
| | - Sibel Ebru Yalcin
- Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA; Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Fadel A Samatey
- Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA; Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Nikhil S Malvankar
- Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA; Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06511, USA.
| |
Collapse
|
2
|
Jia F, Lei X, Yan Y, Su Y, Zhou H, Wei H, Yuan Y, Zou C, Shi X, Yang C. Sulphate-reducing bacteria-mediated pyrite formation in the Dachang Tongkeng tin polymetallic deposit, Guangxi, China. Sci Rep 2023; 13:11650. [PMID: 37468706 DOI: 10.1038/s41598-023-38827-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 07/15/2023] [Indexed: 07/21/2023] Open
Abstract
Mediation by sulphate-reducing bacteria (SRB) is responsible for pyrite (FeS2) formation. The origin of the Dachang tin polymetallic ore field is related to the mineralisation of submarine hydrothermal vent sediments. Here, we investigated SRB in these ores via morphological, chemical, and isotopic analyses. Polarised and scanning electron microscopy indicated that trace SRB fossils in the metal sulphide ore were present in the form of tubular, beaded, and coccoidal bodies comprising FeS2 and were enclosed within a pyrrhotite (FeS) matrix in the vicinity of micro-hydrothermal vents. The carbon (C), nitrogen (N), and oxygen (O) contents in the FeS2 synthesised by SRB were high, and a clear biological Raman signal was detected. No such signals were discerned in the peripheral FeS. This co-occurrence of FeS, FeS2, and the remains of bacteria (probably chemoautotrophic bacteria) was interpreted as the coprecipitation process of SRB-mediated FeS2 formation, which has, to the best of our knowledge, not been reported before. Our study also illustrates that combined energy-dispersive X-ray spectroscopy, Raman spectroscopy, and isotopic analysis can be used as a novel methodology to document microbial-mediated processes of mineral deposition in submarine hydrothermal vent ecology on geological time scales.
Collapse
Affiliation(s)
- Fuju Jia
- Department of Earth Sciences, Kunming University of Science and Technology, Kunming, 650093, Yunnan, China
| | - Xiangtong Lei
- Yunnan Key Laboratory for Paleobiology & MEC International Joint Laboratory for Paleobiology and Paleoenvironment, Institute of Paleontology, Yunnan University, Kunming, 650500, China.
| | - Yongfeng Yan
- Department of Earth Sciences, Kunming University of Science and Technology, Kunming, 650093, Yunnan, China
| | - Yaru Su
- Guangxi 215 Geological Team Co., Ltd., Liuzhou, 545006, Guangxi, China
| | - Hongjun Zhou
- Guangxi 215 Geological Team Co., Ltd., Liuzhou, 545006, Guangxi, China
| | - Honglian Wei
- Guangxi China-Tin Group Tongkeng Co., Ltd., Nandan, 547205, Guangxi, China
| | - Yuan Yuan
- Guangxi 215 Geological Team Co., Ltd., Liuzhou, 545006, Guangxi, China
| | - Chao Zou
- Department of Earth Sciences, Kunming University of Science and Technology, Kunming, 650093, Yunnan, China
| | - Xianwen Shi
- Department of Earth Sciences, Kunming University of Science and Technology, Kunming, 650093, Yunnan, China
| | - Ceting Yang
- Department of Earth Sciences, Kunming University of Science and Technology, Kunming, 650093, Yunnan, China
| |
Collapse
|
3
|
Wang S, Lu Q, Liang Z, Yu X, Lin M, Mai B, Qiu R, Shu W, He Z, Wall JD. Generation of zero-valent sulfur from dissimilatory sulfate reduction in sulfate-reducing microorganisms. Proc Natl Acad Sci U S A 2023; 120:e2220725120. [PMID: 37155857 PMCID: PMC10194018 DOI: 10.1073/pnas.2220725120] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 04/14/2023] [Indexed: 05/10/2023] Open
Abstract
Dissimilatory sulfate reduction (DSR) mediated by sulfate-reducing microorganisms (SRMs) plays a pivotal role in global sulfur, carbon, oxygen, and iron cycles since at least 3.5 billion y ago. The canonical DSR pathway is believed to be sulfate reduction to sulfide. Herein, we report a DSR pathway in phylogenetically diverse SRMs through which zero-valent sulfur (ZVS) is directly generated. We identified that approximately 9% of sulfate reduction was directed toward ZVS with S8 as a predominant product, and the ratio of sulfate-to-ZVS could be changed with SRMs' growth conditions, particularly the medium salinity. Further coculturing experiments and metadata analyses revealed that DSR-derived ZVS supported the growth of various ZVS-metabolizing microorganisms, highlighting this pathway as an essential component of the sulfur biogeochemical cycle.
Collapse
Affiliation(s)
- Shanquan Wang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou510006, China
| | - Qihong Lu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou510006, China
| | - Zhiwei Liang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou510006, China
| | - Xiaoxiao Yu
- State Key Laboratory of Isotope Geochemistry and CAS Center for Excellence in Deep Earth Science, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou510640, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou511458, China
- University of Chinese Academy of Sciences, Beijing100039, China
| | - Mang Lin
- State Key Laboratory of Isotope Geochemistry and CAS Center for Excellence in Deep Earth Science, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou510640, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou511458, China
- University of Chinese Academy of Sciences, Beijing100039, China
| | - Bixian Mai
- State Key Laboratory of Isotope Geochemistry and CAS Center for Excellence in Deep Earth Science, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou510640, China
- University of Chinese Academy of Sciences, Beijing100039, China
| | - Rongliang Qiu
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou510642, China
| | - Wensheng Shu
- Institute of Ecological Science, School of Life Sciences, South China Normal University, Guangzhou510631, China
| | - Zhili He
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou510006, China
| | - Judy D. Wall
- Department of Biochemistry, University of Missouri-Columbia, Columbia, MO65211
- Department of Molecular Microbiology & Immunology, University of Missouri-Columbia, Columbia, MO65211
| |
Collapse
|
4
|
Genetic Potential of Dissulfurimicrobium hydrothermale, an Obligate Sulfur-Disproportionating Thermophilic Microorganism. Microorganisms 2021; 10:microorganisms10010060. [PMID: 35056509 PMCID: PMC8780430 DOI: 10.3390/microorganisms10010060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/22/2021] [Accepted: 12/25/2021] [Indexed: 12/12/2022] Open
Abstract
The biochemical pathways of anaerobic sulfur disproportionation are only partially deciphered, and the mechanisms involved in the first step of S0-disproportionation remain unknown. Here, we present the results of sequencing and analysis of the complete genome of Dissulfurimicrobium hydrothermale strain Sh68T, one of two strains isolated to date known to grow exclusively by anaerobic disproportionation of inorganic sulfur compounds. Dissulfurimicrobium hydrothermale Sh68T is a motile, thermophilic, anaerobic, chemolithoautotrophic microorganism isolated from a hydrothermal pond at Uzon caldera, Kamchatka, Russia. It is able to produce energy and grow by disproportionation of elemental sulfur, sulfite and thiosulfate. Its genome consists of a circular chromosome of 2,025,450 base pairs, has a G + C content of 49.66% and a completion of 97.6%. Genomic data suggest that CO2 assimilation is carried out by the Wood–Ljungdhal pathway and that central anabolism involves the gluconeogenesis pathway. The genome of strain Sh68T encodes the complete gene set of the dissimilatory sulfate reduction pathway, some of which are likely to be involved in sulfur disproportionation. A short sequence protein of unknown function present in the genome of strain Sh68T is conserved in the genomes of a large panel of other S0-disproportionating bacteria and was absent from the genomes of microorganisms incapable of elemental sulfur disproportionation. We propose that this protein may be involved in the first step of elemental sulfur disproportionation, as S0 is poorly soluble and unable to cross the cytoplasmic membrane in this form.
Collapse
|
5
|
Hashimoto Y, Tame A, Sawayama S, Miyazaki J, Takai K, Nakagawa S. Desulfomarina profundi gen. nov., sp. nov., a novel mesophilic, hydrogen-oxidizing, sulphate-reducing chemolithoautotroph isolated from a deep-sea hydrothermal vent chimney. Int J Syst Evol Microbiol 2021; 71. [PMID: 34739365 DOI: 10.1099/ijsem.0.005083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel mesophilic, strictly anaerobic, chemolithoautotrophic sulphate-reducing bacterium, designated strain KT2T, was isolated from a deep-sea hydrothermal vent chimney at the Suiyo Seamount in the Izu-Bonin Arc. Strain KT2T grew at 25-40 °C (optimum 35 °C) and pH 5.5-7.0 (optimum 6.6) in the presence of 25-45 g l-1 NaCl (optimum 30 g l-1). Growth occurred with molecular hydrogen as the electron donor and sulphate, thiosulphate, and sulphite as the electron acceptors. The isolate utilized CO2 as the sole carbon source for chemolithoautotrophic growth on H2. Glycerol, succinate, fumarate, malate, glutamate, or casamino acids could serve as an alternative electron donor in the presence of CO2. Malate, citrate, glutamate, and casamino acids were used as fermentative substrates for weak growth. The G+C content of genomic DNA was 46.1 %. Phylogenetic analysis of the 16S rRNA gene sequence indicated that strain KT2T is a member of the family Desulfobulbaceae, showing a sequence similarity of 94.3 % with Desulforhopalus singaporensis. Phylogenomic analysis based on concatenated 156 single-copy marker genes confirmed the same topology as the 16S rRNA gene phylogeny. The ANI and AAI values between strain KT2T and related genera of the family Desulfobulbaceae were 65.6-68.6 % and 53.1-62.9 %. Based on the genomic, molecular, and physiological characteristics, strain KT2T represents a novel genus and species within the family Desulfobulbaceae, for which the name Desulfomarina profundi gen. nov., sp. nov. is proposed, with KT2T (=JCM 34118T = DSM 111364T) as the type strain.
Collapse
Affiliation(s)
- Yurina Hashimoto
- Laboratory of Marine Environmental Microbiology, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan
| | - Akihiro Tame
- Department of Technical Services, Marine Works Japan, Ltd., 3-54-1 Oppamahigashi, Yokosuka 237-0063, Japan.,General Affairs Department, Japan Agency for Marine-Earth Science & Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
| | - Shigeki Sawayama
- Laboratory of Marine Environmental Microbiology, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan
| | - Junichi Miyazaki
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science & Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
| | - Ken Takai
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science & Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
| | - Satoshi Nakagawa
- Laboratory of Marine Environmental Microbiology, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan.,Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science & Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
| |
Collapse
|
6
|
Zeng X, Alain K, Shao Z. Microorganisms from deep-sea hydrothermal vents. MARINE LIFE SCIENCE & TECHNOLOGY 2021; 3:204-230. [PMID: 37073341 PMCID: PMC10077256 DOI: 10.1007/s42995-020-00086-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 11/17/2020] [Indexed: 05/03/2023]
Abstract
With a rich variety of chemical energy sources and steep physical and chemical gradients, hydrothermal vent systems offer a range of habitats to support microbial life. Cultivation-dependent and independent studies have led to an emerging view that diverse microorganisms in deep-sea hydrothermal vents live their chemolithoautotrophic, heterotrophic, or mixotrophic life with versatile metabolic strategies. Biogeochemical processes are mediated by microorganisms, and notably, processes involving or coupling the carbon, sulfur, hydrogen, nitrogen, and metal cycles in these unique ecosystems. Here, we review the taxonomic and physiological diversity of microbial prokaryotic life from cosmopolitan to endemic taxa and emphasize their significant roles in the biogeochemical processes in deep-sea hydrothermal vents. According to the physiology of the targeted taxa and their needs inferred from meta-omics data, the media for selective cultivation can be designed with a wide range of physicochemical conditions such as temperature, pH, hydrostatic pressure, electron donors and acceptors, carbon sources, nitrogen sources, and growth factors. The application of novel cultivation techniques with real-time monitoring of microbial diversity and metabolic substrates and products are also recommended. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-020-00086-4.
Collapse
Affiliation(s)
- Xiang Zeng
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005 China
- LIA/IRP 1211 MicrobSea, Sino-French International Laboratory of Deep-Sea Microbiology, 29280 Plouzané, France
| | - Karine Alain
- Laboratoire de Microbiologie des Environnements Extrêmes LM2E UMR6197, Univ Brest, CNRS, IFREMER, F-29280 Plouzané, France
- LIA/IRP 1211 MicrobSea, Sino-French International Laboratory of Deep-Sea Microbiology, 29280 Plouzané, France
| | - Zongze Shao
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005 China
- LIA/IRP 1211 MicrobSea, Sino-French International Laboratory of Deep-Sea Microbiology, 29280 Plouzané, France
| |
Collapse
|
7
|
Talà A, Buccolieri A, Calcagnile M, Ciccarese G, Onorato M, Onorato R, Serra A, Spedicato F, Tredici SM, Alifano P, Belmonte G. Chemotrophic profiling of prokaryotic communities thriving on organic and mineral nutrients in a submerged coastal cave. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 755:142514. [PMID: 33038840 DOI: 10.1016/j.scitotenv.2020.142514] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/15/2020] [Accepted: 09/15/2020] [Indexed: 06/11/2023]
Abstract
The geothermal system of the Salento peninsula (Italy) is characterized by the presence of many hydrogen sulfide-rich underground waters and thermal springs. We focused our attention on the submerged section of Zinzulùsa (Castro, Italy), a cave of both naturalistic and archaeological interest. In pioneer studies, some hypotheses about the origin of the sulfurous waters of this area were proposed. The most accredited one is that sulfate-enriched waters of marine origin infiltrate deep along bands with greater permeability, and warm-up going upwards, due to the geothermal gradient. During their route, marine waters interact with organic deposits and generate hydrogen sulfide as a result of sulfate reduction. To date, no studies have been conducted to elucidate the hydrogen sulfide origin in this site. The nature of reducing power and energy sources supporting microbial life in this submerged habitat is currently unknown. Here we present a multidisciplinary experimental approach aimed at defining geochemical features and microbiological diversity of the submerged habitat of Zinzulùsa cave. Our integrated data provide strong evidence that the sulfate content of the marine water and the activity of sulfate-reducing bacteria may account for the hydrogen sulfide content of the thermal springs. Anaerobic, sulfate-reducing, thermophilic Thermodesulfovibrio and hyperthermophilic Fervidobacterium genera show a high percentage contribution in 16S rRNA gene metabarcoding analyses, despite the mesophilic conditions of the sampling site. Besides, supported by PICRUSt functional analysis, we propose a chemotrophic model in which hydrocarbon deposits, entrapped in the stratifications of the seafloor, may be exploited by anaerobic oil-degrading bacteria as carbon and energy sources to sustain efficient hydrogen, sulfur, and nitrogen biogeochemical cycles. The Zinzulùsa hydrothermal site represents an ecosystem useful to obtain new insights into prokaryotic mutual interactions in oligotrophic and aphotic conditions, which constitute the largest environment of the biosphere.
Collapse
Affiliation(s)
- Adelfia Talà
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Monteroni, 73100 Lecce, Italy.
| | - Alessandro Buccolieri
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Matteo Calcagnile
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Gaetano Ciccarese
- Gruppo Speleologico Salentino "P. De Lorentiis", Piazza C. Colombo, Castro, 73030 Lecce, Italy
| | - Michele Onorato
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Monteroni, 73100 Lecce, Italy; Scuba Speleodiving Association APOGON Onlus, 73048 Nardò, Italy
| | | | - Antonio Serra
- Department of Mathematics and Physics "E. De Giorgi", University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Francesco Spedicato
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Salvatore Maurizio Tredici
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Pietro Alifano
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Genuario Belmonte
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Monteroni, 73100 Lecce, Italy
| |
Collapse
|
8
|
Expanding the Enzyme Repertoire for Sugar Nucleotide Epimerization: The CDP-Tyvelose 2-Epimerase from Thermodesulfatator atlanticus for Glucose/Mannose Interconversion. Appl Environ Microbiol 2021; 87:AEM.02131-20. [PMID: 33277270 PMCID: PMC7851689 DOI: 10.1128/aem.02131-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Epimerization of sugar nucleotides is central to the structural diversification of monosaccharide building blocks for cellular biosynthesis. Epimerase applicability to carbohydrate synthesis can be limited, however, by the high degree of substrate specificity exhibited by most sugar nucleotide epimerases. Here, we discovered a promiscuous type of CDP-tyvelose 2-epimerase (TyvE)-like enzyme that promotes C2-epimerization in all nucleotide (CDP, UDP, GDP, ADP, TDP)-activated forms of d-glucose. This new epimerase, originating from Thermodesulfatator atlanticus, is a functional homodimer that contains one tightly bound NAD+/subunit and shows optimum activity at 70°C and pH 9.5. The enzyme exhibits a k cat with CDP-dglucose of ∼1.0 min-1 (pH 7.5, 60°C). To characterize the epimerase kinetically and probe its substrate specificity, we developed chemo-enzymatic syntheses for CDP-dmannose, CDP-6-deoxy-dglucose, CDP-3-deoxy-dglucose and CDP-6-deoxy-dxylo-hexopyranos-4-ulose. Attempts to obtain CDP-dparatose and CDP-dtyvelose were not successful. Using high-resolution carbohydrate analytics and in situ NMR to monitor the enzymatic conversions (60°C, pH 7.5), we show that the CDP-dmannose/CDP-dglucose ratio at equilibrium is 0.67 (± 0.1), determined from the kinetic Haldane relationship and directly from the reaction. We further show that deoxygenation at sugar C6 enhances the enzyme activity 5-fold compared to CDP-dglucose whereas deoxygenation at C3 renders the substrate inactive. Phylogenetic analysis places the T. atlanticus epimerase into a distinct subgroup within the sugar nucleotide epimerase family of SDR (short-chain dehydrogenases/reductases), for which the current study now provides the functional context. Collectively, our results expand an emerging toolbox of epimerase-catalyzed reactions for sugar nucleotide synthesis.IMPORTANCE Epimerases of the sugar nucleotide-modifying class of enzymes have attracted considerable interest in carbohydrate (bio)chemistry, for the mechanistic challenges and the opportunities for synthesis involved in the reactions catalyzed. Discovery of new epimerases with expanded scope of sugar nucleotide substrates used is important to promote the mechanistic inquiry and can facilitate the development of new enzyme applications. Here, a CDP-tyvelose 2-epimerase-like enzyme from Thermodesulfatator atlanticus is shown to catalyze sugar C2 epimerization in CDP-glucose and other nucleotide-activated forms of dglucose. The reactions are new to nature in the context of enzymatic sugar nucleotide modification. The current study explores the substrate scope of the discovered C2-epimerase and, based on modeling, suggests structure-function relationships that may be important for specificity and catalysis.
Collapse
|
9
|
Sim MS, Skennerton CT, Orphan VJ. Physiological, genomic, and sulfur isotopic characterization of methanol metabolism by Desulfovibrio carbinolicus. PLoS One 2021; 16:e0245069. [PMID: 33444327 PMCID: PMC7808614 DOI: 10.1371/journal.pone.0245069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 12/21/2020] [Indexed: 11/25/2022] Open
Abstract
Methanol is often considered as a non-competitive substrate for methanogenic archaea, but an increasing number of sulfate-reducing microorganisms (SRMs) have been reported to be capable of respiring with methanol as an electron donor. A better understanding of the fate of methanol in natural or artificial anaerobic systems thus requires knowledge of the methanol dissimilation by SRMs. In this study, we describe the growth kinetics and sulfur isotope effects of Desulfovibrio carbinolicus, a methanol-oxidizing sulfate-reducing deltaproteobacterium, together with its genome sequence and annotation. D. carbinolicus can grow with a series of alcohols from methanol to butanol. Compared to longer-chain alcohols, however, specific growth and respiration rates decrease by several fold with methanol as an electron donor. Larger sulfur isotope fractionation accompanies slowed growth kinetics, indicating low chemical potential at terminal reductive steps of respiration. In a medium containing both ethanol and methanol, D. carbinolicus does not consume methanol even after the cessation of growth on ethanol. Among the two known methanol dissimilatory systems, the genome of D. carbinolicus contains the genes coding for alcohol dehydrogenase but lacks enzymes analogous to methanol methyltransferase. We analyzed the genomes of 52 additional species of sulfate-reducing bacteria that have been tested for methanol oxidation. There is no apparent relationship between phylogeny and methanol metabolizing capacity, but most gram-negative methanol oxidizers grow poorly, and none carry homologs for methyltransferase (mtaB). Although the amount of available data is limited, it is notable that more than half of the known gram-positive methanol oxidizers have both enzymatic systems, showing enhanced growth relative to the SRMs containing only alcohol dehydrogenase genes. Thus, physiological, genomic, and sulfur isotopic results suggest that D. carbinolicus and close relatives have the ability to metabolize methanol but likely play a limited role in methanol degradation in most natural environments.
Collapse
Affiliation(s)
- Min Sub Sim
- School of Earth and Environmental Sciences, Seoul National University, Seoul, South Korea
- * E-mail:
| | - Connor T. Skennerton
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, United States of America
| | - Victoria J. Orphan
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, United States of America
| |
Collapse
|
10
|
Allioux M, Yvenou S, Slobodkina G, Slobodkin A, Shao Z, Jebbar M, Alain K. Genomic Characterization and Environmental Distribution of a Thermophilic Anaerobe Dissulfurirhabdus thermomarina SH388 T Involved in Disproportionation of Sulfur Compounds in Shallow Sea Hydrothermal Vents. Microorganisms 2020; 8:microorganisms8081132. [PMID: 32727039 PMCID: PMC7463578 DOI: 10.3390/microorganisms8081132] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 07/17/2020] [Accepted: 07/24/2020] [Indexed: 01/27/2023] Open
Abstract
Marine hydrothermal systems are characterized by a pronounced biogeochemical sulfur cycle with the participation of sulfur-oxidizing, sulfate-reducing and sulfur-disproportionating microorganisms. The diversity and metabolism of sulfur disproportionators are studied to a much lesser extent compared with other microbial groups. Dissulfurirhabdus thermomarina SH388T is an anaerobic thermophilic bacterium isolated from a shallow sea hydrothermal vent. D. thermomarina is an obligate chemolithoautotroph able to grow by the disproportionation of sulfite and elemental sulfur. Here, we present the results of the sequencing and analysis of the high-quality draft genome of strain SH388T. The genome consists of a one circular chromosome of 2,461,642 base pairs, has a G + C content of 71.1 mol% and 2267 protein-coding sequences. The genome analysis revealed a complete set of genes essential to CO2 fixation via the reductive acetyl-CoA (Wood-Ljungdahl) pathway and gluconeogenesis. The genome of D. thermomarina encodes a complete set of genes necessary for the dissimilatory reduction of sulfates, which are probably involved in the disproportionation of sulfur. Data on the occurrences of Dissulfurirhabdus 16S rRNA gene sequences in gene libraries and metagenome datasets showed the worldwide distribution of the members of this genus. This study expands our knowledge of the microbial contribution into carbon and sulfur cycles in the marine hydrothermal environments.
Collapse
Affiliation(s)
- Maxime Allioux
- Univ Brest, CNRS, IFREMER, LIA1211, Laboratoire de Microbiologie des Environnements Extrêmes LM2E, IUEM, Rue Dumont d’Urville, F-29280 Plouzané, France; (M.A.); (S.Y.); (M.J.)
| | - Stéven Yvenou
- Univ Brest, CNRS, IFREMER, LIA1211, Laboratoire de Microbiologie des Environnements Extrêmes LM2E, IUEM, Rue Dumont d’Urville, F-29280 Plouzané, France; (M.A.); (S.Y.); (M.J.)
| | - Galina Slobodkina
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, 117312 Moscow, Russia; (G.S.); (A.S.)
| | - Alexander Slobodkin
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, 117312 Moscow, Russia; (G.S.); (A.S.)
| | - Zongze Shao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China;
| | - Mohamed Jebbar
- Univ Brest, CNRS, IFREMER, LIA1211, Laboratoire de Microbiologie des Environnements Extrêmes LM2E, IUEM, Rue Dumont d’Urville, F-29280 Plouzané, France; (M.A.); (S.Y.); (M.J.)
| | - Karine Alain
- Univ Brest, CNRS, IFREMER, LIA1211, Laboratoire de Microbiologie des Environnements Extrêmes LM2E, IUEM, Rue Dumont d’Urville, F-29280 Plouzané, France; (M.A.); (S.Y.); (M.J.)
- Correspondence:
| |
Collapse
|
11
|
Adam N, Perner M. Microbially Mediated Hydrogen Cycling in Deep-Sea Hydrothermal Vents. Front Microbiol 2018; 9:2873. [PMID: 30532749 PMCID: PMC6265342 DOI: 10.3389/fmicb.2018.02873] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 11/08/2018] [Indexed: 11/13/2022] Open
Abstract
Deep-sea hydrothermal vents may provide one of the largest reservoirs on Earth for hydrogen-oxidizing microorganisms. Depending on the type of geological setting, hydrothermal environments can be considerably enriched in hydrogen (up to millimolar concentrations). As hot, reduced hydrothermal fluids ascend to the seafloor they mix with entrained cold, oxygenated seawater, forming thermal and chemical gradients along their fluid pathways. Consequently, in these thermally and chemically dynamic habitats biochemically distinct hydrogenases (adapted to various temperature regimes, oxygen and hydrogen concentrations) from physiologically and phylogenetically diverse Bacteria and Archaea can be expected. Hydrogen oxidation is one of the important inorganic energy sources in these habitats, capable of providing relatively large amounts of energy (237 kJ/mol H2) for driving ATP synthesis and autotrophic CO2 fixation. Therefore, hydrogen-oxidizing organisms play a key role in deep-sea hydrothermal vent ecosystems as they can be considerably involved in light-independent primary biomass production. So far, the specific role of hydrogen-utilizing microorganisms in deep-sea hydrothermal ecosystems has been investigated by isolating hydrogen-oxidizers, measuring hydrogen consumption (ex situ), studying hydrogenase gene distribution and more recently by analyzing metatranscriptomic and metaproteomic data. Here we summarize this available knowledge and discuss the advent of new techniques for the identification of novel hydrogen-uptake and -evolving enzymes from hydrothermal vent microorganisms.
Collapse
Affiliation(s)
| | - Mirjam Perner
- Geomicrobiology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| |
Collapse
|
12
|
Pillot G, Frouin E, Pasero E, Godfroy A, Combet-Blanc Y, Davidson S, Liebgott PP. Specific enrichment of hyperthermophilic electroactive Archaea from deep-sea hydrothermal vent on electrically conductive support. BIORESOURCE TECHNOLOGY 2018; 259:304-311. [PMID: 29573609 DOI: 10.1016/j.biortech.2018.03.053] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/09/2018] [Accepted: 03/10/2018] [Indexed: 06/08/2023]
Abstract
While more and more investigations are done to study hyperthermophilic exoelectrogenic communities from environments, none have been performed yet on deep-sea hydrothermal vent. Samples of black smoker chimney from Rainbow site on the Atlantic mid-oceanic ridge have been harvested for enriching exoelectrogens in microbial electrolysis cells under hyperthermophilic (80 °C) condition. Two enrichments were performed in a BioElectrochemical System specially designed: one from direct inoculation of crushed chimney and the other one from inoculation of a pre-cultivation on iron (III) oxide. In both experiments, a current production was observed from 2.4 A/m2 to 5.8 A/m2 with a set anode potential of -0.110 V vs Ag/AgCl. Taxonomic affiliation of the exoelectrogen communities obtained on the electrode exhibited a specific enrichment of Archaea belonging to Thermococcales and Archeoglobales orders, even when both inocula were dominated by Bacteria.
Collapse
Affiliation(s)
- Guillaume Pillot
- Aix Marseille Université, IRD, Université de Toulon, CNRS, MIO UM 110, Marseille, France
| | - Eléonore Frouin
- Aix Marseille Université, IRD, Université de Toulon, CNRS, MIO UM 110, Marseille, France
| | - Emilie Pasero
- Aix Marseille Université, IRD, Université de Toulon, CNRS, MIO UM 110, Marseille, France
| | - Anne Godfroy
- IFREMER, CNRS, Université de Bretagne Occidentale, Laboratoire de Microbiologie des Environnements Extrêmes - UMR6197, Ifremer, Centre de Brest CS10070, Plouzané, France
| | - Yannick Combet-Blanc
- Aix Marseille Université, IRD, Université de Toulon, CNRS, MIO UM 110, Marseille, France
| | - Sylvain Davidson
- Aix Marseille Université, IRD, Université de Toulon, CNRS, MIO UM 110, Marseille, France
| | - Pierre-Pol Liebgott
- Aix Marseille Université, IRD, Université de Toulon, CNRS, MIO UM 110, Marseille, France.
| |
Collapse
|
13
|
Nishihara A, Haruta S, McGlynn SE, Thiel V, Matsuura K. Nitrogen Fixation in Thermophilic Chemosynthetic Microbial Communities Depending on Hydrogen, Sulfate, and Carbon Dioxide. Microbes Environ 2018; 33:10-18. [PMID: 29367473 PMCID: PMC5877335 DOI: 10.1264/jsme2.me17134] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 10/28/2017] [Indexed: 12/20/2022] Open
Abstract
The activity of nitrogen fixation measured by acetylene reduction was examined in chemosynthetic microbial mats at 72-75°C in slightly-alkaline sulfidic hot springs in Nakabusa, Japan. Nitrogenase activity markedly varied from sampling to sampling. Nitrogenase activity did not correlate with methane production, but was detected in samples showing methane production levels less than the maximum amount, indicating a possible redox dependency of nitrogenase activity. Nitrogenase activity was not affected by 2-bromo-ethane sulfonate, an inhibitor of methanogenesis. However, it was inhibited by the addition of molybdate, an inhibitor of sulfate reduction and sulfur disproportionation, suggesting the involvement of sulfate-reducing or sulfur-disproportionating organisms. Nitrogenase activity was affected by different O2 concentrations in the gas phase, again supporting the hypothesis of a redox potential dependency, and was decreased by the dispersion of mats with a homogenizer. The loss of activity that occurred from dispersion was partially recovered by the addition of H2, sulfate, and carbon dioxide. These results suggested that the observed activity of nitrogen fixation was related to chemoautotrophic sulfate reducers, and fixation may be active in a limited range of ambient redox potential. Since thermophilic chemosynthetic communities may resemble ancient microbial communities before the appearance of photosynthesis, the present results may be useful when considering the ancient nitrogen cycle on earth.
Collapse
Affiliation(s)
- Arisa Nishihara
- Department of Biological Sciences, Tokyo Metropolitan UniversityMinami-Osawa, Hachioji, Tokyo 192–0397Japan
| | - Shin Haruta
- Department of Biological Sciences, Tokyo Metropolitan UniversityMinami-Osawa, Hachioji, Tokyo 192–0397Japan
| | - Shawn E. McGlynn
- Department of Biological Sciences, Tokyo Metropolitan UniversityMinami-Osawa, Hachioji, Tokyo 192–0397Japan
- Earth-Life Science Institute, Tokyo Institute of TechnologyOokayama, Meguro-ku, Tokyo 152–8551Japan
- Biofunctional Catalyst Research Team, RIKEN Center for Sustainable Resource ScienceWako-shi 351–0198Japan
- Blue Marble Space Institute of ScienceSeattle, WA 98145–1561USA
| | - Vera Thiel
- Department of Biological Sciences, Tokyo Metropolitan UniversityMinami-Osawa, Hachioji, Tokyo 192–0397Japan
| | - Katsumi Matsuura
- Department of Biological Sciences, Tokyo Metropolitan UniversityMinami-Osawa, Hachioji, Tokyo 192–0397Japan
| |
Collapse
|
14
|
Barzkar N, Homaei A, Hemmati R, Patel S. Thermostable marine microbial proteases for industrial applications: scopes and risks. Extremophiles 2018; 22:335-346. [DOI: 10.1007/s00792-018-1009-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 02/05/2018] [Indexed: 01/11/2023]
|
15
|
Slobodkina GB, Reysenbach AL, Kolganova TV, Novikov AA, Bonch-Osmolovskaya EA, Slobodkin AI. Thermosulfuriphilus ammonigenes gen. nov., sp. nov., a thermophilic, chemolithoautotrophic bacterium capable of respiratory ammonification of nitrate with elemental sulfur. Int J Syst Evol Microbiol 2017; 67:3474-3479. [DOI: 10.1099/ijsem.0.002142] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Galina B. Slobodkina
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Leninskiy Prospect, 33, bld. 2, 119071, Moscow, Russia
| | - Anna-Louise Reysenbach
- Department of Biology and Center for Life in Extreme Environments, Portland State University, PO Box 751, Portland, OR 97207-0751, USA
| | - Tatyana V. Kolganova
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninskiy Prospect, 33, bld. 2, 119071, Moscow, Russia
| | | | - Elizaveta A. Bonch-Osmolovskaya
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Leninskiy Prospect, 33, bld. 2, 119071, Moscow, Russia
| | - Alexander I. Slobodkin
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Leninskiy Prospect, 33, bld. 2, 119071, Moscow, Russia
| |
Collapse
|
16
|
Cao J, Birien T, Gayet N, Huang Z, Shao Z, Jebbar M, Alain K. Desulfurobacterium indicum sp. nov., a thermophilic sulfur-reducing bacterium from the Indian Ocean. Int J Syst Evol Microbiol 2017; 67:1665-1668. [PMID: 28150576 DOI: 10.1099/ijsem.0.001837] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel sulfur-reducing bacterium, strain K6013T, was isolated from a sulfide sample collected at a depth of 2771 m from a high-temperature hydrothermal vent in the Indian Ocean. Cells were Gram-stain-negative, anaerobic, motile rods (0.9-2.2×0.4-0.6 µm). The strain grew at NaCl concentrations ranging from 1 to 4.5 % (w/v) (optimum 2.5 %), at pH 5 to 8 (optimum pH 6), and at temperatures between 40 and 75 °C (optimum 65 °C). K6013T was an obligate chemolithoautotroph, using thiosulfate, sulfur and nitrate as terminal electron acceptors in the presence of H2 but not sulfate, sulfite nor nitrite. The major cellular fatty acids were C16 : 0 (17.4 %), C18 : 1ω7c/C18 : 1ω6c (ummed feature 8, 37.91 %), C18 : 0 (18.29 %) and C14 : 0 3-OH/iso-C16: 1I (summed feature 2, 8.56 %). The DNA G+C content was 38.2 mol%. The results of phylogenetic 16S rRNA gene sequence analyses indicated that K6013T represents a member of the genus Desulfurobacterium within the class Aquificae, with highest sequence similarity of 96.93 % to Desulfurobacterium atlanticum SL22T. On the basis of genotypic and phenotypic data, K6013T is considered to represent a novel species of the genus Desulfurobacterium, for which the name Desulfurobacterium indicum sp. nov. is proposed, with the type strain K6013T (=DSM 101677T=MCCC 1A01868T).
Collapse
Affiliation(s)
- Junwei Cao
- Ifremer, UMR 6197, Laboratoire de Microbiologie des Environnements Extrêmes (LM2E), Technopôle Pointe du diable, F-29280 Plouzané, France.,State Key Laboratory Breeding Base of Marine Genetic Resources; Key Laboratory of Marine Genetic Resources, The Third Institute of State Oceanic Administration; Collaborative Innovation Center of Marine Biological Resources; Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen 361005, PR China.,Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, PR China.,Université de Bretagne Occidentale (UBO, UEB), Institut Universitaire Européen de la Mer (IUEM) - UMR 6197, Laboratoire de Microbiologie des Environnements Extrêmes (LM2E), Rue Dumont d'Urville, F-29280 Plouzané, France.,CNRS, IUEM - UMR 6197, Laboratoire de Microbiologie des Environnements Extrêmes (LM2E), Rue Dumont d'Urville, F-29280 Plouzané, France
| | - Tiphaine Birien
- Ifremer, UMR 6197, Laboratoire de Microbiologie des Environnements Extrêmes (LM2E), Technopôle Pointe du diable, F-29280 Plouzané, France.,CNRS, IUEM - UMR 6197, Laboratoire de Microbiologie des Environnements Extrêmes (LM2E), Rue Dumont d'Urville, F-29280 Plouzané, France.,Université de Bretagne Occidentale (UBO, UEB), Institut Universitaire Européen de la Mer (IUEM) - UMR 6197, Laboratoire de Microbiologie des Environnements Extrêmes (LM2E), Rue Dumont d'Urville, F-29280 Plouzané, France
| | - Nicolas Gayet
- Ifremer, Centre de Brest, REM EEP LEP, Institut Carnot Ifremer EDROME, Plouzané F-29280, France
| | - Zhaobin Huang
- State Key Laboratory Breeding Base of Marine Genetic Resources; Key Laboratory of Marine Genetic Resources, The Third Institute of State Oceanic Administration; Collaborative Innovation Center of Marine Biological Resources; Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen 361005, PR China
| | - Zongze Shao
- State Key Laboratory Breeding Base of Marine Genetic Resources; Key Laboratory of Marine Genetic Resources, The Third Institute of State Oceanic Administration; Collaborative Innovation Center of Marine Biological Resources; Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen 361005, PR China
| | - Mohamed Jebbar
- Ifremer, UMR 6197, Laboratoire de Microbiologie des Environnements Extrêmes (LM2E), Technopôle Pointe du diable, F-29280 Plouzané, France.,CNRS, IUEM - UMR 6197, Laboratoire de Microbiologie des Environnements Extrêmes (LM2E), Rue Dumont d'Urville, F-29280 Plouzané, France.,Université de Bretagne Occidentale (UBO, UEB), Institut Universitaire Européen de la Mer (IUEM) - UMR 6197, Laboratoire de Microbiologie des Environnements Extrêmes (LM2E), Rue Dumont d'Urville, F-29280 Plouzané, France
| | - Karine Alain
- CNRS, IUEM - UMR 6197, Laboratoire de Microbiologie des Environnements Extrêmes (LM2E), Rue Dumont d'Urville, F-29280 Plouzané, France.,Université de Bretagne Occidentale (UBO, UEB), Institut Universitaire Européen de la Mer (IUEM) - UMR 6197, Laboratoire de Microbiologie des Environnements Extrêmes (LM2E), Rue Dumont d'Urville, F-29280 Plouzané, France.,Ifremer, UMR 6197, Laboratoire de Microbiologie des Environnements Extrêmes (LM2E), Technopôle Pointe du diable, F-29280 Plouzané, France
| |
Collapse
|
17
|
Slobodkina GB, Mardanov AV, Ravin NV, Frolova AA, Chernyh NA, Bonch-Osmolovskaya EA, Slobodkin AI. Respiratory Ammonification of Nitrate Coupled to Anaerobic Oxidation of Elemental Sulfur in Deep-Sea Autotrophic Thermophilic Bacteria. Front Microbiol 2017; 8:87. [PMID: 28194142 PMCID: PMC5276818 DOI: 10.3389/fmicb.2017.00087] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 01/12/2017] [Indexed: 02/05/2023] Open
Abstract
Respiratory ammonification of nitrate is the microbial process that determines the retention of nitrogen in an ecosystem. To date, sulfur-dependent dissimilatory nitrate reduction to ammonium has been demonstrated only with sulfide as an electron donor. We detected a novel pathway that couples the sulfur and nitrogen cycles. Thermophilic anaerobic bacteria Thermosulfurimonas dismutans and Dissulfuribacter thermophilus, isolated from deep-sea hydrothermal vents, grew autotrophically with elemental sulfur as an electron donor and nitrate as an electron acceptor producing sulfate and ammonium. The genomes of both bacteria contain a gene cluster that encodes a putative nitrate ammonification enzyme system. Nitrate reduction occurs via a Nap-type complex. The reduction of produced nitrite to ammonium does not proceed via the canonical Nrf system because nitrite reductase NrfA is absent in the genomes of both microorganisms. The genome of D. thermophilus encodes a complete sulfate reduction pathway, while the Sox sulfur oxidation system is missing, as shown previously for T. dismutans. Thus, in high-temperature environments, nitrate ammonification with elemental sulfur may represent an unrecognized route of primary biomass production. Moreover, the anaerobic oxidation of sulfur compounds coupled to growth has not previously been demonstrated for the members of Thermodesulfobacteria or Deltaproteobacteria, which were considered exclusively as participants of the reductive branch of the sulfur cycle.
Collapse
Affiliation(s)
- Galina B Slobodkina
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences Moscow, Russia
| | - Andrey V Mardanov
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences Moscow, Russia
| | - Nikolai V Ravin
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences Moscow, Russia
| | - Anastasia A Frolova
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences Moscow, Russia
| | - Nikolay A Chernyh
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences Moscow, Russia
| | - Elizaveta A Bonch-Osmolovskaya
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences Moscow, Russia
| | - Alexander I Slobodkin
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences Moscow, Russia
| |
Collapse
|
18
|
Landreau M, Duthoit F, Roussel E, Schönherr S, Georges M, Godfroy A, Le Blay G. Cultivation of an immobilized (hyper)thermophilic marine microbial community in a bioreactor. FEMS Microbiol Lett 2016; 363:fnw194. [PMID: 27528693 DOI: 10.1093/femsle/fnw194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2016] [Indexed: 01/23/2023] Open
Abstract
Cultivation in a bioreactor of immobilized deep-sea hydrothermal microbial community was tested in order to assess the stability and reactivity of this new system. A community composed of eight hydrothermal strains was entrapped in a polymer matrix that was used to inoculate a continuous culture in a gas-lift bioreactor. The continuous culture was performed for 41 days at successively 60°C, 55°C, 60°C, 85°C and 60°C, at pH 6.5, in anaerobic condition and constant dilution rate. Oxic stress and pH variations were tested at the beginning of the incubation. Despite these detrimental conditions, three strains including two strict anaerobes were maintained in the bioreactor. High cell concentrations (3 × 10(8) cells mL(-1)) and high ATP contents were measured in both liquid fractions and beads. Cloning-sequencing and qPCR revealed that Bacillus sp. dominated at the early stage, and was later replaced by Thermotoga maritima and Thermococcus sp. Acetate, formate and propionate concentrations varied simultaneously in the liquid fractions. These results demonstrate that these immobilized cells were reactive to culture conditions. They were protected inside the beads during the stress period and released in the liquid fraction when conditions were more favorable. This confirms the advantage of immobilization that highlights the resilience capacity of certain hydrothermal microorganisms after a stress period.
Collapse
Affiliation(s)
- M Landreau
- Laboratoire de Microbiologie des Environnements Extrêmes (LMEE), Université de Bretagne Occidentale (UBO, UEB), Institut Universitaire Européen de la Mer (IUEM)-UMR 6197, Technopôle Brest-Iroise, Place Nicolas Copernic, F-29280 Plouzané, France CNRS, IUEM-UMR 6197, Laboratoire de Microbiologie des Environnements Extrêmes (LMEE), Place Nicolas Copernic, F-29280 Plouzané, France Ifremer, UMR 6197, Laboratoire de Microbiologie des Environnements Extrêmes (LMEE), Technopôle Pointe du diable, F-29280 Plouzané, France
| | - F Duthoit
- Laboratoire de Microbiologie des Environnements Extrêmes (LMEE), Université de Bretagne Occidentale (UBO, UEB), Institut Universitaire Européen de la Mer (IUEM)-UMR 6197, Technopôle Brest-Iroise, Place Nicolas Copernic, F-29280 Plouzané, France CNRS, IUEM-UMR 6197, Laboratoire de Microbiologie des Environnements Extrêmes (LMEE), Place Nicolas Copernic, F-29280 Plouzané, France Ifremer, UMR 6197, Laboratoire de Microbiologie des Environnements Extrêmes (LMEE), Technopôle Pointe du diable, F-29280 Plouzané, France
| | - E Roussel
- Laboratoire de Microbiologie des Environnements Extrêmes (LMEE), Université de Bretagne Occidentale (UBO, UEB), Institut Universitaire Européen de la Mer (IUEM)-UMR 6197, Technopôle Brest-Iroise, Place Nicolas Copernic, F-29280 Plouzané, France CNRS, IUEM-UMR 6197, Laboratoire de Microbiologie des Environnements Extrêmes (LMEE), Place Nicolas Copernic, F-29280 Plouzané, France Ifremer, UMR 6197, Laboratoire de Microbiologie des Environnements Extrêmes (LMEE), Technopôle Pointe du diable, F-29280 Plouzané, France
| | - S Schönherr
- Laboratoire de Microbiologie des Environnements Extrêmes (LMEE), Université de Bretagne Occidentale (UBO, UEB), Institut Universitaire Européen de la Mer (IUEM)-UMR 6197, Technopôle Brest-Iroise, Place Nicolas Copernic, F-29280 Plouzané, France CNRS, IUEM-UMR 6197, Laboratoire de Microbiologie des Environnements Extrêmes (LMEE), Place Nicolas Copernic, F-29280 Plouzané, France Ifremer, UMR 6197, Laboratoire de Microbiologie des Environnements Extrêmes (LMEE), Technopôle Pointe du diable, F-29280 Plouzané, France
| | - Myriam Georges
- Laboratoire de Microbiologie des Environnements Extrêmes (LMEE), Université de Bretagne Occidentale (UBO, UEB), Institut Universitaire Européen de la Mer (IUEM)-UMR 6197, Technopôle Brest-Iroise, Place Nicolas Copernic, F-29280 Plouzané, France CNRS, IUEM-UMR 6197, Laboratoire de Microbiologie des Environnements Extrêmes (LMEE), Place Nicolas Copernic, F-29280 Plouzané, France Ifremer, UMR 6197, Laboratoire de Microbiologie des Environnements Extrêmes (LMEE), Technopôle Pointe du diable, F-29280 Plouzané, France
| | - A Godfroy
- Laboratoire de Microbiologie des Environnements Extrêmes (LMEE), Université de Bretagne Occidentale (UBO, UEB), Institut Universitaire Européen de la Mer (IUEM)-UMR 6197, Technopôle Brest-Iroise, Place Nicolas Copernic, F-29280 Plouzané, France CNRS, IUEM-UMR 6197, Laboratoire de Microbiologie des Environnements Extrêmes (LMEE), Place Nicolas Copernic, F-29280 Plouzané, France Ifremer, UMR 6197, Laboratoire de Microbiologie des Environnements Extrêmes (LMEE), Technopôle Pointe du diable, F-29280 Plouzané, France
| | - G Le Blay
- Laboratoire de Microbiologie des Environnements Extrêmes (LMEE), Université de Bretagne Occidentale (UBO, UEB), Institut Universitaire Européen de la Mer (IUEM)-UMR 6197, Technopôle Brest-Iroise, Place Nicolas Copernic, F-29280 Plouzané, France CNRS, IUEM-UMR 6197, Laboratoire de Microbiologie des Environnements Extrêmes (LMEE), Place Nicolas Copernic, F-29280 Plouzané, France Ifremer, UMR 6197, Laboratoire de Microbiologie des Environnements Extrêmes (LMEE), Technopôle Pointe du diable, F-29280 Plouzané, France
| |
Collapse
|
19
|
Lai Q, Cao J, Dupont S, Shao Z, Jebbar M, Alain K. Thermodesulfatator autotrophicus sp. nov., a thermophilic sulfate-reducing bacterium from the Indian Ocean. Int J Syst Evol Microbiol 2016; 66:3978-3982. [PMID: 27405298 DOI: 10.1099/ijsem.0.001297] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel sulfate-reducing bacterium, strain S606T, was isolated from a sulfide sample collected at a depth of 2764 m from a deep-sea vent chimney wall in the Indian Ocean. Phylogenetic 16S rRNA gene sequence analyses placed strain S606T within the genus Thermodesulfatator, with highest sequence similarity of 98.2 % to Thermodesulfatator indicus DSM 15286T, followed by Thermodesulfatator atlanticus AT1325T (97.4 %). The average nucleotide identity (ANI) values between S606T and the two other type strains (T. indicus DSM 15286T and T. atlanticus AT1325T) were 79.2 % and 71.5 %, respectively. The digital DNA-DNA hybridization estimate values between S606T and these two type strains were 22.7±2.4 % and 18.1±2.3 %, respectively. Cells were Gram-stain-negative, anaerobic, motile rods (1-1.8×0.5-0.7 µm). The novel isolate grew at NaCl concentrations ranging from 1.5 to 4.5 % (optimum 2.5-3 %), from pH 5.5 to 8 (optimum 6.5-7.0) and at temperatures between 50 and 80 °C (optimum 65-70 °C). S606T grew chemolithoautotrophically in an H2/CO2 atmosphere (80 : 20, v/v; 200 kPa), used sulfate as a terminal electron acceptor, but not sulfur, sulfite nor thiosulfate. The predominant fatty acids were C16 : 0 (24.2 %), summed feature 8 (C18 : 1ω6c and/or C18 : 1ω7c, 26.3 %), C18 : 0 (22.2 %) and C18 : 1ω9c (9.2 %). The DNA G+C content of the chromosomal DNA was 43.1 mol%. The combined genotypic, chemotaxonomic and phenotypic traits show that S606T should be described as representing a novel species of the genus Thermodesulfatator, for which the name Thermodesulfatator autotrophicus sp. nov. is proposed. The type strain is S606T (=DSM 101864T=MCCC 1A01871T).
Collapse
Affiliation(s)
- Qiliang Lai
- Key Laboratory of Marine Genetic Resources, The Third Institute of State Oceanic Administration, Xiamen 361005, PR China.,Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen 361005, PR China
| | - Junwei Cao
- Université de Bretagne Occidentale (UBO, UEB), Institut Universitaire Européen de la Mer (IUEM) - UMR 6197, Laboratoire de Microbiologie des Environnements Extrêmes (LM2E), Rue Dumont d'Urville, F-29280 Plouzané, France.,Key Laboratory of Marine Genetic Resources, The Third Institute of State Oceanic Administration, Xiamen 361005, PR China.,CNRS, IUEM - UMR 6197, Laboratoire de Microbiologie des Environnements Extrêmes (LM2E), Rue Dumont d'Urville, F-29280 Plouzané, France.,School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, PR China.,Ifremer, UMR 6197, Laboratoire de Microbiologie des Environnements Extrêmes (LM2E), Technopôle Pointe du diable, F-29280 Plouzané, France
| | - Samuel Dupont
- Université de Bretagne Occidentale (UBO, UEB), Institut Universitaire Européen de la Mer (IUEM) - UMR 6197, Laboratoire de Microbiologie des Environnements Extrêmes (LM2E), Rue Dumont d'Urville, F-29280 Plouzané, France.,CNRS, IUEM - UMR 6197, Laboratoire de Microbiologie des Environnements Extrêmes (LM2E), Rue Dumont d'Urville, F-29280 Plouzané, France.,Ifremer, UMR 6197, Laboratoire de Microbiologie des Environnements Extrêmes (LM2E), Technopôle Pointe du diable, F-29280 Plouzané, France
| | - Zongze Shao
- Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen 361005, PR China.,Key Laboratory of Marine Genetic Resources, The Third Institute of State Oceanic Administration, Xiamen 361005, PR China
| | - Mohamed Jebbar
- Université de Bretagne Occidentale (UBO, UEB), Institut Universitaire Européen de la Mer (IUEM) - UMR 6197, Laboratoire de Microbiologie des Environnements Extrêmes (LM2E), Rue Dumont d'Urville, F-29280 Plouzané, France.,CNRS, IUEM - UMR 6197, Laboratoire de Microbiologie des Environnements Extrêmes (LM2E), Rue Dumont d'Urville, F-29280 Plouzané, France.,Ifremer, UMR 6197, Laboratoire de Microbiologie des Environnements Extrêmes (LM2E), Technopôle Pointe du diable, F-29280 Plouzané, France
| | - Karine Alain
- Université de Bretagne Occidentale (UBO, UEB), Institut Universitaire Européen de la Mer (IUEM) - UMR 6197, Laboratoire de Microbiologie des Environnements Extrêmes (LM2E), Rue Dumont d'Urville, F-29280 Plouzané, France.,CNRS, IUEM - UMR 6197, Laboratoire de Microbiologie des Environnements Extrêmes (LM2E), Rue Dumont d'Urville, F-29280 Plouzané, France.,Ifremer, UMR 6197, Laboratoire de Microbiologie des Environnements Extrêmes (LM2E), Technopôle Pointe du diable, F-29280 Plouzané, France
| |
Collapse
|
20
|
Cao J, Gayet N, Zeng X, Shao Z, Jebbar M, Alain K. Pseudodesulfovibrio indicus gen. nov., sp. nov., a piezophilic sulfate-reducing bacterium from the Indian Ocean and reclassification of four species of the genus Desulfovibrio. Int J Syst Evol Microbiol 2016; 66:3904-3911. [PMID: 27392787 DOI: 10.1099/ijsem.0.001286] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel sulfate-reducing bacterium, strain J2T, was isolated from a serpentinized peridotite sample from the Indian Ocean. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain J2T clustered with the genus Desulfovibrio within the family Desulfovibrionaceae, but it showed low similarity (87.95 %) to the type species Desulfovibrio desulfuricans DSM 642T. It was most closely related to Desulfovibrio portus MSL79T (96.96 %), followed by Desulfovibrio aespoeensis Aspo-2T (96.11 %), Desulfovibrio piezophilus C1TLV30T (96.04 %) and Desulfovibrio profundus DSM 11384T (95.17 %). Other available sequences shared less than 93.33 % 16S rRNA gene sequence similarity. Cells were Gram-staining-negative, anaerobic, motile vibrios (2-6×0.4-0.6 µm). Growth was observed at salinities ranging from 0.2 to 6 % (optimum 2.5 %), from pH 5 to 8 (optimum pH 6.5-7) and at temperatures between 9 and 40 °C (optimum 30-35 °C). J2T was piezophilic, growing optimally at 10 MPa (range 0-30 MPa). J2T used lactate, malate, pyruvate, formate and hydrogen as energy sources. Sulfate, thiosulfate, sulfite, fumarate and nitrate were used as terminal electron acceptors. Lactate and pyruvate were fermented. The main fatty acids were iso-C15 : 0, anteiso-C15 : 0, summed feature 9 (iso-C17 : 1ω9c and/or C16 : 0 10-methyl) and iso-C17 : 0. The DNA G+C content of strain J2T was 63.5 mol%. The combined genotypic and phenotypic data show that strain J2T represents a novel species of a novel genus in the family Desulfovibrionaceae, for which the name Pseudodesulfovibrio indicus gen. nov., sp. nov. is proposed, with the type strain J2T (=MCCC 1A01867T = DSM 101483T). We also propose the reclassification of D. piezophilus as Pseudodesulfovibrio piezophilus comb. nov., D. profundus as Pseudodesulfovibrio profundus comb. nov., D. portus as Pseudodesulfovibrio portus comb. nov. and D. aespoeensis as Pseudodesulfovibrio aespoeensis comb. nov.
Collapse
Affiliation(s)
- Junwei Cao
- State Key Laboratory Breeding Base of Marine Genetic Resources; Key Laboratory of Marine Genetic Resources, The Third Institute of State Oceanic Administration; Collaborative Innovation Center of Marine Biological Resources; Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen, 361005, PR China.,School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin, 150090, PR China.,Ifremer, UMR 6197, Laboratoire de Microbiologie des Environnements Extrêmes (LMEE), Technopôle Pointe du diable, F-29280 Plouzané, France.,Université de Bretagne Occidentale (UBO, UEB), Institut Universitaire Européen de la Mer (IUEM) - UMR 6197, Laboratoire de Microbiologie des Environnements Extrêmes (LMEE), Place Nicolas Copernic, F-29280 Plouzané, France.,CNRS, IUEM - UMR 6197, Laboratoire de Microbiologie des Environnements Extrêmes (LMEE), Place Nicolas Copernic, F-29280 Plouzané, France
| | - Nicolas Gayet
- Ifremer, Centre de Brest, REM EEP LEP, Institut Carnot Ifremer EDROME, F-29280 Plouzané, France
| | - Xiang Zeng
- State Key Laboratory Breeding Base of Marine Genetic Resources; Key Laboratory of Marine Genetic Resources, The Third Institute of State Oceanic Administration; Collaborative Innovation Center of Marine Biological Resources; Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen, 361005, PR China
| | - Zongze Shao
- State Key Laboratory Breeding Base of Marine Genetic Resources; Key Laboratory of Marine Genetic Resources, The Third Institute of State Oceanic Administration; Collaborative Innovation Center of Marine Biological Resources; Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen, 361005, PR China
| | - Mohamed Jebbar
- Université de Bretagne Occidentale (UBO, UEB), Institut Universitaire Européen de la Mer (IUEM) - UMR 6197, Laboratoire de Microbiologie des Environnements Extrêmes (LMEE), Place Nicolas Copernic, F-29280 Plouzané, France.,CNRS, IUEM - UMR 6197, Laboratoire de Microbiologie des Environnements Extrêmes (LMEE), Place Nicolas Copernic, F-29280 Plouzané, France.,Ifremer, UMR 6197, Laboratoire de Microbiologie des Environnements Extrêmes (LMEE), Technopôle Pointe du diable, F-29280 Plouzané, France
| | - Karine Alain
- CNRS, IUEM - UMR 6197, Laboratoire de Microbiologie des Environnements Extrêmes (LMEE), Place Nicolas Copernic, F-29280 Plouzané, France.,Ifremer, UMR 6197, Laboratoire de Microbiologie des Environnements Extrêmes (LMEE), Technopôle Pointe du diable, F-29280 Plouzané, France.,Université de Bretagne Occidentale (UBO, UEB), Institut Universitaire Européen de la Mer (IUEM) - UMR 6197, Laboratoire de Microbiologie des Environnements Extrêmes (LMEE), Place Nicolas Copernic, F-29280 Plouzané, France
| |
Collapse
|
21
|
Guan Y, Hikmawan T, Antunes A, Ngugi D, Stingl U. Diversity of methanogens and sulfate-reducing bacteria in the interfaces of five deep-sea anoxic brines of the Red Sea. Res Microbiol 2015; 166:688-99. [PMID: 26192212 DOI: 10.1016/j.resmic.2015.07.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 07/02/2015] [Accepted: 07/02/2015] [Indexed: 11/24/2022]
Abstract
Oceanic deep hypersaline anoxic basins (DHABs) are characterized by drastic changes in physico-chemical conditions in the transition from overlaying seawater to brine body. Brine-seawater interfaces (BSIs) of several DHABs across the Mediterranean Sea have been shown to possess methanogenic and sulfate-reducing activities, yet no systematic studies have been conducted to address the potential functional diversity of methanogenic and sulfate-reducing communities in the Red Sea DHABs. Here, we evaluated the relative abundance of Bacteria and Archaea using quantitative PCR and conducted phylogenetic analyses of nearly full-length 16S rRNA genes as well as functional marker genes encoding the alpha subunits of methyl-coenzyme M reductase (mcrA) and dissimilatory sulfite reductase (dsrA). Bacteria predominated over Archaea in most locations, the majority of which were affiliated with Deltaproteobacteria, while Thaumarchaeota were the most prevalent Archaea in all sampled locations. The upper convective layers of Atlantis II Deep, which bear increasingly harsh environmental conditions, were dominated by members of the class Thermoplasmata (Marine Benthic Group E and Mediterranean Sea Brine Lakes Group 1). Our study revealed unique microbial compositions, the presence of niche-specific groups, and collectively, a higher diversity of sulfate-reducing communities compared to methanogenic communities in all five studied locations.
Collapse
Affiliation(s)
- Yue Guan
- Red Sea Research Center, King Abdullah University of Science and Technology, 23955-6900, Thuwal, Saudi Arabia
| | - Tyas Hikmawan
- Red Sea Research Center, King Abdullah University of Science and Technology, 23955-6900, Thuwal, Saudi Arabia
| | - André Antunes
- Computational Bioscience Research Centre, King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia
| | - David Ngugi
- Red Sea Research Center, King Abdullah University of Science and Technology, 23955-6900, Thuwal, Saudi Arabia
| | - Ulrich Stingl
- Red Sea Research Center, King Abdullah University of Science and Technology, 23955-6900, Thuwal, Saudi Arabia.
| |
Collapse
|
22
|
A Post-Genomic View of the Ecophysiology, Catabolism and Biotechnological Relevance of Sulphate-Reducing Prokaryotes. Adv Microb Physiol 2015. [PMID: 26210106 DOI: 10.1016/bs.ampbs.2015.05.002] [Citation(s) in RCA: 189] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Dissimilatory sulphate reduction is the unifying and defining trait of sulphate-reducing prokaryotes (SRP). In their predominant habitats, sulphate-rich marine sediments, SRP have long been recognized to be major players in the carbon and sulphur cycles. Other, more recently appreciated, ecophysiological roles include activity in the deep biosphere, symbiotic relations, syntrophic associations, human microbiome/health and long-distance electron transfer. SRP include a high diversity of organisms, with large nutritional versatility and broad metabolic capacities, including anaerobic degradation of aromatic compounds and hydrocarbons. Elucidation of novel catabolic capacities as well as progress in the understanding of metabolic and regulatory networks, energy metabolism, evolutionary processes and adaptation to changing environmental conditions has greatly benefited from genomics, functional OMICS approaches and advances in genetic accessibility and biochemical studies. Important biotechnological roles of SRP range from (i) wastewater and off gas treatment, (ii) bioremediation of metals and hydrocarbons and (iii) bioelectrochemistry, to undesired impacts such as (iv) souring in oil reservoirs and other environments, and (v) corrosion of iron and concrete. Here we review recent advances in our understanding of SRPs focusing mainly on works published after 2000. The wealth of publications in this period, covering many diverse areas, is a testimony to the large environmental, biogeochemical and technological relevance of these organisms and how much the field has progressed in these years, although many important questions and applications remain to be explored.
Collapse
|
23
|
Callac N, Rouxel O, Lesongeur F, Liorzou C, Bollinger C, Pignet P, Chéron S, Fouquet Y, Rommevaux-Jestin C, Godfroy A. Biogeochemical insights into microbe-mineral-fluid interactions in hydrothermal chimneys using enrichment culture. Extremophiles 2015; 19:597-617. [PMID: 25778451 DOI: 10.1007/s00792-015-0742-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 03/01/2015] [Indexed: 10/23/2022]
Abstract
Active hydrothermal chimneys host diverse microbial communities exhibiting various metabolisms including those involved in various biogeochemical cycles. To investigate microbe-mineral-fluid interactions in hydrothermal chimney and the driver of microbial diversity, a cultural approach using a gas-lift bioreactor was chosen. An enrichment culture was performed using crushed active chimney sample as inoculum and diluted hydrothermal fluid from the same vent as culture medium. Daily sampling provided time-series access to active microbial diversity and medium composition. Active archaeal and bacterial communities consisted mainly of sulfur, sulfate and iron reducers and hydrogen oxidizers with the detection of Thermococcus, Archaeoglobus, Geoglobus, Sulfurimonas and Thermotoga sequences. The simultaneous presence of active Geoglobus sp. and Archaeoglobus sp. argues against competition for available carbon sources and electron donors between sulfate and iron reducers at high temperature. This approach allowed the cultivation of microbial populations that were under-represented in the initial environmental sample. The microbial communities are heterogeneously distributed within the gas-lift bioreactor; it is unlikely that bulk mineralogy or fluid chemistry is the drivers of microbial community structure. Instead, we propose that micro-environmental niche characteristics, created by the interaction between the mineral grains and the fluid chemistry, are the main drivers of microbial diversity in natural systems.
Collapse
Affiliation(s)
- Nolwenn Callac
- Laboratoire de Microbiologie des Environnements Extrêmes, Université de Bretagne Occidentale, UEB, IUEM, UMR 6197, Place Nicolas Copernic, 29280, Plouzané, France,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Eickmann B, Thorseth IH, Peters M, Strauss H, Bröcker M, Pedersen RB. Barite in hydrothermal environments as a recorder of subseafloor processes: a multiple-isotope study from the Loki's Castle vent field. GEOBIOLOGY 2014; 12:308-321. [PMID: 24725254 DOI: 10.1111/gbi.12086] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 03/05/2014] [Indexed: 06/03/2023]
Abstract
Barite chimneys are known to form in hydrothermal systems where barium-enriched fluids generated by leaching of the oceanic basement are discharged and react with seawater sulfate. They also form at cold seeps along continental margins, where marine (or pelagic) barite in the sediments is remobilized because of subseafloor microbial sulfate reduction. We test the possibility of using multiple sulfur isotopes (δ34S, Δ33S, ∆36S) of barite to identify microbial sulfate reduction in a hydrothermal system. In addition to multiple sulfur isotopes, we present oxygen (δ18O) and strontium (87Sr/86Sr) isotopes for one of numerous barite chimneys in a low-temperature (~20 °C) venting area of the Loki's Castle black smoker field at the ultraslow-spreading Arctic Mid-Ocean Ridge (AMOR). The chemistry of the venting fluids in the barite field identifies a contribution of at least 10% of high-temperature black smoker fluid, which is corroborated by 87Sr/86 Sr ratios in the barite chimney that are less radiogenic than in seawater. In contrast, oxygen and multiple sulfur isotopes indicate that the fluid from which the barite precipitated contained residual sulfate that was affected by microbial sulfate reduction. A sulfate reduction zone at this site is further supported by the multiple sulfur isotopic composition of framboidal pyrite in the flow channel of the barite chimney and in the hydrothermal sediments in the barite field, as well as by low SO4 and elevated H2S concentrations in the venting fluids compared with conservative mixing values. We suggest that the mixing of ascending H2- and CH4-rich high-temperature fluids with percolating seawater fuels microbial sulfate reduction, which is subsequently recorded by barite formed at the seafloor in areas where the flow rate is sufficient. Thus, low-temperature precipitates in hydrothermal systems are promising sites to explore the interactions between the geosphere and biosphere in order to evaluate the microbial impact on these systems.
Collapse
Affiliation(s)
- B Eickmann
- Department of Earth Science, Centre for Geobiology, University of Bergen, Bergen, Norway; Department of Geology, University of Johannesburg, Johannesburg, South Africa
| | | | | | | | | | | |
Collapse
|
25
|
Complete Genome Sequence of the Piezophilic, Mesophilic, Sulfate-Reducing Bacterium Desulfovibrio hydrothermalis AM13(T.). GENOME ANNOUNCEMENTS 2013; 1:genomeA00226-12. [PMID: 23469349 PMCID: PMC3587943 DOI: 10.1128/genomea.00226-12] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 12/31/2012] [Indexed: 11/24/2022]
Abstract
Desulfovibrio hydrothermalis AM13T is a piezophilic, mesophilic, hydrogenotrophic sulfate-reducing bacterium collected from a deep-sea hydrothermal chimney on the East Pacific Rise (2,600 m depth, 13°N). We report the genome sequence of this bacterium, which includes a 3,702,934-bp chromosome and a circular plasmid of 5,328 bp.
Collapse
|
26
|
Pradel N, Ji B, Gimenez G, Talla E, Lenoble P, Garel M, Tamburini C, Fourquet P, Lebrun R, Bertin P, Denis Y, Pophillat M, Barbe V, Ollivier B, Dolla A. The first genomic and proteomic characterization of a deep-sea sulfate reducer: insights into the piezophilic lifestyle of Desulfovibrio piezophilus. PLoS One 2013; 8:e55130. [PMID: 23383081 PMCID: PMC3559428 DOI: 10.1371/journal.pone.0055130] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 12/18/2012] [Indexed: 01/19/2023] Open
Abstract
Desulfovibrio piezophilus strain C1TLV30(T) is a piezophilic anaerobe that was isolated from wood falls in the Mediterranean deep-sea. D. piezophilus represents a unique model for studying the adaptation of sulfate-reducing bacteria to hydrostatic pressure. Here, we report the 3.6 Mbp genome sequence of this piezophilic bacterium. An analysis of the genome revealed the presence of seven genomic islands as well as gene clusters that are most likely linked to life at a high hydrostatic pressure. Comparative genomics and differential proteomics identified the transport of solutes and amino acids as well as amino acid metabolism as major cellular processes for the adaptation of this bacterium to hydrostatic pressure. In addition, the proteome profiles showed that the abundance of key enzymes that are involved in sulfate reduction was dependent on hydrostatic pressure. A comparative analysis of orthologs from the non-piezophilic marine bacterium D. salexigens and D. piezophilus identified aspartic acid, glutamic acid, lysine, asparagine, serine and tyrosine as the amino acids preferentially replaced by arginine, histidine, alanine and threonine in the piezophilic strain. This work reveals the adaptation strategies developed by a sulfate reducer to a deep-sea lifestyle.
Collapse
Affiliation(s)
- Nathalie Pradel
- Aix-Marseille Université, Université du Sud Toulon-Var, CNRS/INSU, IRD, MIO, UM110, Marseille, France
- * E-mail: (NP); (AD)
| | - Boyang Ji
- Aix-Marseille Université, CNRS, LCB, UMR 7283, Marseille, France
| | | | - Emmanuel Talla
- Aix-Marseille Université, CNRS, LCB, UMR 7283, Marseille, France
| | - Patricia Lenoble
- Laboratoire de Finition C.E.A., Institut de Génomique – Genoscope, Evry, France
| | - Marc Garel
- Aix-Marseille Université, Université du Sud Toulon-Var, CNRS/INSU, IRD, MIO, UM110, Marseille, France
| | - Christian Tamburini
- Aix-Marseille Université, Université du Sud Toulon-Var, CNRS/INSU, IRD, MIO, UM110, Marseille, France
| | | | - Régine Lebrun
- Plate-formes Protéomique et Transcriptomique FR3479, IBiSA Marseille-Protéomique. IMM - CNRS, Marseille, France
| | - Philippe Bertin
- UMR 7156, CNRS, Université Louis Pasteur, Strasbourg, France
| | - Yann Denis
- Plate-formes Protéomique et Transcriptomique FR3479, IBiSA Marseille-Protéomique. IMM - CNRS, Marseille, France
| | | | - Valérie Barbe
- Laboratoire de Finition C.E.A., Institut de Génomique – Genoscope, Evry, France
| | - Bernard Ollivier
- Aix-Marseille Université, Université du Sud Toulon-Var, CNRS/INSU, IRD, MIO, UM110, Marseille, France
| | - Alain Dolla
- Aix-Marseille Université, CNRS, LCB, UMR 7283, Marseille, France
- * E-mail: (NP); (AD)
| |
Collapse
|
27
|
Gibson RA, van der Meer MTJ, Hopmans EC, Reysenbach AL, Schouten S, Sinninghe Damsté JS. Comparison of intact polar lipid with microbial community composition of vent deposits of the Rainbow and Lucky Strike hydrothermal fields. GEOBIOLOGY 2013; 11:72-85. [PMID: 23231657 DOI: 10.1111/gbi.12017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 10/08/2012] [Indexed: 06/01/2023]
Abstract
The intact polar lipid (IPL) composition of twelve hydrothermal vent deposits from the Rainbow (RHF) and Lucky Strike hydrothermal fields (LSHF) has been investigated in order to assess its utility as a proxy for microbial community composition associated with deep-sea hydrothermal locations. Gene-based culture-independent surveys of the microbial populations of the same vent deposits have shown that microbial populations are different in the two locations and appear to be controlled by the geochemical and geological processes that drive hydrothermal circulation. Large differences in the IPL composition between these two sites are evident. In the ultramafic-hosted RHF, mainly archaeal-IPLs were identified, including those known to be produced by hyperthermophilic Euryarchaeota. More specifically, polyglycosyl derivatives of archaeol and macrocyclic archaeol indicate the presence of hyperthermophilic methanogenic archaea in the vent deposits, which are related to members of the Methanocaldococcaceae or Methanococcaceae. In contrast, bacterial IPLs dominate IPL distributions from LSHF, suggesting that bacteria are more predominant at LSHF than at RHF. Bacterial Diacyl glycerol (DAG) IPLs containing phosphocholine, phosphoethanolamine or phosphoglycerol head groups were identified at both vent fields. In some vent deposits from LSHF ornithine lipids and IPLs containing phosphoaminopentanetetrol head groups were also observed. By comparison with previously characterized bacterial communities at the sites, it is likely the DAG-IPLs observed derive from Epsilon- and Gammaproteobacteria. Variation in the relative amounts of archaeal versus bacterial IPLs appears to indicate differences in the microbial community between vent sites. Overall, IPL distributions appear to be consistent with gene-based surveys.
Collapse
Affiliation(s)
- R A Gibson
- Department of Marine Organic Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Texel, The Netherlands.
| | | | | | | | | | | |
Collapse
|
28
|
Anderson I, Saunders E, Lapidus A, Nolan M, Lucas S, Tice H, Del Rio TG, Cheng JF, Han C, Tapia R, Goodwin LA, Pitluck S, Liolios K, Mavromatis K, Pagani I, Ivanova N, Mikhailova N, Pati A, Chen A, Palaniappan K, Land M, Hauser L, Jeffries CD, Chang YJ, Brambilla EM, Rohde M, Spring S, Göker M, Detter JC, Woyke T, Bristow J, Eisen JA, Markowitz V, Hugenholtz P, Kyrpides NC, Klenk HP. Complete genome sequence of the thermophilic sulfate-reducing ocean bacterium Thermodesulfatator indicus type strain (CIR29812(T)). Stand Genomic Sci 2012; 6:155-64. [PMID: 22768359 PMCID: PMC3387792 DOI: 10.4056/sigs.2665915] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Thermodesulfatator indicus Moussard et al. 2004 is a member of the Thermodesulfobacteriaceae, a family in the phylum Thermodesulfobacteria that is currently poorly characterized at the genome level. Members of this phylum are of interest because they represent a distinct, deep-branching, Gram-negative lineage. T. indicus is an anaerobic, thermophilic, chemolithoautotrophic sulfate reducer isolated from a deep-sea hydrothermal vent. Here we describe the features of this organism, together with the complete genome sequence, and annotation. The 2,322,224 bp long chromosome with its 2,233 protein-coding and 58 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.
Collapse
|
29
|
Slobodkin AI, Reysenbach AL, Slobodkina GB, Baslerov RV, Kostrikina NA, Wagner ID, Bonch-Osmolovskaya EA. Thermosulfurimonas dismutans gen. nov., sp. nov., an extremely thermophilic sulfur-disproportionating bacterium from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 2011; 62:2565-2571. [PMID: 22199218 DOI: 10.1099/ijs.0.034397-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An extremely thermophilic, anaerobic, chemolithoautotrophic bacterium (strain S95(T)) was isolated from a deep-sea hydrothermal vent chimney located on the Eastern Lau Spreading Center, Pacific Ocean, at a depth of 1910 m. Cells of strain S95(T) were oval to short Gram-negative rods, 0.5-0.6 µm in diameter and 1.0-1.5 µm in length, growing singly or in pairs. Cells were motile with a single polar flagellum. The temperature range for growth was 50-92 °C, with an optimum at 74 °C. The pH range for growth was 5.5-8.0, with an optimum at pH 7.0. Growth of strain S95(T) was observed at NaCl concentrations ranging from 1.5 to 3.5% (w/v). Strain S95(T) grew anaerobically with elemental sulfur as an energy source and bicarbonate/CO(2) as a carbon source. Elemental sulfur was disproportionated to sulfide and sulfate. Growth was enhanced in the presence of poorly crystalline iron(III) oxide (ferrihydrite) as a sulfide-scavenging agent. Strain S95(T) was also able to grow by disproportionation of thiosulfate and sulfite. Sulfate was not used as an electron acceptor. Analysis of the 16S rRNA gene sequence revealed that the isolate belongs to the phylum Thermodesulfobacteria. On the basis of its physiological properties and results of phylogenetic analyses, it is proposed that the isolate represents the sole species of a new genus, Thermosulfurimonas dismutans gen. nov., sp. nov.; S95(T) (=DSM 24515(T)=VKM B-2683(T)) is the type strain of the type species. This is the first description of a thermophilic micro-organism that disproportionates elemental sulfur.
Collapse
Affiliation(s)
- A I Slobodkin
- Winogradsky Institute of Microbiology, Russian Academy of Sciences, Prospect 60-letiya Oktyabrya 7/2, 117312 Moscow, Russia
| | - A-L Reysenbach
- Department of Biology and Center for Life in Extreme Environments, Portland State University, PO Box 751, Portland, OR 97207-0751, USA
| | - G B Slobodkina
- Winogradsky Institute of Microbiology, Russian Academy of Sciences, Prospect 60-letiya Oktyabrya 7/2, 117312 Moscow, Russia
| | - R V Baslerov
- Bioengineering Center, Russian Academy of Sciences, Prospect 60-letiya Oktyabrya 7/1, 117312 Moscow, Russia
| | - N A Kostrikina
- Winogradsky Institute of Microbiology, Russian Academy of Sciences, Prospect 60-letiya Oktyabrya 7/2, 117312 Moscow, Russia
| | - I D Wagner
- Department of Biology and Center for Life in Extreme Environments, Portland State University, PO Box 751, Portland, OR 97207-0751, USA
| | - E A Bonch-Osmolovskaya
- Winogradsky Institute of Microbiology, Russian Academy of Sciences, Prospect 60-letiya Oktyabrya 7/2, 117312 Moscow, Russia
| |
Collapse
|
30
|
Influence of the drilling mud formulation process on the bacterial communities in thermogenic natural gas wells of the Barnett Shale. Appl Environ Microbiol 2011; 77:4744-53. [PMID: 21602366 DOI: 10.1128/aem.00233-11] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The Barnett Shale in north central Texas contains natural gas generated by high temperatures (120 to 150°C) during the Mississippian Period (300 to 350 million years ago). In spite of the thermogenic origin of this gas, biogenic sulfide production and microbiologically induced corrosion have been observed at several natural gas wells in this formation. It was hypothesized that microorganisms in drilling muds were responsible for these deleterious effects. Here we collected drilling water and drilling mud samples from seven wells in the Barnett Shale during the drilling process. Using quantitative real-time PCR and microbial enumerations, we show that the addition of mud components to drilling water increased total bacterial numbers, as well as the numbers of culturable aerobic heterotrophs, acid producers, and sulfate reducers. The addition of sterile drilling muds to microcosms that contained drilling water stimulated sulfide production. Pyrosequencing-based phylogenetic surveys of the microbial communities in drilling waters and drilling muds showed a marked transition from typical freshwater communities to less diverse communities dominated by Firmicutes and Gammaproteobacteria. The community shifts observed reflected changes in temperature, pH, oxygen availability, and concentrations of sulfate, sulfonate, and carbon additives associated with the mud formulation process. Finally, several of the phylotypes observed in drilling muds belonged to lineages that were thought to be indigenous to marine and terrestrial fossil fuel formations. Our results suggest a possible alternative exogenous origin of such phylotypes via enrichment and introduction to oil and natural gas reservoirs during the drilling process.
Collapse
|
31
|
Bull AT. The renaissance of continuous culture in the post-genomics age. J Ind Microbiol Biotechnol 2010; 37:993-1021. [PMID: 20835748 DOI: 10.1007/s10295-010-0816-4] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Accepted: 08/11/2010] [Indexed: 01/08/2023]
Abstract
The development of continuous culture techniques 60 years ago and the subsequent formulation of theory and the diversification of experimental systems revolutionised microbiology and heralded a unique period of innovative research. Then, progressively, molecular biology and thence genomics and related high-information-density omics technologies took centre stage and microbial growth physiology in general faded from educational programmes and research funding priorities alike. However, there has been a gathering appreciation over the past decade that if the claims of systems biology are going to be realised, they will have to be based on rigorously controlled and reproducible microbial and cell growth platforms. This revival of continuous culture will be long lasting because its recognition as the growth system of choice is firmly established. The purpose of this review, therefore, is to remind microbiologists, particularly those new to continuous culture approaches, of the legacy of what I call the first age of continuous culture, and to explore a selection of researches that are using these techniques in this post-genomics age. The review looks at the impact of continuous culture across a comprehensive range of microbiological research and development. The ability to establish (quasi-) steady state conditions is a frequently stated advantage of continuous cultures thereby allowing environmental parameters to be manipulated without causing concomitant changes in the specific growth rate. However, the use of continuous cultures also enables the critical study of specified transition states and chemical, physical or biological perturbations. Such dynamic analyses enhance our understanding of microbial ecology and microbial pathology for example, and offer a wider scope for innovative drug discovery; they also can inform the optimization of batch and fed-batch operations that are characterized by sequential transitions states.
Collapse
Affiliation(s)
- Alan T Bull
- School of Biosciences, University of Kent, Canterbury, Kent CT27NJ, UK.
| |
Collapse
|