1
|
Botero J, Basler N, Cnockaert M, Peeters C, Schreiber M, Marz M, de Graaf DC, Matthijnssens J, Vandamme P. Identification and functional genomic analyses of Bartonella isolates from honey bees, and reassessment of the taxonomy of the genus Bartonella. Syst Appl Microbiol 2025; 48:126625. [PMID: 40516202 DOI: 10.1016/j.syapm.2025.126625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 04/08/2025] [Accepted: 05/30/2025] [Indexed: 06/16/2025]
Abstract
We used matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and whole-genome sequence analyses to identify 90 Bartonella isolates from honey bee gut samples in Belgium. While the identification of 62 isolates as Bartonella apihabitans and three as Bartonella choladocola was straightforward, the identification of 25 Bartonella apis-like isolates was challenging. A taxonomic and functional analysis of four B. apis-like genomes and of publicly available B. apis genomes demonstrated that neither OrthoANIu and digital DNA-DNA hybridization analyses, nor functional annotation supported a clear separation of B. apis and B. apis-like genomes. Different phylogenomic analyses showed that B. apis and B. apis-like strains formed a monophyletic clade with an inconsistent internal structure. We therefore considered the remaining 25 isolates identified as B. apis. We subsequently re-addressed an earlier phylogenetic and functional divergence between three major clades of Bartonella species which differed not only in phylogenomic position and ecology, but also in genome size and genomic percentage G + C content, and in many metabolic capabilities. We propose to reclassify the single species of the Bartonella tamiae clade into the novel genus Attibartonella gen. nov., with Attibartonella tamiae comb. nov. as the type species. Similarly, we propose to reclassify species of the honey bee-associated Bartonella clade into the novel genus Ditibartonella gen. nov., with Ditibartonella apis comb. nov. as the type species. The phylogenomic analyses of publicly available genome and metagenome sequences revealed additional Ditibartonella species in honey bee samples, highlighted an evolutionary adaptation of Ditibartonella bacteria to bee hosts and suggested shared transmission routes.
Collapse
Affiliation(s)
- Juliana Botero
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, K. L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Nikolas Basler
- KU Leuven-University of Leuven, Department of Microbiology, Immunology and Transplantation, Division of Clinical and Epidemiological Virology, Rega Institute, Leuven, Belgium
| | - Margo Cnockaert
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, K. L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Charlotte Peeters
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, K. L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Maria Schreiber
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, Leutragraben 1, 07743 Jena, Germany; Bioinformatics Core Facility Jena, 07745, Jena, Germany
| | - Manja Marz
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, Leutragraben 1, 07743 Jena, Germany; Bioinformatics Core Facility Jena, 07745, Jena, Germany; European Virus Bioinformatics Center, Leutragraben 1, 07743, Jena, Germany
| | - Dirk C de Graaf
- Laboratory of Molecular Entomology and Bee Pathology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Jelle Matthijnssens
- KU Leuven-University of Leuven, Department of Microbiology, Immunology and Transplantation, Division of Clinical and Epidemiological Virology, Rega Institute, Leuven, Belgium; European Virus Bioinformatics Center, Leutragraben 1, 07743, Jena, Germany
| | - Peter Vandamme
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, K. L. Ledeganckstraat 35, 9000 Ghent, Belgium.
| |
Collapse
|
2
|
Cirtwill AR, Roslin T, Peña-Aguilera P, Agboto A, Bercê W, Bondarchuk SN, Brodschneider R, Heidari B, Kaizirege C, Nyaga JM, Ekpah O, Gomez GO, Paz C, Pirk C, Salehi-Najafabadi A, Salonen A, Soloniaina C, Wirta H. The Latitudinal Biotic Interaction Hypothesis revisited: contrasting latitudinal richness gradients in actively vs. passively accumulated interaction partners of honey bees. BMC Ecol Evol 2025; 25:24. [PMID: 40097948 PMCID: PMC11912709 DOI: 10.1186/s12862-025-02363-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 03/11/2025] [Indexed: 03/19/2025] Open
Abstract
BACKGROUND Contrasting hypotheses suggest that the number of biotic interactions per species could either increase towards the equator due to the increasing richness of potential interaction partners (Neutral theory), or decrease in the tropics due to increased biotic competition (Latitudinal Biotic Interaction Hypothesis). Empirical testing of these hypotheses remains limited due to practical limitations, differences in methodology, and species turnover across latitudes. Here, we focus on a single species with a worldwide distribution, the honey bee (Apis mellifera L.), to assess how the number of different types of interactions vary across latitudes. Foraging honey bees interact with many organisms in their local environment, including plants they actively select to visit and microbes that they largely encounter passively (i.e., unintentionally and more or less randomly). Tissue pieces and spores of these organisms are carried to the hive by foraging honey bees and end up preserved within honey, providing a rich record of the species honey bees encounter in nature. RESULTS Using honey samples from around the globe, we show that while honey bees visit more plant taxa at higher latitudes, they encounter more bacteria in the tropics. CONCLUSIONS These different components of honey bees' biotic niche support the latitudinal biotic interaction hypothesis for actively-chosen interactions, but are more consistent with neutral theory (assuming greater bacterial richness in the tropics) for unintentional interactions.
Collapse
Affiliation(s)
| | - Tomas Roslin
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Pablo Peña-Aguilera
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Agathe Agboto
- University of Abomey-Calavi, Faculty of Agronomic Sciences, Laboratory of Agricultural Entomology, Abomey-Calavi, Benin
| | | | - Svetlana N Bondarchuk
- Sikhote-Alin State Nature Biosphere Reserve Named After K.G. Abramov, 44 Partizanskaya Str., Terney, Primorsky Krai, 692150, Russia
| | | | - Behzad Heidari
- IKBM, Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, 4036, Stavanger, Norway
| | - Camara Kaizirege
- Tanzifarm Tanzania Limited, Mlele District, Katavi Region, Tanzania
| | | | - Ojonugwa Ekpah
- Institute of Geoecology, Department Landscape Ecology and Environmental Systems Analysis, Technische Universität Braunschweig, Braunschweig, Germany
| | | | - Claudia Paz
- Department of Biodiversity, Institute of Biosciences, São Paulo State University, Av 24A 1515, Rio Claro, SP, 13506-900, Brazil
- Current address: Department of Entomology and Acarology, Laboratory of Pathology and Microbial Control, University of São Paulo, 13418-900, Piracicaba, SP, Brazil
| | - Christian Pirk
- Social Insects Research Group, Department of Zoology & Entomology, University of Pretoria, Pretoria, South Africa
| | - Amir Salehi-Najafabadi
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Anneli Salonen
- Finnish Beekeepers' Association, Ullanlinnankatu 1 A 3, 00130, Helsinki, Finland
| | - Chantal Soloniaina
- Department of International Relations and Partnership, Ministry of Education, Antananarivo, Madagascar
| | - Helena Wirta
- Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden.
- Department of Agricultural Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
3
|
Yang C, Hu J, Su Q, Zhang Z, Du Y, Wang J, Sun H, Han B, Tang J, Guo L, Li H, Cai W, Zheng H, Zhou X, Zhang X. A review on recent taxonomic updates of gut bacteria associated with social bees, with a curated genomic reference database. INSECT SCIENCE 2025; 32:2-23. [PMID: 38594229 DOI: 10.1111/1744-7917.13365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 02/13/2024] [Accepted: 03/09/2024] [Indexed: 04/11/2024]
Abstract
Honeybees and bumblebees play a crucial role as essential pollinators. The special gut microbiome of social bees is a key factor in determining the overall fitness and health of the host. Although bees harbor relatively simple microbial communities at the genus level, recent studies have unveiled significant genetic divergence and variations in gene content within each bacterial genus. However, a comprehensive and refined genomics-based taxonomic database specific to social bee gut microbiomes remains lacking. Here, we first provided an overview of the current knowledge on the distribution and function of social bee gut bacteria, as well as the factors that influence the gut population dynamics. We then consolidated all available genomes of the gut bacteria of social bees and refined the species-level taxonomy, by constructing a maximum-likelihood core genome phylogeny and calculating genome-wide pairwise average nucleotide identity. On the basis of the refined species taxonomy, we constructed a curated genomic reference database, named the bee gut microbe genome sequence database (BGM-GDb). To evaluate the species-profiling performance of the curated BGM-GDb, we retrieved a series of bee gut metagenomic data and inferred the species-level composition using metagenomic intra-species diversity analysis system (MIDAS), and then compared the results with those obtained from a prebuilt MIDAS database. We found that compared with the default database, the BGM-GDb excelled in aligned read counts and bacterial richness. Overall, this high-resolution and precise genomic reference database will facilitate research in understanding the gut community structure of social bees.
Collapse
Affiliation(s)
- Chengfeng Yang
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
- Sanya Institute of China Agricultural University, Hainan Province, China
| | - Jiawei Hu
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Qinzhi Su
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Beijing Laboratory of Biomedical Materials, Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Zijing Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Yating Du
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Jieni Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Huihui Sun
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
- Sanya Institute of China Agricultural University, Hainan Province, China
| | - Benfeng Han
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Junbo Tang
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Lizhen Guo
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Hu Li
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Wanzhi Cai
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Hao Zheng
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Xin Zhou
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
- Sanya Institute of China Agricultural University, Hainan Province, China
| | - Xue Zhang
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
4
|
Luca L, Pauliuc D, Oroian M. Honey microbiota, methods for determining the microbiological composition and the antimicrobial effect of honey - A review. Food Chem X 2024; 23:101524. [PMID: 38947342 PMCID: PMC11214184 DOI: 10.1016/j.fochx.2024.101524] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 07/02/2024] Open
Abstract
Honey is a natural product used since ancient times due to its taste, aroma, and therapeutic properties (antibacterial, antiviral, anti-inflammatory, and antioxidant activity). The purpose of this review is to present the species of microorganisms that can survive in honey and the effect they can have on bees and consumers. The techniques for identifying the microorganisms present in honey are also described in this study. Honey contains bacteria, yeasts, molds, and viruses, and some of them may present beneficial properties for humans. The antimicrobial effect of honey is due to its acidity and high viscosity, high sugar concentration, low water content, the presence of hydrogen peroxide and non-peroxidase components, particularly methylglyoxal (MGO), phenolic acids, flavonoids, proteins, peptides, and non-peroxidase glycopeptides. Honey has antibacterial action (it has effectiveness against bacteria, e.g. Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Acinetobacter, etc.), antifungal (effectiveness against Candida spp., Aspergillus spp., Fusarium spp., Rhizopus spp., and Penicillium spp.), antiviral (effectiveness against SARS-CoV-2, Herpes simplex virus type 1, Influenza virus A and B, Varicella zoster virus), and antiparasitic action (effectiveness against Plasmodium berghei, Giardia and Trichomonas, Toxoplasma gondii) demonstrated by numerous studies that are comprised and discussed in this review.
Collapse
Affiliation(s)
- Liliana Luca
- Suceava-Botoșani Regional Innovative Bioeconomy Cluster Association, 720229 Suceava, Romania
| | - Daniela Pauliuc
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, 720229 Suceava, Romania
| | - Mircea Oroian
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, 720229 Suceava, Romania
| |
Collapse
|
5
|
Lariviere PJ, Ashraf AHMZ, Navarro-Escalante L, Leonard SP, Miller LG, Moran NA, Barrick JE. One-step genome engineering in bee gut bacterial symbionts. mBio 2024; 15:e0139224. [PMID: 39105596 PMCID: PMC11389375 DOI: 10.1128/mbio.01392-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/24/2024] [Indexed: 08/07/2024] Open
Abstract
Mechanistic understanding of interactions in many host-microbe systems, including the honey bee microbiome, is limited by a lack of easy-to-use genome engineering approaches. To this end, we demonstrate a one-step genome engineering approach for making gene deletions and insertions in the chromosomes of honey bee gut bacterial symbionts. Electroporation of linear or non-replicating plasmid DNA containing an antibiotic resistance cassette flanked by regions with homology to a symbiont genome reliably results in chromosomal integration. This lightweight approach does not require expressing any exogenous recombination machinery. The high concentrations of large DNAs with long homology regions needed to make the process efficient can be readily produced using modern DNA synthesis and assembly methods. We use this approach to knock out genes, including genes involved in biofilm formation, and insert fluorescent protein genes into the chromosome of the betaproteobacterial bee gut symbiont Snodgrassella alvi. We are also able to engineer the genomes of multiple strains of S. alvi and another species, Snodgrassella communis, which is found in the bumble bee gut microbiome. Finally, we use the same method to engineer the chromosome of another bee symbiont, Bartonella apis, which is an alphaproteobacterium. As expected, gene knockout in S. alvi using this approach is recA-dependent, suggesting that this straightforward procedure can be applied to other microbes that lack convenient genome engineering methods. IMPORTANCE Honey bees are ecologically and economically important crop pollinators with bacterial gut symbionts that influence their health. Microbiome-based strategies for studying or improving bee health have utilized wild-type or plasmid-engineered bacteria. We demonstrate that a straightforward, single-step method can be used to insert cassettes and replace genes in the chromosomes of multiple bee gut bacteria. This method can be used for investigating the mechanisms of host-microbe interactions in the bee gut community and stably engineering symbionts that benefit pollinator health.
Collapse
Affiliation(s)
- Patrick J Lariviere
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA
| | - A H M Zuberi Ashraf
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| | | | - Sean P Leonard
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA
| | - Laurel G Miller
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| | - Nancy A Moran
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA
| | - Jeffrey E Barrick
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
6
|
Bassini-Silva R, Chagas MEMD, Mello-Oliveira VDS, Calchi AC, Castro-Santiago AC, Andrade LDO, Benedet GC, Pereira FMAM, Soares-Neto LL, Hippólito AG, Hoppe EGL, Werther K, André MR, Quadros RMD, Barros-Battesti DM, Muñoz-Leal S, Jacinavicius FDC. Eutrichophilus cordiceps Mjöberg, 1910 (Ischnocera: Trichodectidae) in Spiny Tree Porcupines (Coendou villosus): New locality records and the first molecular evidence of association with Bartonella sp. Parasitol Int 2024; 100:102876. [PMID: 38438077 DOI: 10.1016/j.parint.2024.102876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/16/2024] [Accepted: 02/27/2024] [Indexed: 03/06/2024]
Abstract
The chewing louse genus Eutrichophilus Mjöberg has 19 species only associated with porcupines (Rodentia: Erethizontidae). Of these species, E. cercolabes, E. cordiceps, E. emersoni, E. minor, E. moojeni, and E. paraguayensis have been recorded in Brazil. In the present study, we report E. cordiceps for the first time in the São Paulo State (Bauru Municipality) and for the second time in the Santa Catarina State (Lages Municipality), providing scanning electron images and light microscopy for the eggs, as well as the first molecular data (18S rRNA) for the genus. Additionally, Bartonella sp. was detected for the first time in this chewing lice species.
Collapse
Affiliation(s)
- Ricardo Bassini-Silva
- Vector-Borne Bioagents Laboratory (VBBL), Departamento de Patologia, Reprodução e Saúde Única, Faculdade de Ciências Agrárias e Veterinárias-UNESP, Jaboticabal, SP, Brazil.
| | - Maria Eduarda Moraes das Chagas
- Vector-Borne Bioagents Laboratory (VBBL), Departamento de Patologia, Reprodução e Saúde Única, Faculdade de Ciências Agrárias e Veterinárias-UNESP, Jaboticabal, SP, Brazil.
| | - Victor de Souza Mello-Oliveira
- Vector-Borne Bioagents Laboratory (VBBL), Departamento de Patologia, Reprodução e Saúde Única, Faculdade de Ciências Agrárias e Veterinárias-UNESP, Jaboticabal, SP, Brazil.
| | - Ana Cláudia Calchi
- Vector-Borne Bioagents Laboratory (VBBL), Departamento de Patologia, Reprodução e Saúde Única, Faculdade de Ciências Agrárias e Veterinárias-UNESP, Jaboticabal, SP, Brazil.
| | | | - Lívia de Oliveira Andrade
- Vector-Borne Bioagents Laboratory (VBBL), Departamento de Patologia, Reprodução e Saúde Única, Faculdade de Ciências Agrárias e Veterinárias-UNESP, Jaboticabal, SP, Brazil.
| | - Gabriela Coelho Benedet
- Departamento de Medicina Veterinária, Centro de Ciências Agroveterinárias, Universidade do Estado de Santa Catarina (Cav Udesc), Lages, SC, Brazil.
| | | | | | | | - Estevam Guilherme Lux Hoppe
- Vector-Borne Bioagents Laboratory (VBBL), Departamento de Patologia, Reprodução e Saúde Única, Faculdade de Ciências Agrárias e Veterinárias-UNESP, Jaboticabal, SP, Brazil.
| | - Karin Werther
- Vector-Borne Bioagents Laboratory (VBBL), Departamento de Patologia, Reprodução e Saúde Única, Faculdade de Ciências Agrárias e Veterinárias-UNESP, Jaboticabal, SP, Brazil.
| | - Marcos Rogério André
- Vector-Borne Bioagents Laboratory (VBBL), Departamento de Patologia, Reprodução e Saúde Única, Faculdade de Ciências Agrárias e Veterinárias-UNESP, Jaboticabal, SP, Brazil.
| | - Rosiléia Marinho de Quadros
- Departamento de Medicina Veterinária, Centro de Ciências Agroveterinárias, Universidade do Estado de Santa Catarina (Cav Udesc), Lages, SC, Brazil; Laboratório de Zoologia e Parasitologia, Universidade do Planalto Catarinense da (Uniplac), Lages, SC, Brazil.
| | - Darci Moraes Barros-Battesti
- Vector-Borne Bioagents Laboratory (VBBL), Departamento de Patologia, Reprodução e Saúde Única, Faculdade de Ciências Agrárias e Veterinárias-UNESP, Jaboticabal, SP, Brazil.
| | - Sebastián Muñoz-Leal
- Departamento de Ciencia Animal, Facultad de Ciencias Veterinarias, Universidad de Concepción, Chillán, Chile.
| | | |
Collapse
|
7
|
Xiong Q, Sopko B, Klimov PB, Hubert J. A novel Bartonella-like bacterium forms an interdependent mutualistic symbiosis with its host, the stored-product mite Tyrophagus putrescentiae. mSystems 2024; 9:e0082923. [PMID: 38380907 PMCID: PMC10949449 DOI: 10.1128/msystems.00829-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 01/31/2024] [Indexed: 02/22/2024] Open
Abstract
A novel Bartonella-like symbiont (BLS) of Tyrophagus putrescentiae was characterized. BLS formed a separate cluster from the Bartonella clade together with an ant symbiont. BLS was present in mite bodies (103 16S DNA copies/mite) and feces but was absent in eggs. This indicated the presence of the BLS in mite guts. The BLS showed a reduction in genome size (1.6 Mb) and indicates gene loss compared to Bartonella apis. The BLS can be interacted with its host by using host metabolic pathways (e.g., the histidine and arginine metabolic pathways) as well as by providing its own metabolic pathways (pantothenate and lipoic acid) to the host, suggesting the existence of a mutualistic association. Our experimental data further confirmed these potential mutualistic nutritional associations, as cultures of T. putrescentiae with low BLS abundance showed the strongest response after the addition of vitamins. Despite developing an arguably tight dependency on its host, the BLS has probably retained flagellar mobility, as evidenced by the 32 proteins enriched in KEGG pathways associated with flagellar assembly or chemotaxis (e.g., fliC, flgE, and flgK, as highly expressed genes). Some of these proteins probably also facilitate adhesion to host gut cells. The microcin C transporter was identified in the BLS, suggesting that microcin C may be used in competition with other gut bacteria. The 16S DNA sequence comparison indicated a mite clade of BLSs with a broad host range, including house dust and stored-product mites. Our phylogenomic analyses identified a unique lineage of arachnid specific BLSs in mites and scorpions.IMPORTANCEA Bartonella-like symbiont was found in an astigmatid mite of allergenic importance. We assembled the genome of the bacterium from metagenomes of different stored-product mite (T. putrescentiae) cultures. The bacterium provides pantothenate and lipoic acid to the mite host. The vitamin supply explains the changes in the relative abundance of BLSs in T. putrescentiae as the microbiome response to nutritional or pesticide stress, as observed previously. The phylogenomic analyses of available 16S DNA sequences originating from mite, scorpion, and insect samples identified a unique lineage of arachnid specific forming large Bartonella clade. BLSs associated with mites and a scorpion. The Bartonella clade included the previously described Ca. Tokpelaia symbionts of ants.
Collapse
Affiliation(s)
- Qing Xiong
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | | | - Pavel B. Klimov
- Purdue University, Lilly Hall of Life Sciences, West Lafayette, Indiana, USA
| | - Jan Hubert
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| |
Collapse
|
8
|
Motta EVS, Moran NA. The honeybee microbiota and its impact on health and disease. Nat Rev Microbiol 2024; 22:122-137. [PMID: 38049554 PMCID: PMC10998682 DOI: 10.1038/s41579-023-00990-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2023] [Indexed: 12/06/2023]
Abstract
Honeybees (Apis mellifera) are key pollinators that support global agriculture and are long-established models for developmental and behavioural research. Recently, they have emerged as models for studying gut microbial communities. Earlier research established that hindguts of adult worker bees harbour a conserved set of host-restricted bacterial species, each showing extensive strain variation. These bacteria can be cultured axenically and introduced to gnotobiotic hosts, and some have basic genetic tools available. In this Review, we explore the most recent research showing how the microbiota establishes itself in the gut and impacts bee biology and health. Microbiota members occupy specific niches within the gut where they interact with each other and the host. They engage in cross-feeding and antagonistic interactions, which likely contribute to the stability of the community and prevent pathogen invasion. An intact gut microbiota provides protection against diverse pathogens and parasites and contributes to the processing of refractory components of the pollen coat and dietary toxins. Absence or disruption of the microbiota results in altered expression of genes that underlie immunity, metabolism, behaviour and development. In the field, such disruption by agrochemicals may negatively impact bees. These findings demonstrate a key developmental and protective role of the microbiota, with broad implications for bee health.
Collapse
Affiliation(s)
- Erick V S Motta
- Department of Integrative Biology, University of Texas, Austin, TX, USA
| | - Nancy A Moran
- Department of Integrative Biology, University of Texas, Austin, TX, USA.
| |
Collapse
|
9
|
Conradie TA, Lawson K, Allsopp M, Jacobs K. Exploring the impact of fungicide exposure and nutritional stress on the microbiota and immune response of the Cape honey bee (Apis mellifera capensis). Microbiol Res 2024; 280:127587. [PMID: 38142516 DOI: 10.1016/j.micres.2023.127587] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/12/2023] [Accepted: 12/15/2023] [Indexed: 12/26/2023]
Abstract
Honey bees (Apis mellifera) harbour a stable core microbial community within their gut, that is suggested to play a role in metabolic functioning, immune regulation, and host homeostasis. This microbiota presents a unique opportunity to observe the effects of stressors on honey bee health. We examined the effects of two common honey bee stressors: indirect fungicide contamination and nutrient limitation. These effects were observed through changes in their hind- and midgut microbiota using Automated Ribosomal Intergenic Spacer Analysis (ARISA), alongside high-throughput amplicon sequencing. Expression of the honey bees' immune response was examined through the expression of three immune-related genes, namely, immune deficiency (imd), proPhenolOxidase (proPO), and spaetzle (spz). Additionally, longevity of the honey bees was monitored through observation of the expression levels of Vitellogenin (Vg). Both treatment groups were compared to a negative control, and a diseased positive control. There was no effect on the hindgut microbiota due to the stressors, while significant changes in the midgut was observed. This was also observed in the expression of the immune-related genes within the treatment groups. The Imd pathway was substantially downregulated, with upregulation in the prophenoloxidase pathway. However, no significant effect was observed in the expression of spz, and only the pollen treatment group showed reduced longevity through a downregulation of Vg. Overall, the effect of these two common stressors indicate a compromise in honey bee immunity, and potential vulnerabilities within the immune defence mechanisms.
Collapse
Affiliation(s)
- Tersia A Conradie
- Department of Microbiology, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Kayla Lawson
- Department of Microbiology, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Mike Allsopp
- Agricultural Research Council - Plant, Health & Protection, Stellenbosch 7600, South Africa
| | - Karin Jacobs
- Department of Microbiology, Stellenbosch University, Stellenbosch 7600, South Africa.
| |
Collapse
|
10
|
Chhun A, Moriano-Gutierrez S, Zoppi F, Cabirol A, Engel P, Schaerli Y. An engineered bacterial symbiont allows noninvasive biosensing of the honey bee gut environment. PLoS Biol 2024; 22:e3002523. [PMID: 38442124 PMCID: PMC10914260 DOI: 10.1371/journal.pbio.3002523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 01/26/2024] [Indexed: 03/07/2024] Open
Abstract
The honey bee is a powerful model system to probe host-gut microbiota interactions, and an important pollinator species for natural ecosystems and for agriculture. While bacterial biosensors can provide critical insight into the complex interplay occurring between a host and its associated microbiota, the lack of methods to noninvasively sample the gut content, and the limited genetic tools to engineer symbionts, have so far hindered their development in honey bees. Here, we built a versatile molecular tool kit to genetically modify symbionts and reported for the first time in the honey bee a technique to sample their feces. We reprogrammed the native bee gut bacterium Snodgrassella alvi as a biosensor for IPTG, with engineered cells that stably colonize the gut of honey bees and report exposure to the molecules in a dose-dependent manner through the expression of a fluorescent protein. We showed that fluorescence readout can be measured in the gut tissues or noninvasively in the feces. These tools and techniques will enable rapid building of engineered bacteria to answer fundamental questions in host-gut microbiota research.
Collapse
Affiliation(s)
- Audam Chhun
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | | | - Florian Zoppi
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Amélie Cabirol
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Philipp Engel
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Yolanda Schaerli
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
11
|
Sbaghdi T, Garneau JR, Yersin S, Chaucheyras-Durand F, Bocquet M, Moné A, El Alaoui H, Bulet P, Blot N, Delbac F. The Response of the Honey Bee Gut Microbiota to Nosema ceranae Is Modulated by the Probiotic Pediococcus acidilactici and the Neonicotinoid Thiamethoxam. Microorganisms 2024; 12:192. [PMID: 38258019 PMCID: PMC10819737 DOI: 10.3390/microorganisms12010192] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/30/2023] [Accepted: 01/13/2024] [Indexed: 01/24/2024] Open
Abstract
The honey bee Apis mellifera is exposed to a variety of biotic and abiotic stressors, such as the highly prevalent microsporidian parasite Nosema (Vairimorpha) ceranae and neonicotinoid insecticides. Both can affect honey bee physiology and microbial gut communities, eventually reducing its lifespan. They can also have a combined effect on the insect's survival. The use of bacterial probiotics has been proposed to improve honey bee health, but their beneficial effect remains an open question. In the present study, western honey bees were experimentally infected with N. ceranae spores, chronically exposed to the neonicotinoid thiamethoxam, and/or supplied daily with the homofermentative bacterium Pediococcus acidilactici MA18/5M thought to improve the honey bees' tolerance to the parasite. Deep shotgun metagenomic sequencing allowed the response of the gut microbiota to be investigated with a taxonomic resolution at the species level. All treatments induced significant changes in honey bee gut bacterial communities. Nosema ceranae infection increased the abundance of Proteus mirabilis, Frischella perrara, and Gilliamella apicola and reduced the abundance of Bifidobacterium asteroides, Fructobacillus fructosus, and Lactobacillus spp. Supplementation with P. acidilactici overturned some of these alterations, bringing back the abundance of some altered species close to the relative abundance found in the controls. Surprisingly, the exposure to thiamethoxam also restored the relative abundance of some species modulated by N. ceranae. This study shows that stressors and probiotics may have an antagonistic impact on honey bee gut bacterial communities and that P. acidilactici may have a protective effect against the dysbiosis induced by an infection with N. ceranae.
Collapse
Affiliation(s)
- Thania Sbaghdi
- Laboratoire “Microorganismes: Génome et Environnement”, CNRS, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France; (T.S.); (A.M.); (H.E.A.)
| | - Julian R. Garneau
- Department of Fundamental Microbiology, University of Lausanne, Campus UNIL-Sorge, 1015 Lausanne, Switzerland; (J.R.G.); (S.Y.)
| | - Simon Yersin
- Department of Fundamental Microbiology, University of Lausanne, Campus UNIL-Sorge, 1015 Lausanne, Switzerland; (J.R.G.); (S.Y.)
| | - Frédérique Chaucheyras-Durand
- Lallemand SAS, 19 Rue des Briquetiers, BP 59, CEDEX, F-31702 Blagnac, France;
- Microbiologie Environnement Digestif et Santé, INRAE, Université Clermont Auvergne, F-63122 Saint-Genès Champanelle, France
| | | | - Anne Moné
- Laboratoire “Microorganismes: Génome et Environnement”, CNRS, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France; (T.S.); (A.M.); (H.E.A.)
| | - Hicham El Alaoui
- Laboratoire “Microorganismes: Génome et Environnement”, CNRS, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France; (T.S.); (A.M.); (H.E.A.)
| | - Philippe Bulet
- Institute for Advanced Biosciences, CR Université Grenoble Alpes, Inserm U1209, CNRS UMR 5309, F-38000 Grenoble, France;
- Platform BioPark Archamps, ArchParc, F-74160 Archamps, France
| | - Nicolas Blot
- Laboratoire “Microorganismes: Génome et Environnement”, CNRS, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France; (T.S.); (A.M.); (H.E.A.)
| | - Frédéric Delbac
- Laboratoire “Microorganismes: Génome et Environnement”, CNRS, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France; (T.S.); (A.M.); (H.E.A.)
| |
Collapse
|
12
|
Smutin D, Taldaev A, Lebedev E, Adonin L. Shotgun Metagenomics Reveals Minor Micro" bee"omes Diversity Defining Differences between Larvae and Pupae Brood Combs. Int J Mol Sci 2024; 25:741. [PMID: 38255816 PMCID: PMC10815634 DOI: 10.3390/ijms25020741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/29/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Bees represent not only a valuable asset in agriculture, but also serve as a model organism within contemporary microbiology. The metagenomic composition of the bee superorganism has been substantially characterized. Nevertheless, traditional cultural methods served as the approach to studying brood combs in the past. Indeed, the comb microbiome may contribute to determining larval caste differentiation and hive immunity. To further this understanding, we conducted a shotgun sequencing analysis of the brood comb microbiome. While we found certain similarities regarding species diversity, it exhibits significant differentiation from all previously described hive metagenomes. Many microbiome members maintain a relatively constant ratio, yet taxa with the highest abundance level tend to be ephemeral. More than 90% of classified metagenomes were Gammaproteobacteria, Bacilli and Actinobacteria genetic signatures. Jaccard dissimilarity between samples based on bacteria genus classifications hesitate from 0.63 to 0.77, which for shotgun sequencing indicates a high consistency in bacterial composition. Concurrently, we identified antagonistic relationships between certain bacterial clusters. The presence of genes related to antibiotic synthesis and antibiotic resistance suggests potential mechanisms underlying the stability of comb microbiomes. Differences between pupal and larval combs emerge in the total metagenome, while taxa with the highest abundance remained consistent. All this suggests that a key role in the functioning of the comb microbiome is played by minor biodiversity, the function of which remains to be established experimentally.
Collapse
Affiliation(s)
- Daniil Smutin
- Institute of Environmental and Agricultural Biology (X-BIO), Tyumen State University, Tyumen 625003, Russia
- Faculty of Information Technology and Programming, ITMO University, St. Petersburg 197101, Russia
| | - Amir Taldaev
- Institute of Environmental and Agricultural Biology (X-BIO), Tyumen State University, Tyumen 625003, Russia
- Institute of Biomedical Chemistry, Moscow 119121, Russia
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russia
| | - Egor Lebedev
- Institute of Environmental and Agricultural Biology (X-BIO), Tyumen State University, Tyumen 625003, Russia
| | - Leonid Adonin
- Institute of Environmental and Agricultural Biology (X-BIO), Tyumen State University, Tyumen 625003, Russia
- Institute of Biomedical Chemistry, Moscow 119121, Russia
| |
Collapse
|
13
|
Balbuena S, Castelli L, Zunino P, Antúnez K. Effect of Chronic Exposure to Sublethal Doses of Imidacloprid and Nosema ceranae on Immunity, Gut Microbiota, and Survival of Africanized Honey Bees. MICROBIAL ECOLOGY 2023; 85:1485-1497. [PMID: 35460373 DOI: 10.1007/s00248-022-02014-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 04/13/2022] [Indexed: 05/10/2023]
Abstract
Large-scale honey bee colony losses reported around the world have been associated with intoxication with pesticides, as with the presence of pests and pathogens. Among pesticides, neonicotinoid insecticides are the biggest threat. Due to their extensive use, they can be found in all agricultural environments, including soil, water, and air, are persistent in the environment, and are highly toxic for honey bees. In addition, infection by different pests and pathogens can act synergistically, weakening bees. In this study, we investigated the effects of chronic exposure to sublethal doses of imidacloprid alone or combined with the microsporidia Nosema ceranae on the immune response, deformed wing virus infection (DWV), gut microbiota, and survival of Africanized honey bees. We found that imidacloprid affected the expression of some genes associated with immunity generating an altered physiological state, although it did not favor DWV or N. ceranae infection. The pesticide alone did not affect honey bee gut microbiota, as previously suggested, but when administered to N. ceranae infected bees, it generated significant changes. Finally, both stress factors caused high mortality rates. Those results illustrate the negative impact of imidacloprid alone or combined with N. ceranae on Africanized honey bees and are useful to understand colony losses in Latin America.
Collapse
Affiliation(s)
- Sofía Balbuena
- Laboratorio de Microbiología Y Salud de Las Abejas, Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable, Avda. Italia, 3318, Montevideo, Uruguay
| | - Loreley Castelli
- Laboratorio de Microbiología Y Salud de Las Abejas, Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable, Avda. Italia, 3318, Montevideo, Uruguay
| | - Pablo Zunino
- Laboratorio de Microbiología Y Salud de Las Abejas, Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable, Avda. Italia, 3318, Montevideo, Uruguay
| | - Karina Antúnez
- Laboratorio de Microbiología Y Salud de Las Abejas, Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable, Avda. Italia, 3318, Montevideo, Uruguay.
| |
Collapse
|
14
|
Hubert J, Nesvorna M, Bostlova M, Sopko B, Green SJ, Phillips TW. The Effect of Residual Pesticide Application on Microbiomes of the Storage Mite Tyrophagus putrescentiae. MICROBIAL ECOLOGY 2023; 85:1527-1540. [PMID: 35840683 DOI: 10.1007/s00248-022-02072-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 07/05/2022] [Indexed: 05/10/2023]
Abstract
Arthropods can host well-developed microbial communities, and such microbes can degrade pesticides and confer tolerance to most types of pests. Two cultures of the stored-product mite Tyrophagus putrescentiae, one with a symbiotic microbiome containing Wolbachia and the other without Wolbachia, were compared on pesticide residue (organophosphate: pirimiphos-methyl and pyrethroid: deltamethrin, deltamethrin + piperonyl butoxide)-containing diets. The microbiomes from mite bodies, mite feces and debris from the spent mite diet were analyzed using barcode sequencing. Pesticide tolerance was different among mite cultures and organophosphate and pyrethroid pesticides. The pesticide residues influenced the microbiome composition in both cultures but without any remarkable trend for mite cultures with and without Wolbachia. The most influenced bacterial taxa were Bartonella-like and Bacillus for both cultures and Wolbachia for the culture containing this symbiont. However, there was no direct evidence of any effect of Wolbachia on pesticide tolerance. The high pesticide concentration residues in diets reduced Wolbachia, Bartonella-like and Bacillus in mites of the symbiotic culture. This effect was low for Bartonella-like and Bacillus in the asymbiotic microbiome culture. The results showed that the microbiomes of mites are affected by pesticide residues in the diets, but the effect is not systemic. No actual detoxification effect by the microbiome was observed for the tested pesticides.
Collapse
Affiliation(s)
- Jan Hubert
- Crop Research Institute, Drnovska 507/73, CZ-161 06, Prague 6 - Ruzyne, Czechia.
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, CZ-165 00, Prague 6 - Suchdol, Czechia.
| | - Marta Nesvorna
- Crop Research Institute, Drnovska 507/73, CZ-161 06, Prague 6 - Ruzyne, Czechia
| | - Marie Bostlova
- Crop Research Institute, Drnovska 507/73, CZ-161 06, Prague 6 - Ruzyne, Czechia
- Department of Ecology, Faculty of Science, Charles University, Vinicna 1594/7, CZ-128 44, Prague 2 - New Town, Czechia
| | - Bruno Sopko
- Crop Research Institute, Drnovska 507/73, CZ-161 06, Prague 6 - Ruzyne, Czechia
| | - Stefan J Green
- Genomics and Microbiome Core Facility, Rush University, Chicago, IL, 60612, USA
| | - Thomas W Phillips
- Department of Entomology, Kansas State University, Manhattan, KS, 66506, USA
| |
Collapse
|
15
|
Castelli L, Branchiccela B, Zunino P, Antúnez K. Insights into the effects of sublethal doses of pesticides glufosinate-ammonium and sulfoxaflor on honey bee health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161331. [PMID: 36623662 DOI: 10.1016/j.scitotenv.2022.161331] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Insect pollinators are threatened worldwide, being the exposure to multiple pesticides one of the most important stressor. The herbicide Glyphosate and the insecticide Imidacloprid are among the most used pesticides worldwide, although different studies evidenced their detrimental effects on non-target organisms. The emergence of glyphosate-resistant weeds and the recent ban of imidacloprid in Europe due to safety concerns, has prompted their replacement by new molecules, such as glufosinate-ammonium (GA) and sulfoxaflor (S). GA is a broad-spectrum and non-selective herbicide that inhibits a key enzyme in the metabolism of nitrogen, causing accumulation of lethal levels of ammonia; while sulfoxaflor is an agonist at insect nicotinic acetylcholine receptors (nAChRs) and generates excitatory responses including tremors, paralysis and mortality. Although those molecules are being increasingly used for crop protection, little is known about their effects on non-target organisms. In this study we assessed the impact of chronic and acute exposure to sublethal doses of GA and S on honey bee gut microbiota, immunity and survival. We found GA significantly reduced the number of gut bacteria, and decreased the expression of glucose oxidase, a marker of social immunity. On the other hand, S significantly increased the number of gut bacteria altering the microbiota composition, decreased the expression of lysozyme and increased the expression of hymenoptaecin. These alterations in gut microbiota and immunocompetence may lead to an increased susceptibility to pathogens. Finally, both pesticides shortened honey bee survival and increased the risk of death. Those results evidence the negative impact of GA and S on honey bees, even at single exposition to a low dose, and provide useful information to the understanding of pollinators decline.
Collapse
Affiliation(s)
- Loreley Castelli
- Laboratorio de Microbiología y Salud de las Abejas, Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Avda. Italia 3318, Montevideo 11600, Uruguay
| | - Belén Branchiccela
- Sección Apicultura, Instituto Nacional de Investigación Agropecuaria, Colonia 70006, Uruguay
| | - Pablo Zunino
- Laboratorio de Microbiología y Salud de las Abejas, Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Avda. Italia 3318, Montevideo 11600, Uruguay
| | - Karina Antúnez
- Laboratorio de Microbiología y Salud de las Abejas, Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Avda. Italia 3318, Montevideo 11600, Uruguay.
| |
Collapse
|
16
|
Unraveling the Role of Antimicrobial Peptides in Insects. Int J Mol Sci 2023; 24:ijms24065753. [PMID: 36982826 PMCID: PMC10059942 DOI: 10.3390/ijms24065753] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
Antimicrobial peptides (AMPs) are short, mainly positively charged, amphipathic molecules. AMPs are important effectors of the immune response in insects with a broad spectrum of antibacterial, antifungal, and antiparasitic activity. In addition to these well-known roles, AMPs exhibit many other, often unobvious, functions in the host. They support insects in the elimination of viral infections. AMPs participate in the regulation of brain-controlled processes, e.g., sleep and non-associative learning. By influencing neuronal health, communication, and activity, they can affect the functioning of the insect nervous system. Expansion of the AMP repertoire and loss of their specificity is connected with the aging process and lifespan of insects. Moreover, AMPs take part in maintaining gut homeostasis, regulating the number of endosymbionts as well as reducing the number of foreign microbiota. In turn, the presence of AMPs in insect venom prevents the spread of infection in social insects, where the prey may be a source of pathogens.
Collapse
|
17
|
The promise of probiotics in honeybee health and disease management. Arch Microbiol 2023; 205:73. [PMID: 36705763 DOI: 10.1007/s00203-023-03416-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 12/27/2022] [Accepted: 01/11/2023] [Indexed: 01/28/2023]
Abstract
Over the last decades, losses of bee populations have been observed worldwide. A panoply of biotic and abiotic factors, as well as the interplay among them, has been suggested to be responsible for bee declines, but definitive causes have not yet been identified. Among pollinators, the honeybee Apis mellifera is threatened by various diseases and environmental stresses, which have been shown to impact the insect gut microbiota that is known to be fundamental for host metabolism, development and immunity. Aimed at preserving the gut homeostasis, many researches are currently focusing on improving the honeybee health through the administration of probiotics e.g., by boosting the innate immune response against microbial infections. Here, we review the knowledge available on the characterization of the microbial diversity associated to honeybees and the use of probiotic symbionts as a promising approach to maintain honeybee fitness, sustaining a healthy gut microbiota and enhancing its crucial relationship with the host immune system.
Collapse
|
18
|
Bridson C, Vellaniparambil L, Antwis RE, Müller W, Gilman RT, Rowntree JK. Genetic diversity of honeybee colonies predicts gut bacterial diversity of individual colony members. Environ Microbiol 2022; 24:5643-5653. [PMID: 35920034 PMCID: PMC10087737 DOI: 10.1111/1462-2920.16150] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 07/18/2022] [Accepted: 07/22/2022] [Indexed: 01/13/2023]
Abstract
The gut microbiota of social bees is relatively simple and dominated by a set of core taxa found consistently in individuals around the world. Yet, variation remains and can affect host health. We characterized individual- and regional-scale variation in honeybee (Apis mellifera) gut microbiota from 64 colonies in North-West England by sequencing the V4 region of the 16S rRNA gene and asked whether microbiota were influenced by host genotype and landscape composition. We also characterized the genotypes of individual bees and the land cover surrounding each colony. The literature-defined core taxa dominated across the region despite the varied environments. However, there was variation in the relative abundance of core taxa, and colony membership explained much of this variation. Individuals from more genetically diverse colonies had more diverse microbiotas, but individual genetic diversity did not influence gut microbial diversity. There were weak trends for colonies in more similar landscapes to have more similar microbiota, and for bees from more urban landscapes to have less diverse microbiota. To our knowledge, this is the first report for any species that the gut bacterial communities of individuals are influenced by the genotypes of others in the population.
Collapse
Affiliation(s)
- Calum Bridson
- Faculty of Science and Engineering, University of Manchester, Manchester, UK.,Faculty of Biology Medicine and Health, Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK.,Department of Infectious Diseases, Medical Microbiology and Hygiene, University of Heidelberg, Heidelberg, Germany.,Translational Lung Research Centre (TLRC), Heidelberg, Germany
| | - Latha Vellaniparambil
- Ecology and Environment Research Centre, Department of Natural Sciences, Manchester Metropolitan University, Manchester, UK
| | - Rachel E Antwis
- School of Science, Engineering and Environment, University of Salford, Salford, UK
| | - Werner Müller
- Faculty of Biology Medicine and Health, Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK.,Miltenyi Biotec, Bergisch Gladbach, Germany
| | - R Tucker Gilman
- Faculty of Science and Engineering, University of Manchester, Manchester, UK
| | - Jennifer K Rowntree
- Ecology and Environment Research Centre, Department of Natural Sciences, Manchester Metropolitan University, Manchester, UK.,School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK
| |
Collapse
|
19
|
Liu Y, Chen J, Lang H, Zheng H. Bartonella choladocola sp. nov. and Bartonella apihabitans sp. nov., two novel species isolated from honey bee gut. Syst Appl Microbiol 2022; 45:126372. [DOI: 10.1016/j.syapm.2022.126372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/30/2022]
|
20
|
Community Dynamics in Structure and Function of Honey Bee Gut Bacteria in Response to Winter Dietary Shift. mBio 2022; 13:e0113122. [PMID: 36036626 PMCID: PMC9600256 DOI: 10.1128/mbio.01131-22] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Temperate honey bees (Apis mellifera) are challenged by low temperatures and abrupt dietary shifts associated with behavioral changes during winter. Case studies have revealed drastic turnover in the gut microbiota of winter bees, highlighted by the seasonal dominance of a non-core bacterium Bartonella. However, neither biological consequence nor underlying mechanism of this microbial turnover is clear. In particular, we ask whether such changes in gut profile are related to winter dietary shift and possibly beneficial to host and associated gut microbiome? Here, we integrated evidences from genomics, metagenomics, and metabolomics in three honey bee subspecies maintained at the same locality of northern China to profile both diversity and functional variations in gut bacteria across seasons. Our results showed that winter dominance of Bartonella was shared in all tested honey bee lineages. This seasonal change was likely a consequence of winter dietary shifts characterized by greatly reduced pollen consumption and accumulation of metabolic waste due to restricted excretion. Bartonella showed expanded genomic capacity in utilizing more diverse energy substrates, such as converting metabolic wastes lactate and ethanol into pyruvate, an energy source for self-utilization and possibly also for host and other symbionts. Furthermore, Bartonella was the only bacterium capable of both producing and secreting tryptophan and phenylalanine, whose metabolic products were detected in bee guts, even though all gut bacteria lacked relevant digestion enzymes. These results thus suggested a possible mechanism where the gut bacteria might benefit the host by supplementing them with essential amino acids lacking in a protein shortage diet.
Collapse
|
21
|
Wirta HK, Bahram M, Miller K, Roslin T, Vesterinen E. Reconstructing the ecosystem context of a species: Honey-borne DNA reveals the roles of the honeybee. PLoS One 2022; 17:e0268250. [PMID: 35830374 PMCID: PMC9278776 DOI: 10.1371/journal.pone.0268250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 04/26/2022] [Indexed: 11/18/2022] Open
Abstract
To assess a species’ impact on its environment–and the environment’s impact upon a species–we need to pinpoint its links to surrounding taxa. The honeybee (Apis mellifera) provides a promising model system for such an exercise. While pollination is an important ecosystem service, recent studies suggest that honeybees can also provide disservices. Developing a comprehensive understanding of the full suite of services and disservices that honeybees provide is a key priority for such a ubiquitous species. In this perspective paper, we propose that the DNA contents of honey can be used to establish the honeybee’s functional niche, as reflected by ecosystem services and disservices. Drawing upon previously published genomic data, we analysed the DNA found within 43 honey samples from Northern Europe. Based on metagenomic analysis, we find that the taxonomic composition of DNA is dominated by a low pathogenicity bee virus with 40.2% of the reads, followed by bacteria (16.7%), plants (9.4%) and only 1.1% from fungi. In terms of ecological roles of taxa associated with the bees or taxa in their environment, bee gut microbes dominate the honey DNA, with plants as the second most abundant group. A range of pathogens associated with plants, bees and other animals occur frequently, but with lower relative read abundance, across the samples. The associations found here reflect a versatile the honeybee’s role in the North-European ecosystem. Feeding on nectar and pollen, the honeybee interacts with plants–in particular with cultivated crops. In doing so, the honeybee appears to disperse common pathogens of plants, pollinators and other animals, but also microbes potentially protective of these pathogens. Thus, honey-borne DNA helps us define the honeybee’s functional niche, offering directions to expound the benefits and drawbacks of the associations to the honeybee itself and its interacting organisms.
Collapse
Affiliation(s)
| | - Mohammad Bahram
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Kirsten Miller
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Tomas Roslin
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | |
Collapse
|
22
|
Krügel M, Król N, Kempf VAJ, Pfeffer M, Obiegala A. Emerging rodent-associated Bartonella: a threat for human health? Parasit Vectors 2022; 15:113. [PMID: 35361285 PMCID: PMC8969336 DOI: 10.1186/s13071-022-05162-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/11/2022] [Indexed: 01/20/2023] Open
Abstract
Background Species of the genus Bartonella are facultative intracellular alphaproteobacteria with zoonotic potential. Bartonella infections in humans range from mild with unspecific symptoms to life threatening, and can be transmitted via arthropod vectors or through direct contact with infected hosts, although the latter mode of transmission is rare. Among the small mammals that harbour Bartonella spp., rodents are the most speciose group and harbour the highest diversity of these parasites. Human–rodent interactions are not unlikely as many rodent species live in proximity to humans. However, a surprisingly low number of clinical cases of bartonellosis related to rodent-associated Bartonella spp. have thus far been recorded in humans. Methods The main purpose of this review is to determine explanatory factors for this unexpected finding, by taking a closer look at published clinical cases of bartonellosis connected with rodent-associated Bartonella species, some of which have been newly described in recent years. Thus, another focus of this review are these recently proposed species. Conclusions Worldwide, only 24 cases of bartonellosis caused by rodent-associated bartonellae have been reported in humans. Possible reasons for this low number of cases in comparison to the high prevalences of Bartonella in small mammal species are (i) a lack of awareness amongst physicians of Bartonella infections in humans in general, and especially those caused by rodent-associated bartonellae; and (ii) a frequent lack of the sophisticated equipment required for the confirmation of Bartonella infections in laboratories that undertake routine diagnostic testing. As regards recently described Bartonella spp., there are presently 14 rodent-associated Candidatus taxa. In contrast to species which have been taxonomically classified, there is no official process for the review of proposed Candidatus species and their names before they are published. This had led to the use of malformed names that are not based on the International Code of Nomenclature of Prokaryotes. Researchers are thus encouraged to propose Candidatus names to the International Committee on Systematics of Prokaryotes for approval before publishing them, and only to propose new species of Bartonella when the relevant datasets allow them to be clearly differentiated from known species and subspecies. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05162-5.
Collapse
Affiliation(s)
- Maria Krügel
- Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, An den Tierkliniken 1, 04103, Leipzig, Germany
| | - Nina Król
- Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, An den Tierkliniken 1, 04103, Leipzig, Germany
| | - Volkhard A J Kempf
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe University, Frankfurt am Main, Germany.,National Consiliary Laboratory for Bartonella, Frankfurt am Main, Germany
| | - Martin Pfeffer
- Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, An den Tierkliniken 1, 04103, Leipzig, Germany
| | - Anna Obiegala
- Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, An den Tierkliniken 1, 04103, Leipzig, Germany.
| |
Collapse
|
23
|
Thibau A, Hipp K, Vaca DJ, Chowdhury S, Malmström J, Saragliadis A, Ballhorn W, Linke D, Kempf VAJ. Long-Read Sequencing Reveals Genetic Adaptation of Bartonella Adhesin A Among Different Bartonella henselae Isolates. Front Microbiol 2022; 13:838267. [PMID: 35197960 PMCID: PMC8859334 DOI: 10.3389/fmicb.2022.838267] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/17/2022] [Indexed: 11/30/2022] Open
Abstract
Bartonella henselae is the causative agent of cat scratch disease and other clinical entities such as endocarditis and bacillary angiomatosis. The life cycle of this pathogen, with alternating host conditions, drives evolutionary and host-specific adaptations. Human, feline, and laboratory adapted B. henselae isolates often display genomic and phenotypic differences that are related to the expression of outer membrane proteins, for example the Bartonella adhesin A (BadA). This modularly-structured trimeric autotransporter adhesin is a major virulence factor of B. henselae and is crucial for the initial binding to the host via the extracellular matrix proteins fibronectin and collagen. By using next-generation long-read sequencing we demonstrate a conserved genome among eight B. henselae isolates and identify a variable genomic badA island with a diversified and highly repetitive badA gene flanked by badA pseudogenes. Two of the eight tested B. henselae strains lack BadA expression because of frameshift mutations. We suggest that active recombination mechanisms, possibly via phase variation (i.e., slipped-strand mispairing and site-specific recombination) within the repetitive badA island facilitate reshuffling of homologous domain arrays. The resulting variations among the different BadA proteins might contribute to host immune evasion and enhance long-term and efficient colonisation in the differing host environments. Considering the role of BadA as a key virulence factor, it remains important to check consistently and regularly for BadA surface expression during experimental infection procedures.
Collapse
Affiliation(s)
- Arno Thibau
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe University, Frankfurt am Main, Germany
| | - Katharina Hipp
- Electron Microscopy Facility, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Diana J Vaca
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe University, Frankfurt am Main, Germany
| | - Sounak Chowdhury
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Johan Malmström
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Athanasios Saragliadis
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Wibke Ballhorn
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe University, Frankfurt am Main, Germany
| | - Dirk Linke
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Volkhard A J Kempf
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
24
|
Castelli L, Branchiccela B, Romero H, Zunino P, Antúnez K. Seasonal Dynamics of the Honey Bee Gut Microbiota in Colonies Under Subtropical Climate : Seasonal Dynamics of Honey Bee Gut Microbiota. MICROBIAL ECOLOGY 2022; 83:492-500. [PMID: 33973059 DOI: 10.1007/s00248-021-01756-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 04/15/2021] [Indexed: 06/12/2023]
Abstract
Honey bees (Apis mellifera) provide invaluable benefits for food production and maintenance of biodiversity of natural environments through pollination. They are widely spread across the world, being adapted to different climatic conditions. To survive the winter in cold temperate regions, honey bees developed different strategies including storage of honey and pollen, confinement of individuals during the winter, and an annual cycle of colony growth and reproduction. Under these conditions, winter honey bees experience physiological changes, including changes in immunity and the composition of honey bee gut microbiota. However, under tropical or subtropical climates, the life cycle can experience alterations, i.e., queens lay eggs during almost all the year and new honey bees emerge constantly. In the present study, we characterized nurses' honey bee gut microbiota in colonies under subtropical region through a year, combining qPCR, PCR-DGGE, and 16S rDNA high-throughput sequencing. We also identified environmental variables involved in those changes. Our results showed that under the mentioned conditions, the number of bacteria is stable throughout the year. Diversity of gut microbiota is higher in spring and lower in summer and winter. Gradual changes in compositions occur between seasons: Lactobacillus spp. predominate in spring while Gilliamella apicola and Snodgrasella alvi predominate in summer and winter. Environmental variables (mainly precipitations) affected the composition of the honey bee gut microbiota. Our findings provide new insights into the dynamics of honey bee gut microbiota and may be useful to understand the adaptation of bees to different environmental conditions.
Collapse
Affiliation(s)
- Loreley Castelli
- Laboratorio de Microbiología Y Salud de Las Abejas, Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable, Avda. Italia 3318, Montevideo, Uruguay
| | - Belén Branchiccela
- Sección Apicultura, Programa Nacional de Producción Familiar, INIA La Estanzuela, Ruta 50, Km 11, Colonia, Uruguay
| | - Héctor Romero
- Departamento de Ecología Y Evolución, Facultad de Ciencias, Laboratorio de Organización Y Evolución del Genoma, Montevideo, Uruguay
| | - Pablo Zunino
- Laboratorio de Microbiología Y Salud de Las Abejas, Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable, Avda. Italia 3318, Montevideo, Uruguay
| | - Karina Antúnez
- Laboratorio de Microbiología Y Salud de Las Abejas, Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable, Avda. Italia 3318, Montevideo, Uruguay.
| |
Collapse
|
25
|
Hubert J, Nesvorna M, Pekar S, Green SJ, Klimov PB. Cardinium inhibits Wolbachia in its mite host, Tyrophagus putrescentiae, and affects host fitness. FEMS Microbiol Ecol 2021; 97:6358523. [PMID: 34448854 DOI: 10.1093/femsec/fiab123] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/24/2021] [Indexed: 12/14/2022] Open
Abstract
Interactions among endosymbiotic bacteria inside their eukaryotic hosts are poorly understood, particularly in mites. The mite Tyrophagus putrescentiae is a common, medically important generalist species that has many intracellular and gut bacterial symbionts. In the experiments, we examined bacterial abundances and composition in mite populations obtained by controlled mixing of stock mite populations that differed in the presence/absence of the major intracellular bacteria Wolbachia and Cardinium. Changes in microbial communities were characterized using 16S ribosomal RNA high-throughput sequencing (pooled mite individuals) and quantitative PCR for key microbial taxa (individual mites). Mite fitness was estimated as a parameter of population growth. We detected that in mixed mite populations, Cardinium and Wolbachia can co-occur in the same mite individual. The presence of Cardinium was negatively correlated with the presence of Wolbachia and Bartonella, while the Bartonella and Wolbachia were positively correlated in individual level samples. Since mixed populations had lower abundances of Wolbachia, while the abundance of Cardinium did not change, we suggest that the presence of Cardinium inhibits the growth of Wolbachia. The mixed mite populations had lower population growth than parental populations. The possible effect of symbionts on the fitness of mixed population is discussed.
Collapse
Affiliation(s)
- Jan Hubert
- Crop Research Institute, Drnovska 507/73, CZ-16106 Prague 6-Ruzyne, Czechia.,Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, CZ-165 00 Prague 6-Suchdol, Czechia
| | - Marta Nesvorna
- Crop Research Institute, Drnovska 507/73, CZ-16106 Prague 6-Ruzyne, Czechia
| | - Stano Pekar
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlarska 2, CZ-611 37 Brno, Czechia
| | - Stefan J Green
- Genomics and Microbiome Core Facility, Rush University, Chicago, IL 60612, USA
| | - Pavel B Klimov
- School of Natural Sciences, Bangor University, Bangor, LL57 2 UW, UK.,Institute of Biology, University of Tyumen, Pirogova 3, 625043 Tyumen, Russia
| |
Collapse
|
26
|
Cuesta-Maté A, Renelies-Hamilton J, Kryger P, Jensen AB, Sinotte VM, Poulsen M. Resistance and Vulnerability of Honeybee ( Apis mellifera) Gut Bacteria to Commonly Used Pesticides. Front Microbiol 2021; 12:717990. [PMID: 34539609 PMCID: PMC8446526 DOI: 10.3389/fmicb.2021.717990] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/30/2021] [Indexed: 01/04/2023] Open
Abstract
Agricultural and apicultural practices expose honeybees to a range of pesticides that have the potential to negatively affect their physiology, neurobiology, and behavior. Accumulating evidence suggests that these effects extend to the honeybee gut microbiome, which serves important functions for honeybee health. Here we test the potential effects of the pesticides thiacloprid, acetamiprid, and oxalic acid on the gut microbiota of honeybees, first in direct in vitro inhibition assays and secondly in an in vivo caged bee experiment to test if exposure leads to gut microbiota community changes. We found that thiacloprid did not inhibit the honeybee core gut bacteria in vitro, nor did it affect overall community composition or richness in vivo. Acetamiprid did also not inhibit bacterial growth in vitro, but it did affect community structure within bees. The eight bacterial genera tested showed variable levels of susceptibility to oxalic acid in vitro. In vivo, treatment with this pesticide reduced amplicon sequence variant (ASV) richness and affected gut microbiome composition, with most marked impact on the common crop bacteria Lactobacillus kunkeei and the genus Bombella. We conducted network analyses which captured known associations between bacterial members and illustrated the sensitivity of the microbiome to environmental stressors. Our findings point to risks of honeybee exposure to oxalic acid, which has been deemed safe for use in treatment against Varroa mites in honeybee colonies, and we advocate for more extensive assessment of the long-term effects that it may have on honeybee health.
Collapse
Affiliation(s)
- Ana Cuesta-Maté
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Justinn Renelies-Hamilton
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Per Kryger
- Entomology and Plant Pathology, Department of Agroecology, Aarhus University, Aarhus, Denmark
| | - Annette Bruun Jensen
- Section for Organismal Biology, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Veronica M. Sinotte
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Michael Poulsen
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
27
|
Callegari M, Crotti E, Fusi M, Marasco R, Gonella E, De Noni I, Romano D, Borin S, Tsiamis G, Cherif A, Alma A, Daffonchio D. Compartmentalization of bacterial and fungal microbiomes in the gut of adult honeybees. NPJ Biofilms Microbiomes 2021; 7:42. [PMID: 33963194 PMCID: PMC8105395 DOI: 10.1038/s41522-021-00212-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 03/23/2021] [Indexed: 02/07/2023] Open
Abstract
The core gut microbiome of adult honeybee comprises a set of recurring bacterial phylotypes, accompanied by lineage-specific, variable, and less abundant environmental bacterial phylotypes. Several mutual interactions and functional services to the host, including the support provided for growth, hormonal signaling, and behavior, are attributed to the core and lineage-specific taxa. By contrast, the diversity and distribution of the minor environmental phylotypes and fungal members in the gut remain overlooked. In the present study, we hypothesized that the microbial components of forager honeybees (i.e., core bacteria, minor environmental phylotypes, and fungal members) are compartmentalized along the gut portions. The diversity and distribution of such three microbial components were investigated in the context of the physico-chemical conditions of different gut compartments. We observed that changes in the distribution and abundance of microbial components in the gut are consistently compartment-specific for all the three microbial components, indicating that the ecological and physiological interactions among the host and microbiome vary with changing physico-chemical and metabolic conditions of the gut.
Collapse
Affiliation(s)
- Matteo Callegari
- Biological and Environmental Sciences and Engineering Division (BESE), Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Elena Crotti
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente (DeFENS), Università degli Studi di Milano, Milan, Italy.
| | - Marco Fusi
- Biological and Environmental Sciences and Engineering Division (BESE), Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, UK
| | - Ramona Marasco
- Biological and Environmental Sciences and Engineering Division (BESE), Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Elena Gonella
- Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA), Università degli Studi di Torino, Grugliasco, Italy
| | - Ivano De Noni
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente (DeFENS), Università degli Studi di Milano, Milan, Italy
| | - Diego Romano
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente (DeFENS), Università degli Studi di Milano, Milan, Italy
| | - Sara Borin
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente (DeFENS), Università degli Studi di Milano, Milan, Italy
| | - George Tsiamis
- Department of Environmental Engineering, University of Patras, Agrinion, Greece
| | - Ameur Cherif
- Institut Supérieur de Biotechnologie Sidi Thabet (ISBST), BVBGR-LR11ES31, Biotechpole Sidi Thabet, University Manouba, Ariana, Tunisia
| | - Alberto Alma
- Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA), Università degli Studi di Torino, Grugliasco, Italy
| | - Daniele Daffonchio
- Biological and Environmental Sciences and Engineering Division (BESE), Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| |
Collapse
|
28
|
Nowak A, Szczuka D, Górczyńska A, Motyl I, Kręgiel D. Characterization of Apis mellifera Gastrointestinal Microbiota and Lactic Acid Bacteria for Honeybee Protection-A Review. Cells 2021; 10:cells10030701. [PMID: 33809924 PMCID: PMC8004194 DOI: 10.3390/cells10030701] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 12/15/2022] Open
Abstract
Numerous honeybee (Apis mellifera) products, such as honey, propolis, and bee venom, are used in traditional medicine to prevent illness and promote healing. Therefore, this insect has a huge impact on humans’ way of life and the environment. While the population of A. mellifera is large, there is concern that widespread commercialization of beekeeping, combined with environmental pollution and the action of bee pathogens, has caused significant problems for the health of honeybee populations. One of the strategies to preserve the welfare of honeybees is to better understand and protect their natural microbiota. This paper provides a unique overview of the latest research on the features and functioning of A. mellifera. Honeybee microbiome analysis focuses on both the function and numerous factors affecting it. In addition, we present the characteristics of lactic acid bacteria (LAB) as an important part of the gut community and their special beneficial activities for honeybee health. The idea of probiotics for honeybees as a promising tool to improve their health is widely discussed. Knowledge of the natural gut microbiota provides an opportunity to create a broad strategy for honeybee vitality, including the development of modern probiotic preparations to use instead of conventional antibiotics, environmentally friendly biocides, and biological control agents.
Collapse
Affiliation(s)
- Adriana Nowak
- Department of Environmental Biotechnology, Lodz University of Technology, Wólczańska 171/173, 90-924 Łódź, Poland; (D.S.); (I.M.); (D.K.)
- Correspondence:
| | - Daria Szczuka
- Department of Environmental Biotechnology, Lodz University of Technology, Wólczańska 171/173, 90-924 Łódź, Poland; (D.S.); (I.M.); (D.K.)
| | - Anna Górczyńska
- Faculty of Law and Administration, University of Lodz, Kopcińskiego 8/12, 90-232 Łódź, Poland;
| | - Ilona Motyl
- Department of Environmental Biotechnology, Lodz University of Technology, Wólczańska 171/173, 90-924 Łódź, Poland; (D.S.); (I.M.); (D.K.)
| | - Dorota Kręgiel
- Department of Environmental Biotechnology, Lodz University of Technology, Wólczańska 171/173, 90-924 Łódź, Poland; (D.S.); (I.M.); (D.K.)
| |
Collapse
|
29
|
Acute and chronic effects of Titanium dioxide (TiO 2) PM 1 on honey bee gut microbiota under laboratory conditions. Sci Rep 2021; 11:5946. [PMID: 33723271 PMCID: PMC7960711 DOI: 10.1038/s41598-021-85153-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 02/22/2021] [Indexed: 02/06/2023] Open
Abstract
Apis mellifera is an important provider of ecosystem services, and during flight and foraging behaviour is exposed to environmental pollutants including airborne particulate matter (PM). While exposure to insecticides, antibiotics, and herbicides may compromise bee health through alterations of the gut microbial community, no data are available on the impacts of PM on the bee microbiota. Here we tested the effects of ultrapure Titanium dioxide (TiO2) submicrometric PM (i.e., PM1, less than 1 µm in diameter) on the gut microbiota of adult bees. TiO2 PM1 is widely used as a filler and whitening agent in a range of manufactured objects, and ultrapure TiO2 PM1 is also a common food additive, even if it has been classified by the International Agency for Research on Cancer (IARC) as a possible human carcinogen in Group 2B. Due to its ubiquitous use, honey bees may be severely exposed to TiO2 ingestion through contaminated honey and pollen. Here, we demonstrated that acute and chronic oral administration of ultrapure TiO2 PM1 to adult bees alters the bee microbial community; therefore, airborne PM may represent a further risk factor for the honey bee health, promoting sublethal effects against the gut microbiota.
Collapse
|
30
|
Overwintering Honey Bee Colonies: Effect of Worker Age and Climate on the Hindgut Microbiota. INSECTS 2021; 12:insects12030224. [PMID: 33807581 PMCID: PMC8000648 DOI: 10.3390/insects12030224] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 01/06/2023]
Abstract
Honey bee overwintering health is essential to meet the demands of spring pollination. Managed honey bee colonies are overwintered in a variety of climates, and increasing rates of winter colony loss have prompted investigations into overwintering management, including indoor climate controlled overwintering. Central to colony health, the worker hindgut gut microbiota has been largely ignored in this context. We sequenced the hindgut microbiota of overwintering workers from both a warm southern climate and controlled indoor cold climate. Congruently, we sampled a cohort of known chronological age to estimate worker longevity in southern climates, and assess age-associated changes in the core hindgut microbiota. We found that worker longevity over winter in southern climates was much lower than that recorded for northern climates. Workers showed decreased bacterial and fungal load with age, but the relative structure of the core hindgut microbiome remained stable. Compared to cold indoor wintering, collective microbiota changes in the southern outdoor climate suggest compromised host physiology. Fungal abundance increased by two orders of magnitude in southern climate hindguts and was positively correlated with non-core, likely opportunistic bacteria. Our results contribute to understanding overwintering honey bee biology and microbial ecology and provide insight into overwintering strategies.
Collapse
|
31
|
Tola YH, Waweru JW, Hurst GDD, Slippers B, Paredes JC. Characterization of the Kenyan Honey Bee ( Apis mellifera) Gut Microbiota: A First Look at Tropical and Sub-Saharan African Bee Associated Microbiomes. Microorganisms 2020; 8:microorganisms8111721. [PMID: 33153032 PMCID: PMC7692941 DOI: 10.3390/microorganisms8111721] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/15/2022] Open
Abstract
Gut microbiota plays important roles in many physiological processes of the host including digestion, protection, detoxification, and development of immune responses. The honey bee (Apis mellifera) has emerged as model for gut-microbiota host interaction studies due to its gut microbiota being highly conserved and having a simple composition. A key gap in this model is understanding how the microbiome differs regionally, including sampling from the tropics and in particular from Africa. The African region is important from the perspective of the native diversity of the bees, and differences in landscape and bee management. Here, we characterized the honey bee gut microbiota in sub-Saharan Africa using 16S rRNA amplicon sequencing. We confirm the presence of the core gut microbiota members and highlight different compositions of these communities across regions. We found that bees from the coastal regions harbor a higher relative abundance and diversity on core members. Additionally, we showed that Gilliamella, Snodgrassella, and Frischella dominate in all locations, and that altitude and humidity affect Gilliamella abundance. In contrast, we found that Lactobacillus was less common compared temperate regions of the world. This study is a first comprehensive characterization of the gut microbiota of honey bees from sub-Saharan Africa and underscores the need to study microbiome diversity in other indigenous bee species and regions.
Collapse
Affiliation(s)
- Yosef Hamba Tola
- International Centre of Insect Physiology and Ecology (icipe), Nairobi 30772-00100, Kenya; (Y.H.T.); (J.W.W.)
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa;
| | - Jacqueline Wahura Waweru
- International Centre of Insect Physiology and Ecology (icipe), Nairobi 30772-00100, Kenya; (Y.H.T.); (J.W.W.)
| | - Gregory D. D. Hurst
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 3BX, UK;
| | - Bernard Slippers
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa;
| | - Juan C. Paredes
- International Centre of Insect Physiology and Ecology (icipe), Nairobi 30772-00100, Kenya; (Y.H.T.); (J.W.W.)
- Correspondence:
| |
Collapse
|
32
|
Castelli L, Branchiccela B, Garrido M, Invernizzi C, Porrini M, Romero H, Santos E, Zunino P, Antúnez K. Impact of Nutritional Stress on Honeybee Gut Microbiota, Immunity, and Nosema ceranae Infection. MICROBIAL ECOLOGY 2020; 80:908-919. [PMID: 32666305 DOI: 10.1007/s00248-020-01538-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 06/08/2020] [Indexed: 05/25/2023]
Abstract
Honeybees are important pollinators, having an essential role in the ecology of natural and agricultural environments. Honeybee colony losses episodes reported worldwide and have been associated with different pests and pathogens, pesticide exposure, and nutritional stress. This nutritional stress is related to the increase in monoculture areas which leads to a reduction of pollen availability and diversity. In this study, we examined whether nutritional stress affects honeybee gut microbiota, bee immunity, and infection by Nosema ceranae, under laboratory conditions. Consumption of Eucalyptus grandis pollen was used as a nutritionally poor-quality diet to study nutritional stress, in contraposition to the consumption of polyfloral pollen. Honeybees feed with Eucalyptus grandis pollen showed a lower abundance of Lactobacillus mellifer and Lactobacillus apis (Firm-4 and Firm-5, respectively) and Bifidobacterium spp. and a higher abundance of Bartonella apis, than honeybees fed with polyfloral pollen. Besides the impact of nutritional stress on honeybee microbiota, it also decreased the expression levels of vitellogenin and genes associated to immunity (glucose oxidase, hymenoptaecin and lysozyme). Finally, Eucalyptus grandis pollen favored the multiplication of Nosema ceranae. These results show that nutritional stress impacts the honeybee gut microbiota, having consequences on honeybee immunity and pathogen development. Those results may be useful to understand the influence of modern agriculture on honeybee health.
Collapse
Affiliation(s)
- L Castelli
- Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable, Avda. Italia 3318, Montevideo, Uruguay
| | - B Branchiccela
- Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable, Avda. Italia 3318, Montevideo, Uruguay
| | - M Garrido
- Centro de Investigación en Abejas Sociales (CIAS). Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM-CONICET-CIC). Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Provincia de Buenos Aires, Argentina
| | - C Invernizzi
- Sección Etología, Facultad de Ciencias, Montevideo, Uruguay
| | - M Porrini
- Centro de Investigación en Abejas Sociales (CIAS). Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM-CONICET-CIC). Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Provincia de Buenos Aires, Argentina
| | - H Romero
- Departamento de Ecología y Evolución, Laboratorio de Organización y Evolución del Genoma. Facultad de Ciencias, Montevideo, Uruguay
| | - E Santos
- Sección Etología, Facultad de Ciencias, Montevideo, Uruguay
| | - P Zunino
- Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable, Avda. Italia 3318, Montevideo, Uruguay
| | - K Antúnez
- Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable, Avda. Italia 3318, Montevideo, Uruguay.
| |
Collapse
|
33
|
Motta EVS, Mak M, De Jong TK, Powell JE, O'Donnell A, Suhr KJ, Riddington IM, Moran NA. Oral or Topical Exposure to Glyphosate in Herbicide Formulation Impacts the Gut Microbiota and Survival Rates of Honey Bees. Appl Environ Microbiol 2020; 86:e01150-20. [PMID: 32651208 PMCID: PMC7480383 DOI: 10.1128/aem.01150-20] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/06/2020] [Indexed: 01/04/2023] Open
Abstract
Honey bees are important agricultural pollinators that rely on a specific gut microbiota for the regulation of their immune system and defense against pathogens. Environmental stressors that affect the bee gut microbial community, such as antibiotics and glyphosate, can indirectly compromise bee health. Most of the experiments demonstrating these effects have been done under laboratory conditions with pure chemicals. Here, we investigated the oral and topical effects of various concentrations of glyphosate in a herbicide formulation on the honey bee gut microbiota and health under laboratory and field conditions. Under all of these conditions, the formulation, dissolved in sucrose syrup or water, affected the abundance of beneficial bacteria in the bee gut in a dose-dependent way. Mark-recapture experiments also demonstrated that bees exposed to the formulation were more likely to disappear from the colony, once reintroduced after exposure. Although no visible effects were observed for hives exposed to the formulation in field experiments, challenge trials with the pathogen Serratia marcescens, performed under laboratory conditions, revealed that bees from hives exposed to the formulation exhibited increased mortality compared with bees from control hives. In the field experiments, glyphosate was detected in honey collected from exposed hives, showing that worker bees transfer xenobiotics to the hive, thereby extending exposure and increasing the chances of exposure to recently emerged bees. These findings show that different routes of exposure to glyphosate-based herbicide can affect honey bees and their gut microbiota.IMPORTANCE The honey bee gut microbial community plays a vital role in immune response and defense against opportunistic pathogens. Environmental stressors, such as the herbicide glyphosate, may affect the gut microbiota, with negative consequences for bee health. Glyphosate is usually sprayed in the field mixed with adjuvants, which enhance herbicidal activity. These adjuvants may also enhance undesired effects in nontargeted organisms. This seems to be the case for glyphosate-based herbicide on honey bees. As we show in this study, oral exposure to either pure glyphosate or glyphosate in a commercial herbicide formulation perturbs the gut microbiota of honey bees, and topical exposure to the formulation also has a direct effect on honey bee health, increasing mortality in a dose-dependent way and leaving surviving bees with a perturbed microbiota. Understanding the effects of herbicide formulations on honey bees may help to protect these important agricultural pollinators.
Collapse
Affiliation(s)
- Erick V S Motta
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA
| | - Myra Mak
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA
| | - Tyler K De Jong
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA
| | - J Elijah Powell
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA
| | - Angela O'Donnell
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA
| | - Kristin J Suhr
- Mass Spectrometry Facility, Department of Chemistry, University of Texas at Austin, Austin, Texas, USA
| | - Ian M Riddington
- Mass Spectrometry Facility, Department of Chemistry, University of Texas at Austin, Austin, Texas, USA
| | - Nancy A Moran
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
34
|
Sacristán C, das Neves CG, Suhel F, Sacristán I, Tengs T, Hamnes IS, Madslien K. Bartonella spp. detection in ticks, Culicoides biting midges and wild cervids from Norway. Transbound Emerg Dis 2020; 68:941-951. [PMID: 32757355 DOI: 10.1111/tbed.13762] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/02/2020] [Accepted: 07/28/2020] [Indexed: 02/06/2023]
Abstract
Bartonella spp. are fastidious, gram-negative, aerobic, facultative intracellular bacteria that infect humans, and domestic and wild animals. In Norway, Bartonella spp. have been detected in cervids, mainly within the distribution area of the arthropod vector deer ked (Lipoptena cervi). We used PCR to survey the prevalence of Bartonella spp. in blood samples from 141 cervids living outside the deer ked distribution area (moose [Alces alces, n = 65], red deer [Cervus elaphus, n = 41] and reindeer [Rangifer tarandus, n = 35]), in 44 pool samples of sheep tick (Ixodes ricinus, 27 pools collected from 74 red deer and 17 from 45 moose) and in biting midges of the genus Culicoides (Diptera: Ceratopogonidae, 120 pools of 6,710 specimens). Bartonella DNA was amplified in moose (75.4%, 49/65) and in red deer (4.9%, 2/41) blood samples. All reindeer were negative. There were significant differences in Bartonella prevalence among the cervid species. Additionally, Bartonella was amplified in two of 17 tick pools collected from moose and in 3 of 120 biting midge pool samples. The Bartonella sequences amplified in moose, red deer and ticks were highly similar to B. bovis, previously identified in cervids. The sequence obtained from biting midges was only 81.7% similar to the closest Bartonella spp. We demonstrate that Bartonella is present in moose across Norway and present the first data on northern Norway specimens. The high prevalence of Bartonella infection suggests that moose could be the reservoir for this bacterium. This is the first report of bacteria from the Bartonella genus in ticks from Fennoscandia and in Culicoides biting midges worldwide.
Collapse
Affiliation(s)
| | | | | | - Irene Sacristán
- Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Torstein Tengs
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | | | | |
Collapse
|
35
|
Bacterial Composition, Community Structure, and Diversity in Apis nigrocincta Gut. Int J Microbiol 2020; 2020:6906921. [PMID: 32802072 PMCID: PMC7414324 DOI: 10.1155/2020/6906921] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 07/08/2020] [Indexed: 02/06/2023] Open
Abstract
Understanding the honeybee gut bacteria is an essential aspect as honeybees are the primary pollinators of many crops. In this study, the honeybee-associated gut bacteria were investigated by targeting the V3-V4 region of 16S rRNA genes using the Illumina MiSeq. The adult worker was captured in an urban area in a dense settlement. In total, 83,018 reads were obtained, revealing six phyla from 749 bacterial operational taxonomic units (OTUs). The gut was dominated by Proteobacteria (58% of the total reads, including Enterobacteriaceae 28.2%, Erwinia 6.43%, and Klebsiella 4.90%), Firmicutes (29% of the total reads, including Lactococcus garvieae 13.45%, Lactobacillus spp. 8.19%, and Enterococcus spp. 4.47%), and Actinobacteria (8% of the total reads, including Bifidobacterium spp. 7.96%). Many of these bacteria belong to the group of lactic acid bacteria (LAB), which was claimed to be composed of beneficial bacteria involved in maintaining a healthy host. The honeybee was identified as Apis nigrocincta based on an identity BLAST search of its COI region. This study is the first report on the gut microbial community structure and composition of A. nigrocincta from Indonesia.
Collapse
|
36
|
Fungus-growing insects host a distinctive microbiota apparently adapted to the fungiculture environment. Sci Rep 2020; 10:12384. [PMID: 32709946 PMCID: PMC7381635 DOI: 10.1038/s41598-020-68448-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 06/24/2020] [Indexed: 01/09/2023] Open
Abstract
Some lineages of ants, termites, and beetles independently evolved a symbiotic association with lignocellulolytic fungi cultivated for food, in a lifestyle known as fungiculture. Fungus-growing insects' symbiosis also hosts a bacterial community thought to integrate their physiology. Similarities in taxonomic composition support the microbiota of fungus-growing insects as convergent, despite differences in fungus-rearing by these insects. Here, by comparing fungus-growing insects to several hosts ranging diverse dietary patterns, we investigate whether the microbiota taxonomic and functional profiles are characteristic of the fungiculture environment. Compared to other hosts, the microbiota associated with fungus-growing insects presents a distinctive taxonomic profile, dominated by Gammaproteobacteria at class level and by Pseudomonas at genera level. Even with a functional profile presenting similarities with the gut microbiota of herbivorous and omnivorous hosts, some differentially abundant features codified by the microbiota of fungus-growing insects suggest these communities occupying microhabitats that are characteristic of fungiculture. These features include metabolic pathways involved in lignocellulose breakdown, detoxification of plant secondary metabolites, metabolism of simple sugars, fungal cell wall deconstruction, biofilm formation, antimicrobials biosynthesis, and metabolism of diverse nutrients. Our results suggest that the microbiota could be functionally adapted to the fungiculture environment, codifying metabolic pathways potentially relevant to the fungus-growing insects' ecosystems functioning.
Collapse
|
37
|
Investigation of Bartonella spp. in brazilian mammals with emphasis on rodents and bats from the Atlantic Forest. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2020; 13:80-89. [PMID: 32904298 PMCID: PMC7452516 DOI: 10.1016/j.ijppaw.2020.07.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 07/08/2020] [Accepted: 07/08/2020] [Indexed: 02/06/2023]
Abstract
The Bartonella species are zoonotic agents that infect mammals and are transmitted by arthropod vectors. Approximately 18 distinct genotypes cause diseases in humans, and may be spread by both domestic and wild animals. In Brazil, Bartonella genotypes have been identified in several species of wild mammals, and in the present study, we analyzed samples from non-human primates (marmosets), marsupials, rodents, and bats, and compared them with the genotypes described in mammals from Brazil, to examine the distribution of Bartonella genotypes in two impacted areas of Rio de Janeiro state, in southeastern Brazil. We used polymerase chain reaction (PCR) methods to detect the Bartonella DNA using partial sequences of the gltA, ftsZ, and groEL genes. We generated Bayesian inference and maximum likelihood trees to characterize the positive PCR samples and infer the phylogenetic relationships of the genotypes. A total of 276 animals were captured, including 110 bats, 91 rodents, 38 marsupials, and 37 marmosets. The DNA of Bartonella was amplified from tissue samples collected from 12 (4.34%) of the animals, including eight rodents – Akodon cursor (5/44) and Nectomys squamipes (3/27) – and four bats, Artibeus lituratus (3/58) and Carollia perspicillata (1/15). We identified Bartonella genotypes closely related to those described in previous studies, as well as new genotypes in both the rodent and the bat samples. Considering the high diversity of the Bartonella genotypes and hosts identified in the present study, further research is needed to better understand the relationships between the different Bartonella genotypes and their vectors and host species. The presence of Bartonella in the wild rodents and bats from the study area indicates that the local human populations may be at risk of infection by Bartonella due to the spillover of these strains from the wild environment to domestic and peri-domestic environments. First record of wild mammals with Bartonella DNA at northwestern of Rio de Janeiro. The genotypes of Bartonella were characterized in two species of cricetid rodents and two species of phyllostomid bats from Rio de Janeiro. The genotype of Bartonella in Akodon cursor was identified closely related to B. rochalimae. This is the first report of Bartonella in C. perspicillata from Rio de Janeiro state, based on the analysis of tissue samples.
Collapse
|
38
|
Celebi B, Anani H, Zgheib R, Carhan A, Raoult D, Fournier PE. Genomic Characterization of the Novel Bartonella refiksaydamii sp. Isolated from the Blood of a Crocidura suaveolens (Pallas, 1811). Vector Borne Zoonotic Dis 2020; 21:432-440. [PMID: 34077294 DOI: 10.1089/vbz.2020.2626] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Bartonella species are reemerging infectious agents that are transmitted by arthropod vectors among animals and/or humans. At least 13 of the 35 currently recognized Bartonella species are pathogenic for humans. Most of the pathogenic species, except Bartonella quintana and Bartonella bacilliformis, are zoonotic agents with animal reservoirs, including cats, dogs, coyotes, foxes, cattle, and rodents. In this study, a novel Bartonella species was isolated from the blood of a Crocidura suaveolens (Pallas, 1811) Lesser shrew that was captured in the Bartın region of Northwestern Turkey. The strain, RSKK 19006, was characterized using whole-genome sequencing and comparison, multilocus sequence typing (gltA, rpoB, ssrA, nuoG, and 16S rRNA) and internal transcribed spacer sequencing, electron microscopy scanning, biochemical tests, and MALDI-TOF MS (matrix assisted laser desorption ionization-time of flight mass spectrometry). This novel Bartonella is a Gram-negative, rod-shaped, microaerophilic bacterium and has neither flagella nor pilus. As a consequence, we propose to name this new species Bartonella refiksaydamii sp. nov. in Bartonella genus. The zoonotic potential of this novel Bartonella species is as yet unknown.
Collapse
Affiliation(s)
- Bekir Celebi
- Zoonotic and Vector-Borne Diseases Department, Ministry of Health, General Directorate of Public Health, Ankara, Turkey
| | - Hussein Anani
- UMR VITROME, Aix-Marseille University, Institut pour la Recherche et le Développement, Service de Santé des Armées, Assistance Publique-Hôpitaux de Marseille, Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France.,Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| | - Rita Zgheib
- UMR VITROME, Aix-Marseille University, Institut pour la Recherche et le Développement, Service de Santé des Armées, Assistance Publique-Hôpitaux de Marseille, Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France.,Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| | - Ahmet Carhan
- Medical Biology Department, Faculty of Medicine, Yildirim Beyazit University, Ankara, Turkey
| | - Didier Raoult
- Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France.,UMR MEPHI, Aix-Marseille University, Institut pour la Recherche et le Développement, Assistance Publique-Hôpitaux de Marseille, Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| | - Pierre-Edouard Fournier
- UMR VITROME, Aix-Marseille University, Institut pour la Recherche et le Développement, Service de Santé des Armées, Assistance Publique-Hôpitaux de Marseille, Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France.,Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| |
Collapse
|
39
|
Qiu Y, Kajihara M, Nakao R, Mulenga E, Harima H, Hang’ombe BM, Eto Y, Changula K, Mwizabi D, Sawa H, Higashi H, Mweene A, Takada A, Simuunza M, Sugimoto C. Isolation of Candidatus Bartonella rousetti and Other Bat-associated Bartonellae from Bats and Their Flies in Zambia. Pathogens 2020; 9:pathogens9060469. [PMID: 32545824 PMCID: PMC7350321 DOI: 10.3390/pathogens9060469] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/09/2020] [Accepted: 06/12/2020] [Indexed: 12/12/2022] Open
Abstract
Bat-associated bartonellae, including Bartonella mayotimonensis and Candidatus Bartonella rousetti, were recently identified as emerging and potential zoonotic agents, respectively. However, there is no report of bat-associated bartonellae in Zambia. Thus, we aimed to isolate and characterize Bartonella spp. from bats and bat flies captured in Zambia by culturing and PCR. Overall, Bartonella spp. were isolated from six out of 36 bats (16.7%), while Bartonella DNA was detected in nine out of 19 bat flies (47.3%). Subsequent characterization using a sequence of five different genes revealed that three isolates obtained from Egyptian fruit bats (Rousettus aegyptiacus) were Ca. B. rousetti. The isolates obtained from insectivorous bats (Macronycteris vittatus) were divided into two previously unclassified bat-associated bartonellae. A phylogenetic analysis of the six genotypes of Bartonella gltA sequences from nine pathogen-positive bat flies revealed that three genotypes belonged to the same clades as bat-associated bartonellae, including Ca. B. rousetti. The other three genotypes represented arthropod-associated bartonellae, which have previously been isolated only from ectoparasites. We demonstrated that Ca. B. rousetti is maintained between bats (R. aegyptiacus) and bat flies in Zambia. Continuous surveillance of Bartonella spp. in bats and serological surveys in humans in Africa are warranted to evaluate the public health importance of bat-associated bartonellae.
Collapse
Affiliation(s)
- Yongjin Qiu
- Hokudai Center for Zoonosis Control in Zambia, Hokkaido University Research Center for Zoonosis Control, Sapporo 001-0020, Japan; (Y.Q.); (M.K.); (H.H.); (H.H.)
| | - Masahiro Kajihara
- Hokudai Center for Zoonosis Control in Zambia, Hokkaido University Research Center for Zoonosis Control, Sapporo 001-0020, Japan; (Y.Q.); (M.K.); (H.H.); (H.H.)
- Division of Global Epidemiology, Hokkaido University Research Center for Zoonosis Control, Sapporo 001-0020, Japan; (Y.E.); (A.T.)
| | - Ryo Nakao
- Laboratory of Parasitology, Graduate School of Infectious Diseases, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan;
| | - Evans Mulenga
- Department of Para-Clinical Studies, School of Veterinary Medicine, the University of Zambia, Lusaka 10101, Zambia; (E.M.); (B.M.H.); (K.C.)
| | - Hayato Harima
- Hokudai Center for Zoonosis Control in Zambia, Hokkaido University Research Center for Zoonosis Control, Sapporo 001-0020, Japan; (Y.Q.); (M.K.); (H.H.); (H.H.)
| | - Bernard Mudenda Hang’ombe
- Department of Para-Clinical Studies, School of Veterinary Medicine, the University of Zambia, Lusaka 10101, Zambia; (E.M.); (B.M.H.); (K.C.)
- Global Virus Network Affiliate Center of Excellence, the University of Zambia, Lusaka 10101, Zambia;
- African Center of Excellence for Infectious Diseases of Humans and Animals, the University of Zambia, Lusaka 10101, Zambia
| | - Yoshiki Eto
- Division of Global Epidemiology, Hokkaido University Research Center for Zoonosis Control, Sapporo 001-0020, Japan; (Y.E.); (A.T.)
| | - Katendi Changula
- Department of Para-Clinical Studies, School of Veterinary Medicine, the University of Zambia, Lusaka 10101, Zambia; (E.M.); (B.M.H.); (K.C.)
| | - Daniel Mwizabi
- Department of National Parks and Wildlife, Ministry of Tourism and Arts of Zambia, Lusaka 10101, Zambia;
| | - Hirofumi Sawa
- Division of Molecular Pathobiology, Hokkaido University Research Center for Zoonosis Control, Sapporo 001-0020, Japan;
- Department of Disease Control, School of Veterinary Medicine, the University of Zambia, Lusaka 10101, Zambia;
- Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo 001-0020, Japan
- Global Virus Network, Baltimore, MD 21201, USA
| | - Hideaki Higashi
- Hokudai Center for Zoonosis Control in Zambia, Hokkaido University Research Center for Zoonosis Control, Sapporo 001-0020, Japan; (Y.Q.); (M.K.); (H.H.); (H.H.)
- Department of Disease Control, School of Veterinary Medicine, the University of Zambia, Lusaka 10101, Zambia;
- Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo 001-0020, Japan
- Division of Infection and Immunity, Hokkaido University Research Center for Zoonosis Control, Sapporo 001-0020, Japan
| | - Aaron Mweene
- Global Virus Network Affiliate Center of Excellence, the University of Zambia, Lusaka 10101, Zambia;
- African Center of Excellence for Infectious Diseases of Humans and Animals, the University of Zambia, Lusaka 10101, Zambia
- Department of Disease Control, School of Veterinary Medicine, the University of Zambia, Lusaka 10101, Zambia;
| | - Ayato Takada
- Division of Global Epidemiology, Hokkaido University Research Center for Zoonosis Control, Sapporo 001-0020, Japan; (Y.E.); (A.T.)
- Department of Disease Control, School of Veterinary Medicine, the University of Zambia, Lusaka 10101, Zambia;
- Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo 001-0020, Japan
| | - Martin Simuunza
- Department of Disease Control, School of Veterinary Medicine, the University of Zambia, Lusaka 10101, Zambia;
| | - Chihiro Sugimoto
- Department of Disease Control, School of Veterinary Medicine, the University of Zambia, Lusaka 10101, Zambia;
- Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo 001-0020, Japan
- Division of Collaboration and Education, Hokkaido University Research Center for Zoonosis Control, Sapporo 001-0020, Japan
- Correspondence: ; Tel.: +81-11-706-5297
| |
Collapse
|
40
|
Bartonella species in medically important mosquitoes, Central Europe. Parasitol Res 2020; 119:2713-2717. [PMID: 32506253 DOI: 10.1007/s00436-020-06732-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 05/25/2020] [Indexed: 10/24/2022]
Abstract
Here, we provide the first mass molecular screening of medically important mosquitoes for Bartonella species using multiple genetic markers. We examined a total of 72,115 mosquito specimens, morphologically attributed to Aedes vexans (61,050 individuals), Culex pipiens (10,484 individuals) and species of the Anopheles maculipennis complex (581 individuals) for Bartonella spp. The initial screening yielded 63 Bartonella-positive A. vexans mosquitoes (mean prevalence 0.1%), 34 Bartonella-positive C. pipiens mosquitoes (mean prevalence 0.3%) and 158 Bartonella-positive A. maculipennis group mosquitoes (mean prevalence 27.2%). Several different Bartonella ITS sequences were recovered. This study highlights the need for molecular screening of mosquitoes, the most important vectors of arthropod-borne pathogens, for potential bacterial agents.
Collapse
|
41
|
Duan DY, Zhou HM, Cheng TY. Comparative analysis of microbial community in the whole body and midgut from fully engorged and unfed female adult Melophagus ovinus. MEDICAL AND VETERINARY ENTOMOLOGY 2020; 34:215-224. [PMID: 31840281 DOI: 10.1111/mve.12424] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 11/26/2019] [Accepted: 11/27/2019] [Indexed: 06/10/2023]
Abstract
Melophagus ovinus is a type of ectoparasite infesting sheep. Data regarding the comprehensive bacterial community associated with the whole body and midgut of M. ovinus under different engorged statuses are required. Melophagus ovinus were collected from the city of Jiuquan, China. Bacterial DNA was extracted from the whole body and midgut of fully engorged female adults, or newly hatched and unfed adult female M. ovinus. The 16S rRNA gene V3-V4 hypervariable regions were sequenced using the IonS5™XL platform (Thermo Fisher Scientific, Waltham, MA, U.S.A.). The whole body bacterial diversity of the newly hatched, unfed adult females was greater compared with that of the other three samples. Proteobacteria was the dominant bacterial phylum in all of the samples. Of the 42 total bacterial genera present in all of the experimental samples, Arsenophonus, Bartonella and Wolbachia were the dominant genera. The relative abundance of Arsenophonus in midgut was greater than that in the whole body. The relative abundance of Bartonella in fully engorged adults was far greater than those in newly hatched, unfed adults. The relative abundance of Wolbachia was highest in the whole body of newly hatched, unfed adults. Seventeen bacterial species were identified in all experimental samples. Bartonella chomelii, Streptococcus hyointestinalis and Escherichia coli were the first species reported in M. ovinus.
Collapse
Affiliation(s)
- D-Y Duan
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
| | - H-M Zhou
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
| | - T-Y Cheng
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
| |
Collapse
|
42
|
Gutiérrez R, Shalit T, Markus B, Yuan C, Nachum-Biala Y, Elad D, Harrus S. Bartonella kosoyi sp. nov. and Bartonella krasnovii sp. nov., two novel species closely related to the zoonotic Bartonella elizabethae, isolated from black rats and wild desert rodent-fleas. Int J Syst Evol Microbiol 2020; 70:1656-1665. [PMID: 32100689 DOI: 10.1099/ijsem.0.003952] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The genus Bartonella (Family: Bartonellaceae; Order: Rhizobiales; Class: Alphaproteobacteria) comprises facultative intracellular Gram-negative, haemotropic, slow-growing, vector-borne bacteria. Wild rodents and their fleas harbor a great diversity of species and strains of the genus Bartonella, including several zoonotic ones. This genetic diversity coupled with a fastidious nature of the organism results in a taxonomic challenge that has led to a massive collection of uncharacterized strains. Here, we report the genomic and phenotypic characterization of two strains, members of the genus Bartonella (namely Tel Aviv and OE 1-1), isolated from Rattus rattus rats and Synosternus cleopatrae fleas, respectively. Scanning electron microscopy revealed rod-shaped bacteria with polar pili, lengths ranging from 1.0 to 2.0 µm and widths ranging from 0.3 to 0.6 µm. OE 1-1 and Tel Aviv strains contained one single chromosome of 2.16 and 2.23 Mbp and one plasmid of 29.0 and 41.5 Kbp, with average DNA G+C contents of 38.16 and 38.47 mol%, respectively. These strains presented an average nucleotide identity (ANI) of 89.9 %. Bartonella elizabethae was found to be the closest phylogenetic relative of both strains (ANI=90.9-93.6 %). The major fatty acids identified in both strains were C18:1ω7c, C18 : 0 and C16 : 0. They differ from B. elizabethae in their C17 : 0 and C15 : 0 compositions. Both strains are strictly capnophilic and their biochemical profiles resembled those of species of the genus Bartonella with validly published names, whereas differences in arylamidase activities partially assisted in their speciation. Genomic and phenotypic differences demonstrate that OE 1-1 and Tel Aviv strains represent novel individual species, closely related to B. elizabethae, for which we propose the names Bartonella kosoyi sp. nov. and Bartonella krasnovii sp. nov.
Collapse
Affiliation(s)
- Ricardo Gutiérrez
- Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Rehovot, 7610000, Israel
| | - Tali Shalit
- The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, 7610000, Israel
| | - Barak Markus
- The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, 7610000, Israel
| | - Congli Yuan
- School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, PR China
| | - Yaarit Nachum-Biala
- Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Rehovot, 7610000, Israel
| | - Daniel Elad
- The Kimron Veterinary Institute, Bet Dagan, 50250, Israel
| | - Shimon Harrus
- Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Rehovot, 7610000, Israel
| |
Collapse
|
43
|
Saelao P, Borba RS, Ricigliano V, Spivak M, Simone-Finstrom M. Honeybee microbiome is stabilized in the presence of propolis. Biol Lett 2020; 16:20200003. [PMID: 32370688 PMCID: PMC7280041 DOI: 10.1098/rsbl.2020.0003] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 04/04/2020] [Indexed: 12/23/2022] Open
Abstract
Honeybees have developed many unique mechanisms to help ensure the proper maintenance of homeostasis within the hive. One method includes the collection of chemically complex plant resins combined with wax to form propolis, which is deposited throughout the hive. Propolis is believed to play a significant role in reducing disease load in the colony due to its antimicrobial and antiseptic properties. However, little is known about how propolis may interact with bee-associated microbial symbionts, and if propolis alters microbial community structure. In this study, we found that propolis appears to maintain a stable microbial community composition and reduce the overall taxonomic diversity of the honeybee microbiome. Several key members of the gut microbiota were significantly altered in the absence of propolis, suggesting that it may play an important role in maintaining favourable abundance and composition of gut symbionts. Overall, these findings suggest that propolis may help to maintain honeybee colony microbial health by limiting changes to the overall microbial community.
Collapse
Affiliation(s)
- Perot Saelao
- USDA-ARS Honey Bee Breeding, Genetics, and Physiology Laboratory, Baton Rouge, LA 70820, USA
| | - Renata S. Borba
- Alberta Beekeepers Commission, Edmonton, Alberta, CanadaT5M 3T9
| | - Vincent Ricigliano
- USDA-ARS Honey Bee Breeding, Genetics, and Physiology Laboratory, Baton Rouge, LA 70820, USA
| | - Marla Spivak
- Department of Entomology, University of Minnesota, St Paul, MN 55108, USA
| | - Michael Simone-Finstrom
- USDA-ARS Honey Bee Breeding, Genetics, and Physiology Laboratory, Baton Rouge, LA 70820, USA
| |
Collapse
|
44
|
Abstract
Prokaryotes commonly undergo genome reduction, particularly in the case of symbiotic bacteria. Genome reductions tend toward the energetically favorable removal of unnecessary, redundant, or nonfunctional genes. However, without mechanisms to compensate for these losses, deleterious mutation and genetic drift might otherwise overwhelm a population. Among the mechanisms employed to counter gene loss and share evolutionary success within a population, gene transfer agents (GTAs) are increasingly becoming recognized as important contributors. Although viral in origin, GTA particles package fragments of their "host" genome for distribution within a population of cells, often in a synchronized manner, rather than selfishly packaging genes necessary for their spread. Microbes as diverse as archaea and alpha-proteobacteria have been known to produce GTA particles, which are capable of transferring selective advantages such as virulence factors and antibiotic resistance. In this review, we discuss the various types of GTAs identified thus far, focusing on a defined set of symbiotic alpha-proteobacteria known to carry them. Drawing attention to the predicted presence of these genes, we discuss their potential within the selective marine and terrestrial environments occupied by mutualistic, parasitic, and endosymbiotic microbes.
Collapse
Affiliation(s)
- Steen Christensen
- Department of Biological Sciences, Florida International University, Miami, FL, USA.,Biomolecular Sciences Institute, Florida International University, Miami, FL, USA
| | - Laura R Serbus
- Department of Biological Sciences, Florida International University, Miami, FL, USA. .,Biomolecular Sciences Institute, Florida International University, Miami, FL, USA.
| |
Collapse
|
45
|
The effect of carbohydrate sources: Sucrose, invert sugar and components of mānuka honey, on core bacteria in the digestive tract of adult honey bees (Apis mellifera). PLoS One 2019; 14:e0225845. [PMID: 31800608 PMCID: PMC6892475 DOI: 10.1371/journal.pone.0225845] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 11/13/2019] [Indexed: 01/22/2023] Open
Abstract
Bacteria within the digestive tract of adult honey bees are likely to play a key role in the digestion of sugar-rich foods. However, the influence of diet on honey bee gut bacteria is not well understood. During periods of low floral abundance, beekeepers often supplement the natural sources of carbohydrate that honey bees collect, such as nectar, with various forms of carbohydrates such as sucrose (a disaccharide) and invert sugar (a mixture of the monosaccharides glucose and fructose). We compared the effect of these sugar supplements on the relative abundance of bacteria in the gut of bees by feeding bees from a single colony, two natural diets: mānuka honey, a monofloral honey with known antibacterial properties, and a hive diet; and artificial diets of invert sugar, sucrose solution, and sucrose solutions containing synthesised compounds associated with the antibacterial properties of mānuka honey. 16S ribosomal RNA (rRNA)-based sequencing showed that dietary regimes containing mānuka honey, sucrose and invert sugar did not alter the relative abundance of dominant core bacteria after 6 days of being fed these diets. However, sucrose-rich diets increased the relative abundances of three sub-dominant core bacteria, Rhizobiaceae, Acetobacteraceae, and Lactobacillus kunkeei, and decreased the relative abundance of Frischella perrara, all which significantly altered the bacterial composition. Acetogenic bacteria from the Rhizobiaceae and Acetobacteraceae families increased two- to five-fold when bees were fed sucrose. These results suggest that sucrose fuels the proliferation of specific low abundance primary sucrose-feeders, which metabolise sugars into monosaccharides, and then to acetate.
Collapse
|
46
|
Martinez AJ, Onchuru TO, Ingham CS, Sandoval‐Calderón M, Salem H, Deckert J, Kaltenpoth M. Angiosperm to Gymnosperm host‐plant switch entails shifts in microbiota of the
Welwitschia
bug,
Probergrothius angolensis
(Distant, 1902). Mol Ecol 2019; 28:5172-5187. [DOI: 10.1111/mec.15281] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 10/09/2019] [Accepted: 10/11/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Adam Javier Martinez
- Institute of Organismic and Molecular Evolution Johannes Gutenberg University Mainz Germany
| | - Thomas Ogao Onchuru
- Institute of Organismic and Molecular Evolution Johannes Gutenberg University Mainz Germany
| | - Chantal Selina Ingham
- Institute of Organismic and Molecular Evolution Johannes Gutenberg University Mainz Germany
| | | | - Hassan Salem
- Developmental Biology Max Planck Institute Tübingen Germany
- Department of Entomology Smithsonian National Museum of Natural History Washington DC USA
| | - Jürgen Deckert
- Museum for Natural History Leibniz Institute for Research on Evolution and Biodiversity Science Berlin Germany
| | - Martin Kaltenpoth
- Institute of Organismic and Molecular Evolution Johannes Gutenberg University Mainz Germany
| |
Collapse
|
47
|
Subotic S, Boddicker AM, Nguyen VM, Rivers J, Briles CE, Mosier AC. Honey bee microbiome associated with different hive and sample types over a honey production season. PLoS One 2019; 14:e0223834. [PMID: 31703071 PMCID: PMC6839897 DOI: 10.1371/journal.pone.0223834] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 09/29/2019] [Indexed: 12/20/2022] Open
Abstract
Western honey bees (Apis mellifera) are important pollinators in natural and agricultural ecosystems, and yet are in significant decline due to several factors including parasites, pathogens, pesticides, and habitat loss. A new beehive construction called the FlowTM hive was developed in 2015 to allow honey to be harvested directly from the hive without opening it, resulting in an apparent decrease in stress to the bees. Here, we compared the Flow and traditional Langstroth hive constructions to determine if there were any significant differences in the bee microbiome. The bee-associated bacterial communities did not differ between hive constructions and varied only slightly over the course of a honey production season. Samples were dominated by taxa belonging to the Lactobacillus, Bifidobacterium, Bartonella, Snodgrassella, Gilliamella, and Frischella genera, as observed in previous studies. The top ten most abundant taxa made up the majority of the sequence data; however, many low abundance organisms were persistent across the majority of samples regardless of sampling time or hive type. We additionally compared different preparations of whole bee and dissected bee samples to elaborate on previous bee microbiome research. We found that bacterial sequences were overwhelming derived from the bee guts, and microbes on the bee surfaces (including pollen) contributed little to the overall microbiome of whole bees. Overall, the results indicate that different hive constructions and associated disturbance levels do not influence the bee gut microbiome, which has broader implications for supporting hive health.
Collapse
Affiliation(s)
- Sladjana Subotic
- Department of Integrative Biology, University of Colorado, Denver, Colorado, United States of America
| | - Andrew M. Boddicker
- Department of Integrative Biology, University of Colorado, Denver, Colorado, United States of America
| | - Vy M. Nguyen
- Department of Integrative Biology, University of Colorado, Denver, Colorado, United States of America
| | - James Rivers
- Department of Integrative Biology, University of Colorado, Denver, Colorado, United States of America
| | - Christy E. Briles
- Department of Geography and Environmental Sciences, University of Colorado, Denver, Colorado, United States of America
| | - Annika C. Mosier
- Department of Integrative Biology, University of Colorado, Denver, Colorado, United States of America
- * E-mail:
| |
Collapse
|
48
|
Ma S, Yang Y, Jack CJ, Diao Q, Fu Z, Dai P. Effects of Tropilaelaps mercedesae on midgut bacterial diversity of Apis mellifera. EXPERIMENTAL & APPLIED ACAROLOGY 2019; 79:169-186. [PMID: 31602536 DOI: 10.1007/s10493-019-00424-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 09/27/2019] [Indexed: 06/10/2023]
Abstract
Tropilaelaps mercedesae is an ectoparasite of Apis mellifera in Asia and is considered a major threat to honey bee health. Herein, we used the Illumina MiSeq platform 16S rDNA Amplicon Sequencing targeting the V3-V4 regions and analysed the effects on the midgut bacterial communities of honey bees infested with T. mercedesae. The overall bacterial community in honey bees infested with T. mercedesae were observed at different developmental stages. Honey bee core intestinal bacterial genera such as Gilliamella, Lactobacillus and Frischella were detected. Tropilaelapsmercedesae infestation changed the bacterial communities in the midgut of A. mellifera. Tropilaelapsmercedesae-infested pupae had greatly increased relative abundances of Micrococcus and Sphingomonas, whereas T. mercedesae-infested 15-day-old workers had significantly reduced relative abundance of non-core microbes: Corynebacterium, Sphingomonas, Acinetobacter and Enhydrobacter compared to T. mercedesae-infested newly emerged bees. The bacterial community was significantly changed at the various T. mercedesae-infested developmental stages of A. mellifera. Tropilaelapsmercedesae infestation also changed the non-core bacterial community from larvae to newly emerged honey bees. Bacterial communities were significantly different between T. mercedesa-infested and non-mite-infested 15-day-old workers. Lactobacillus was dominant in T. mercedesae-infested 15-day-old workers compared to non-mite-infested 15-day-old workers.
Collapse
Affiliation(s)
- Shilong Ma
- Key Laboratory of Pollinating Insect Biology of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China
- Bee Academy, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yang Yang
- Key Laboratory of Pollinating Insect Biology of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China
| | - Cameron J Jack
- Honey Bee Research and Extension Laboratory, Entomology and Nematology Department, University of Florida, Gainesville, FL, 32611, USA
| | - Qingyun Diao
- Key Laboratory of Pollinating Insect Biology of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China
| | - Zhongmin Fu
- Bee Academy, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Pingli Dai
- Key Laboratory of Pollinating Insect Biology of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China.
| |
Collapse
|
49
|
Ulloa GM, Vásquez-Achaya F, Gomes C, Del Valle LJ, Ruiz J, Pons MJ, Del Valle Mendoza J. Molecular Detection of Bartonella bacilliformis in Lutzomyia maranonensis in Cajamarca, Peru: A New Potential Vector of Carrion's Disease in Peru? Am J Trop Med Hyg 2019; 99:1229-1233. [PMID: 30226144 DOI: 10.4269/ajtmh.18-0520] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Carrion's disease is a neglected, vector-borne illness that affects Colombia, Ecuador, and especially Peru. The phlebotomine sand flies Lutzomyia verrucarum and Lutzomyia peruensis are the main illness vectors described, although other species may be implicated in endemic areas such as some northern Peruvian regions, in which Carrion's disease vector has not been established. The aim of this study was to evaluate the presence of Bartonella bacilliformis DNA in Lutzomyia maranonensis from Cajamarca, northern Peru. This sand fly has not been defined as a vector yet. Centers for Disease Control and Prevention light traps were used to collect adult phlebotomine sand flies from 2007 to 2008 in the Cajamarca department. Female specimens were identified using morphological keys and were grouped into pools of five sand flies, taking into account district and sampling site (intradomicile or peridomicile). DNA was extracted, and then conventional and real-time polymerase chain reaction (RT-PCR) were performed to detect B. bacilliformis and subsequently confirmed by sequencing. A total of 383 specimens of L. maranonensis species were analyzed. Two of 76 pools were positive for B. bacilliformis by sequencing; all positives pools were from Querocotillo district. In addition, Mesorhizobium spp. were identified in two pools of sand flies, which is an α-proteobacteria phylogenetically very close to B. bacilliformis. This study presents molecular evidence that suggests L. maranonensis is naturally infected by B. bacilliformis in the Cajamarca department. Further research should determine if L. maranonensis is a vector and could transmit B. bacilliformis.
Collapse
Affiliation(s)
- Gabriela M Ulloa
- Emerge, Emerging Diseases and Climate Change Research Unit, School of Public Health and Administration, Universidad Peruana Cayetano Heredia, Lima, Peru.,Centro de Investigación e Innovación, Facultad de Ciencias de la Salud, Universidad Peruana de Ciencias Aplicadas, Lima, Peru
| | - Fernando Vásquez-Achaya
- Centro de Investigación e Innovación, Facultad de Ciencias de la Salud, Universidad Peruana de Ciencias Aplicadas, Lima, Peru
| | - Cláudia Gomes
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| | - Luis J Del Valle
- Centre de Recerca en Ciència i Enginyeria Multiescala de Barcelona, Departament d'Enginyeria Química, Escuela de Ingeniería de Barcelona Este (EEBE), Universitat Politècnica de Catalunya (UPC) BarcelonaTech, Barcelona, Spain
| | - Joaquim Ruiz
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| | - Maria J Pons
- Centro de Investigación e Innovación, Facultad de Ciencias de la Salud, Universidad Peruana de Ciencias Aplicadas, Lima, Peru.,Laboratorio de Microbiología y Genómica Bacteriana, Universidad Científica del Sur, Lima, Peru
| | - Juana Del Valle Mendoza
- Centro de Investigación e Innovación, Facultad de Ciencias de la Salud, Universidad Peruana de Ciencias Aplicadas, Lima, Peru
| |
Collapse
|
50
|
Romero S, Nastasa A, Chapman A, Kwong WK, Foster LJ. The honey bee gut microbiota: strategies for study and characterization. INSECT MOLECULAR BIOLOGY 2019; 28:455-472. [PMID: 30652367 DOI: 10.1111/imb.12567] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Gut microbiota research is an emerging field that improves our understanding of the ecological and functional dynamics of gut environments. The honey bee gut microbiota is a highly rewarding community to study, as honey bees are critical pollinators of many crops for human consumption and produce valuable commodities such as honey and wax. Most significantly, unique characteristics of the Apis mellifera gut habitat make it a valuable model system. This review discusses methods and pipelines used in the study of the gut microbiota of Ap. mellifera and closely related species for four main purposes: identifying microbiota taxonomy, characterizing microbiota genomes (microbiome), characterizing microbiota-microbiota interactions and identifying functions of the microbial community in the gut. The purpose of this contribution is to increase understanding of honey bee gut microbiota, to facilitate bee microbiota and microbiome research in general and to aid design of future experiments in this growing field.
Collapse
Affiliation(s)
- S Romero
- Michael Smith Laboratories and Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - A Nastasa
- Michael Smith Laboratories and Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - A Chapman
- Michael Smith Laboratories and Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - W K Kwong
- Biodiversity Research Centre, Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - L J Foster
- Michael Smith Laboratories and Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|