1
|
Teng M, Luo J, Zhang Y, Reddy VRAP, Samuel P, Yao Y, Nair V. Viral miRNA delivered by exosomes from Marek's disease virus-transformed lymphoma cell line exerts regulatory function in internalized primary chicken embryo fibroblast cells. Tumour Virus Res 2024; 18:200286. [PMID: 38914377 PMCID: PMC11260597 DOI: 10.1016/j.tvr.2024.200286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 06/11/2024] [Accepted: 06/11/2024] [Indexed: 06/26/2024] Open
Abstract
In the past decade, research has demonstrated that viral miRNAs encoded by a number of viral genomes, particularly by most of the herpesvirus including Marek's disease virus (MDV), play important regulatory roles in viral infection, replication, and regulation of tumorigenesis. As macrovesicles in cells, exosomes can deliver viral miRNAs and exert gene regulatory functions. Whether the exosomes play a role in the replication, pathogenesis/tumorigenesis of avian herpesviruses such as oncogenic Marek's disease virus (MDV) remains unclear. Herein we extracted and identified the exosomes from MDV-transformed T cell line MSB-1 and demonstrated high abundance of MDV-1 miRNA expression. Using dual luciferase-based reporter assay, we also demonstrated that the exosomes derived from MSB-1 can deliver functional miRNA successfully into primary chicken embryo fibroblasts. These findings provide new insights into the role of exosomes and the mechanisms of how virus-encoded miRNA function in MDV latency/activation switching, viral replication, pathogenesis and/or tumorigenesis.
Collapse
Affiliation(s)
- Man Teng
- The Pirbright Institute & UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Guildford, Surrey, United Kingdom; Institute for Animal Health & UK-China Centre of Excellence for Research on Avian Diseases, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, People's Republic of China; Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, People's Republic of China; Key Laboratory of Animal Immunology, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou, 450002, People's Republic of China
| | - Jun Luo
- The Pirbright Institute & UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Guildford, Surrey, United Kingdom; Institute for Animal Health & UK-China Centre of Excellence for Research on Avian Diseases, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, People's Republic of China; Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, People's Republic of China; Key Laboratory of Animal Immunology, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou, 450002, People's Republic of China
| | - Yaoyao Zhang
- The Pirbright Institute & UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Guildford, Surrey, United Kingdom
| | - Vishwanatha R A P Reddy
- The Pirbright Institute & UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Guildford, Surrey, United Kingdom
| | - Priya Samuel
- Department of Biological and Life Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Yongxiu Yao
- The Pirbright Institute & UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Guildford, Surrey, United Kingdom.
| | - Venugopal Nair
- The Pirbright Institute & UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Guildford, Surrey, United Kingdom; Department of Biology, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
2
|
Zhu ZJ, Teng M, Liu Y, Chen FJ, Yao Y, Li EZ, Luo J. Immune escape of avian oncogenic Marek's disease herpesvirus and antagonistic host immune responses. NPJ Vaccines 2024; 9:109. [PMID: 38879650 PMCID: PMC11180173 DOI: 10.1038/s41541-024-00905-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 06/07/2024] [Indexed: 06/19/2024] Open
Abstract
Marek's disease virus (MDV) is a highly pathogenic and oncogenic alpha herpesvirus that causes Marek's disease (MD), which is one of the most important immunosuppressive and rapid-onset neoplastic diseases in poultry. The onset of MD lymphomas and other clinical diseases can be efficiently prevented by vaccination; these vaccines are heralded as the first demonstration of a successful vaccination strategy against a cancer. However, the persistent evolution of epidemic MDV strains towards greater virulence has recently resulted in frequent outbreaks of MD in vaccinated chicken flocks worldwide. Herein, we provide an overall review focusing on the discovery and identification of the strategies by which MDV evades host immunity and attacks the immune system. We have also highlighted the decrease in the immune efficacy of current MD vaccines. The prospects, strategies and new techniques for the development of efficient MD vaccines, together with the possibilities of antiviral therapy in MD, are also discussed.
Collapse
Affiliation(s)
- Zhi-Jian Zhu
- College of Biological and Food Engineering & Affiliated Central Hospital, Huanghuai University, Zhumadian, 463000, People's Republic of China
- Institute for Animal Health & UK-China Center of Excellence for Research on Avian Disease, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, People's Republic of China
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, People's Republic of China
- Key Laboratory of Animal Immunology, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou, 450002, People's Republic of China
| | - Man Teng
- Institute for Animal Health & UK-China Center of Excellence for Research on Avian Disease, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, People's Republic of China
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, People's Republic of China
- Key Laboratory of Animal Immunology, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou, 450002, People's Republic of China
| | - Yu Liu
- College of Biological and Food Engineering & Affiliated Central Hospital, Huanghuai University, Zhumadian, 463000, People's Republic of China
| | - Fu-Jia Chen
- College of Biological and Food Engineering & Affiliated Central Hospital, Huanghuai University, Zhumadian, 463000, People's Republic of China
| | - Yongxiu Yao
- The Pirbright Institute & UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Ash Road, Guildford, Surrey, GU24 0NF, UK
| | - En-Zhong Li
- College of Biological and Food Engineering & Affiliated Central Hospital, Huanghuai University, Zhumadian, 463000, People's Republic of China.
| | - Jun Luo
- Institute for Animal Health & UK-China Center of Excellence for Research on Avian Disease, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, People's Republic of China.
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, People's Republic of China.
- Key Laboratory of Animal Immunology, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou, 450002, People's Republic of China.
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, People's Republic of China.
- Longhu Laboratory, Zhengzhou, 450046, People's Republic of China.
| |
Collapse
|
3
|
Fiddaman SR, Dimopoulos EA, Lebrasseur O, du Plessis L, Vrancken B, Charlton S, Haruda AF, Tabbada K, Flammer PG, Dascalu S, Marković N, Li H, Franklin G, Symmons R, Baron H, Daróczi-Szabó L, Shaymuratova DN, Askeyev IV, Putelat O, Sana M, Davoudi H, Fathi H, Mucheshi AS, Vahdati AA, Zhang L, Foster A, Sykes N, Baumberg GC, Bulatović J, Askeyev AO, Askeyev OV, Mashkour M, Pybus OG, Nair V, Larson G, Smith AL, Frantz LAF. Ancient chicken remains reveal the origins of virulence in Marek's disease virus. Science 2023; 382:1276-1281. [PMID: 38096384 DOI: 10.1126/science.adg2238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 10/25/2023] [Indexed: 12/18/2023]
Abstract
The pronounced growth in livestock populations since the 1950s has altered the epidemiological and evolutionary trajectory of their associated pathogens. For example, Marek's disease virus (MDV), which causes lymphoid tumors in chickens, has experienced a marked increase in virulence over the past century. Today, MDV infections kill >90% of unvaccinated birds, and controlling it costs more than US$1 billion annually. By sequencing MDV genomes derived from archeological chickens, we demonstrate that it has been circulating for at least 1000 years. We functionally tested the Meq oncogene, one of 49 viral genes positively selected in modern strains, demonstrating that ancient MDV was likely incapable of driving tumor formation. Our results demonstrate the power of ancient DNA approaches to trace the molecular basis of virulence in economically relevant pathogens.
Collapse
Affiliation(s)
| | - Evangelos A Dimopoulos
- The Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Ophélie Lebrasseur
- Centre d'Anthropobiologie et de Génomique de Toulouse, CNRS/Université Toulouse III Paul Sabatier, Toulouse, France
- Instituto Nacional de Antropología y Pensamiento Latinoamericano, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Louis du Plessis
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Bram Vrancken
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
- Spatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, Brussels, Belgium
| | - Sophy Charlton
- The Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK
- BioArCh, Department of Archaeology, University of York, York, UK
| | - Ashleigh F Haruda
- The Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK
| | - Kristina Tabbada
- The Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK
| | | | | | | | - Hannah Li
- Institute of Immunity and Transplantation, University College London, London, UK
| | | | | | | | | | - Dilyara N Shaymuratova
- Laboratory of Biomonitoring, The Institute of Problems in Ecology and Mineral Wealth, Tatarstan Academy of Sciences, Kazan, Russia
| | - Igor V Askeyev
- Laboratory of Biomonitoring, The Institute of Problems in Ecology and Mineral Wealth, Tatarstan Academy of Sciences, Kazan, Russia
| | | | - Maria Sana
- Departament de Prehistòria, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Hossein Davoudi
- Bioarchaeology Laboratory, Central Laboratory, University of Tehran, Tehran, Iran
| | - Homa Fathi
- Bioarchaeology Laboratory, Central Laboratory, University of Tehran, Tehran, Iran
| | - Amir Saed Mucheshi
- Department of Art and Architecture, Payame Noor University (PNU), Tehran, Iran
| | - Ali Akbar Vahdati
- Iranian Ministry of Cultural Heritage, Tourism, and Handicrafts, North Khorasan Office, Iran
| | - Liangren Zhang
- Department of Archaeology, School of History, Nanjing University, China
| | | | - Naomi Sykes
- Department of Archaeology, University of Exeter, Exeter, UK
| | - Gabrielle Cass Baumberg
- The Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK
| | - Jelena Bulatović
- Department of Historical Studies, University of Gothenburg, Gothenburg, Sweden
| | - Arthur O Askeyev
- Laboratory of Biomonitoring, The Institute of Problems in Ecology and Mineral Wealth, Tatarstan Academy of Sciences, Kazan, Russia
| | - Oleg V Askeyev
- Laboratory of Biomonitoring, The Institute of Problems in Ecology and Mineral Wealth, Tatarstan Academy of Sciences, Kazan, Russia
| | - Marjan Mashkour
- Bioarchaeology Laboratory, Central Laboratory, University of Tehran, Tehran, Iran
- CNRS, National Museum Natural History Paris, Paris, France
| | - Oliver G Pybus
- Department of Biology, University of Oxford, Oxford, UK
- Department of Pathobiology and Population Sciences, Royal Veterinary College, London, UK
| | - Venugopal Nair
- Department of Biology, University of Oxford, Oxford, UK
- Viral Oncogenesis Group, Pirbright Institute, Woking, UK
| | - Greger Larson
- The Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK
| | | | - Laurent A F Frantz
- Palaeogenomics Group, Institute of Palaeoanatomy, Domestication Research and the History of Veterinary Medicine, Ludwig-Maximilians-Universitat, Munich, Germany
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| |
Collapse
|
4
|
Teng M, Zhu ZJ, Yao Y, Nair V, Zhang GP, Luo J. Critical roles of non-coding RNAs in lifecycle and biology of Marek's disease herpesvirus. SCIENCE CHINA. LIFE SCIENCES 2023; 66:251-268. [PMID: 36617590 PMCID: PMC9838510 DOI: 10.1007/s11427-022-2258-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/05/2022] [Indexed: 01/10/2023]
Abstract
Over the past two decades, numerous non-coding RNAs (ncRNAs) have been identified in different biological systems including virology, especially in large DNA viruses such as herpesviruses. As a representative oncogenic alphaherpesvirus, Marek's disease virus (MDV) causes an important immunosuppressive and rapid-onset neoplastic disease of poultry, namely Marek's disease (MD). Vaccinations can efficiently prevent the onset of MD lymphomas and other clinical disease, often heralded as the first successful example of vaccination-based control of cancer. MDV infection is also an excellent model for research into virally-induced tumorigenesis. Recently, great progress has been made in understanding the functions of ncRNAs in MD biology. Herein, we give a review of the discovery and identification of MDV-encoded viral miRNAs, focusing on the genomics, expression profiles, and emerging critical roles of MDV-1 miRNAs as oncogenic miRNAs (oncomiRs) or tumor suppressor genes involved in the induction of MD lymphomas. We also described the involvements of host cellular miRNAs, lincRNAs, and circRNAs participating in MDV life cycle, pathogenesis, and/or tumorigenesis. The prospects, strategies, and new techniques such as the CRISPR/Cas9-based gene editing applicable for further investigation into the ncRNA-mediated regulatory mechanisms in MDV pathogenesis/oncogenesis were also discussed, together with the possibilities of future studies on antiviral therapy and the development of new efficient MD vaccines.
Collapse
Affiliation(s)
- Man Teng
- Key Laboratory of Animal Immunology, Ministry of Agriculture and Rural Affairs of China & Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
- UK-China Centre of Excellence for Research on Avian Diseases, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Zhi-Jian Zhu
- School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian, 463000, China
| | - Yongxiu Yao
- The Pirbright Institute & UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Ash Road, Guildford, Surrey, GU24 0NF, UK
| | - Venugopal Nair
- The Pirbright Institute & UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Ash Road, Guildford, Surrey, GU24 0NF, UK
| | - Gai-Ping Zhang
- International Joint Research Center of National Animal Immunology & College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, 225009, China
| | - Jun Luo
- Key Laboratory of Animal Immunology, Ministry of Agriculture and Rural Affairs of China & Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China.
- UK-China Centre of Excellence for Research on Avian Diseases, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China.
- Key Laboratory of Animal Disease and Public Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, China.
| |
Collapse
|
5
|
Identification of Marek's disease virus pUL56 homologue and analysis of critical amino acid stretches indispensable for its intracellular localization. Virus Res 2022; 313:198741. [PMID: 35271885 DOI: 10.1016/j.virusres.2022.198741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/02/2022] [Accepted: 03/06/2022] [Indexed: 11/22/2022]
Abstract
Marek's disease virus (MDV) is considered a unique member of the Alphaherpesvirinae subfamily that induces rapid onset of T cell lymphoma in chickens. Compared with other conserved UL56 gene homologues of herpesviruses, little is known about the roles of MDV UL56 gene, while recent studies of mammalian herpesvirus pUL56 proteins have revealed their involvement in promoting ubiquitination of the Nedd4 (neural precursor cell expressed developmentally down-regulated protein 4) -like E3 ubiquitin ligases for proteasomal degradation and in modulating host immune responses. To determine the expression kinetics of UL56 gene products, chicken embryo fibroblasts were infected with very virulent or attenuated MDV strain and analyzed by quantitative PCR and Western blotting. During the time course of infection, the levels of UL56 mRNA transcripts increased consistently. At the translational level, the pUL56 protein encoded by UL56 gene was expressed in the size of 32 kDa, which emerged as early as 12 h post-infection (hpi) but otherwise began to wane at 72 hpi thereafter. With the treatment of viral DNA synthesis inhibitors, the pUL56 expression was significantly reduced, featuring the dynamics of a late (γ)-gene product. By confocal imaging, pUL56 was found to reside in the Golgi compartment. Both the L-domain motifs and the C-terminal tail-anchored transmembrane were essential for its intracellular localization. Noticeably, pUL56 co-localized with a truncated mutant of the chicken Nedd4-like family protein harboring only the WW domains; however, co-immunoprecipitation assay established no direct interaction between them, and the ectopic expression of pUL56 did not alter the abundance of endogenous Nedd4-like protein. Overall, the present study provides a caveat that the pUL56 homologues of different herpesviruses with structural similarities might vary in expression patterns and probably in functional consequences. For this reason, further investigation should be encouraged to focus on the potential association between UL56 gene and MDV pathogenesis in the context of engineered viral mutants.
Collapse
|
6
|
Zhu ZJ, Teng M, Li HZ, Zheng LP, Liu JL, Yao Y, Nair V, Zhang GP, Luo J. Virus-encoded miR-155 ortholog in Marek's disease virus promotes cell proliferation via suppressing apoptosis by targeting tumor suppressor WWOX. Vet Microbiol 2020; 252:108919. [PMID: 33191002 DOI: 10.1016/j.vetmic.2020.108919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/30/2020] [Indexed: 01/15/2023]
Abstract
Marek's disease virus serotype 1 (MDV-1) is an important oncogenic α-herpesvirus that induces immunosuppressive and rapid-onset T-cell lymphomatous disease in poultry commonly referred to as Marek's disease (MD). As an excellent biomodel for the study of virally-induced cancers in natural hosts, MDV-1 encoded microRNAs (miRNAs) have been previously demonstrated with the potential roles to act as critical regulators in virus replication, latency, pathogenesis and especially in oncogenesis. Similar to the oncogenic γ-herpesvirus Kaposi's sarcoma-associated herpesvirus (KSHV), miR-M4-5p, the cellular microRNA-155 (miR-155) ortholog encoded by MDV-1, is also involved in MD oncogenesis. In lymphoblastoid cell lines derived from MDV-induced T-cell lymphomas, miR-M4-5p has been shown to be highly expressed and participate in inducing MD lymphomagenesis by regulating multiple signal pathways. Herein we report the new identification of the host WW domain-containing oxidoreductase (WWOX) as a biological target for miR-M4-5p. Further experiments revealed that as a critical oncomiRNA, miR-M4-5p promotes the proliferations of both chicken embryo fibroblast (CEF) and MSB-1 cells via suppressing cell apoptosis by targeting WWOX, a well-known tumor suppressor. Our data presents a novel insight in elucidating the regulatory mechanisms mediated by the viral analog of miR-155 that potentially contribute to MD tumorigenesis.
Collapse
Affiliation(s)
- Zhi-Jian Zhu
- Key Laboratory of Animal Immunology, Ministry of Agriculture and Rural Affairs & Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, People's Republic of China; UK-China Centre of Excellence for Research on Avian Diseases, Henan Academy of Agricultural Sciences, Zhengzhou 450002, People's Republic of China; Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, People's Republic of China
| | - Man Teng
- Key Laboratory of Animal Immunology, Ministry of Agriculture and Rural Affairs & Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, People's Republic of China; UK-China Centre of Excellence for Research on Avian Diseases, Henan Academy of Agricultural Sciences, Zhengzhou 450002, People's Republic of China
| | - Hui-Zhen Li
- Key Laboratory of Animal Immunology, Ministry of Agriculture and Rural Affairs & Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, People's Republic of China; UK-China Centre of Excellence for Research on Avian Diseases, Henan Academy of Agricultural Sciences, Zhengzhou 450002, People's Republic of China; College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, People's Republic of China
| | - Lu-Ping Zheng
- Key Laboratory of Animal Immunology, Ministry of Agriculture and Rural Affairs & Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, People's Republic of China; UK-China Centre of Excellence for Research on Avian Diseases, Henan Academy of Agricultural Sciences, Zhengzhou 450002, People's Republic of China
| | - Jin-Ling Liu
- Key Laboratory of Animal Immunology, Ministry of Agriculture and Rural Affairs & Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, People's Republic of China; UK-China Centre of Excellence for Research on Avian Diseases, Henan Academy of Agricultural Sciences, Zhengzhou 450002, People's Republic of China
| | - Yongxiu Yao
- The Pirbright Institute & UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Ash Road, Guildford, Surrey GU24 0NF, United Kingdom
| | - Venugopal Nair
- The Pirbright Institute & UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Ash Road, Guildford, Surrey GU24 0NF, United Kingdom
| | - Gai-Ping Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, People's Republic of China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou 225009, People's Republic of China.
| | - Jun Luo
- Key Laboratory of Animal Immunology, Ministry of Agriculture and Rural Affairs & Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, People's Republic of China; UK-China Centre of Excellence for Research on Avian Diseases, Henan Academy of Agricultural Sciences, Zhengzhou 450002, People's Republic of China; Key Laboratory of Animal Disease and Public Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, People's Republic of China.
| |
Collapse
|
7
|
Zhu ZJ, Teng M, Li HZ, Zheng LP, Liu JL, Chai SJ, Yao YX, Nair V, Zhang GP, Luo J. Marek's Disease Virus ( Gallid alphaherpesvirus 2)-Encoded miR-M2-5p Simultaneously Promotes Cell Proliferation and Suppresses Apoptosis Through RBM24 and MYOD1-Mediated Signaling Pathways. Front Microbiol 2020; 11:596422. [PMID: 33224130 PMCID: PMC7669912 DOI: 10.3389/fmicb.2020.596422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/08/2020] [Indexed: 11/13/2022] Open
Abstract
MicroRNAs (miRNAs) have been demonstrated for their involvement in virus biology and pathogenesis, including functioning as key determinants of virally-induced cancers. As an important oncogenic α-herpesvirus affecting poultry health, Marek’s disease virus serotype 1 [Gallid alphaherpesvirus 2 (GaHV-2)] induces rapid-onset T-cell lymphomatous disease commonly referred to as Marek’s disease (MD), an excellent biological model for the study of virally-induced cancer in the natural hosts. Previously, we have demonstrated that GaHV-2-encoded miRNAs (especially those within the Meq-cluster) have the potential to act as critical regulators of multiple processes such as virus replication, latency, pathogenesis, and/or oncogenesis. In addition to miR-M4-5p (miR-155 homolog) and miR-M3-5p, we have recently found that miR-M2-5p possibly participate in inducing MD lymphomagenesis. Here, we report the identification of two tumor suppressors, the RNA-binding protein 24 (RBM24) and myogenic differentiation 1 (MYOD1), being two biological targets for miR-M2-5p. Our experiments revealed that as a critical miRNA, miR-M2-5p promotes cell proliferation via regulating the RBM24-mediated p63 overexpression and MYOD1-mediated IGF2 signaling and suppresses apoptosis by targeting the MYOD1-mediated Caspase-3 signaling pathway. Our data present a new strategy of a single viral miRNA exerting dual role to potentially participate in the virally-induced T-cell lymphomagenesis by simultaneously promoting the cell proliferation and suppressing apoptosis.
Collapse
Affiliation(s)
- Zhi-Jian Zhu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Immunology, Ministry of Agriculture and Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China.,UK-China Centre of Excellence for Research on Avian Diseases, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Man Teng
- Key Laboratory of Animal Immunology, Ministry of Agriculture and Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China.,UK-China Centre of Excellence for Research on Avian Diseases, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Hui-Zhen Li
- Key Laboratory of Animal Immunology, Ministry of Agriculture and Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China.,UK-China Centre of Excellence for Research on Avian Diseases, Henan Academy of Agricultural Sciences, Zhengzhou, China.,College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Lu-Ping Zheng
- Key Laboratory of Animal Immunology, Ministry of Agriculture and Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China.,UK-China Centre of Excellence for Research on Avian Diseases, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Jin-Ling Liu
- Key Laboratory of Animal Immunology, Ministry of Agriculture and Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China.,UK-China Centre of Excellence for Research on Avian Diseases, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Shu-Jun Chai
- Key Laboratory of Animal Immunology, Ministry of Agriculture and Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China.,UK-China Centre of Excellence for Research on Avian Diseases, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Yong-Xiu Yao
- The Pirbright Institute and UK-China Centre of Excellence for Research on Avian Diseases, Guildford, United Kingdom
| | - Venugopal Nair
- The Pirbright Institute and UK-China Centre of Excellence for Research on Avian Diseases, Guildford, United Kingdom
| | - Gai-Ping Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, China
| | - Jun Luo
- Key Laboratory of Animal Immunology, Ministry of Agriculture and Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China.,UK-China Centre of Excellence for Research on Avian Diseases, Henan Academy of Agricultural Sciences, Zhengzhou, China.,Key Laboratory of Animal Disease and Public Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
8
|
Luo J, Teng M, Zai X, Tang N, Zhang Y, Mandviwala A, Reddy VRAP, Baigent S, Yao Y, Nair V. Efficient Mutagenesis of Marek's Disease Virus-Encoded microRNAs Using a CRISPR/Cas9-Based Gene Editing System. Viruses 2020; 12:E466. [PMID: 32325942 PMCID: PMC7232411 DOI: 10.3390/v12040466] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 01/06/2023] Open
Abstract
The virus-encoded microRNAs (miRNAs) have been demonstrated to have important regulatory roles in herpesvirus biology, including virus replication, latency, pathogenesis and/or tumorigenesis. As an emerging efficient tool for gene editing, the clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 system has been successfully applied in manipulating the genomes of large DNA viruses. Herein, utilizing the CRISPR/Cas9 system with a double-guide RNAs transfection/virus infection strategy, we have established a new platform for mutagenesis of viral miRNAs encoded by the Marek's disease virus serotype 1 (MDV-1), an oncogenic alphaherpesvirus that can induce rapid-onset T-cell lymphomas in chickens. A series of miRNA-knocked out (miR-KO) mutants with deletions of the Meq- or the mid-clustered miRNAs, namely RB-1B∆Meq-miRs, RB-1B∆M9-M2, RB-1B∆M4, RB-1B∆M9 and RB-1B∆M11, were generated from vvMDV strain RB-1B virus. Interestingly, mutagenesis of the targeted miRNAs showed changes in the in vitro virus growth kinetics, which is consistent with that of the in vivo proliferation curves of our previously reported GX0101 mutants produced by the bacterial artificial chromosome (BAC) clone and Rec E/T homologous recombination techniques. Our data demonstrate that the CRISPR/Cas9-based gene editing is a simple, efficient and relatively nondisruptive approach for manipulating the small non-coding genes from the genome of herpesvirus and will undoubtedly contribute significantly to the future progress in herpesvirus biology.
Collapse
Affiliation(s)
- Jun Luo
- The Pirbright Institute & UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Ash Road, Guildford, Surrey GU24 0NF, UK; (M.T.); (X.Z.); (N.T.); (Y.Z.); (A.M.); (V.R.A.P.R.); (S.B.); (Y.Y.)
- Key Laboratory of Animal Immunology, Ministry of Agriculture & Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
- UK-China Centre of Excellence for Research on Avian Diseases, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Man Teng
- The Pirbright Institute & UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Ash Road, Guildford, Surrey GU24 0NF, UK; (M.T.); (X.Z.); (N.T.); (Y.Z.); (A.M.); (V.R.A.P.R.); (S.B.); (Y.Y.)
- Key Laboratory of Animal Immunology, Ministry of Agriculture & Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
- UK-China Centre of Excellence for Research on Avian Diseases, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Xusheng Zai
- The Pirbright Institute & UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Ash Road, Guildford, Surrey GU24 0NF, UK; (M.T.); (X.Z.); (N.T.); (Y.Z.); (A.M.); (V.R.A.P.R.); (S.B.); (Y.Y.)
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, Yangzhou 225009, China
| | - Na Tang
- The Pirbright Institute & UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Ash Road, Guildford, Surrey GU24 0NF, UK; (M.T.); (X.Z.); (N.T.); (Y.Z.); (A.M.); (V.R.A.P.R.); (S.B.); (Y.Y.)
- Binzhou Animal Science and Veterinary Medicine Academy & UK-China Centre of Excellence for Research on Avian Diseases, Binzhou 256600, China
| | - Yaoyao Zhang
- The Pirbright Institute & UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Ash Road, Guildford, Surrey GU24 0NF, UK; (M.T.); (X.Z.); (N.T.); (Y.Z.); (A.M.); (V.R.A.P.R.); (S.B.); (Y.Y.)
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Ahmedali Mandviwala
- The Pirbright Institute & UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Ash Road, Guildford, Surrey GU24 0NF, UK; (M.T.); (X.Z.); (N.T.); (Y.Z.); (A.M.); (V.R.A.P.R.); (S.B.); (Y.Y.)
| | - Vishwanatha R. A. P. Reddy
- The Pirbright Institute & UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Ash Road, Guildford, Surrey GU24 0NF, UK; (M.T.); (X.Z.); (N.T.); (Y.Z.); (A.M.); (V.R.A.P.R.); (S.B.); (Y.Y.)
| | - Susan Baigent
- The Pirbright Institute & UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Ash Road, Guildford, Surrey GU24 0NF, UK; (M.T.); (X.Z.); (N.T.); (Y.Z.); (A.M.); (V.R.A.P.R.); (S.B.); (Y.Y.)
| | - Yongxiu Yao
- The Pirbright Institute & UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Ash Road, Guildford, Surrey GU24 0NF, UK; (M.T.); (X.Z.); (N.T.); (Y.Z.); (A.M.); (V.R.A.P.R.); (S.B.); (Y.Y.)
| | - Venugopal Nair
- The Pirbright Institute & UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Ash Road, Guildford, Surrey GU24 0NF, UK; (M.T.); (X.Z.); (N.T.); (Y.Z.); (A.M.); (V.R.A.P.R.); (S.B.); (Y.Y.)
| |
Collapse
|
9
|
Effect of gga-miR-155 on cell proliferation, apoptosis and invasion of Marek's disease virus (MDV) transformed cell line MSB1 by targeting RORA. BMC Vet Res 2020; 16:23. [PMID: 31992293 PMCID: PMC6988224 DOI: 10.1186/s12917-020-2239-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 01/09/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Marek's disease (MD) is caused by the oncogenic Marek's disease virus (MDV), and is a highly contagious avian infection with a complex underlying pathology that involves lymphoproliferative neoplasm formation. MicroRNAs (miRNAs) act as oncogenes or tumor suppressors in most cancers. The gga-miR-155 is downregulated in the MDV-infected chicken tissues or lymphocyte lines, although its exact role in tumorigenesis remains unclear. The aim of this study was to analyze the effects of gga-miR-155 on the proliferation, apoptosis and invasiveness of an MDV-transformed lymphocyte line MSB1 and elucidate the underlying mechanisms. RESULTS The expression level of gga-miR-155 was manipulated in MSB1 cells using specific mimics and inhibitors. While overexpression of gga-miR-155 increased proliferation, decreased the proportion of G1 phase cells relative to that in S and G2 phases, reduced apoptosis rates and increased invasiveness. However, its downregulation had the opposite effects. Furthermore, gga-miR-155 directly targeted the RORA gene and downregulated its expression in the MSB1 cells. CONCLUSION The gga-miR-155 promotes the proliferation and invasiveness of the MDV-transformed lymphocyte line MSB1 and inhibits apoptosis by targeting the RORA gene.
Collapse
|
10
|
The Roles of MicroRNAs (miRNAs) in Avian Response to Viral Infection and Pathogenesis of Avian Immunosuppressive Diseases. Int J Mol Sci 2019; 20:ijms20215454. [PMID: 31683847 PMCID: PMC6862082 DOI: 10.3390/ijms20215454] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 10/23/2019] [Accepted: 10/25/2019] [Indexed: 01/12/2023] Open
Abstract
MicroRNAs (miRNAs) are a class of non-coding small RNAs that play important roles in the regulation of various biological processes including cell development and differentiation, apoptosis, tumorigenesis, immunoregulation and viral infections. Avian immunosuppressive diseases refer to those avian diseases caused by pathogens that target and damage the immune organs or cells of the host, increasing susceptibility to other microbial infections and the risk of failure in subsequent vaccination against other diseases. As such, once a disease with an immunosuppressive feature occurs in flocks, it would be difficult for the stakeholders to have an optimal economic income. Infectious bursal disease (IBD), avian leukemia (AL), Marek’s disease (MD), chicken infectious anemia (CIA), reticuloendotheliosis (RE) and avian reovirus infection are on the top list of commonly-seen avian diseases with a feature of immunosuppression, posing an unmeasurable threat to the poultry industry across the globe. Understanding the pathogenesis of avian immunosuppressive disease is the basis for disease prevention and control. miRNAs have been shown to be involved in host response to pathogenic infections in chickens, including regulation of immunity, tumorigenesis, cell proliferation and viral replication. Here we summarize current knowledge on the roles of miRNAs in avian response to viral infection and pathogenesis of avian immunosuppressive diseases, in particular, MD, AL, IBD and RE.
Collapse
|
11
|
Yakovlev AF. The Role of miRNA in Differentiation, Cell Proliferation, and Pathogenesis of Poultry Diseases. Russ J Dev Biol 2019. [DOI: 10.1134/s1062360419030081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
12
|
Fang Y, Zhou Y, Zhang Y, He L, Xue C, Cao Y. Design of miRNA sponges for MDV-1 as a therapeutic strategy against lymphomas. Oncotarget 2017; 9:3842-3852. [PMID: 29423087 PMCID: PMC5790504 DOI: 10.18632/oncotarget.23379] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 11/17/2017] [Indexed: 01/25/2023] Open
Abstract
Lymphomas are solid-type tumors containing lymphoid cells. Some of latent herpesvirus infections established in B and/or T-lymphocytes could result in the formation of lymphomas. Marek's disease virus serotype 1 (MDV-1) is an avian herpes virus causing to lymphoproliferative tumors in birds, known as Marek’s disease (MD). MD has often been used as an ideal biological model for studying the pathogenesis of lymphoma diseases caused by viruses. Therefore, we used it as a research subject to study the effect of miRNA sponges on its tumorigenicity, and to develop the theoretical basis for a new anti-tumor small molecule. The miRNA sponges designed in this study specifically bind to and degrade the miRNAs of meq gene cluster of MDV-1, including miR-M2-3p, miR-M3-5p, miR-M5-3p, miR-M9-5p and miR-M12-3p.qPCR results showed that the knockdown efficiency was 85.03%, 74.97%, 47.06%, 75.33% and 62.55%, respectively. EDU staining and CCK-8 results showed that miRNA sponges inhibited the proliferation of MDV-1 transformed MSB-1 cells in vitro, and the proliferation rate of miRNA sponges-treated cells was about 50% of the control group. DAPI staining and Annxin V-FITC/PI double staining showed that miRNA sponges induced apoptosis in MSB-1 cells, and the apoptotic rate was increased by about 27.87% compared with the control group. The results of transwell showed that miRNA sponges could inhibit the invasion of MSB-1 cells in vitro, and the inhibitory rate was about 64.52%. The soft agar assay showed that miRNA sponges could inhibit the tumorigenic ability of MSB-1 cells in vitro, and the inhibitory rate was about 66.44%.The 60-days animal study showed that miRNA sponges could alleviate the growth inhibition of MSB-1 cells (about 14.78%) and reduce the mortality (about 16.00%). In addition, the tumor formation rate was 0 (8–12% in the control group).This study suggests that miRNA sponges can serve as an effective anti-tumor small molecule for the tumors caused by herpesvirus, with potential clinical implications.
Collapse
Affiliation(s)
- Yuan Fang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuqi Zhou
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yun Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Liangliang He
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Chunyi Xue
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yongchang Cao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
13
|
Dynamic Changes in the Splenic Transcriptome of Chickens during the Early Infection and Progress of Marek's Disease. Sci Rep 2017; 7:11648. [PMID: 28912500 PMCID: PMC5599560 DOI: 10.1038/s41598-017-11304-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 08/22/2017] [Indexed: 01/18/2023] Open
Abstract
Gallid alphaherpesvirus 2 (GaHV2) is an oncogenic avian herpesvirus inducing Marek’s disease (MD) and rapid-onset T-cell lymphomas. To reveal molecular events in MD pathogenesis and tumorigenesis, the dynamic splenic transcriptome of GaHV2-infected chickens during early infection and pathogenic phases has been determined utilizing RNA-seq. Based on the significant differentially expressed genes (DEGs), analysis of gene ontology, KEGG pathway and protein-protein interaction network has demonstrated that the molecular events happening during GaHV2 infection are highly relevant to the disease course. In the ‘Cornell Model’ description of MD, innate immune responses and inflammatory responses were established at early cytolytic phase but persisted until lymphoma formation. Humoral immunity in contrast began to play a role firstly in the intestinal system and started at late cytolytic phase. Neurological damage caused by GaHV2 is first seen in early cytolytic phase and is then sustained throughout the following phases over a long time period. During the proliferative phase many pathways associated with transcription and/or translation were significantly enriched, reflecting the cell transformation and lymphoma formation. Our work provides an overall view of host responses to GaHV2 infection and offers a meaningful basis for further studies of MD biology.
Collapse
|
14
|
Zhuang G, Sun A, Teng M, Luo J. A Tiny RNA that Packs a Big Punch: The Critical Role of a Viral miR-155 Ortholog in Lymphomagenesis in Marek's Disease. Front Microbiol 2017; 8:1169. [PMID: 28694799 PMCID: PMC5483433 DOI: 10.3389/fmicb.2017.01169] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 06/08/2017] [Indexed: 01/02/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that have been identified in animals, plants, and viruses. These small RNAs play important roles in post-transcriptional regulation of various cellular processes, including development, differentiation, and all aspects of cancer biology. Rapid-onset T-cell lymphoma of chickens, namely Marek’s disease (MD), induced by Gallid alphaherpesvirus 2 (GaHV2), could provide an ideal natural animal model for herpesvirus-related cancer research. GaHV2 encodes 26 mature miRNAs derived from 14 precursors assembled in three distinct gene clusters in the viral genome. One of the most highly expressed GaHV2 miRNAs, miR-M4-5p, shows high sequence similarity to the cellular miR-155 and the miR-K12-11 encoded by Kaposi’s sarcoma-associated herpesvirus, particularly in the miRNA “seed region.” As with miR-K12-11, miR-M4-5p shares a common set of host and viral target genes with miR-155, suggesting that they may target the same regulatory cellular networks; however, differences in regulatory function between miR-155 and miR-M4-5p may distinguish non-viral and viral mediated tumorigenesis. In this review, we focus on the functions of miR-M4-5p as the viral ortholog of miR-155 to explore how the virus mimics a host pathway to benefit the viral life cycle and trigger virus-induced tumorigenesis.
Collapse
Affiliation(s)
- Guoqing Zhuang
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College StationTX, United States
| | - Aijun Sun
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College StationTX, United States
| | - Man Teng
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural SciencesZhengzhou, China
| | - Jun Luo
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural SciencesZhengzhou, China.,College of Animal Science and Technology, Henan University of Science and TechnologyLuoyang, China
| |
Collapse
|
15
|
Dang L, Teng M, Li HZ, Ma SM, Lu QX, Hao HF, Zhao D, Zhou EM, Zhang GP, Luo J. Marek's disease virus type 1 encoded analog of miR-155 promotes proliferation of chicken embryo fibroblast and DF-1 cells by targeting hnRNPAB. Vet Microbiol 2017; 207:210-218. [PMID: 28757026 DOI: 10.1016/j.vetmic.2017.06.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 06/16/2017] [Accepted: 06/16/2017] [Indexed: 12/27/2022]
Abstract
Marek's disease virus type 1 (MDV-1) is a representative oncogenic Alpha herpesvirus that causes an immunosuppressive and neoplastic lymphoproliferative avian disease, namely Marek's disease (MD). The rapid-onset T-cell lymphoma in chickens induced by MDV-1 has been historically regarded as an ideal natural model for herpesvirus-related cancer research. As a viral analog of cellular miR-155, the MDV-1-encoded miR-M4-5p has been shown to be crucial for the virally-induced MD tumorigenesis. Our previous studies demonstrated that miR-M4-5p induces an over-expression of oncogene c-Myc by targeting LTBP1 and suppressing the TGF-β signaling pathway during MDV-1 infection. We have now further identified the chicken heterogeneous nuclear ribonucleoprotein AB (hnRNPAB) as a new cellular biological target for miR-M4-5p. Suppression of hnRNPAB expression mediated by miR-M4-5p promotes the proliferation, but not the apoptosis, of both primary chicken embryo fibroblasts (CEFs) and transformed chicken fibroblast DF-1 cell line. HnRNPAB is a member of the hnRNP family of proteins that play important roles in normal biological processes as well as cancer development. Our data suggests that the recognition and down-regulation of hnRNPAB by miR-M4-5p may be one of the important strategies for MDV-1 to trigger the development of MD lymphomas.
Collapse
Affiliation(s)
- Lu Dang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, People's Republic of China; Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, People's Republic of China
| | - Man Teng
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, People's Republic of China
| | - Hui-Zhen Li
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, People's Republic of China; College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, People's Republic of China
| | - Sheng-Ming Ma
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, People's Republic of China; College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, People's Republic of China
| | - Qing-Xia Lu
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, People's Republic of China
| | - Hui-Fang Hao
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, People's Republic of China
| | - Dong Zhao
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, People's Republic of China
| | - En-Min Zhou
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, People's Republic of China
| | - Gai-Ping Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, People's Republic of China; College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, People's Republic of China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, People's Republic of China.
| | - Jun Luo
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, People's Republic of China; College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, People's Republic of China.
| |
Collapse
|
16
|
Teng M, Yu ZH, Zhao P, Zhuang GQ, Wu ZX, Dang L, Li HZ, Ma SM, Cui ZZ, Zhang GP, Wu R, Luo J. Putative roles as oncogene or tumour suppressor of the Mid-clustered microRNAs in Gallid alphaherpesvirus 2 (GaHV2) induced Marek's disease lymphomagenesis. J Gen Virol 2017; 98:1097-1112. [PMID: 28510513 PMCID: PMC5656797 DOI: 10.1099/jgv.0.000786] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In the last decade, numerous microRNAs (miRNAs) have been identified in diverse virus families, particularly in herpesviruses. Gallid alphaherpesvirus 2 (GaHV2) is a representative oncogenic alphaherpesvirus that induces rapid-onset T-cell lymphomas in its natural hosts, namely Marek’s disease (MD). In the GaHV2 genome there are 26 mature miRNAs derived from 14 precursors assembled into three clusters, namely the Meq-cluster, Mid-cluster and LAT-cluster. Several GaHV2 miRNAs, especially those in the Meq-cluster (e.g. miR-M4-5p), have been demonstrated to be critical in MD pathogenesis and/or tumorigenesis. Interestingly the downstream Mid-cluster is regulated and transcribed by the same promoter as the Meq-cluster in the latent phase of the infection, but the role of these Mid-clustered miRNAs in GaHV2 biology remains unclear. We have generated the deletion mutants of the Mid-cluster and of its associated individual miRNAs in GX0101 virus, a very virulent GaHV2 strain, and demonstrated that the Mid-clustered miRNAs are not essential for virus replication. Using GaHV2-infected chickens as an animal model, we found that, compared with parental GX0101 virus, the individual deletion of miR-M31 decreased the mortality and gross tumour incidence of infected chickens while the deletion individually of miR-M1 or miR-M11 unexpectedly increased viral pathogenicity or oncogenicity, similarly to the deletion of the entire Mid-cluster region. More importantly, our data further confirm that miR-M11-5p, the miR-M11-derived mature miRNA, targets the viral oncogene meq and suppresses its expression in GaHV2 infection. We report here that members of the Mid-clustered miRNAs, miR-M31-3p and miR-M11-5p, potentially act either as oncogene or tumour suppressor in MD lymphomagenesis.
Collapse
Affiliation(s)
- Man Teng
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, PR China.,Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, PR China
| | - Zu-Hua Yu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, PR China
| | - Pu Zhao
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, PR China
| | - Guo-Qing Zhuang
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Zi-Xiang Wu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Lu Dang
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, PR China
| | - Hui-Zhen Li
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, PR China
| | - Sheng-Ming Ma
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, PR China.,College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, PR China
| | - Zhi-Zhong Cui
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 271018, PR China
| | - Gai-Ping Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, PR China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China
| | - Run Wu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Jun Luo
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, PR China.,College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, PR China
| |
Collapse
|
17
|
Sorel O, Dewals BG. MicroRNAs in large herpesvirus DNA genomes: recent advances. Biomol Concepts 2017; 7:229-39. [PMID: 27544723 DOI: 10.1515/bmc-2016-0017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 07/18/2016] [Indexed: 12/26/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs (ncRNAs) that regulate gene expression. They alter mRNA translation through base-pair complementarity, leading to regulation of genes during both physiological and pathological processes. Viruses have evolved mechanisms to take advantage of the host cells to multiply and/or persist over the lifetime of the host. Herpesviridae are a large family of double-stranded DNA viruses that are associated with a number of important diseases, including lymphoproliferative diseases. Herpesviruses establish lifelong latent infections through modulation of the interface between the virus and its host. A number of reports have identified miRNAs in a very large number of human and animal herpesviruses suggesting that these short non-coding transcripts could play essential roles in herpesvirus biology. This review will specifically focus on the recent advances on the functions of herpesvirus miRNAs in infection and pathogenesis.
Collapse
|
18
|
The small noncoding RNAs (sncRNAs) of murine gammaherpesvirus 68 (MHV-68) are involved in regulating the latent-to-lytic switch in vivo. Sci Rep 2016; 6:32128. [PMID: 27561205 PMCID: PMC4999806 DOI: 10.1038/srep32128] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 08/02/2016] [Indexed: 01/05/2023] Open
Abstract
The human gammaherpesviruses Epstein-Barr virus (EBV) and Kaposi’s sarcoma-associated herpesvirus (KSHV), which are associated with a variety of diseases including tumors, produce various small noncoding RNAs (sncRNAs) such as microRNAs (miRNAs). Like all herpesviruses, they show two stages in their life cycle: lytic replication and latency. During latency, hardly any viral proteins are expressed to avoid recognition by the immune system. Thus, sncRNAs might be exploited since they are less likely to be recognized. Specifically, it has been proposed that sncRNAs might contribute to the maintenance of latency. This has already been shown in vitro, but the respective evidence in vivo is very limited. A natural model system to explore this question in vivo is infection of mice with murine gammaherpesvirus 68 (MHV-68). We used this model to analyze a MHV-68 mutant lacking the expression of all miRNAs. In the absence of the miRNAs, we observed a higher viral genomic load during late latency in the spleens of mice. We propose that this is due to a disturbed regulation of the latent-to-lytic switch, altering the balance between latent and lytic infection. Hence, we provide for the first time evidence that gammaherpesvirus sncRNAs contribute to the maintenance of latency in vivo.
Collapse
|
19
|
Chicken gga-miR-103-3p Targets CCNE1 and TFDP2 and Inhibits MDCC-MSB1 Cell Migration. G3-GENES GENOMES GENETICS 2016; 6:1277-85. [PMID: 26935418 PMCID: PMC4856079 DOI: 10.1534/g3.116.028498] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Marek’s disease (MD) is a highly contagious viral neoplastic disease caused by Marek’s disease virus (MDV), which can lead to huge economic losses in the poultry industry. Recently, microRNAs (miRNAs) have been found in various cancers and tumors. In recent years, 994 mature miRNAs have been identified through deep sequencing in chickens, but only a few miRNAs have been investigated further in terms of their function. Previously, gga-miR-103-3p was found downregulated in MDV-infected samples by using Solexa deep sequencing. In this study, we further verified the expression of gga-miR-103-3p among MDV-infected spleen, MD lymphoma from liver, noninfected spleen, and noninfected liver, by qPCR. The results showed that the expression of gga-miR-103-3p was decreased in MDV-infected tissues, which was consistent with our previous study. Furthermore, two target genes of gga-miR-103-3p, cyclin E1 (CCNE1) and transcription factor Dp-2 (E2F dimerization partner 2) (TFDP2), were predicted and validated by luciferase reporter assay, qPCR, and western blot analysis. The results suggested that CCNE1 and TFDP2 are direct targets of gga-miR-103-3p in chickens. Subsequent cell proliferation and migration assay showed that gga-miR-103-3p suppressed MDCC-MSB1 migration, but did not obviously modulate MDCC-MSB1 cell proliferation. In conclusion, gga-miR-103-3p targets the CCNE1 and TFDP2 genes, and suppresses cell migration, which indicates that it might play an important role in MD tumor transformation.
Collapse
|
20
|
Feldman ER, Tibbetts SA. Emerging Roles of Herpesvirus microRNAs During In Vivo Infection and Pathogenesis. CURRENT PATHOBIOLOGY REPORTS 2015; 3:209-217. [PMID: 26246961 PMCID: PMC4522463 DOI: 10.1007/s40139-015-0085-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herpesviridae constitutes a large family of double-stranded DNA viruses that are associated with a wide range of diseases, including herpetic lesions, birth defects, and cancer. Herpesviruses establish lifelong latent infections in part because they are exceptionally adept at modulating the virus/host interface. New insights into the numerous roles of microRNAs (miRNAs) in cell biology, along with the recent appreciation that nearly every host transcript is targeted by at least one miRNA, has fundamentally changed our conceptualization of the virus/host relationship. The identification of miRNAs expressed from nearly all human herpesvirus genomes has led to the speculation that these short non-coding transcripts play essential roles in herpesvirus biology. Because the activity of miRNAs depends upon the transcriptome of the cell in which they are expressed, in vivo systems will be essential for defining the true biological relevance of herpesvirus miRNAs. This review will specifically focus on experimental systems which have investigated the functional role of herpesvirus-encoded miRNAs in viral biology and pathogenesis in vivo.
Collapse
Affiliation(s)
- Emily R. Feldman
- Department of Molecular Genetics & Microbiology, College of Medicine, UF Health Cancer Center, University of Florida, 1200 Newell Dr., R2-291, Gainesville, FL 32610 USA
| | - Scott A. Tibbetts
- Department of Molecular Genetics & Microbiology, College of Medicine, UF Health Cancer Center, University of Florida, 1200 Newell Dr., R2-291, Gainesville, FL 32610 USA
| |
Collapse
|
21
|
Zhao P, Li XJ, Teng M, Dang L, Yu ZH, Chi JQ, Su JW, Zhang GP, Luo J. In vivo expression patterns of microRNAs of Gallid herpesvirus 2 (GaHV-2) during the virus life cycle and development of Marek's disease lymphomas. Virus Genes 2015; 50:245-52. [PMID: 25666057 PMCID: PMC4381040 DOI: 10.1007/s11262-015-1167-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 01/07/2015] [Indexed: 01/04/2023]
Abstract
In the past decade, a large number of microRNAs (miRNAs) have been identified in the viral genome of Gallid herpesvirus 2 (GaHV-2), which is historically known as Marek’s disease virus type 1. The biological role of most GaHV-2 miRNAs remains unclear. In the present study, we have performed an overall gene expression profile of GaHV-2 miRNAs during the virus life cycle at each phase of the developing disease, a highly contagious, lymphoproliferative disorder, and neoplastic immunosuppressive disease of poultry known as the Marek’s disease. According to their distinct in vivo expression patterns, the GaHV-2 miRNAs can be divided into three groups: 12 miRNAs in group I, including miR-M4-5p, displayed a typical expression pattern potentially correlated to the latent, late cytolytic, and/or the proliferative phases in the cycle of GaHV-2 pathogenesis; group II consisting of another 12 miRNAs with expression correlated to the early cytolytic and/or latent phases in GaHV-2’s life cycle; while the other two miRNAs in group III showed no identical expression features. Our findings may provide meaningful clues in the search for further potential functions of viral miRNAs in GaHV-2 biology.
Collapse
Affiliation(s)
- Pu Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100 People’s Republic of China
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, No. 116 Huayuan Road, Zhengzhou, 450002 People’s Republic of China
- Department of Animal Science and Technology, He’nan Institute of Science and Technology, Xinxiang, 453003 People’s Republic of China
| | - Xiu-Jie Li
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, No. 116 Huayuan Road, Zhengzhou, 450002 People’s Republic of China
| | - Man Teng
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, No. 116 Huayuan Road, Zhengzhou, 450002 People’s Republic of China
| | - Lu Dang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100 People’s Republic of China
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, No. 116 Huayuan Road, Zhengzhou, 450002 People’s Republic of China
| | - Zu-Hua Yu
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, No. 116 Huayuan Road, Zhengzhou, 450002 People’s Republic of China
- Present Address: College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003 People’s Republic of China
| | - Jia-Qi Chi
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, No. 116 Huayuan Road, Zhengzhou, 450002 People’s Republic of China
| | - Jing-Wei Su
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, No. 63 Nongye Road, Zhengzhou, 450002 People’s Republic of China
| | - Gai-Ping Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, No. 63 Nongye Road, Zhengzhou, 450002 People’s Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 People’s Republic of China
| | - Jun Luo
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, No. 116 Huayuan Road, Zhengzhou, 450002 People’s Republic of China
| |
Collapse
|