1
|
Feng X, Liu Z, Mo Y, Zhang S, Ma XX. Role of nucleotide pair frequency and synonymous codon usage in the evolution of bovine viral diarrhea virus. Arch Virol 2025; 170:64. [PMID: 40011265 DOI: 10.1007/s00705-025-06250-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 11/26/2024] [Indexed: 02/28/2025]
Abstract
Synonymous codon usage plays an important role in the adaptation of viruses to their hosts. Bovine viral diarrhea virus (BVDV) relies on a high mutation rate in its genome to achieve the necessary fitness in a particular host. However, the question of which selective forces influence nucleotide pair and synonymous codon usage patterns in different BVDV genotypes remains unresolved. Here, 169 BVDV strains isolated at different times in various countries were analyzed to compare their dinucleotide frequency and synonymous codon usage. Examination of the nucleotide usage pattern in the open reading frame (ORF) of BVDV revealed a significantly higher frequency of purine than pyrimidine, with the highest extent of nucleotide usage bias observed in the first codon position. Moreover, a nucleotide pair bias, especially favoring CpG dinucleotides, was observed in all of the genotypes. Together, the nucleotide composition constraints and nucleotide pair bias appear to have influenced the overall codon usage pattern. Nucleotide pair and synonymous codon usage biases were associated with individual genotypes to different degrees. Of particular note, BVDV-1 exhibited more variation in its nucleotide pair and synonymous codon usage than BVDV-2 and BVDV-3, suggesting that these patterns are shaped both by selection of mutations in the viral genome and translational selection in the host.
Collapse
Affiliation(s)
- Xili Feng
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
- Key Laboratory of Special Animal Epidemic Disease, Ministry of Agriculture, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Zeyu Liu
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
| | - Yongli Mo
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
| | - Shubin Zhang
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
| | - Xiao-Xia Ma
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China.
| |
Collapse
|
2
|
Ren J, Li Q, Shen W, Tan X. Decoding Codon Usage Patterns in High-Risk Human Papillomavirus Genomes: A Comprehensive Analysis. Curr Microbiol 2025; 82:148. [PMID: 39987223 DOI: 10.1007/s00284-025-04131-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 02/13/2025] [Indexed: 02/24/2025]
Abstract
Human Papillomavirus (HPV) is a major contributor to various human cancers, particularly cervical cancer. Despite its significant impact, the codon usage bias in high-risk HPV types has not been extensively studied. Understanding this bias, however, could provide valuable insights into the virus itself and inform the optimization of vaccine design. This study explores codon usage bias within the genomes of 17 high-risk HPV types (HPV-16, 18, 26, 31, 33, 35, 39, 45, 51, 52, 53, 56, 58, 59, 66, 68, and 82) through comparative analysis. While overall codon usage preference across these genotypes is not highly significant, a notable trend emerges in the preference for codons ending in A or U, with 24 out of 26 favored codons (Relative Synonymous Codon Usage > 1) ending in A or U. Moreover, no common optimal codons are shared among the 17 genomes. The study also identifies the underrepresentation of CpG and ApA dinucleotides, alongside the overrepresentation of CpA and UpG, which likely contribute to codon usage preferences that may influence viral replication and immune evasion strategies. Integrated analysis further suggests that natural selection is the primary force driving codon usage bias in these high-risk HPV genomes. Additionally, these HPVs exhibit a limited set of favored codons shared with humans, potentially minimizing competition for translation resources. This study offers new insights into codon usage bias in high-risk HPVs and underscores the importance of this understanding for optimizing vaccine design.
Collapse
Affiliation(s)
- Jiahuan Ren
- Emergency Department, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, People's Republic of China
| | - Qijia Li
- Department of Clinical Laboratory, Sichuan Provincial Women's and Children's Hospital / The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, China
| | - Weifeng Shen
- Department of Clinical Laboratory, The First Hospital of Jiaxing and The Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Xiaochun Tan
- Department of Clinical Laboratory, The First Hospital of Jiaxing and The Affiliated Hospital of Jiaxing University, Jiaxing, China.
| |
Collapse
|
3
|
Thomas PD, Ferrer MF, Lozano MJ, Gómez RM. A study on the codon usage bias of arenavirus common genes. Front Microbiol 2025; 15:1490076. [PMID: 39917269 PMCID: PMC11799557 DOI: 10.3389/fmicb.2024.1490076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 12/30/2024] [Indexed: 02/09/2025] Open
Abstract
Introduction The Arenaviridae family consists of the genera Mammarenavirus, Reptarenavirus, Hartmanivirus, Antennavirus and Innmovirus. The codon usage bias between the different genera has not yet been studied comparatively. Methods We retrieved the arenavirus genome sequences from public databases and used bioinformatics tools to compare the codon usage bias between the different genera for the GPC, NP and L proteins, common to all arenaviruses. Results and discussion Hartmaniviruses show a larger codon usage bias, which can be partially explained by mutational bias. Patterns of relative use of synonymous codons were maintained within genera, with individual genera differing in their preference for the third nucleotide position in synonymous codons. Of the three proteins examined, the ARN polymerase L protein exhibited a slightly stronger codon usage bias, but overall, the patterns were repeated between genera for the three proteins examined. Our results suggest that codon usage pattern bias in arenaviruses is influenced by selection pressure and to a lesser extent by mutational selection.
Collapse
Affiliation(s)
- Pablo Daniel Thomas
- Laboratorio de Patogénesis Viral, Instituto de Biotecnología y Biología Molecular, CONICET-UNLP, La Plata, Argentina
| | - María Florencia Ferrer
- Laboratorio de Patogénesis Viral, Instituto de Biotecnología y Biología Molecular, CONICET-UNLP, La Plata, Argentina
| | - Mauricio J. Lozano
- Laboratorio de Genómica y Ecología Molecular de Microorganismos del Suelo Asociados con Plantas, Instituto de Biotecnología y Biología Molecular, CONICET-UNLP, La Plata, Argentina
| | - Ricardo Martín Gómez
- Laboratorio de Patogénesis Viral, Instituto de Biotecnología y Biología Molecular, CONICET-UNLP, La Plata, Argentina
| |
Collapse
|
4
|
Holmudden M, Gustafsson J, Bertrand YJK, Schliep A, Norberg P. Evolution shapes and conserves genomic signatures in viruses. Commun Biol 2024; 7:1412. [PMID: 39478059 PMCID: PMC11526014 DOI: 10.1038/s42003-024-07098-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 10/17/2024] [Indexed: 11/02/2024] Open
Abstract
The genomic signature of an organism captures the characteristics of repeated oligonucleotide patterns in its genome 1, such as oligomer frequencies, GC content, and differences in codon usage. Viruses, however, are obligate intracellular parasites that are dependent on their host cells for replication, and information about genomic signatures in viruses has hitherto been sparse.Here, we investigate the presence and specificity of genomic signatures in 2,768 eukaryotic viral species from 105 viral families, aiming to illuminate dependencies and selective pressures in viral genome evolution. We demonstrate that most viruses have highly specific genomic signatures that often also differ significantly between species within the same family. The species-specificity is most prominent among dsDNA viruses and viruses with large genomes. We also reveal consistent dissimilarities between viral genomic signatures and those of their host cells, although some viruses present slight similarities, which may be explained by genetic adaptation to their native hosts. Our results suggest that significant evolutionary selection pressures act upon viral genomes to shape and preserve their genomic signatures, which may have implications for the field of synthetic biology in the construction of live attenuated vaccines and viral vectors.
Collapse
Affiliation(s)
- Martin Holmudden
- Department of Infectious Diseases, Section for Clinical Virology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Joel Gustafsson
- Department of Infectious Diseases, Section for Clinical Virology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Yann J K Bertrand
- Laboratory of Molecular Biology and Bioinformatics, Institute of Botany, Czech Academy of Sciences, Prague, Czechia
| | - Alexander Schliep
- Department of Computer Science, Chalmers University of Technology, Gothenburg, Sweden
| | - Peter Norberg
- Department of Infectious Diseases, Section for Clinical Virology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
5
|
Castellano LA, McNamara RJ, Pallarés HM, Gamarnik AV, Alvarez DE, Bazzini AA. Dengue virus preferentially uses human and mosquito non-optimal codons. Mol Syst Biol 2024; 20:1085-1108. [PMID: 39039212 PMCID: PMC11450187 DOI: 10.1038/s44320-024-00052-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/24/2024] Open
Abstract
Codon optimality refers to the effect that codon composition has on messenger RNA (mRNA) stability and translation level and implies that synonymous codons are not silent from a regulatory point of view. Here, we investigated the adaptation of virus genomes to the host optimality code using mosquito-borne dengue virus (DENV) as a model. We demonstrated that codon optimality exists in mosquito cells and showed that DENV preferentially uses nonoptimal (destabilizing) codons and avoids codons that are defined as optimal (stabilizing) in either human or mosquito cells. Human genes enriched in the codons preferentially and frequently used by DENV are upregulated during infection, and so is the tRNA decoding the nonoptimal and DENV preferentially used codon for arginine. We found that adaptation during single-host passaging in human or mosquito cells results in the selection of synonymous mutations towards DENV's preferred nonoptimal codons that increase virus fitness. Finally, our analyses revealed that hundreds of viruses preferentially use nonoptimal codons, with those infecting a single host displaying an even stronger bias, suggesting that host-pathogen interaction shapes virus-synonymous codon choice.
Collapse
Affiliation(s)
- Luciana A Castellano
- Stowers Institute for Medical Research, 1000 E 50th Street, Kansas City, MO, 64110, USA
| | - Ryan J McNamara
- Stowers Institute for Medical Research, 1000 E 50th Street, Kansas City, MO, 64110, USA
| | - Horacio M Pallarés
- Stowers Institute for Medical Research, 1000 E 50th Street, Kansas City, MO, 64110, USA
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires IIBBA-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Andrea V Gamarnik
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires IIBBA-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Diego E Alvarez
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín-CONICET, San Martín B1650, Argentina
| | - Ariel A Bazzini
- Stowers Institute for Medical Research, 1000 E 50th Street, Kansas City, MO, 64110, USA.
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS, 66160, USA.
| |
Collapse
|
6
|
Aktürk Dizman Y. Exploring Codon Usage Patterns and Influencing Factors in Ranavirus DNA Polymerase Genes. J Basic Microbiol 2024; 64:e2400289. [PMID: 39099168 DOI: 10.1002/jobm.202400289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/05/2024] [Accepted: 07/20/2024] [Indexed: 08/06/2024]
Abstract
Ranaviruses, members of the genus Ranavirus within the family Iridoviridae, have become a significant concern for amphibian populations globally, along with other cold-blooded vertebrates, due to their emergence as a significant threat. We employed bioinformatics tools to examine the codon usage patterns in 61 DNA pol genes from Ranavirus, Lymphocystivirus, Megalocytivirus, and two unclassified ranaviruses, as no prior studies had been conducted on this topic. The results showed a slight or low level of codon usage bias (CUB) in the DNA pol genes of Ranavirus. Relative synonymous codon usage (RSCU) analysis indicated that the predominant codons favored in Ranavirus DNA pol genes terminate with C or G. Correlation analysis examining nucleotide content, third codon position, effective number of codons (ENC), correspondence analysis (COA), Aroma values, and GRAVY values indicated that the CUB across DNA pol genes could be influenced by both mutation pressure and natural selection. The neutrality plot indicated that natural selection is the primary factor driving codon usage. Furthermore, the analysis of the codon adaptation index (CAI) illustrated the robust adaptability of Ranavirus DNA pol genes to their hosts. Analysis of the relative codon deoptimization index (RCDI) suggested that Ranavirus DNA pol genes underwent greater selection pressure from their hosts. These findings will aid in comprehending the factors influencing the evolution and adaptation of Ranavirus to its hosts.
Collapse
Affiliation(s)
- Yeşim Aktürk Dizman
- Department of Biology, Faculty of Arts and Sciences, Recep Tayyip Erdoğan University, Rize, Türkiye
| |
Collapse
|
7
|
Zhao H, Qin L, Deng X, Wang Z, Jiang R, Reitz SR, Wu S, He Z. Nucleotide and dinucleotide preference of segmented viruses are shaped more by segment: In case study of tomato spotted wilt virus. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 122:105608. [PMID: 38796047 DOI: 10.1016/j.meegid.2024.105608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 05/28/2024]
Abstract
Several studies have showed that the nucleotide and dinucleotide composition of viruses possibly follows their host species or protein coding region. Nevertheless, the influence of viral segment on viral nucleotide and dinucleotide composition is still unknown. Here, we explored through tomato spotted wilt virus (TSWV), a segmented virus that seriously threatens the production of tomatoes all over the world. Through nucleotide composition analysis, we found the same over-representation of A across all viral segments at the first and second codon position, but it exhibited distinct in segments at the third codon position. Interestingly, the protein coding regions which encoded by the same or different segments exhibit obvious distinct nucleotide preference. Then, we found that the dinucleotides UpG and CpU were overrepresented and the dinucleotides UpA, CpG and GpU were underrepresented, not only in the complete genomic sequences, but also in different segments, protein coding regions and host species. Notably, 100% of the data investigated here were predicted to the correct viral segment and protein coding region, despite the fact that only 67% of the data analyzed here were predicted to the correct viral host species. In conclusion, in case study of TSWV, nucleotide composition and dinucleotide preference of segment viruses are more strongly dependent on segment and protein coding region than on host species. This research provides a novel perspective on the molecular evolutionary mechanisms of TSWV and provides reference for future research on genetic diversity of segmented viruses.
Collapse
Affiliation(s)
- Haiting Zhao
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Lang Qin
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Xiaolong Deng
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Zhilei Wang
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Runzhou Jiang
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Stuart R Reitz
- Malheur Experiment Station, Oregon State University, Ontario, OR, USA
| | - Shengyong Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Zhen He
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
8
|
Gibbs VJ, Lin YH, Ghuge AA, Anderson RA, Schiemann AH, Conaglen L, Sansom BJM, da Silva RC, Sattlegger E. GCN2 in Viral Defence and the Subversive Tactics Employed by Viruses. J Mol Biol 2024; 436:168594. [PMID: 38724002 DOI: 10.1016/j.jmb.2024.168594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/01/2024] [Accepted: 05/01/2024] [Indexed: 06/10/2024]
Abstract
The recent SARS-CoV-2 pandemic and associated COVID19 disease illustrates the important role of viral defence mechanisms in ensuring survival and recovery of the host or patient. Viruses absolutely depend on the host's protein synthesis machinery to replicate, meaning that impeding translation is a powerful way to counteract viruses. One major approach used by cells to obstruct protein synthesis is to phosphorylate the alpha subunit of eukaryotic translation initiation factor 2 (eIF2α). Mammals possess four different eIF2α-kinases: PKR, HRI, PEK/PERK, and GCN2. While PKR is currently considered the principal eIF2α-kinase involved in viral defence, the other eIF2α-kinases have also been found to play significant roles. Unsurprisingly, viruses have developed mechanisms to counteract the actions of eIF2α-kinases, or even to exploit them to their benefit. While some of these virulence factors are specific to one eIF2α-kinase, such as GCN2, others target all eIF2α-kinases. This review critically evaluates the current knowledge of viral mechanisms targeting the eIF2α-kinase GCN2. A detailed and in-depth understanding of the molecular mechanisms by which viruses evade host defence mechanisms will help to inform the development of powerful anti-viral measures.
Collapse
Affiliation(s)
- Victoria J Gibbs
- School of Food Technology and Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Yu H Lin
- School of Food Technology and Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Aditi A Ghuge
- School of Food Technology and Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Reuben A Anderson
- School of Food Technology and Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Anja H Schiemann
- School of Food Technology and Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Layla Conaglen
- School of Food Technology and Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Bianca J M Sansom
- School of Natural Sciences, Massey University, Auckland, New Zealand
| | - Richard C da Silva
- School of Natural Sciences, Massey University, Auckland, New Zealand; Genome Biology and Epigenetics, Department of Biology, Utrecht University, Utrecht, the Netherlands
| | - Evelyn Sattlegger
- School of Food Technology and Natural Sciences, Massey University, Palmerston North, New Zealand; School of Natural Sciences, Massey University, Auckland, New Zealand; Maurice Wilkins Centre for Molecular BioDiscovery, Palmerston North, New Zealand.
| |
Collapse
|
9
|
Tan X, Xie Y, Jiang C, Li H, Lu Y, Shen W, Chen J. Codon usage bias of human papillomavirus type 33 and 58: A comprehensive analysis. J Basic Microbiol 2024; 64:e2300636. [PMID: 38346260 DOI: 10.1002/jobm.202300636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/08/2024] [Accepted: 01/20/2024] [Indexed: 05/03/2024]
Abstract
Cervical cancer is closely linked to specific strains of human papillomavirus (HPV), notably HPV-33 and HPV-58, which exhibit a significant prevalence among women in China. Nevertheless, the codon usage bias in HPV-33 and HPV-58 is not well comprehended. The objective of this research is to analyze the codon usage patterns HPV-33 and HPV-58, pinpoint the primary factors that influence codon preference. The overall preference for codon usage in two HPV genotypes is not significant. Both HPV genotypes exhibit a preference for codons that end with A/U. The GC3 content for HPV-33 is 25.43% ± 0.35%, and for HPV-58, it is 29.44% ± 0.57%. Out of the 26 favored codons in HPV-33 and HPV-58 (relative synonymous codon usage (RSCU) > 1), 25 conclude with A/U. Principal component analysis (PCA) shows a tight clustering of the entire genome sequences of HPV-33 and HPV-58, suggesting a similarity in their RSCU preferences. Moreover, an examination of dinucleotide abundance indicated that translation selection influenced the development of a distinctive dinucleotide usage pattern in HPV-33 and HPV-58. Additionally, a combined analysis involving an effective number of codons plot, parity rule 2, and neutrality analysis demonstrated that, for HPV-33 and HPV-58, the primary determinant influencing codon usage preference is natural selection. HPV-33 and HPV-58 exhibit a restricted set of favored codons in common with humans, potentially mitigating competition for translation resources. Our discoveries could provide valuable perspectives on the evolutionary patterns and codon usage preferences of HPV-33 and HPV-58 viruses, contributing to the development and application of relevant HPV subtype vaccines.
Collapse
Affiliation(s)
- Xiaochun Tan
- Department of Laboratory Medicine, The First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Yucheng Xie
- Department of Laboratory Medicine, The First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Chaoyue Jiang
- Department of Laboratory Medicine, The First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Hui Li
- Department of Laboratory Medicine, The First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Yu Lu
- Department of Laboratory Medicine, The First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Weifeng Shen
- Department of Laboratory Medicine, The First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Jing Chen
- Department of Laboratory Medicine, The First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, Jiaxing, China
| |
Collapse
|
10
|
Aktürk Dizman Y. Analysis of codon usage bias of exonuclease genes in invertebrate iridescent viruses. Virology 2024; 593:110030. [PMID: 38402641 DOI: 10.1016/j.virol.2024.110030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/04/2024] [Accepted: 02/13/2024] [Indexed: 02/27/2024]
Abstract
Invertebrate iridescent viruses (IIVs) are double-stranded DNA viruses that belong to the Iridoviridae family. IIVs result diseases that vary in severity from subclinical to lethal in invertebrate hosts. Codon usage bias (CUB) analysis is a versatile method for comprehending the genetic and evolutionary aspects of species. In this study, we analyzed the CUB in 10 invertebrate iridescent viruses exonuclease genes by calculating and comparing the nucleotide contents, effective number of codons (ENC), codon adaptation index (CAI), relative synonymous codon usage (RSCU), and others. The results revealed that IIVs exonuclease genes are rich in A/T. The ENC analysis displayed a low codon usage bias in IIVs exonuclease genes. ENC-plot, neutrality plot, and parity rule 2 plot demonstrated that besides mutational pressure, other factors like natural selection, dinucleotide content, and aromaticity also contributed to CUB. The findings could enhance our understanding of the evolution of IIVs exonuclease genes.
Collapse
Affiliation(s)
- Yeşim Aktürk Dizman
- Department of Biology, Faculty of Arts and Sciences, Recep Tayyip Erdogan University, 53100, Rize, Türkiye.
| |
Collapse
|
11
|
S. Celina S, Černý J. Genetic background of adaptation of Crimean-Congo haemorrhagic fever virus to the different tick hosts. PLoS One 2024; 19:e0302224. [PMID: 38662658 PMCID: PMC11045102 DOI: 10.1371/journal.pone.0302224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Crimean-Congo haemorrhagic fever orthonairovirus (CCHFV) is a negative-sense, single-stranded RNA virus with a segmented genome and the causative agent of a severe Crimean-Congo haemorrhagic fever (CCHF) disease. The virus is transmitted mainly by tick species in Hyalomma genus but other ticks such as representatives of genera Dermacentor and Rhipicephalus may also be involved in virus life cycle. To improve our understanding of CCHFV adaptation to its tick species, we compared nucleotide composition and codon usage patterns among the all CCHFV strains i) which sequences and other metadata as locality of collection and date of isolation are available in GenBank and ii) which were isolated from in-field collected tick species. These criteria fulfilled 70 sequences (24 coding for S, 23 for M, and 23 for L segment) of virus isolates originating from different representatives of Hyalomma and Rhipicephalus genera. Phylogenetic analyses confirmed that Hyalomma- and Rhipicephalus-originating CCHFV isolates belong to phylogenetically distinct CCHFV clades. Analyses of nucleotide composition among the Hyalomma- and Rhipicephalus-originating CCHFV isolates also showed significant differences, mainly in nucleotides located at the 3rd codon positions indicating changes in codon usage among these lineages. Analyses of codon adaptation index (CAI), effective number of codons (ENC), and other codon usage statistics revealed significant differences between Hyalomma- and Rhipicephalus-isolated CCHFV strains. Despite both sets of strains displayed a higher adaptation to use codons that are preferred by Hyalomma ticks than Rhipicephalus ticks, there were distinct codon usage preferences observed between the two tick species. These findings suggest that over the course of its long co-evolution with tick vectors, CCHFV has optimized its codon usage to efficiently utilize translational resources of Hyalomma species.
Collapse
Affiliation(s)
- Seyma S. Celina
- Faculty of Tropical AgriSciences, Center for Infectious Animal Diseases, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Jiří Černý
- Faculty of Tropical AgriSciences, Center for Infectious Animal Diseases, Czech University of Life Sciences Prague, Prague, Czech Republic
| |
Collapse
|
12
|
Chen L, Jiang W, Wu W, Zhang S, Cai J, Lv T, Xiang B, Lin Q, Liao M, Ding C, Ren T. Insights into the Epidemiology, Phylodynamics, and Evolutionary Changes of Lineage GI-7 Infectious Bronchitis Virus. Transbound Emerg Dis 2023; 2023:9520616. [PMID: 40303710 PMCID: PMC12016960 DOI: 10.1155/2023/9520616] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/10/2023] [Accepted: 05/11/2023] [Indexed: 05/02/2025]
Abstract
Infectious bronchitis virus (IBV) is distributed worldwide and causes significant losses in the poultry industry. In recent decades, lineages GI-19 and GI-7 have become the most prevalent IBV strains in China. However, the molecular evolution and phylodynamics of the lineage GI-7 IBV strains remain largely unknown. In this study, we identified 19 IBV strains from clinical samples from January 2021 to June 2022 in China, including 12 strains of GI-19, 3 strains of GI-7, and 1 strain each of GI-1, GI-9, GI-13, and GI-28. These results indicated that lineages GI-19 and GI-7 IBVs are still the most prevalent IBVs in China. Here, we investigated the evolution and transmission dynamics of lineage GI-7 IBVs. Our results revealed that the Taiwan province might be the origin of lineage GI-7 IBVs and that South China plays an important role in the spread of IBV. Furthermore, we found low codon usage bias of the S1 gene in lineage GI-7 IBVs. This allowed IBV to replicate in the host during evolution as a result of reduced competition, mainly driven by natural selection and mutational pressure, where the role of natural selection is more prominent. Collectively, our results reveal the genetic diversity and evolutionary dynamics of lineage GI-7 IBVs, which could assist in the prevention and control of viral infection.
Collapse
Affiliation(s)
- Libin Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Weiwei Jiang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Wanyan Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Siyuan Zhang
- Guangzhou South China Biological Medicine Co., Ltd., Guangzhou 510642, China
| | - Juncheng Cai
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Ting Lv
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Bin Xiang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Qiuyan Lin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Ming Liao
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
| | - Chan Ding
- Shanghai Veterinary Research Institute (SHVRI), Chinese Academy of Agricultural Sciences (CAAS), Shanghai 200241, China
| | - Tao Ren
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| |
Collapse
|
13
|
Bai H, Ata G, Sun Q, Rahman SU, Tao S. Natural selection pressure exerted on "Silent" mutations during the evolution of SARS-CoV-2: Evidence from codon usage and RNA structure. Virus Res 2023; 323:198966. [PMID: 36244617 PMCID: PMC9561399 DOI: 10.1016/j.virusres.2022.198966] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/08/2022] [Accepted: 10/10/2022] [Indexed: 01/25/2023]
Abstract
From the first emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) till now, multiple mutations that caused synonymous and nonsynonymous substitutions have accumulated. Among them, synonymous substitutions were regarded as "silent" mutations that received less attention than nonsynonymous substitutions that cause amino acid variations. However, the importance of synonymous substitutions can not be neglected. This research focuses on synonymous substitutions on SARS-CoV-2 and proves that synonymous substitutions were under purifying selection in its evolution. The evidence of purifying selection is provided by comparing the mutation number per site in coding and non-coding regions. We then study the two forces of purifying selection: synonymous codon usage and RNA secondary structure. Results show that the codon usage optimization leads to an adapted codon usage towards humans. Furthermore, our results show that the maintenance of RNA secondary structure causes the purifying of synonymous substitutions in the structural region. These results explain the selection pressure on synonymous substitutions during the evolution of SARS-CoV-2.
Collapse
Affiliation(s)
- Haoxiang Bai
- College of Life Sciences, Northwest A&F University, Yangling, China; Bioinformatics Center, Northwest A&F University, Yangling, China
| | - Galal Ata
- College of Life Sciences, Northwest A&F University, Yangling, China; Bioinformatics Center, Northwest A&F University, Yangling, China
| | - Qing Sun
- College of Life Sciences, Northwest A&F University, Yangling, China; Bioinformatics Center, Northwest A&F University, Yangling, China
| | - Siddiq Ur Rahman
- Department of Computer Science and Bioinformatics, Khushal Khan Khattak University, Karak, Khyber Pakhtunkhwa, Pakistan
| | - Shiheng Tao
- College of Life Sciences, Northwest A&F University, Yangling, China; Bioinformatics Center, Northwest A&F University, Yangling, China.
| |
Collapse
|
14
|
de Mariz E Miranda LS. The synergy between nucleotide biosynthesis inhibitors and antiviral nucleosides: New opportunities against viral infections? Arch Pharm (Weinheim) 2023; 356:e2200217. [PMID: 36122181 DOI: 10.1002/ardp.202200217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/18/2022] [Accepted: 08/26/2022] [Indexed: 01/04/2023]
Abstract
5'-Phosphorylated nucleoside derivatives are molecules that can be found in all living organisms and viruses. Over the last century, the development of structural analogs that could disrupt the transcription and translation of genetic information culminated in the development of clinically relevant anticancer and antiviral drugs. However, clinically effective broad-spectrum antiviral compounds or treatments are lacking. This viewpoint proposes that molecules that inhibit nucleotide biosynthesis may sensitize virus-infected cells toward direct-acting antiviral nucleosides. Such potentially synergistic combinations might allow the repurposing of drugs, leading to the development of new combination therapies.
Collapse
Affiliation(s)
- Leandro S de Mariz E Miranda
- Department of Organic Chemistry, Chemistry Institute, Biocatalysis and Organic Synthesis Group, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
15
|
Berkhout B, van Hemert FJ. Silent codon positions in the A-rich HIV RNA genome that do not easily become A: Restrictions imposed by the RNA sequence and structure. Virus Evol 2022; 8:veac072. [PMID: 36533144 PMCID: PMC9752802 DOI: 10.1093/ve/veac072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/13/2022] [Accepted: 08/04/2022] [Indexed: 07/30/2023] Open
Abstract
There is a strong evolutionary tendency of the human immunodeficiency virus (HIV) to accumulate A nucleotides in its RNA genome, resulting in a mere 40 per cent A count. This A bias is especially dominant for the so-called silent codon positions where any nucleotide can be present without changing the encoded protein. However, particular silent codon positions in HIV RNA refrain from becoming A, which became apparent upon genome analysis of many virus isolates. We analyzed these 'noA' genome positions to reveal the underlying reason for their inability to facilitate the A nucleotide. We propose that local RNA structure requirements can explain the absence of A at these sites. Thus, noA sites may be prominently involved in the correct folding of the viral RNA. Turning things around, the presence of multiple clustered noA sites may reveal the presence of important sequence and/or structural elements in the HIV RNA genome.
Collapse
Affiliation(s)
| | - Formijn J van Hemert
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 15, 1105AZ Amsterdam, The Netherlands
| |
Collapse
|
16
|
Wu H, Li B, Miao Z, Hu L, Zhou L, Lu Y. Codon usage of host-specific P genotypes (VP4) in group A rotavirus. BMC Genomics 2022; 23:518. [PMID: 35842571 PMCID: PMC9288207 DOI: 10.1186/s12864-022-08730-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/30/2022] [Indexed: 11/26/2022] Open
Abstract
Background Group A rotavirus (RVA) is a common causative agent of acute gastroenteritis in infants and young children worldwide. RVA P genotypes, determined by VP4 sequences, have been confirmed to infect humans and animals. However, their codon usage patterns that are essential to obtain insights into the viral evolution, host adaptability, and genetic characterization remained unclear, especially across animal hosts. Results We performed a comprehensive codon usage analysis of eight host-specific RVA P genotypes, including human RVA (P[4] and P[8]), porcine RVA (P[13] and P[23]), and zoonotic RVA (P[1], P[6], P[7] and P[19]), based on 233 VP4 complete coding sequences. Nucleotide composition, relative synonymous codon usage (RSCU), and effective number of codons (ENC) were calculated. Principal component analysis (PCA) based on RSCU values was used to explore the codon usage patterns of different RVA P genotypes. In addition, mutation pressure and natural selection were identified by using ENC-plot, parity rule 2 plot, and neutrality plot analyses. All VP4 sequences preferred using A/U nucleotides (A: 0.354-0.377, U: 0.267-0.314) than G/C nucleotides across genotypes. Similarly, majority of commonly used synonymous codons were likely to end with A/U nucleotides (A: 9/18-12/18, U: 6/18-9/18). In PCA, human, porcine, and zoonotic genotypes clustered separately in terms of RSCU values, indicating the host-specific codon usage patterns; however, porcine and zoonotic genotypes were partly overlapped. Human genotypes, P[4] and P[8], had stronger codon usage bias, as indicated by more over-represented codons and lower ENC, compared to porcine and zoonotic genotypes. Moreover, natural selection was determined to be a predominant driver in shaping the codon usage bias across the eight P genotypes. In addition, mutation pressure contributed to the codon usage bias of human genotypes. Conclusions Our study identified a strong codon usage bias of human RVA P genotypes attributable to both natural selection and mutation pressure, whereas similar codon usage bias between porcine and zoonotic genotypes predominantly attributable to natural selection. It further suggests possible cross-species transmission. Therefore, it warrants further surveillance of RVA P genotypes for early identification of zoonotic infection. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08730-2.
Collapse
Affiliation(s)
- Han Wu
- Department of Epidemiology, Ministry of Education Key Laboratory of Public Health Safety (Fudan University), School of Public Health, Fudan University, Shanghai, 200032, China
| | - Bingzhe Li
- Department of Epidemiology, Ministry of Education Key Laboratory of Public Health Safety (Fudan University), School of Public Health, Fudan University, Shanghai, 200032, China
| | - Ziping Miao
- Institute of Communicable Diseases Prevention and Control, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310052, Zhejiang, China
| | - Linjie Hu
- Department of Epidemiology, Ministry of Education Key Laboratory of Public Health Safety (Fudan University), School of Public Health, Fudan University, Shanghai, 200032, China
| | - Lu Zhou
- Department of Epidemiology, Ministry of Education Key Laboratory of Public Health Safety (Fudan University), School of Public Health, Fudan University, Shanghai, 200032, China
| | - Yihan Lu
- Department of Epidemiology, Ministry of Education Key Laboratory of Public Health Safety (Fudan University), School of Public Health, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
17
|
Li B, Wu H, Miao Z, Hu L, Zhou L, Lu Y. Codon Usage of Hepatitis E Viruses: A Comprehensive Analysis. Front Microbiol 2022; 13:938651. [PMID: 35801104 PMCID: PMC9253588 DOI: 10.3389/fmicb.2022.938651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 05/30/2022] [Indexed: 11/25/2022] Open
Abstract
Hepatitis E virus (HEV) is an emerging zoonotic pathogen with multiple species and genotypes, which may be classified into human, animal, and zoonotic HEV. Codon usage bias of HEV remained unclear. This study aims to characterize the codon usage of HEV and elucidate the main drivers influencing the codon usage bias. A total of seven HEV genotypes, HEV-1 (human HEV), HEV-3 and HEV-4 (zoonotic HEV), HEV-8, HEV-B, HEV-C1, and HEV-C2 (emerging animal HEV), were included in the study. Complete coding sequences, ORF1, ORF2, and ORF3, were accordingly obtained in the GenBank. Except for HEV-8, the other six genotypes tended to use codons ending in G/C. Based on the analysis of relatively synonymous codon usage (RSCU) and principal component analysis (PCA), codon usage bias was determined for HEV genotypes. Codon usage bias differed widely across human, zoonotic, and animal HEV genotypes; furthermore, it varied within certain genotypes such as HEV-4, HEV-8, and HEV-C1. In addition, dinucleotide abundance revealed that HEV was affected by translation selection to form a unique dinucleotide usage pattern. Moreover, parity rule 2 analysis (PR2), effective codon number (ENC)-plot, and neutrality analysis were jointly performed. Natural selection played a leading role in forming HEV codon usage bias, which was predominant in HEV-1, HEV-3, HEV-B and HEV-C1, while affected HEV-4, HEV-8, and HEV-C2 in combination with mutation pressure. Our findings may provide insights into HEV evolution and codon usage bias.
Collapse
Affiliation(s)
- Bingzhe Li
- Department of Epidemiology, Ministry of Education Key Laboratory of Public Health Safety, School of Public Health, Fudan University, Shanghai, China
| | - Han Wu
- Department of Epidemiology, Ministry of Education Key Laboratory of Public Health Safety, School of Public Health, Fudan University, Shanghai, China
| | - Ziping Miao
- Institute of Communicable Diseases Prevention and Control, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Linjie Hu
- Department of Epidemiology, Ministry of Education Key Laboratory of Public Health Safety, School of Public Health, Fudan University, Shanghai, China
| | - Lu Zhou
- Department of Epidemiology, Ministry of Education Key Laboratory of Public Health Safety, School of Public Health, Fudan University, Shanghai, China
| | - Yihan Lu
- Department of Epidemiology, Ministry of Education Key Laboratory of Public Health Safety, School of Public Health, Fudan University, Shanghai, China
- *Correspondence: Yihan Lu,
| |
Collapse
|
18
|
Rahman SU, Abdullah M, Khan AW, Haq MIU, Haq NU, Aziz A, Tao S. A detailed comparative analysis of codon usage bias in Alongshan virus. Virus Res 2022; 308:198646. [PMID: 34822954 DOI: 10.1016/j.virusres.2021.198646] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/05/2021] [Accepted: 11/19/2021] [Indexed: 11/25/2022]
Abstract
Alongshan virus (ALSV) is an emerging tick-borne pathogen that infects humans, causing febrile disease. ALSV uses Ixodes Persulcatus ticks to infect humans with a wide range of signs, from asymptomatic to encephalitis-like syndrome. There is an increasing public health concern about the ALSV infection. To get insight into the impacts of viral relations with their hosts on viral ability, survival, and evasion from hosts immune systems remain unknown. The codon usage is a driving force in viral genome evolution; therefore, we enrolled 41 ALSV strains in codon usage analysis to elucidate the molecular evolutionary dynamics of ALSV. The results indicate that the overall codon usage among ALSV isolates is relatively similar and slightly biased. Base compositions for the cds were in order of G >A >C >U and in the third position of codons G3 >A3 >C3 >T3. The RSCU values revealed that the more frequently used codons were mostly GC ended. Different codon preferences in ALSV genes in relation to codon usage of H. sapiens and Ixodes Persulcatus genes were found. Neutrality plot was determined to reveal the superiority of natural selection over directional mutation pressure in causing CUB based on GC12 versus GC3 contents. The results of these studies suggest that the emergence of ALSV in China, Russia and Finland may also be reflected in ALSV codon usage. Altogether, the presence of both mutation pressure and natural selection effect in shaping the codon usage patterns of ALSV.
Collapse
Affiliation(s)
- Siddiq Ur Rahman
- Department of Computer Science & Bioinformatics, Khushal Khan Khattak University, Karak, Khyber Pakhtunkhwa 27200, Pakistan; College of Life Sciences and State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, China.
| | - Muhammad Abdullah
- Department of Computer Science & Bioinformatics, Khushal Khan Khattak University, Karak, Khyber Pakhtunkhwa 27200, Pakistan
| | - Abdul Wajid Khan
- Department of Computer Science & Bioinformatics, Khushal Khan Khattak University, Karak, Khyber Pakhtunkhwa 27200, Pakistan
| | - Muhammad Inam Ul Haq
- Department of Computer Science & Bioinformatics, Khushal Khan Khattak University, Karak, Khyber Pakhtunkhwa 27200, Pakistan
| | - Noor Ul Haq
- Department of Computer Science & Bioinformatics, Khushal Khan Khattak University, Karak, Khyber Pakhtunkhwa 27200, Pakistan
| | - Abdul Aziz
- Department of Computer Science & Bioinformatics, Khushal Khan Khattak University, Karak, Khyber Pakhtunkhwa 27200, Pakistan
| | - Shiheng Tao
- College of Life Sciences and State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
19
|
Begum NS, Chakraborty S. Influencing elements of codon usage bias in Birnaviridae and its evolutionary analysis. Virus Res 2022; 310:198672. [PMID: 34986367 DOI: 10.1016/j.virusres.2021.198672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/25/2021] [Accepted: 12/30/2021] [Indexed: 11/25/2022]
Abstract
Birnaviridae is a family of double stranded (ds) RNA virus with non-enveloped virions and 2-segmented genomes. These viruses are known to cause diseases in many hosts. Virus of this family has affected the fish and poultry economy in a wide sector. Unevenness in the use of synonymous codons for a particular amino acid in the coding strand of DNA is known as codon usage bias (CUB). Codons that code the same amino acid are used with variable frequency in a variety of life forms. To understand the pattern of CUB in Birnaviridae, we carried out bioinformatics study to understand the properties of coding sequences of proteins. ENC value of Birnaviridae suggested low CUB. Nucleotide analysis revealed high GC content. Parameters such as RSCU values, nucleotide skewness, translational selection, parity plot and neutrality plot were studied to investigate the pattern of codon use and it was clear that both mutational pressure and natural selection contributed to the designing of CUB in Birnaviridae family. The neutrality plot revealed natural selection to dominate the structuring of CUB and hence remained the major CUB determinant in Birnaviridae. Outcome of our study exemplified the pattern of codon use in the Birnaviridae genomes and contributed the basic primary data for fundamental evolutionary research on them.
Collapse
Affiliation(s)
| | - Supriyo Chakraborty
- Department of Biotechnology, Assam University, Silchar 788011, Assam, India.
| |
Collapse
|
20
|
Si F, Jiang L, Yu R, Wei W, Li Z. Study on the Characteristic Codon Usage Pattern in Porcine Epidemic Diarrhea Virus Genomes and Its Host Adaptation Phenotype. Front Microbiol 2021; 12:738082. [PMID: 34733253 PMCID: PMC8558211 DOI: 10.3389/fmicb.2021.738082] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/20/2021] [Indexed: 11/29/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV), which classified in the genus Alphacoronavirus, family Coronaviridae, is one of the most important pathogens that cause heavy economic losses in pig industry. Although intensive mutation and recombination analysis of PEDV strains were provided, systematic genome analysis were needed to elucidate the evolution mechanism and codon usage adaptation profiles of the pathogen. Here, a comprehensive investigation was carried out to reveal the systematic evolutionary processes of synonymous codon usage and host-adapted evolution phenotype of PEDV genome. We found a low codon usage bias (CUB) in PEDV genome and that nucleotide compositions, natural selection, mutation pressure and geographical diversity shapes the codon usage patterns of PEDV, with natural selection dominated the overall codon usage bias in PEDV than the others. By using the relative codon deoptimization index (RCDI) and similarity index (SiD) analysis, we observed that genotype II PEDV strains showed the highest level of adaptation phenotype to Sus scrofa than another divergent clade. To the best of our knowledge, this is the first comprehensive report elaborating the codon usage and host adaptation of PEDV. The findings offer an insight into our understanding of factors involved in PEDV evolution, adaptation and fitness toward their hosts.
Collapse
Affiliation(s)
- Fusheng Si
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Engineering Research Center of Breeding Pig, Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Li Jiang
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Ruisong Yu
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Engineering Research Center of Breeding Pig, Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Wenqiang Wei
- Department of Microbiology, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Zhen Li
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Engineering Research Center of Breeding Pig, Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
21
|
Fairman CW, Lever AML, Kenyon JC. Evaluating RNA Structural Flexibility: Viruses Lead the Way. Viruses 2021; 13:v13112130. [PMID: 34834937 PMCID: PMC8624864 DOI: 10.3390/v13112130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/12/2021] [Accepted: 10/18/2021] [Indexed: 12/11/2022] Open
Abstract
Our understanding of RNA structure has lagged behind that of proteins and most other biological polymers, largely because of its ability to adopt multiple, and often very different, functional conformations within a single molecule. Flexibility and multifunctionality appear to be its hallmarks. Conventional biochemical and biophysical techniques all have limitations in solving RNA structure and to address this in recent years we have seen the emergence of a wide diversity of techniques applied to RNA structural analysis and an accompanying appreciation of its ubiquity and versatility. Viral RNA is a particularly productive area to study in that this economy of function within a single molecule admirably suits the minimalist lifestyle of viruses. Here, we review the major techniques that are being used to elucidate RNA conformational flexibility and exemplify how the structure and function are, as in all biology, tightly linked.
Collapse
Affiliation(s)
| | - Andrew M. L. Lever
- Department of Medicine, Cambridge University, Level 5, Addenbrookes’ Hospital (Box 157), Cambridge CB2 0QQ, UK
- Correspondence: (A.M.L.L.); (J.C.K.); Tel.: +44-(0)-1223-747308 (A.M.L.L. & J.C.K.)
| | - Julia C. Kenyon
- Homerton College, University of Cambridge, Cambridge CB2 8PH, UK;
- Department of Medicine, Cambridge University, Level 5, Addenbrookes’ Hospital (Box 157), Cambridge CB2 0QQ, UK
- Correspondence: (A.M.L.L.); (J.C.K.); Tel.: +44-(0)-1223-747308 (A.M.L.L. & J.C.K.)
| |
Collapse
|
22
|
Ata G, Wang H, Bai H, Yao X, Tao S. Edging on Mutational Bias, Induced Natural Selection From Host and Natural Reservoirs Predominates Codon Usage Evolution in Hantaan Virus. Front Microbiol 2021; 12:699788. [PMID: 34276633 PMCID: PMC8283416 DOI: 10.3389/fmicb.2021.699788] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 06/07/2021] [Indexed: 12/14/2022] Open
Abstract
The molecular evolutionary dynamics that shape hantaviruses’ evolution are poorly understood even now, besides the contribution of virus-host interaction to their evolution remains an open question. Our study aimed to investigate these two aspects in Hantaan virus (HTNV)—the prototype of hantaviruses and an emerging zoonotic pathogen that infects humans, causing hemorrhagic fever with renal syndrome (HFRS): endemic in Far East Russia, China, and South Korea—via a comprehensive, phylogenetic-dependent codon usage analysis. We found that host- and natural reservoir-induced natural selection is the primary determinant of its biased codon choices, exceeding the mutational bias effect. The phylogenetic analysis of HTNV strains resulted in three distinct clades: South Korean, Russian, and Chinese. An effective number of codon (ENC) analysis showed a slightly biased codon usage in HTNV genomes. Nucleotide composition and RSCU analyses revealed a significant bias toward A/U nucleotides and A/U-ended codons, indicating the potential influence of mutational bias on the codon usage patterns of HTNV. Via ENC-plot, Parity Rule 2 (PR2), and neutrality plot analyses, we would conclude the presence of both mutation pressure and natural selection effect in shaping the codon usage patterns of HTNV; however, natural selection is the dominant factor influencing its codon usage bias. Codon adaptation index (CAI), Relative codon deoptimization index (RCDI), and Similarity Index (SiD) analyses uncovered the intense selection pressure from the host (Human) and natural reservoirs (Striped field mouse and Chinese white-bellied rat) in shaping HTNV biased codon choices. Our study clearly revealed the evolutionary processes in HTNV and the role of virus-host interaction in its evolution. Moreover, it opens the door for a more comprehensive codon usage analysis for all hantaviruses species to determine their molecular evolutionary dynamics and adaptability to several hosts and environments. We believe that our research will help in a better and deep understanding of HTNV evolution that will serve its future basic research and aid live attenuated vaccines design.
Collapse
Affiliation(s)
- Galal Ata
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Xianyang, China
| | - Hao Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Xianyang, China
| | - Haoxiang Bai
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Xianyang, China
| | - Xiaoting Yao
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Shiheng Tao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Xianyang, China
| |
Collapse
|
23
|
Pereira-Gómez M, Carrau L, Fajardo Á, Moreno P, Moratorio G. Altering Compositional Properties of Viral Genomes to Design Live-Attenuated Vaccines. Front Microbiol 2021; 12:676582. [PMID: 34276608 PMCID: PMC8278477 DOI: 10.3389/fmicb.2021.676582] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 06/01/2021] [Indexed: 12/11/2022] Open
Abstract
Live-attenuated vaccines have been historically used to successfully prevent numerous diseases caused by a broad variety of RNA viruses due to their ability to elicit strong and perdurable immune-protective responses. In recent years, various strategies have been explored to achieve viral attenuation by rational genetic design rather than using classic and empirical approaches, based on successive passages in cell culture. A deeper understanding of evolutionary implications of distinct viral genomic compositional aspects, as well as substantial advances in synthetic biology technologies, have provided a framework to achieve new viral attenuation strategies. Herein, we will discuss different approaches that are currently applied to modify compositional features of viruses in order to develop novel live-attenuated vaccines.
Collapse
Affiliation(s)
- Marianoel Pereira-Gómez
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
- Laboratorio de Evolución Experimental de Virus, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Lucía Carrau
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Álvaro Fajardo
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
- Laboratorio de Evolución Experimental de Virus, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Pilar Moreno
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
- Laboratorio de Evolución Experimental de Virus, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Gonzalo Moratorio
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
- Laboratorio de Evolución Experimental de Virus, Institut Pasteur de Montevideo, Montevideo, Uruguay
| |
Collapse
|
24
|
Nguyen TH, Wang D, Rahman SU, Bai H, Yao X, Chen D, Tao S. Analysis of codon usage patterns and influencing factors in rice tungro bacilliform virus. INFECTION GENETICS AND EVOLUTION 2021; 90:104750. [PMID: 33548490 DOI: 10.1016/j.meegid.2021.104750] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/08/2021] [Accepted: 01/29/2021] [Indexed: 12/17/2022]
Abstract
Rice tungro bacilliform virus (RTBV) belongs to genus Tungrovirus within the family Caulimoviridae harbors circular double-stranded DNA (dsDNA). Rice tungro disease (RTD) caused by RTBV, responsible for severe rice yield losses in South and Southeast Asia. Here, we performed a systematic evolutionary and codon usage bias (CUB) analysis of RTBV genome sequences. We analysed different bioinformatics techniques to calculate the nucleotide compositions, the relative synonymous codon usage (RSCU), and other indices. The results indicated slightly or low codon usage bias in RTBV isolates. Mutation and natural selection pressures have equally contributed to this low codon usage bias. Additionally, multiple factors such as host, geographical distribution also affect codon usage patterns in RTBV genomes. RSCU analysis revealed that RTBV shows mutation bias and prefers A and U ended codons to code amino acids. Codon usage patterns of RTBV were also found to be influenced by its host. This indicates that RTBV have evolved codon usage patterns that are specific to its host. The findings from this study are expected to increase our understanding of factors leading to viral evolution and fitness with respect to hosts and the environment.
Collapse
Affiliation(s)
- Thi Hung Nguyen
- College of Life Sciences and State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China; Department of Genetic Engineering, Agricultural Genetics Institute, Tuliem, Hanoi 100000, Viet Nam
| | - Dong Wang
- China animal health and epidemiology center, Qingdao, Shandong, China
| | - Siddiq Ur Rahman
- College of Life Sciences and State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China; Department of Computer Science and Bioinformatics, Khushal Khan Khattak university, Karak, Khyber Pakhtunkhwa 27200, Pakistan
| | - Haoxiang Bai
- College of Life Sciences and State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaoting Yao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Dekun Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Shiheng Tao
- College of Life Sciences and State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
25
|
Insights into Genomic Epidemiology, Evolution, and Transmission Dynamics of Genotype VII of Class II Newcastle Disease Virus in China. Pathogens 2020; 9:pathogens9100837. [PMID: 33066232 PMCID: PMC7602024 DOI: 10.3390/pathogens9100837] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/09/2020] [Accepted: 10/11/2020] [Indexed: 01/10/2023] Open
Abstract
Newcastle disease virus (NDV) is distributed worldwide and has caused significant losses to the poultry industry. Almost all virulent NDV strains belong to class II, among which genotype VII is the predominant genotype in China. However, the molecular evolution and phylodynamics of class II genotype VII NDV strains in China remained largely unknown. In this study, we identified 13 virulent NDV including 11 genotype VII strains and 2 genotype IX strains, from clinical samples during 1997 to 2019. Combined NDV sequences submitted to GenBank, we investigate evolution, and transmission dynamics of class II NDVs in China, especially genotype VII strains. Our results revealed that East and South China have the most genotypic diversity of class II NDV, and East China might be the origin of genotype VII NDVs in China. In addition, genotype VII NDVs in China are presumably transmitted by chickens, as the virus was most prevalent in chickens. Furthermore, codon usage analysis revealed that the F genes of genotype VII NDVs have stronger adaptation in chickens, and six amino acids in this gene are found under positive selection via selection model analysis. Collectively, our results revealed the genetic diversity and evolutionary dynamics of genotype VII NDVs in China, providing important insights into the epidemiology of these viruses in China.
Collapse
|
26
|
Sequence analysis of SARS-CoV-2 genome reveals features important for vaccine design. Sci Rep 2020; 10:15643. [PMID: 32973171 PMCID: PMC7519053 DOI: 10.1038/s41598-020-72533-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 08/19/2020] [Indexed: 12/28/2022] Open
Abstract
As the SARS-CoV-2 pandemic is rapidly progressing, the need for the development of an effective vaccine is critical. A promising approach for vaccine development is to generate, through codon pair deoptimization, an attenuated virus. This approach carries the advantage that it only requires limited knowledge specific to the virus in question, other than its genome sequence. Therefore, it is well suited for emerging viruses, for which we may not have extensive data. We performed comprehensive in silico analyses of several features of SARS-CoV-2 genomic sequence (e.g., codon usage, codon pair usage, dinucleotide/junction dinucleotide usage, RNA structure around the frameshift region) in comparison with other members of the coronaviridae family of viruses, the overall human genome, and the transcriptome of specific human tissues such as lung, which are primarily targeted by the virus. Our analysis identified the spike (S) and nucleocapsid (N) proteins as promising targets for deoptimization and suggests a roadmap for SARS-CoV-2 vaccine development, which can be generalizable to other viruses.
Collapse
|
27
|
Qi X, Wei C, Li Y, Wu Y, Xu H, Guo R, Jia Y, Li Z, Wei Z, Wang W, Jia J, Li Y, Wang A, Gao X. The characteristic of the synonymous codon usage and phylogenetic analysis of hepatitis B virus. Genes Genomics 2020; 42:805-815. [PMID: 32462516 PMCID: PMC7311504 DOI: 10.1007/s13258-020-00932-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 03/31/2020] [Indexed: 12/18/2022]
Abstract
Background Hepatitis B virus (HBV) infection is a crucial medical issue worldwide. The dependence of HBV replication on host cell machineries and their co-evolutionary interactions prompt the codon usage pattern of viral genes to translation selection and mutation pressure. Objective The evolutionary characteristics of HBV and the natural selection effects of the human genome on the codon usage characteristics were analyzed to provide a basis for medication development for HBV infection. Methods The codon usage pattern of sequences from different HBV genotypes of our isolates and reference HBV genome sequences downloaded from the National Center for Biotechnology Information (NCBI) database were analyzed by computing the relative synonymous codon usage (RSCU), nucleotide content, codon adaptation index (CAI) and the effective number of codons (ENC). Results The highest ENC values were observed in the C genotypes, followed by the B genotypes. The ENC values indicated a weak codon usage bias (CUB) in HBV genome. The number of codons differentially used between the three genotypes was markedly higher than that of similarly used codons. High CAI values indicated a good adaptability of HBV to its host. The ENC plot indicated the occurrence of mutational pressure in the three genotypes. The mean Ka/Ks ratios in the three genotypes were lower than 1, which indicated a negative selection pressure. The CAI and GC3% plot indicated the existence of CUB in the HBV genome. Conclusions Nucleotide composition, mutation bias, negative selection and mutational pressure are key factors influencing the CUB and phylogenetic diversity in HBV genotypes. The data provided here could be useful for developing drugs for HBV infection. Electronic supplementary material The online version of this article (10.1007/s13258-020-00932-w) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaoming Qi
- The Institute of Clinical Research and Translational Medicine, Gansu Provincial Hospital, 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China.,NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, 730000, China.,Gansu Provincial Biobank and Bioinformation Engineering Research Center, Lanzhou, 730000, China
| | - Chaojun Wei
- The Institute of Clinical Research and Translational Medicine, Gansu Provincial Hospital, 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China.,NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, 730000, China.,Gansu Provincial Biobank and Bioinformation Engineering Research Center, Lanzhou, 730000, China
| | - Yonghong Li
- The Institute of Clinical Research and Translational Medicine, Gansu Provincial Hospital, 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China.,NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, 730000, China.,Gansu Provincial Biobank and Bioinformation Engineering Research Center, Lanzhou, 730000, China
| | - Yu Wu
- The Institute of Clinical Research and Translational Medicine, Gansu Provincial Hospital, 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China.,NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, 730000, China.,Gansu Provincial Biobank and Bioinformation Engineering Research Center, Lanzhou, 730000, China
| | - Hui Xu
- The Institute of Clinical Research and Translational Medicine, Gansu Provincial Hospital, 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China.,NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, 730000, China.,Gansu Provincial Biobank and Bioinformation Engineering Research Center, Lanzhou, 730000, China
| | - Rui Guo
- The Institute of Clinical Research and Translational Medicine, Gansu Provincial Hospital, 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China.,NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, 730000, China.,Gansu Provincial Biobank and Bioinformation Engineering Research Center, Lanzhou, 730000, China
| | - Yanjuan Jia
- The Institute of Clinical Research and Translational Medicine, Gansu Provincial Hospital, 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China.,NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, 730000, China.,Gansu Provincial Biobank and Bioinformation Engineering Research Center, Lanzhou, 730000, China
| | - Zhenhao Li
- The Institute of Clinical Research and Translational Medicine, Gansu Provincial Hospital, 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China.,NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, 730000, China.,Gansu Provincial Biobank and Bioinformation Engineering Research Center, Lanzhou, 730000, China
| | - Zhenhong Wei
- The Institute of Clinical Research and Translational Medicine, Gansu Provincial Hospital, 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China.,NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, 730000, China.,Gansu Provincial Biobank and Bioinformation Engineering Research Center, Lanzhou, 730000, China
| | - Wanxia Wang
- The Institute of Clinical Research and Translational Medicine, Gansu Provincial Hospital, 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China.,NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, 730000, China.,Gansu Provincial Biobank and Bioinformation Engineering Research Center, Lanzhou, 730000, China
| | - Jing Jia
- The Institute of Clinical Research and Translational Medicine, Gansu Provincial Hospital, 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China.,NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, 730000, China.,Gansu Provincial Biobank and Bioinformation Engineering Research Center, Lanzhou, 730000, China
| | - Yuanting Li
- The Institute of Clinical Research and Translational Medicine, Gansu Provincial Hospital, 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China.,NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, 730000, China.,Gansu Provincial Biobank and Bioinformation Engineering Research Center, Lanzhou, 730000, China
| | - Anqi Wang
- The Institute of Clinical Research and Translational Medicine, Gansu Provincial Hospital, 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China.,NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, 730000, China.,Gansu Provincial Biobank and Bioinformation Engineering Research Center, Lanzhou, 730000, China
| | - Xiaoling Gao
- The Institute of Clinical Research and Translational Medicine, Gansu Provincial Hospital, 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China. .,NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, 730000, China. .,Gansu Provincial Biobank and Bioinformation Engineering Research Center, Lanzhou, 730000, China.
| |
Collapse
|
28
|
Jitobaom K, Phakaratsakul S, Sirihongthong T, Chotewutmontri S, Suriyaphol P, Suptawiwat O, Auewarakul P. Codon usage similarity between viral and some host genes suggests a codon-specific translational regulation. Heliyon 2020; 6:e03915. [PMID: 32395662 PMCID: PMC7205639 DOI: 10.1016/j.heliyon.2020.e03915] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/02/2020] [Accepted: 04/30/2020] [Indexed: 02/03/2023] Open
Abstract
The codon usage pattern is a specific characteristic of each species; however, the codon usage of all of the genes in a genome is not uniform. Intriguingly, most viruses have codon usage patterns that are vastly different from the optimal codon usage of their hosts. How viral genes with different codon usage patterns are efficiently expressed during a viral infection is unclear. An analysis of the similarity between viral codon usage and the codon usage of the individual genes of a host genome has never been performed. In this study, we demonstrated that the codon usage of human RNA viruses is similar to that of some human genes, especially those involved in the cell cycle. This finding was substantiated by its concordance with previous reports of an upregulation at the protein level of some of these biological processes. It therefore suggests that some suboptimal viral codon usage patterns may actually be compatible with cellular translational machineries in infected conditions.
Collapse
Affiliation(s)
- Kunlakanya Jitobaom
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Thailand
| | - Supinya Phakaratsakul
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Thailand
| | | | - Sasithorn Chotewutmontri
- Faculty of Medicine and Public Health, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Prapat Suriyaphol
- Division of Bioinformatics and Data Management for Research, Department of Research and Development, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand.,Center of Excellence in Bioinformatics and Clinical Data Management, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Ornpreya Suptawiwat
- Faculty of Medicine and Public Health, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Prasert Auewarakul
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Thailand
| |
Collapse
|
29
|
Hussain S, Shinu P, Islam MM, Chohan MS, Rasool ST. Analysis of Codon Usage and Nucleotide Bias in Middle East Respiratory Syndrome Coronavirus Genes. Evol Bioinform Online 2020; 16:1176934320918861. [PMID: 32425493 PMCID: PMC7218340 DOI: 10.1177/1176934320918861] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 03/23/2020] [Indexed: 12/31/2022] Open
Abstract
The Middle East Respiratory Syndrome (MERS) is an emerging disease caused by a recently identified human coronavirus (CoV). Over 2494 laboratory-confirmed cases and 858 MERS-related deaths have been reported from 27 countries. MERS-CoV has been associated with a high case fatality rate, especially in patients with pre-existing conditions. Despite the fatal nature of MERS-CoV infection, a comprehensive study to explore its evolution and adaptation in different hosts is lacking. We performed codon usage analyses on 4751 MERS-CoV genes and determined underlying forces that affect the codon usage bias in the MERS-CoV genome. The current analyses revealed a low but highly conserved, gene-specific codon usage bias in the MERS-CoV genome. The codon usage bias is mainly shaped by natural selection, while mutational pressure emerged as a minor factor affecting codon usage in some genes. Other contributory factors included CpG dinucleotide bias, physical and chemical properties of encoded proteins and gene length. Results reported in this study provide considerable insights into the molecular evaluation of MERS-CoV and could serve as a theoretical basis for optimizing MERS-CoV gene expression to study the functional relevance of various MERS-CoV proteins. Alternatively, an attenuated vaccine strain containing hundreds of silent mutations could be engineered. Codon de-optimization will not affect the amino acid sequence or antigenicity of a vaccine strain, but the sheer number of mutations would make viral reversion to a virulent phenotype extremely unlikely.
Collapse
Affiliation(s)
- Snawar Hussain
- Department of Biomedical Science, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Kingdom of Saudi Arabia
| | - Pottathil Shinu
- Department of Biomedical Science, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Kingdom of Saudi Arabia
| | - Mohammed Monirul Islam
- Department of Biomedical Science, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Kingdom of Saudi Arabia
| | - Muhammad Shahzad Chohan
- Department of Biomedical Science, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Kingdom of Saudi Arabia
| | - Sahibzada Tasleem Rasool
- Department of Biomedical Science, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Kingdom of Saudi Arabia
| |
Collapse
|
30
|
Kandeel M, Ibrahim A, Fayez M, Al-Nazawi M. From SARS and MERS CoVs to SARS-CoV-2: Moving toward more biased codon usage in viral structural and nonstructural genes. J Med Virol 2020; 92:660-666. [PMID: 32159237 PMCID: PMC7228358 DOI: 10.1002/jmv.25754] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 03/09/2020] [Indexed: 12/11/2022]
Abstract
Background Severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) is an emerging disease with fatal outcomes. In this study, a fundamental knowledge gap question is to be resolved by evaluating the differences in biological and pathogenic aspects of SARS‐CoV‐2 and the changes in SARS‐CoV‐2 in comparison with the two prior major COV epidemics, SARS and Middle East respiratory syndrome (MERS) coronaviruses. Methods The genome composition, nucleotide analysis, codon usage indices, relative synonymous codons usage, and effective number of codons (ENc) were analyzed in the four structural genes; Spike (S), Envelope (E), membrane (M), and Nucleocapsid (N) genes, and two of the most important nonstructural genes comprising RNA‐dependent RNA polymerase and main protease (Mpro) of SARS‐CoV‐2, Beta‐CoV from pangolins, bat SARS, MERS, and SARS CoVs. Results SARS‐CoV‐2 prefers pyrimidine rich codons to purines. Most high‐frequency codons were ending with A or T, while the low frequency and rare codons were ending with G or C. SARS‐CoV‐2 structural proteins showed 5 to 20 lower ENc values, compared with SARS, bat SARS, and MERS CoVs. This implies higher codon bias and higher gene expression efficiency of SARS‐CoV‐2 structural proteins. SARS‐CoV‐2 encoded the highest number of over‐biased and negatively biased codons. Pangolin Beta‐CoV showed little differences with SARS‐CoV‐2 ENc values, compared with SARS, bat SARS, and MERS CoV. Conclusion Extreme bias and lower ENc values of SARS‐CoV‐2, especially in Spike, Envelope, and Mpro genes, are suggestive for higher gene expression efficiency, compared with SARS, bat SARS, and MERS CoVs.
Collapse
Affiliation(s)
- Mahmoud Kandeel
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-hofuf, Egypt.,Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelshikh University, Kafrelshikh, Egypt
| | - Abdelazim Ibrahim
- Department of Pathology, College of Veterinary Medicine, King Faisal University, Al-hofuf, Saudi Arabia.,Department of Pathology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Mahmoud Fayez
- Al Ahsa Veterinary Diagnostic Laboratory, Ministry of Agriculture, Al-Ahsa, Kingdom of Saudi Arabia.,Veterinary Serum and Vaccine Institute, Cairo, Egypt
| | - Mohammed Al-Nazawi
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-hofuf, Egypt
| |
Collapse
|
31
|
Sheikh A, Al-Taher A, Al-Nazawi M, Al-Mubarak AI, Kandeel M. Analysis of preferred codon usage in the coronavirus N genes and their implications for genome evolution and vaccine design. J Virol Methods 2020; 277:113806. [PMID: 31911390 PMCID: PMC7119019 DOI: 10.1016/j.jviromet.2019.113806] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 11/24/2019] [Accepted: 12/20/2019] [Indexed: 02/08/2023]
Abstract
The nucleotide variations among the N genes of 13 different coronaviruses (CoVs) were interpreted. Overall, 18 amino acids observed with varying preferred codons. The effective number of codon values ranged from 40.43 to 53.85, revealing a slight codon bias. A highly significant correlation between GC3s and ENc values was observed in porcine epidemic diarrhea CoV, followed by Middle East respiratory syndrome CoV.
The nucleocapsid (N) protein of a coronavirus plays a crucial role in virus assembly and in its RNA transcription. It is important to characterize a virus at the nucleotide level to discover the virus’s genomic sequence variations and similarities relative to other viruses that could have an impact on the functions of its genes and proteins. This entails a comprehensive and comparative analysis of the viral genomes of interest for preferred nucleotides, codon bias, nucleotide changes at the 3rd position (NT3s), synonymous codon usage and relative synonymous codon usage. In this study, the variations in the N proteins among 13 different coronaviruses (CoVs) were analysed at the nucleotide and amino acid levels in an attempt to reveal how these viruses adapt to their hosts relative to their preferred codon usage in the N genes. The results revealed that, overall, eighteen amino acids had different preferred codons and eight of these were over-biased. The N genes had a higher AT% over GC% and the values of their effective number of codons ranged from 40.43 to 53.85, indicating a slight codon bias. Neutrality plots and correlation analyses showed a very high level of GC3s/GC correlation in porcine epidemic diarrhea CoV (pedCoV), followed by Middle East respiratory syndrome-CoV (MERS CoV), porcine delta CoV (dCoV), bat CoV (bCoV) and feline CoV (fCoV) with r values 0.81, 0.68, -0.47, 0.98 and 0.58, respectively. These data implied a high rate of evolution of the CoV genomes and a strong influence of mutation on evolutionary selection in the CoV N genes. This type of genetic analysis would be useful for evaluating a virus’s host adaptation, evolution and is thus of value to vaccine design strategies.
Collapse
Affiliation(s)
- Abdullah Sheikh
- The Camel Research Center, King Faisal University, Alhofuf, Alahsa 31982, Saudi Arabia
| | - Abdulla Al-Taher
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Alhofuf, Alahsa 31982, Saudi Arabia
| | - Mohammed Al-Nazawi
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Alhofuf, Alahsa 31982, Saudi Arabia
| | - Abdullah I Al-Mubarak
- Department of Microbiology, College of Veterinary Medicine, King Faisal University, Alhofuf, Alahsa 31982, Saudi Arabia
| | - Mahmoud Kandeel
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Alhofuf, Alahsa 31982, Saudi Arabia; Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| |
Collapse
|
32
|
Freije CA, Myhrvold C, Boehm CK, Lin AE, Welch NL, Carter A, Metsky HC, Luo CY, Abudayyeh OO, Gootenberg JS, Yozwiak NL, Zhang F, Sabeti PC. Programmable Inhibition and Detection of RNA Viruses Using Cas13. Mol Cell 2019; 76:826-837.e11. [PMID: 31607545 PMCID: PMC7422627 DOI: 10.1016/j.molcel.2019.09.013] [Citation(s) in RCA: 254] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/18/2019] [Accepted: 09/06/2019] [Indexed: 12/23/2022]
Abstract
The CRISPR effector Cas13 could be an effective antiviral for single-stranded RNA (ssRNA) viruses because it programmably cleaves RNAs complementary to its CRISPR RNA (crRNA). Here, we computationally identify thousands of potential Cas13 crRNA target sites in hundreds of ssRNA viral species that can potentially infect humans. We experimentally demonstrate Cas13's potent activity against three distinct ssRNA viruses: lymphocytic choriomeningitis virus (LCMV); influenza A virus (IAV); and vesicular stomatitis virus (VSV). Combining this antiviral activity with Cas13-based diagnostics, we develop Cas13-assisted restriction of viral expression and readout (CARVER), an end-to-end platform that uses Cas13 to detect and destroy viral RNA. We further screen hundreds of crRNAs along the LCMV genome to evaluate how conservation and target RNA nucleotide content influence Cas13's antiviral activity. Our results demonstrate that Cas13 can be harnessed to target a wide range of ssRNA viruses and CARVER's potential broad utility for rapid diagnostic and antiviral drug development.
Collapse
Affiliation(s)
- Catherine A Freije
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA 02142, USA; PhD Program in Virology, Division of Medical Sciences, Harvard Medical School, Boston, MA 02115, USA.
| | - Cameron Myhrvold
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA 02142, USA; Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA.
| | - Chloe K Boehm
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA 02142, USA
| | - Aaron E Lin
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA 02142, USA; PhD Program in Virology, Division of Medical Sciences, Harvard Medical School, Boston, MA 02115, USA
| | - Nicole L Welch
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA 02142, USA; PhD Program in Virology, Division of Medical Sciences, Harvard Medical School, Boston, MA 02115, USA
| | - Amber Carter
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA 02142, USA
| | - Hayden C Metsky
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA 02142, USA; Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA 02142, USA
| | - Cynthia Y Luo
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA 02142, USA; Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Omar O Abudayyeh
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA 02142, USA; McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, USA; Department of Brain and Cognitive Science, MIT, Cambridge, MA 02139, USA; Department of Biological Engineering, MIT, Cambridge, MA 02139, USA; Department of Health Sciences and Technology, MIT, Cambridge, MA 02139, USA
| | - Jonathan S Gootenberg
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA 02142, USA; McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, USA; Department of Brain and Cognitive Science, MIT, Cambridge, MA 02139, USA; Department of Biological Engineering, MIT, Cambridge, MA 02139, USA; Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Nathan L Yozwiak
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA 02142, USA; Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Feng Zhang
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA 02142, USA; McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, USA; Department of Brain and Cognitive Science, MIT, Cambridge, MA 02139, USA; Department of Biological Engineering, MIT, Cambridge, MA 02139, USA; Howard Hughes Medical Institute (HHMI), Chevy Chase, MD 20815, USA
| | - Pardis C Sabeti
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA 02142, USA; PhD Program in Virology, Division of Medical Sciences, Harvard Medical School, Boston, MA 02115, USA; Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; Howard Hughes Medical Institute (HHMI), Chevy Chase, MD 20815, USA; Department of Immunology and Infectious Disease, T.H. Chan Harvard School of Public Health, Boston, MA 02115, USA.
| |
Collapse
|
33
|
Ismail SNFB, Baharum SN, Fazry S, Low CF. Comparative genome analysis reveals a distinct influence of nucleotide composition on virus-host species-specific interaction of prawn-infecting nodavirus. JOURNAL OF FISH DISEASES 2019; 42:1761-1772. [PMID: 31637743 DOI: 10.1111/jfd.13093] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/21/2019] [Accepted: 08/26/2019] [Indexed: 06/10/2023]
Abstract
Discovery of species-specific interaction between the host and virus has drawn the interest of many researchers to study the evolution of the newly emerged virus. Comparative genome analysis provides insights of the virus functional genome evolution and the underlying mechanisms of virus-host interactions. The analysis of nucleotide composition signified the evolution of nodavirus towards host specialization in a host-specific mutation manner. GC-rich genome of betanodavirus was significantly deficient in UpA and UpU dinucleotides composition, whilst the AU-rich genome of gammanodavirus was deficient in CpG dinucleotide. The capsid of MrNV and PvNV of gammanodavirus retains the highest abundance of adenine and uracil at the second codon position, respectively, which were found to be very distinctive from the other genera. ENC-GC3 plot inferred the influence of natural selection and mutational pressure in shaping the evolution of MrNV RdRp and capsid, respectively. Furthermore, CAI/eCAI analysis predicts a comparable adaptability of MrNV in squid, Sepia officinalis than its natural host, Macrobrachium rosenbergii. Thus, further study is warranted to investigate the capacity of MrNV replication in S. officinalis owing to its high codon adaptation index.
Collapse
Affiliation(s)
| | | | - Shazrul Fazry
- Tasik Chini Research Center, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Selangor, Bangi, Malaysia
| | - Chen Fei Low
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| |
Collapse
|
34
|
He W, Wang N, Tan J, Wang R, Yang Y, Li G, Guan H, Zheng Y, Shi X, Ye R, Su S, Zhou J. Comprehensive codon usage analysis of porcine deltacoronavirus. Mol Phylogenet Evol 2019; 141:106618. [PMID: 31536759 PMCID: PMC7111727 DOI: 10.1016/j.ympev.2019.106618] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 09/05/2019] [Accepted: 09/11/2019] [Indexed: 12/13/2022]
Abstract
Porcine deltacoronavirus (PDCoV) is a newly identified coronavirus of pigs that was first reported in Hong Kong in 2012. Since then, many PDCoV isolates have been identified worldwide. In this study, we analyzed the codon usage pattern of the S gene using complete coding sequences and complete PDCoV genomes to gain a deeper understanding of their genetic relationships and evolutionary history. We found that during evolution three groups evolved with a relatively low codon usage bias (effective number of codons (ENC) of 52). The factors driving bias were complex. However, the primary element influencing the codon bias of PDCoVs was natural selection. Our results revealed that different natural environments may have a significant impact on the genetic characteristics of the strains. In the future, more epidemiological surveys are required to examine the factors that resulted in the emergence and outbreak of this virus.
Collapse
Affiliation(s)
- Wei He
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Ningning Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jimin Tan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Ruyi Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yichen Yang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Gairu Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Haifei Guan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuna Zheng
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinze Shi
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Rui Ye
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuo Su
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jiyong Zhou
- MOA Key Laboratory of Animal Virology, Department of Veterinary Medicine and Veterinary Medical Research Center, Zhejiang University, Hangzhou 310058, China; Institute of Preventive Veterinary Sciences, Zhejiang University, Hangzhou 310058, China; Collaborative Innovation Center and State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University, Hangzhou 310003, China.
| |
Collapse
|
35
|
Analysis of Synonymous Codon Usage Bias in Potato Virus M and Its Adaption to Hosts. Viruses 2019; 11:v11080752. [PMID: 31416257 PMCID: PMC6722529 DOI: 10.3390/v11080752] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/12/2019] [Accepted: 08/13/2019] [Indexed: 02/07/2023] Open
Abstract
Potato virus M (PVM) is a member of the genus Carlavirus of the family Betaflexviridae and causes large economic losses of nightshade crops. Several previous studies have elucidated the population structure, evolutionary timescale and adaptive evolution of PVM. However, the synonymous codon usage pattern of PVM remains unclear. In this study, we performed comprehensive analyses of the codon usage and composition of PVM based on 152 nucleotide sequences of the coat protein (CP) gene and 125 sequences of the cysteine-rich nucleic acid binding protein (NABP) gene. We observed that the PVM CP and NABP coding sequences were GC-and AU-rich, respectively, whereas U- and G-ending codons were preferred in the PVM CP and NABP coding sequences. The lower codon usage of the PVM CP and NABP coding sequences indicated a relatively stable and conserved genomic composition. Natural selection and mutation pressure shaped the codon usage patterns of PVM, with natural selection being the most important factor. The codon adaptation index (CAI) and relative codon deoptimization index (RCDI) analysis revealed that the greatest adaption of PVM was to pepino, followed by tomato and potato. Moreover, similarity Index (SiD) analysis showed that pepino had a greater impact on PVM than tomato and potato. Our study is the first attempt to evaluate the codon usage pattern of the PVM CP and NABP genes to better understand the evolutionary changes of a carlavirus.
Collapse
|
36
|
Yan Z, Wang R, Zhang L, Shen B, Wang N, Xu Q, He W, He W, Li G, Su S. Evolutionary changes of the novel Influenza D virus hemagglutinin-esterase fusion gene revealed by the codon usage pattern. Virulence 2019; 10:1-9. [PMID: 30475085 PMCID: PMC6298762 DOI: 10.1080/21505594.2018.1551708] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The codon usage pattern can reveal the adaptive changes that allow virus survival and fitness adaptation to their particular host, as well as the external environment. Although still considered a novel influenza virus, there is an increasing number of influenza D viruses (IDVs) reported. Considering the vital role of the hemagglutinin-esterase fusion (HEF) gene in receptor binding, receptor degradation, and membrane fusion, we investigated the codon usage pattern of the IDV HEF gene to better understand its adaptive changes during evolution. Based on the HEF gene, three groups including, D/OK, D/660, and D/Japan were identified. We found a low codon usage bias, which allowed IDV to replicate in the corresponding hosts by reducing competition during evolution, that was mainly driven by natural selection and mutation pressure, with a profound role of natural selection. Furthermore, the interaction between the codon adaption index (CAI) and the relative codon deoptimization index (RCDI) revealed the adaption of IDV to multiple hosts, especially cattle which is currently considered its reservoir. Additionally, similarity index (SiD) analysis revealed that the swine exerted a stronger evolutionary pressure on IDV than cattle, though cattle is considered the primary reservoir. In addition, the conserved PB1 gene showed a similar pattern of codon usage compared to HEF. Therefore, we hypothesized that IDV has a preference to maintain infection in multiple hosts. The study aids the understanding of the evolutionary changes of IDV, which could assist this novel virus prevention and control.
Collapse
Affiliation(s)
- Ziqing Yan
- a MOE Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, College of Veterinary Medicine , Nanjing Agricultural University , Nanjing , China
| | - Ruyi Wang
- a MOE Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, College of Veterinary Medicine , Nanjing Agricultural University , Nanjing , China
| | - Letian Zhang
- a MOE Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, College of Veterinary Medicine , Nanjing Agricultural University , Nanjing , China
| | - Binger Shen
- a MOE Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, College of Veterinary Medicine , Nanjing Agricultural University , Nanjing , China
| | - Ningning Wang
- a MOE Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, College of Veterinary Medicine , Nanjing Agricultural University , Nanjing , China
| | - Qiuhua Xu
- a MOE Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, College of Veterinary Medicine , Nanjing Agricultural University , Nanjing , China
| | - Wei He
- a MOE Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, College of Veterinary Medicine , Nanjing Agricultural University , Nanjing , China
| | - Wanting He
- a MOE Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, College of Veterinary Medicine , Nanjing Agricultural University , Nanjing , China
| | - Gairu Li
- a MOE Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, College of Veterinary Medicine , Nanjing Agricultural University , Nanjing , China
| | - Shuo Su
- a MOE Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, College of Veterinary Medicine , Nanjing Agricultural University , Nanjing , China
| |
Collapse
|
37
|
Biswas KK, Palchoudhury S, Chakraborty P, Bhattacharyya UK, Ghosh DK, Debnath P, Ramadugu C, Keremane ML, Khetarpal RK, Lee RF. Codon Usage Bias Analysis of Citrus tristeza Virus: Higher Codon Adaptation to Citrus reticulata Host. Viruses 2019; 11:v11040331. [PMID: 30965565 PMCID: PMC6521185 DOI: 10.3390/v11040331] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/25/2019] [Accepted: 04/03/2019] [Indexed: 12/16/2022] Open
Abstract
Citrus tristeza virus (CTV), a member of the aphid-transmitted closterovirus group, is the causal agent of the notorious tristeza disease in several citrus species worldwide. The codon usage patterns of viruses reflect the evolutionary changes for optimization of their survival and adaptation in their fitness to the external environment and the hosts. The codon usage adaptation of CTV to specific citrus hosts remains to be studied; thus, its role in CTV evolution is not clearly comprehended. Therefore, to better explain the host–virus interaction and evolutionary history of CTV, the codon usage patterns of the coat protein (CP) genes of 122 CTV isolates originating from three economically important citrus hosts (55 isolate from Citrus sinensis, 38 from C. reticulata, and 29 from C. aurantifolia) were studied using several codon usage indices and multivariate statistical methods. The present study shows that CTV displays low codon usage bias (CUB) and higher genomic stability. Neutrality plot and relative synonymous codon usage analyses revealed that the overall influence of natural selection was more profound than that of mutation pressure in shaping the CUB of CTV. The contribution of high-frequency codon analysis and codon adaptation index value show that CTV has host-specific codon usage patterns, resulting in higheradaptability of CTV isolates originating from C. reticulata (Cr-CTV), and low adaptability in the isolates originating from C. aurantifolia (Ca-CTV) and C. sinensis (Cs-CTV). The combination of codon analysis of CTV with citrus genealogy suggests that CTV evolved in C. reticulata or other Citrus progenitors. The outcome of the study enhances the understanding of the factors involved in viral adaptation, evolution, and fitness toward their hosts. This information will definitely help devise better management strategies of CTV.
Collapse
Affiliation(s)
- Kajal Kumar Biswas
- Advanced Centre for Plant Virology, Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi 11012, India.
| | - Supratik Palchoudhury
- Advanced Centre for Plant Virology, Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi 11012, India.
| | - Prosenjit Chakraborty
- Advanced Centre for Plant Virology, Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi 11012, India.
| | - Utpal K Bhattacharyya
- Advanced Centre for Plant Virology, Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi 11012, India.
| | - Dilip K Ghosh
- ICAR-Central Citrus Research Institute, Nagpur 440033, India.
| | - Palash Debnath
- Department of Plant Pathology, Assam Agricultural University, Jorhat 785013, India.
| | - Chandrika Ramadugu
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92507, USA.
| | - Manjunath L Keremane
- National Clonal Germplasm Repository for Citrus & Dates, United States Department of Agriculture-Agricultural Research Service, Riverside, CA 92507, USA.
| | - Ravi K Khetarpal
- Asia-Pacific Association of Agricultural Research Institutions, Bangkok 10100, Thailand.
| | - Richard F Lee
- National Clonal Germplasm Repository for Citrus & Dates, United States Department of Agriculture-Agricultural Research Service, Riverside, CA 92507, USA.
| |
Collapse
|
38
|
Differential interaction strategies of hepatitis c virus genotypes during entry - An in silico investigation of envelope glycoprotein E2 - CD81 interaction. INFECTION GENETICS AND EVOLUTION 2019; 69:48-60. [PMID: 30639544 DOI: 10.1016/j.meegid.2019.01.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 12/12/2018] [Accepted: 01/08/2019] [Indexed: 12/12/2022]
Abstract
Hepatitis C Virus is a blood borne pathogen responsible for chronic hepatitis in more than 71 million people. Wide variations across strains and genotypes are one of the major hurdles in therapeutic development. While genotype 1 remains the most extensively studied and abundant strain, genotype 3 is more virulent and second most prevalent. This study aimed to compare differences in the glycoprotein E2 across HCV genotypes at nucleotide, protein and structural levels. Nucleotide sequences of E2 from 29 strains across genotypes 1a, 1b, 3a and 3b revealed a stark preference for C-richness which was attributed to a distinct bias for C-rich codons in genotype 1. Genotype 3 exhibited a similar preference to a lesser extent. Amino acid level comparison revealed majority of the changes at the C-terminal half of the proteins leaving the N-terminal region conspicuously conserved apart from the two hyper variable regions. Amino acid changes across genotypes were mostly polar-nonpolar alterations. In silico models of E2 glycoproteins and docking analysis with the energy minimized PDB-CD81 model revealed unique interacting residues in both E2 and CD81. While several CD81 binding residues were common for all four genotypes, number and composition of interacting residues varied. The interacting residues of E2 were however unique for each genotype. E2 of genotype 3a and CD81 had the strongest interaction. In conclusion this is the first comprehensive study comparing E2 sequences across genotypes 1a, 1b, 3a and 3b revealing stark genotype-specific differences which requires more extensive investigation.
Collapse
|
39
|
Euclidean Distance Analysis Enables Nucleotide Skew Analysis in Viral Genomes. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2018; 2018:6490647. [PMID: 30510593 PMCID: PMC6232797 DOI: 10.1155/2018/6490647] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 09/27/2018] [Accepted: 10/08/2018] [Indexed: 01/20/2023]
Abstract
Nucleotide skew analysis is a versatile method to study the nucleotide composition of RNA/DNA molecules, in particular to reveal characteristic sequence signatures. For instance, skew analysis of the nucleotide bias of several viral RNA genomes indicated that it is enriched in the unpaired, single-stranded genome regions, thus creating an even more striking virus-specific signature. The comparison of skew graphs for many virus isolates or families is difficult, time-consuming, and nonquantitative. Here, we present a procedure for a more simple identification of similarities and dissimilarities between nucleotide skew data of coronavirus, flavivirus, picornavirus, and HIV-1 RNA genomes. Window and step sizes were normalized to correct for differences in length of the viral genome. Cumulative skew data are converted into pairwise Euclidean distance matrices, which can be presented as neighbor-joining trees. We present skew value trees for the four virus families and show that closely related viruses are placed in small clusters. Importantly, the skew value trees are similar to the trees constructed by a “classical” model of evolutionary nucleotide substitution. Thus, we conclude that the simple calculation of Euclidean distances between nucleotide skew data allows an easy and quantitative comparison of characteristic sequence signatures of virus genomes. These results indicate that the Euclidean distance analysis of nucleotide skew data forms a nice addition to the virology toolbox.
Collapse
|
40
|
Wu W, Hatterschide J, Syu YC, Cantara WA, Blower RJ, Hanson HM, Mansky LM, Musier-Forsyth K. Human T-cell leukemia virus type 1 Gag domains have distinct RNA-binding specificities with implications for RNA packaging and dimerization. J Biol Chem 2018; 293:16261-16276. [PMID: 30217825 DOI: 10.1074/jbc.ra118.005531] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 09/13/2018] [Indexed: 12/14/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is the first retrovirus that has conclusively been shown to cause human diseases. In HIV-1, specific interactions between the nucleocapsid (NC) domain of the Gag protein and genomic RNA (gRNA) mediate gRNA dimerization and selective packaging; however, the mechanism for gRNA packaging in HTLV-1, a deltaretrovirus, is unclear. In other deltaretroviruses, the matrix (MA) and NC domains of Gag are both involved in gRNA packaging, but MA binds nucleic acids with higher affinity and has more robust chaperone activity, suggesting that this domain may play a primary role. Here, we show that the MA domain of HTLV-1, but not the NC domain, binds short hairpin RNAs derived from the putative gRNA packaging signal. RNA probing of the HTLV-1 5' leader and cross-linking studies revealed that the primer-binding site and a region within the putative packaging signal form stable hairpins that interact with MA. In addition to a previously identified palindromic dimerization initiation site (DIS), we identified a new DIS in HTLV-1 gRNA and found that both palindromic sequences bind specifically the NC domain. Surprisingly, a mutant partially defective in dimer formation in vitro exhibited a significant increase in RNA packaging into HTLV-1-like particles, suggesting that efficient RNA dimerization may not be strictly required for RNA packaging in HTLV-1. Moreover, the lifecycle of HTLV-1 and other deltaretroviruses may be characterized by NC and MA functions that are distinct from those of the corresponding HIV-1 proteins, but together provide the functions required for viral replication.
Collapse
Affiliation(s)
- Weixin Wu
- From the Department of Chemistry and Biochemistry, Center for Retrovirus Research, and Center for RNA Biology, The Ohio State University, Columbus Ohio 43210 and
| | - Joshua Hatterschide
- From the Department of Chemistry and Biochemistry, Center for Retrovirus Research, and Center for RNA Biology, The Ohio State University, Columbus Ohio 43210 and
| | - Yu-Ci Syu
- From the Department of Chemistry and Biochemistry, Center for Retrovirus Research, and Center for RNA Biology, The Ohio State University, Columbus Ohio 43210 and
| | - William A Cantara
- From the Department of Chemistry and Biochemistry, Center for Retrovirus Research, and Center for RNA Biology, The Ohio State University, Columbus Ohio 43210 and
| | | | - Heather M Hanson
- Institute for Molecular Virology.,Molecular, Cellular, Developmental Biology and Genetics Graduate Program, and
| | - Louis M Mansky
- Institute for Molecular Virology.,Molecular, Cellular, Developmental Biology and Genetics Graduate Program, and.,Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455
| | - Karin Musier-Forsyth
- From the Department of Chemistry and Biochemistry, Center for Retrovirus Research, and Center for RNA Biology, The Ohio State University, Columbus Ohio 43210 and
| |
Collapse
|
41
|
Bieniasz P, Telesnitsky A. Multiple, Switchable Protein:RNA Interactions Regulate Human Immunodeficiency Virus Type 1 Assembly. Annu Rev Virol 2018; 5:165-183. [PMID: 30048218 DOI: 10.1146/annurev-virology-092917-043448] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1) particle assembly requires several protein:RNA interactions that vary widely in their character, from specific recognition of highly conserved and structured viral RNA elements to less specific interactions with variable RNA sequences. Genetic, biochemical, biophysical, and structural studies have illuminated how virion morphogenesis is accompanied by dramatic changes in the interactions among the protein and RNA virion components. The 5' leader RNA element drives RNA recognition by Gag upon initiation of HIV-1 assembly and can assume variable conformations that influence translation, dimerization, and Gag recognition. As Gag multimerizes on the plasma membrane, forming immature particles, its RNA binding specificity transiently changes, enabling recognition of the A-rich composition of the viral genome. Initiation of assembly may also be regulated by occlusion of the membrane binding surface of Gag by tRNA. Finally, recent work has suggested that RNA interactions with viral enzymes may activate and ensure the accuracy of virion maturation.
Collapse
Affiliation(s)
- Paul Bieniasz
- Laboratory of Retrovirology and Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA;
| | - Alice Telesnitsky
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan 48109, USA;
| |
Collapse
|
42
|
Li G, Wang R, Zhang C, Wang S, He W, Zhang J, Liu J, Cai Y, Zhou J, Su S. Genetic and evolutionary analysis of emerging H3N2 canine influenza virus. Emerg Microbes Infect 2018; 7:73. [PMID: 29691381 PMCID: PMC5915587 DOI: 10.1038/s41426-018-0079-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/19/2018] [Accepted: 03/20/2018] [Indexed: 11/09/2022]
Abstract
The H3N2 canine influenza virus (CIV) originated from an avian species. Since its emergence, it has circulated in multiple states and has caused pandemics among dog populations; however, no comprehensive studies have explored the causes driving these ongoing cases. The study of the codon usage patterns of viruses can reveal the genetic changes required for the viruses to adapt to new hosts and the external environment. Here we performed a thorough genetic, evolutionary, and codon usage analysis. We identified three evolutionary H3N2 CIV clades from a timescaled phylogenetic tree, namely, Origin, China, and Korea/USA, by principal component analysis (PCA). Additionally, we found a low codon usage bias and that mutation pressure, natural selection, and dinucleotide abundance shape the codon usage bias of H3N2 CIVs, with natural selection being more crucial than the others. Moreover, the human codon adaptation index was similar to that of dogs (the natural host) and cats. In addition, the H3N2 CIV similarity index values were higher than those of the avian influenza virus (AIV), suggesting viral adaptation to the host. Therefore, H3N2 CIVs may pose a potential risk to public health in the future, and further epidemiologic, evolutionary, and pathogenetic studies are required.
Collapse
Affiliation(s)
- Gairu Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Ruyi Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Cheng Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Shilei Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Wanting He
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Junyan Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jie Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yuchen Cai
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jiyong Zhou
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Shuo Su
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
43
|
Lin D, Li L, Xie T, Yin Q, Saksena N, Wu R, Li W, Dai G, Ma J, Zhou X, Chen X. Codon usage variation of Zika virus: The potential roles of NS2B and NS4A in its global pandemic. Virus Res 2018; 247:71-83. [PMID: 29428601 DOI: 10.1016/j.virusres.2018.01.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 01/26/2018] [Accepted: 01/29/2018] [Indexed: 12/18/2022]
Abstract
A comprehensive demonstration of Zika virus (ZIKV) molecular evolution is essential for understanding its adaptation and expansion in its recent pandemics. Despite several studies on mutations and codon usage in ZIKVs, the variations in codon usage patterns across individual genes and their biological implication remains unclear. Here, we performed a gene-by-gene comparison of the codon usage variation in ZIKVs of the African and Asian lineages. We found that besides the evidence of positive selection (Ka/Ks >1) in the Asian lineage of the ZIKV genome, codon usage patterns were gene-specific and codon usage variation of ZIKV genes, was possibly constrained by their individual functional features, such as transmembrane domains, or antigenicity. In particular, the NS2B and NS4A genes showed distinct codon usage patterns, clearly separating them from the clusters of other genes in the correspondence analysis (CA). In the Asian lineage, the NS2B and NS4A genes showed the highest codon usage bias (ENC values: 51.01 ± 0.72 and 48.89 ± 0.99 respectively), and were subjected to the highest translation selection (ENCobs/ENCexp ratio: 0.847 ± 0.0297 and 0.828 ± 0.0233 respectively) in comparison to the African lineages of ZIKV. The CpG frequency of the NS2B showed a gradual ascending trend in the Asian ZIKV lineages, while in NS4A it was constrained along with the expansion of the Asian lineage. Furthermore, between the African and Asian lineages, differentiated and specific over-represented codons were more prominent in the NS2B and NS4A. Together, our study implies that ZIKVs are in the process of evolutionary fine tuning their codon as seen in the recent pandemics, and NS2B and NS4A could have played a potential role in the molecular evolution of the Asian lineage and their establishment.
Collapse
Affiliation(s)
- Dechun Lin
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, Guangdong, China; BGI-Shenzhen, Shenzhen 518083, Guangdong, China; China National Genebank, BGI-Shenzhen, Shenzhen 518083, Guangdong, China.
| | - Liqiang Li
- BGI-Shenzhen, Shenzhen 518083, Guangdong, China; China National Genebank, BGI-Shenzhen, Shenzhen 518083, Guangdong, China.
| | - Tian Xie
- Department of Pathogen Biology, Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, Guangdong, China.
| | - Qingqing Yin
- Department of Pathogen Biology, Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, Guangdong, China.
| | - Nitin Saksena
- BGI-Shenzhen, Shenzhen 518083, Guangdong, China; China National Genebank, BGI-Shenzhen, Shenzhen 518083, Guangdong, China.
| | - Rangke Wu
- The School of Foreign Studies, Southern Medical University, Guangzhou 510515, Guangdong, China.
| | - Wanyu Li
- Department of Pathogen Biology, Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, Guangdong, China.
| | - Geyang Dai
- Department of Pathogen Biology, Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, Guangdong, China.
| | - Jinmin Ma
- BGI-Shenzhen, Shenzhen 518083, Guangdong, China; China National Genebank, BGI-Shenzhen, Shenzhen 518083, Guangdong, China; Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| | - Xiaohong Zhou
- Department of Pathogen Biology, Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, Guangdong, China.
| | - Xiaoguang Chen
- Department of Pathogen Biology, Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, Guangdong, China.
| |
Collapse
|
44
|
Jayaraman D, Kenyon JC. New windows into retroviral RNA structures. Retrovirology 2018; 15:11. [PMID: 29368653 PMCID: PMC5784592 DOI: 10.1186/s12977-018-0393-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 01/12/2018] [Indexed: 12/16/2022] Open
Abstract
Background The multiple roles of both viral and cellular RNAs have become increasingly apparent in recent years, and techniques to model them have become significantly more powerful, enabling faster and more accurate visualization of RNA structures. Main body Techniques such as SHAPE (selective 2’OH acylation analysed by primer extension) have revolutionized the field, and have been used to examine RNAs belonging to many and diverse retroviruses. Secondary structure probing reagents such as these have been aided by the development of faster methods of analysis either via capillary or next-generation sequencing, allowing the analysis of entire genomes, and of retroviral RNA structures within virions. Techniques to model the three-dimensional structures of these large RNAs have also recently developed. Conclusions The flexibility of retroviral RNAs, both structural and functional, is clear from the results of these new experimental techniques. Retroviral RNA structures and structural changes control many stages of the lifecycle, and both the RNA structures themselves and their interactions with ligands are potential new drug targets. In addition, our growing understanding of retroviral RNA structures is aiding our knowledge of cellular RNA form and function.
Collapse
Affiliation(s)
- Dhivya Jayaraman
- Department of Medicine, National University of Singapore, 14 Medical Drive, MD 6, Level 15, Singapore, 117599, Singapore
| | - Julia Claire Kenyon
- Department of Medicine, University of Cambridge, Level 5 Addenbrookes Hospital Hills Rd, Cambridge, CB2 0QQ, UK. .,Department of Microbiology and Immunology, National University of Singapore, 5 Science Drive 2 Blk MD4, Level 3, Singapore, 117545, Singapore. .,Homerton College, University of Cambridge, Hills Rd, Cambridge, CB2 8PH, UK.
| |
Collapse
|
45
|
Analysis of codon usage bias of Crimean-Congo hemorrhagic fever virus and its adaptation to hosts. INFECTION GENETICS AND EVOLUTION 2017; 58:1-16. [PMID: 29198972 DOI: 10.1016/j.meegid.2017.11.027] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 11/02/2017] [Accepted: 11/28/2017] [Indexed: 01/05/2023]
Abstract
Crimean-Congo hemorrhagic fever virus (CCHFV) is a negative-sense, single stranded RNA virus with a three-segmented genome that belongs to the genus Nairovirus within the family Bunyaviridae. CCHFV uses Hyalomma ticks as a vector to infect humans with a wide range of clinical signs, from asymptomatic to Zika-like syndrome. Despite significant progress in genomic analyses, the influences of viral relationships with different hosts on overall viral fitness, survival, and evading the host's immune systems remain unknown. To better understand the evolutionary characteristics of CCHFV, we performed a comprehensive analysis of the codon usage pattern in 179 CCHFV strains by calculating the relative synonymous codon usage (RSCU), effective number of codons (ENC), codon adaptation index (CAI), and other indicators. The results indicate that the codon usage bias of CCHFV is relatively low. Several lines of evidence support the hypothesis that a translation selection factor is shaping codon usage pattern in this virus. A correspondence analysis (CA) showed that other factors, such as base composition, aromaticity, and hydrophobicity may also be involved in shaping the codon usage pattern of CCHFV. Additionally, the results from a comparative analysis of RSCU between CCHFV and its hosts suggest that CCHFV tends to evolve codon usage patterns that are comparable to those of its hosts. Furthermore, the selection pressures from Homo sapiens, Bos taurus, and Ovis aries on the CCHFV RSCU patterns were dominant when compared with selection pressure from Hyalomma spp. vectors. Taken together, both natural selection and mutation pressure are important for shaping the codon usage pattern of CCHFV. We believe that such findings will assist researchers in understanding the evolution of CCHFV and its adaptation to its hosts.
Collapse
|
46
|
Klaver B, van der Velden Y, van Hemert F, van der Kuyl AC, Berkhout B. HIV-1 tolerates changes in A-count in a small segment of the pol gene. Retrovirology 2017; 14:43. [PMID: 28870251 PMCID: PMC5583962 DOI: 10.1186/s12977-017-0367-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 08/30/2017] [Indexed: 11/21/2022] Open
Abstract
Background The HIV-1 RNA genome has a biased nucleotide composition with a surplus of As. Several hypotheses have been put forward to explain this striking phenomenon, but the A-count of the HIV-1 genome has thus far not been systematically manipulated. The reason for this reservation is the likelihood that known and unknown sequence motifs will be affected by such a massive mutational approach, thus resulting in replication-impaired virus mutants. We present the first attempt to increase and decrease the A-count in a relatively small polymerase (pol) gene segment of HIV-1 RNA. Results To minimize the mutational impact, a new mutational approach was developed that is inspired by natural sequence variation as present in HIV-1 isolates. This phylogeny-instructed mutagenesis allowed us to create replication-competent HIV-1 mutants with a significantly increased or decreased local A-count. The local A-count of the wild-type (wt) virus (40.2%) was further increased to 46.9% or reduced to 31.7 and 26.3%. These HIV-1 variants replicate efficiently in vitro, despite the fact that the pol changes cause a quite profound move in HIV–SIV sequence space. Conclusions Extrapolating these results to the complete 9 kb RNA genome, we may cautiously suggest that the A-rich signature does not have to be maintained. This survey also provided clues that silent codon changes, in particular from G-to-A, determine the subtype-specific sequence signatures.
Collapse
Affiliation(s)
- Bep Klaver
- Laboratory of Experimental Virology, Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, K3-110, Meibergdreef 15, 1105 AZ, Amsterdam, The Netherlands
| | - Yme van der Velden
- Laboratory of Experimental Virology, Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, K3-110, Meibergdreef 15, 1105 AZ, Amsterdam, The Netherlands
| | - Formijn van Hemert
- Laboratory of Experimental Virology, Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, K3-110, Meibergdreef 15, 1105 AZ, Amsterdam, The Netherlands
| | - Antoinette C van der Kuyl
- Laboratory of Experimental Virology, Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, K3-110, Meibergdreef 15, 1105 AZ, Amsterdam, The Netherlands
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, K3-110, Meibergdreef 15, 1105 AZ, Amsterdam, The Netherlands.
| |
Collapse
|
47
|
Kandeel M, Altaher A. Synonymous and Biased Codon Usage by MERS CoV Papain-Like and 3CL-Proteases. Biol Pharm Bull 2017; 40:1086-1091. [PMID: 28420819 DOI: 10.1248/bpb.b17-00168] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Middle East respiratory syndrome coronavirus (MERS CoV) is a recently evolved fatal respiratory disease that poses a concern for a global epidemic. MERS CoV encodes 2 proteases, 3C-like protease (3CLpro) and papain-like protease (PLpro). These proteases share in processing MERS CoV polyproteins at different sites to yield 16 nonstructural proteins. In this work, we provide evidence that MERS CoV 3CLpro and PLpro are subject to different genetic and evolutionary influences that shape the protein sequence, codon usage pattern, and codon usage bias. Compositional bias is present in both proteins due to a preference for AT nucleotides. Thymidine (T) was highly preferred at the third position of codons, preferred and overrepresented codons in PLpro, but was replaced by guanosine (G) in 3CLpro. Compositional constraints were important in PLpro but not in 3CLpro. Directed mutation pressure seems to have a strong influence on 3CLpro codon usage, which is more than 30-fold higher than that in PLpro. Translational selection was evident with PLpro but not with 3CLpro. Both proteins are less immunogenic by showing low CpG frequencies. Correspondence analysis reveals the presence of 3 genetic clusters based on codon usage in PLpro and 3CLpro. Every protein had one common cluster and 2 different clusters. As revealed by correspondence analysis, the number of influences on codon usage are restricted in MERS CoV 3CLpro. In contrast, PLpro is controlled by a broader range of compositional, mutational, and other influences. This may be due to the multifunctional protease, deubiquitination, and innate immunity suppressing profiles of PLpro.
Collapse
Affiliation(s)
- Mahmoud Kandeel
- Department of Physiology, Biochemistry and Pharmacology, Faculty of Veterinary Medicine, King Faisal University
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelshikh University
| | - Abdallah Altaher
- Department of Physiology, Biochemistry and Pharmacology, Faculty of Veterinary Medicine, King Faisal University
| |
Collapse
|