1
|
Kohnle L, Das T, Uddin MH, Nath SC, Mohsin MAS, Mahmud R, Biswas PK, Hoque MA, Pfeiffer DU, Fournié G. Amplification of avian influenza virus circulation along poultry marketing chains in Bangladesh: A controlled field experiment. Prev Vet Med 2024; 231:106302. [PMID: 39137554 PMCID: PMC11387981 DOI: 10.1016/j.prevetmed.2024.106302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/16/2024] [Accepted: 07/29/2024] [Indexed: 08/15/2024]
Abstract
The prevalence of avian influenza viruses is commonly found to increase dramatically as birds are transported from farms to live bird markets. Viral transmission dynamics along marketing chains are, however, poorly understood. To address this gap, we implemented a controlled field experiment altering chicken supply to a live bird market in Chattogram, Bangladesh. Broilers and backyard chickens traded along altered (intervention) and conventional (control) marketing chains were tested for avian influenza viruses at different time points. Upon arrival at the live bird market, the odds of detecting avian influenza viruses did not differ between control and intervention groups. However, 12 h later, intervention group odds were lower, particularly for broilers, indicating that viral shedding in live bird markets resulted partly from infections occurring during transport and trade. Curtailing avian influenza virus prevalence in live bird markets requires mitigating risk in marketing chain nodes preceding chickens' delivery at live bird markets.
Collapse
Affiliation(s)
- Lisa Kohnle
- City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region of China.
| | - Tridip Das
- Chattogram Veterinary and Animal Sciences University, Zakir Hossain Rd, Khulshi, Chattogram 4202, Bangladesh; Charles Sturt University, Boorooma Street, North Wagga, Wagga Wagga, NSW, Australia.
| | - Md Helal Uddin
- Chattogram Veterinary and Animal Sciences University, Zakir Hossain Rd, Khulshi, Chattogram 4202, Bangladesh.
| | - Sanjib Chandra Nath
- Chattogram Veterinary and Animal Sciences University, Zakir Hossain Rd, Khulshi, Chattogram 4202, Bangladesh.
| | - Md Abu Shoieb Mohsin
- Chattogram Veterinary and Animal Sciences University, Zakir Hossain Rd, Khulshi, Chattogram 4202, Bangladesh.
| | - Rashed Mahmud
- Chattogram Veterinary and Animal Sciences University, Zakir Hossain Rd, Khulshi, Chattogram 4202, Bangladesh.
| | - Paritosh Kumar Biswas
- Chattogram Veterinary and Animal Sciences University, Zakir Hossain Rd, Khulshi, Chattogram 4202, Bangladesh.
| | - Md Ahasanul Hoque
- Chattogram Veterinary and Animal Sciences University, Zakir Hossain Rd, Khulshi, Chattogram 4202, Bangladesh.
| | - Dirk Udo Pfeiffer
- City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region of China; Royal Veterinary College, Hawkshead Lane, North Mymms, London, Hertfordshire AL9 7TA, United Kingdom.
| | - Guillaume Fournié
- Royal Veterinary College, Hawkshead Lane, North Mymms, London, Hertfordshire AL9 7TA, United Kingdom; Université de Lyon, INRAE, VetAgro Sup, UMR EPIA, VetAgro Sup veterinary campus, 1, avenue Bourgelat, Marcy-l'Etoile 69280, France; Université Clermont Auvergne, INRAE, VetAgro Sup, UMR EPIA, Clermont-Auvergne-Rhône-Alpes, THEIX site, Saint Genes Champanelle, France.
| |
Collapse
|
2
|
Ingrao F, Ngabirano E, Rauw F, Dauphin G, Lambrecht B. Immunogenicity and protective efficacy of a multivalent herpesvirus vectored vaccine against H9N2 low pathogenic avian influenza in chicken. Vaccine 2024; 42:3410-3419. [PMID: 38641498 DOI: 10.1016/j.vaccine.2024.04.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/15/2024] [Accepted: 04/11/2024] [Indexed: 04/21/2024]
Abstract
The application of recombinant herpesvirus of turkey, expressing the H9 hemagglutinin gene from low pathogenic avian influenza virus (LPAIV) H9N2 and the avian orthoavulavirus-1 (AOAV-1) (commonly known as Newcastle Disease virus (NDV)) fusion protein (F) as an rHVT-H9-F vaccine, is an alternative to currently used classical vaccines. This study investigated H9- and ND-specific humoral and mucosal responses, H9-specific cell-mediated immunity, and protection conferred by the rHVT-H9-F vaccine in specific pathogen-free (SPF) chickens. Vaccination elicited systemic NDV F- and AIV H9-specific antibody response but also local antibodies in eye wash fluid and oropharyngeal swabs. The ex vivo H9-specific stimulation of splenic and pulmonary T cells in the vaccinated group demonstrated the ability of vaccination to induce systemic and local cellular responses. The clinical protection against a challenge using a LPAIV H9N2 strain of the G1 lineage isolated in Morocco in 2016 was associated with a shorter duration of shedding along with reduced viral genome load in the upper respiratory tract and reduced cloacal shedding compared to unvaccinated controls.
Collapse
MESH Headings
- Animals
- Influenza A Virus, H9N2 Subtype/immunology
- Influenza A Virus, H9N2 Subtype/genetics
- Chickens/immunology
- Influenza in Birds/prevention & control
- Influenza in Birds/immunology
- Influenza Vaccines/immunology
- Influenza Vaccines/administration & dosage
- Antibodies, Viral/immunology
- Antibodies, Viral/blood
- Virus Shedding/immunology
- Specific Pathogen-Free Organisms
- Newcastle disease virus/immunology
- Newcastle disease virus/genetics
- Poultry Diseases/prevention & control
- Poultry Diseases/immunology
- Poultry Diseases/virology
- Immunity, Cellular
- Herpesvirus 1, Meleagrid/immunology
- Herpesvirus 1, Meleagrid/genetics
- Vaccination/methods
- Immunity, Humoral
- Genetic Vectors/immunology
- Immunogenicity, Vaccine
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/administration & dosage
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
Collapse
Affiliation(s)
- Fiona Ingrao
- Service of Avian Virology and Immunology, Sciensano, 1180 Brussels, Belgium.
| | - Eva Ngabirano
- Service of Avian Virology and Immunology, Sciensano, 1180 Brussels, Belgium
| | - Fabienne Rauw
- Service of Avian Virology and Immunology, Sciensano, 1180 Brussels, Belgium
| | - Gwenaëlle Dauphin
- Ceva Santé Animale, 10 Avenue de la Ballastière, 33500 Libourne, France
| | | |
Collapse
|
3
|
Soda K, Yamane M, Hidaka C, Miura K, Ung TTH, Nguyen HLK, Ito H, LE MQ, Ito T. Prior infection with antigenically heterologous low pathogenic avian influenza viruses interferes with the lethality of the H5 highly pathogenic strain in domestic ducks. J Vet Med Sci 2021; 83:1899-1906. [PMID: 34732612 PMCID: PMC8762415 DOI: 10.1292/jvms.21-0515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Low and highly pathogenic avian influenza viruses (LPAIVs and HPAIVs, respectively) have been co-circulating in poultry populations in Asian, Middle Eastern, and African countries. In our avian-flu surveillance in Vietnamese domestic ducks, viral genes of LPAIV and HPAIV have been frequently detected in the same individual. To assess the influence of LPAIV on the pathogenicity of H5 HPAIV in domestic ducks, an experimental co-infection study was performed. One-week-old domestic ducks were inoculated intranasally and orally with PBS (control) or 106 EID50 of LPAIVs (A/duck/Vietnam/LBM678/2014 (H6N6) or A/Muscovy duck/Vietnam/LBM694/2014 (H9N2)). Seven days later, these ducks were inoculated with HPAIV (A/Muscovy duck/Vietnam/LBM808/2015 (H5N6)) in the same manner. The respective survival rates were 100% and 50% in ducks pre-infected with LBM694 or LBM678 strains and both higher than the survival of the control group (25%). The virus titers in oral/cloacal swabs of each LPAIV pre-inoculation group were significantly lower at 3-5 days post-HPAIV inoculation. Notably, almost no virus was detected in swabs from surviving individuals of the LBM678 pre-inoculation group. Antigenic cross-reactivity among the viruses was not observed in the neutralization test. These results suggest that pre-infection with LPAIV attenuates the pathogenicity of HPAIV in domestic ducks, which might be explained by innate and/or cell-mediated immunity induced by the initial infection with LPAIV.
Collapse
Affiliation(s)
- Kosuke Soda
- Department of Joint Veterinary Medicine, Faculty of Agriculture, Tottori University.,Avian Zoonosis Research Center, Faculty of Agriculture, Tottori University
| | - Maya Yamane
- Department of Joint Veterinary Medicine, Faculty of Agriculture, Tottori University
| | - Chiharu Hidaka
- The United Graduate School of Veterinary Science, Yamaguchi University
| | - Kozue Miura
- Vietnam Research Station, Nagasaki University, c/o National Institute of Hygiene and Epidemiology.,Present address: Graduate School of Agricultural and Life Sciences, The University of Tokyo
| | - Trang T H Ung
- Department of Virology, National Institute of Hygiene and Epidemiology
| | - Hang L K Nguyen
- Department of Virology, National Institute of Hygiene and Epidemiology
| | - Hiroshi Ito
- Department of Joint Veterinary Medicine, Faculty of Agriculture, Tottori University.,Avian Zoonosis Research Center, Faculty of Agriculture, Tottori University
| | - Mai Q LE
- Department of Virology, National Institute of Hygiene and Epidemiology
| | - Toshihiro Ito
- Department of Joint Veterinary Medicine, Faculty of Agriculture, Tottori University.,Avian Zoonosis Research Center, Faculty of Agriculture, Tottori University
| |
Collapse
|
4
|
Rahman MM, Nooruzzaman M, Kabiraj CK, Mumu TT, Das PM, Chowdhury EH, Islam MR. Surveillance on respiratory diseases reveals enzootic circulation of both H5 and H9 avian influenza viruses in small-scale commercial layer farms of Bangladesh. Zoonoses Public Health 2021; 68:896-907. [PMID: 34219385 DOI: 10.1111/zph.12879] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/11/2021] [Accepted: 06/26/2021] [Indexed: 01/27/2023]
Abstract
Poultry production in Bangladesh has been experiencing H5N1 highly pathogenic avian influenza (HPAI) and H9N2 low pathogenic avian influenza (LPAI) for the last 14 years. Vaccination of chickens against H5 HPAI is in practice since the end of 2012. Subsequently, the official reporting of HPAI outbreaks gradually decreased. However, the true extent of circulation of avian influenza virus (AIV) in commercial poultry production is not clear. To explore this, we conducted active surveillance in 422 small-scale commercial layer farms in 20 villages of Mymensingh and Tangail districts of Bangladesh during 2017 and 2018 for the presence of diseases with respiratory signs. A total of 88 farms with respiratory disease problems were identified and investigated during the surveillance. In addition, 22 small-scale commercial layer farms in the neighbouring areas with respiratory disease problem were also investigated on request from the farmers. Pooled samples of oropharyngeal swabs from live birds or respiratory tissues from dead birds of the farm suffering from respiratory disease problem were tested for molecular detection of avian influenza virus (AIV), Newcastle disease virus (NDV), infectious bronchitis virus (IBV), infectious laryngotracheitis virus (ILTV), Mycoplasma gallisepticum and Avibacterium paragallinarum. A total of 110 farms (88 in the surveillance site and 22 in the neighbouring region) were investigated, and one or more respiratory pathogens were detected from 89 farms. AIV was detected in 57 farms often concurrently with other pathogens. Among these 57 farms, H5, H9, both H5 and H9 or non-H5 and non-H9 AIV were detected in 28, 9, 13 or 7 farms, respectively. Birds of most of the H5 AIV-positive farms did not present typical clinical signs or high mortality. Twenty such farms were observed longitudinally, which had only 1.05%-5.50% mortality but a marked drop in egg production. This widespread circulation of H5 AIV along with H9 AIV and other pathogens in small-scale commercial layer farms, often with low mortality, reaffirms the enzootic circulation of AIV in Bangladesh, which may escape syndromic surveillance focused on unusual mortality only. To reduce public health risks, strengthening of the control programme with comprehensive vaccination, enhanced biosecurity, improved surveillance and outbreak response is suggested.
Collapse
Affiliation(s)
- Mohammad Mijanur Rahman
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Mohammed Nooruzzaman
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Congriev Kumar Kabiraj
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Tanjin Tamanna Mumu
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Priya Mohan Das
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Emdadul Haque Chowdhury
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Mohammad Rafiqul Islam
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| |
Collapse
|
5
|
Adel A, Mosaad Z, Shalaby AG, Selim K, Samy M, Abdelmagid MA, Hagag NM, Arafa AS, Hassan WM, Shahien MA. Molecular evolution of the hemagglutinin gene and epidemiological insight into low-pathogenic avian influenza H9N2 viruses in Egypt. Res Vet Sci 2021; 136:540-549. [PMID: 33887563 DOI: 10.1016/j.rvsc.2021.04.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 03/19/2021] [Accepted: 04/12/2021] [Indexed: 10/21/2022]
Abstract
Despite the low pathogenicity of the H9N2 avian influenza viruses, they can induce severe economic losses in various poultry sectors in conjunction with other factors. In Egypt, low-pathogenic avian influenza (LPAI) H9N2 became endemic in 2011 and has undergone continuous genetic evolution since then. The regular monitoring of the evolution of the virus is necessary to control its spread. During 2017-2020, there were 44 positive samples isolated, and these viruses were genetically sequenced to determine the hemagglutinin (HA) gene circulating in Egypt. The molecular analysis revealed at least nine changes in amino acid residues in comparison with the reference Egyptian strain from the original introduction in 2011 (A/qu/Egypt/113413v/2011), with a similarity of 95%-96%. Amino acid residues 180 and 216 are the most important residues in terms of positive selection pressure. Phylogenetically, the new Egyptian H9N2 viruses in 2017-2020 belonged to a new subcluster related to the strains that had been circulating since 2015. Comparative analysis of the HA gene of LPAI H9N2 viruses in Egypt from 2011 to 2020 supports a continuous evolution through the years with persistent markers.
Collapse
Affiliation(s)
- Amany Adel
- Reference Laboratory for Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Giza 12618, Egypt.
| | - Zienab Mosaad
- Reference Laboratory for Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Giza 12618, Egypt
| | - Azhar G Shalaby
- Reference Laboratory for Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Giza 12618, Egypt
| | - Karim Selim
- Reference Laboratory for Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Giza 12618, Egypt
| | - Mohamed Samy
- Reference Laboratory for Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Giza 12618, Egypt
| | - Marwa A Abdelmagid
- Reference Laboratory for Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Giza 12618, Egypt
| | - Naglaa M Hagag
- Reference Laboratory for Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Giza 12618, Egypt
| | - Abdel Satar Arafa
- Reference Laboratory for Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Giza 12618, Egypt
| | - Wafaa M Hassan
- Reference Laboratory for Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Giza 12618, Egypt
| | - Momtaz A Shahien
- Reference Laboratory for Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Giza 12618, Egypt
| |
Collapse
|
6
|
A Global Perspective on H9N2 Avian Influenza Virus. Viruses 2019; 11:v11070620. [PMID: 31284485 PMCID: PMC6669617 DOI: 10.3390/v11070620] [Citation(s) in RCA: 196] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 06/30/2019] [Accepted: 07/01/2019] [Indexed: 11/26/2022] Open
Abstract
H9N2 avian influenza viruses have become globally widespread in poultry over the last two decades and represent a genuine threat both to the global poultry industry but also humans through their high rates of zoonotic infection and pandemic potential. H9N2 viruses are generally hyperendemic in affected countries and have been found in poultry in many new regions in recent years. In this review, we examine the current global spread of H9N2 avian influenza viruses as well as their host range, tropism, transmission routes and the risk posed by these viruses to human health.
Collapse
|
7
|
Salaheldin AH, Kasbohm E, El-Naggar H, Ulrich R, Scheibner D, Gischke M, Hassan MK, Arafa ASA, Hassan WM, Abd El-Hamid HS, Hafez HM, Veits J, Mettenleiter TC, Abdelwhab EM. Potential Biological and Climatic Factors That Influence the Incidence and Persistence of Highly Pathogenic H5N1 Avian Influenza Virus in Egypt. Front Microbiol 2018; 9:528. [PMID: 29636730 PMCID: PMC5880882 DOI: 10.3389/fmicb.2018.00528] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 03/08/2018] [Indexed: 01/09/2023] Open
Abstract
Highly pathogenic H5N1 avian influenza virus (A/H5N1) of clade 2.2.1 is endemic in poultry in Egypt where the highest number of human infections worldwide was reported. During the last 12 years the Egyptian A/H5N1 evolved into several genotypes. In 2007-2014 vaccinated poultry suffered from antigenic drift variants of clade 2.2.1.1 and in 2014/2015 an unprecedented upsurge of A/H5N1 clade 2.2.1.2 occurred in poultry and humans. Factors contributing to the endemicity or re-emergence of A/H5N1 in poultry in Egypt remain unclear. Here, three potential factors were studied: climatic factors (temperature, relative humidity, and wind speed), biological fitness in vitro, and pathogenicity in domestic Pekin and Muscovy ducks. Statistical analyses using negative binomial regression models indicated that ambient temperature in winter months influenced the spread of A/H5N1 in different geographic areas analyzed in this study. In vitro, at 4 and 56°C 2.2.1.1 and recent 2.2.1.2 viruses were more stable than other viruses used in this study. Further, Pekin ducks were more resistant than Muscovy ducks and the viruses were excreted for up to 2 weeks post-infection assuming a strong role as a reservoir. Taken together, ambient temperature in winter months potentially contributes to increasing outbreaks in some regions in Egypt. Heat stability of clade 2.2.1.1 and recent 2.2.1.2 viruses probably favors their persistence at elevated temperatures. Importantly, asymptomatically infected Pekin ducks may play an important role in the spread of avian and human-like A/H5N1 in Egypt. Therefore, control measures including targeted surveillance and culling of silently infected Pekin ducks should be considered.
Collapse
Affiliation(s)
- Ahmed H Salaheldin
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany.,Institute of Poultry Diseases, Free University of Berlin, Berlin, Germany.,Department of Poultry Diseases, Faculty of Veterinary Medicine, Alexandria University, Edfina, Egypt
| | - Elisa Kasbohm
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany.,Institute of Mathematics and Computer Science, University of Greifswald, Greifswald, Germany
| | - Heba El-Naggar
- Veterinary Serum and Vaccine Research Institute, Cairo, Egypt
| | - Reiner Ulrich
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - David Scheibner
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Marcel Gischke
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Mohamed K Hassan
- National Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Giza, Egypt
| | - Abdel-Satar A Arafa
- National Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Giza, Egypt
| | - Wafaa M Hassan
- National Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Giza, Egypt
| | | | - Hafez M Hafez
- Institute of Poultry Diseases, Free University of Berlin, Berlin, Germany
| | - Jutta Veits
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Thomas C Mettenleiter
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Elsayed M Abdelwhab
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| |
Collapse
|
8
|
Abstract
Highly pathogenic avian influenza (HPAI) H5N1 viruses are currently endemic in poultry in Egypt. Eradication of the viruses has been unsuccessful due to improper application of vaccine-based control strategies among other preventive measures. The viruses have evolved rapidly with increased bird-to-human transmission efficacy, thus affecting both animal and public health. Subsequent spread of potentially zoonotic low pathogenic avian influenza (LPAI) H9N2 in poultry has also hindered efficient control of avian influenza. The H5N1 viruses acquired enhanced bird-to-human transmissibility by (1) altering amino acids in hemagglutinin (HA) that enable binding affinity to human-type receptors, (2) loss of the glycosylation site and 130 loop in the HA protein and (3) mutation of E627K in the PB2 protein to enhance viral replication in mammalian hosts. The receptor binding site of HA of Egyptian H9N2 viruses has been shown to contain the Q234L substitution along with a H191 mutation, which can increase human-like receptor specificity. Therefore, co-circulation of H5N1 and H9N2 viruses in poultry farming and live bird markets has increased the risk of human exposure, resulting in complication of the epidemiological situation and raising a concern for potential emergence of a new influenza A virus pandemic. For efficient control of infection and transmission, the efficacy of vaccine and vaccination needs to be improved with a comprehensive control strategy, including enhanced biosecurity, education, surveillance, rapid diagnosis and culling of infected poultry.
Collapse
|
9
|
Samy A, Naguib MM. Avian Respiratory Coinfection and Impact on Avian Influenza Pathogenicity in Domestic Poultry: Field and Experimental Findings. Vet Sci 2018; 5:E23. [PMID: 29495276 PMCID: PMC5876583 DOI: 10.3390/vetsci5010023] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/21/2018] [Accepted: 02/22/2018] [Indexed: 01/03/2023] Open
Abstract
The avian respiratory system hosts a wide range of commensal and potential pathogenic bacteria and/or viruses that interact with each other. Such interactions could be either synergistic or antagonistic, which subsequently determines the severity of the disease complex. The intensive rearing methods of poultry are responsible for the marked increase in avian respiratory diseases worldwide. The interaction between avian influenza with other pathogens can guarantee the continuous existence of other avian pathogens, which represents a global concern. A better understanding of the impact of the interaction between avian influenza virus and other avian respiratory pathogens provides a better insight into the respiratory disease complex in poultry and can lead to improved intervention strategies aimed at controlling virus spread.
Collapse
Affiliation(s)
- Ahmed Samy
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Dokki, Giza 12618, Egypt.
| | - Mahmoud M Naguib
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Dokki, Giza 12618, Egypt.
- Zoonosis Science Centre, Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, 751 21 Uppsala, Sweden.
- Infectious Medicine, Department of Medical Sciences, Uppsala University, 751 85 Uppsala, Sweden.
| |
Collapse
|
10
|
Jia L, Xie J, Zhao J, Cao D, Liang Y, Hou X, Wang L, Li Z. Mechanisms of Severe Mortality-Associated Bacterial Co-infections Following Influenza Virus Infection. Front Cell Infect Microbiol 2017; 7:338. [PMID: 28824877 PMCID: PMC5540941 DOI: 10.3389/fcimb.2017.00338] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 07/10/2017] [Indexed: 01/15/2023] Open
Abstract
Influenza virus infection remains one of the largest disease burdens on humans. Influenza-associated bacterial co-infections contribute to severe disease and mortality during pandemic and seasonal influenza episodes. The mechanisms of severe morbidity following influenza-bacteria co-infections mainly include failure of an antibacterial immune response and pathogen synergy. Moreover, failure to resume function and tolerance might be one of the main reasons for excessive mortality. In this review, recent advances in the study of mechanisms of severe disease, caused by bacterial co-infections following influenza virus pathogenesis, are summarized. Therefore, understanding the synergy between viruses and bacteria will facilitate the design of novel therapeutic approaches to prevent mortality associated with bacterial co-infections.
Collapse
Affiliation(s)
- Leili Jia
- Institute of Disease Control and Prevention of Chinese People's Liberation ArmyBeijing, China
| | - Jing Xie
- Institute of Disease Control and Prevention of Chinese People's Liberation ArmyBeijing, China
| | - Jiangyun Zhao
- Institute of Disease Control and Prevention of Chinese People's Liberation ArmyBeijing, China
| | - Dekang Cao
- Center for Disease Control and Prevention of Chinese People's Armed Police ForcesBeijing, China
| | - Yuan Liang
- Institute of Disease Control and Prevention of Chinese People's Liberation ArmyBeijing, China
| | - Xuexin Hou
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and PreventionBeijing, China
| | - Ligui Wang
- Institute of Disease Control and Prevention of Chinese People's Liberation ArmyBeijing, China
| | - Zhenjun Li
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and PreventionBeijing, China
| |
Collapse
|
11
|
Azab AA, Arafa A, Selim A, Hassan MK, Bazid AI, Sultan AH, Hussein HA, Abdelwhab EM. Pathogenicity of the Egyptian A/H5N1 avian influenza viruses in chickens. Microb Pathog 2017; 110:471-476. [PMID: 28739438 DOI: 10.1016/j.micpath.2017.07.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 06/15/2017] [Accepted: 07/17/2017] [Indexed: 12/13/2022]
Abstract
Long-term circulation of highly pathogenic avian influenza H5N1 viruses of clade 2.2.1 in Egyptian poultry since February 2006 resulted in the evolution of two distinct clades: 2.2.1.1 represents antigenic-drift variants isolated from vaccinated poultry and 2.2.1.2 that caused the newest upsurge in birds and humans in 2014/2015. In the present study, nine isolates were collected from chickens, ducks and turkeys representing the commercial and backyard sectors during the period 2009-2015. The subtyping was confirmed by hemagglutination inhibition (HI) test, RT-qPCR and sequence analysis. The Mean Death Time (MDT) and Intravenous Pathogenicity Index (IVPI) for all isolates were determined. Sequence analysis of the HA gene sequences of these viruses revealed that two viruses belonged to clade 2.2.1.1 and the rest were clade 2.2.1.2. Antigenic characterisation of the viruses supported the results of the phylogenetic analysis. The MDT of the isolates ranged from 18 to 72 h and the IVPI values ranged from 2.3 to 2.9; viruses of the 2.2.1.1 clade were less virulent than those of the 2.2.1.2 clade. In addition, clade-specific polymorphism in the HA cleavage site was observed. These findings indicate the high and variable pathogenicity of H5N1 viruses of different clades and host-origin in Egypt. The upsurge of outbreaks in poultry in 2014/2015 was probably not due to a shift in virulence from earlier viruses.
Collapse
Affiliation(s)
- A A Azab
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, P.O. Box 264-Dokki, Giza 12618, Egypt.
| | - A Arafa
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, P.O. Box 264-Dokki, Giza 12618, Egypt
| | - A Selim
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, P.O. Box 264-Dokki, Giza 12618, Egypt
| | - M K Hassan
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, P.O. Box 264-Dokki, Giza 12618, Egypt
| | - A I Bazid
- Faculty of Veterinary Medicine, Sadat City University, Al-Menofia, Egypt
| | - A H Sultan
- Faculty of Veterinary Medicine, Sadat City University, Al-Menofia, Egypt
| | - H A Hussein
- Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - E M Abdelwhab
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, P.O. Box 264-Dokki, Giza 12618, Egypt; Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, D-17493 Greifswald-Insel Riems, Germany
| |
Collapse
|