1
|
Malet H, Williams HM, Cusack S, Rosenthal M. The mechanism of genome replication and transcription in bunyaviruses. PLoS Pathog 2023; 19:e1011060. [PMID: 36634042 PMCID: PMC9836281 DOI: 10.1371/journal.ppat.1011060] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Bunyaviruses are negative sense, single-strand RNA viruses that infect a wide range of vertebrate, invertebrate and plant hosts. WHO lists three bunyavirus diseases as priority diseases requiring urgent development of medical countermeasures highlighting their high epidemic potential. While the viral large (L) protein containing the RNA-dependent RNA polymerase is a key enzyme in the viral replication cycle and therefore a suitable drug target, our knowledge on the structure and activities of this multifunctional protein has, until recently, been very limited. However, in the last few years, facilitated by the technical advances in the field of cryogenic electron microscopy, many structures of bunyavirus L proteins have been solved. These structures significantly enhance our mechanistic understanding of bunyavirus genome replication and transcription processes and highlight differences and commonalities between the L proteins of different bunyavirus families. Here, we provide a review of our current understanding of genome replication and transcription in bunyaviruses with a focus on the viral L protein. Further, we compare within bunyaviruses and with the related influenza virus polymerase complex and highlight open questions.
Collapse
Affiliation(s)
- Hélène Malet
- University Grenoble Alpes, CNRS, CEA, IBS, Grenoble, France
- Institut Universitaire de France (IUF), Paris, France
| | - Harry M. Williams
- Bernhard Nocht Institute for Tropical Medicine (BNITM), Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany
| | | | - Maria Rosenthal
- Bernhard Nocht Institute for Tropical Medicine (BNITM), Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Discovery Research ScreeningPort, Hamburg, Germany
| |
Collapse
|
2
|
Arragain B, Durieux Trouilleton Q, Baudin F, Provaznik J, Azevedo N, Cusack S, Schoehn G, Malet H. Structural snapshots of La Crosse virus polymerase reveal the mechanisms underlying Peribunyaviridae replication and transcription. Nat Commun 2022; 13:902. [PMID: 35173159 PMCID: PMC8850483 DOI: 10.1038/s41467-022-28428-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 01/20/2022] [Indexed: 12/28/2022] Open
Abstract
Segmented negative-strand RNA bunyaviruses encode a multi-functional polymerase that performs genome replication and transcription. Here, we establish conditions for in vitro activity of La Crosse virus polymerase and visualize its conformational dynamics by cryo-electron microscopy, unveiling the precise molecular mechanics underlying its essential activities. We find that replication initiation is coupled to distal duplex promoter formation, endonuclease movement, prime-and-realign loop extension and closure of the polymerase core that direct the template towards the active site. Transcription initiation depends on C-terminal region closure and endonuclease movements that prompt primer cleavage prior to primer entry in the active site. Product realignment after priming, observed in replication and transcription, is triggered by the prime-and-realign loop. Switch to elongation results in polymerase reorganization and core region opening to facilitate template-product duplex formation in the active site cavity. The uncovered detailed mechanics should be helpful for the future design of antivirals counteracting bunyaviral life threatening pathogens. La Crosse is a human life threatening virus belonging to the Bunyavirales order. The structure of its polymerase solved in seven key active states by cryo-electron microscopy reveals the molecular mechanisms of viral RNA replication and transcription.
Collapse
Affiliation(s)
- Benoît Arragain
- Univ. Grenoble Alpes, CNRS, CEA, IBS, F-38000, Grenoble, France.,European Molecular Biology Laboratory (EMBL), 38000, Grenoble, France
| | | | - Florence Baudin
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, 69117, Heidelberg, Germany
| | - Jan Provaznik
- European Molecular Biology Laboratory (EMBL), GeneCore, 69117, Heidelberg, Germany
| | - Nayara Azevedo
- European Molecular Biology Laboratory (EMBL), GeneCore, 69117, Heidelberg, Germany
| | - Stephen Cusack
- European Molecular Biology Laboratory (EMBL), 38000, Grenoble, France.
| | - Guy Schoehn
- Univ. Grenoble Alpes, CNRS, CEA, IBS, F-38000, Grenoble, France
| | - Hélène Malet
- Univ. Grenoble Alpes, CNRS, CEA, IBS, F-38000, Grenoble, France. .,Institut Universitaire de France (IUF), Paris, France.
| |
Collapse
|
3
|
Jones R, Lessoued S, Meier K, Devignot S, Barata-García S, Mate M, Bragagnolo G, Weber F, Rosenthal M, Reguera J. Structure and function of the Toscana virus cap-snatching endonuclease. Nucleic Acids Res 2020; 47:10914-10930. [PMID: 31584100 PMCID: PMC6847833 DOI: 10.1093/nar/gkz838] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 09/14/2019] [Accepted: 10/01/2019] [Indexed: 12/03/2022] Open
Abstract
Toscana virus (TOSV) is an arthropod-borne human pathogen responsible for seasonal outbreaks of fever and meningoencephalitis in the Mediterranean basin. TOSV is a segmented negative-strand RNA virus (sNSV) that belongs to the genus phlebovirus (family Phenuiviridae, order Bunyavirales), encompassing other important human pathogens such as Rift Valley fever virus (RVFV). Here, we carried out a structural and functional characterization of the TOSV cap-snatching endonuclease, an N terminal domain of the viral polymerase (L protein) that provides capped 3′OH primers for transcription. We report TOSV endonuclease crystal structures in the apo form, in complex with a di-ketoacid inhibitor (DPBA) and in an intermediate state of inhibitor release, showing details on substrate binding and active site dynamics. The structure reveals substantial folding rearrangements absent in previously reported cap-snatching endonucleases. These include the relocation of the N terminus and the appearance of new structural motifs important for transcription and replication. The enzyme shows high activity rates comparable to other His+ cap-snatching endonucleases. Moreover, the activity is dependent on conserved residues involved in metal ion and substrate binding. Altogether, these results bring new light on the structure and function of cap-snatching endonucleases and pave the way for the development of specific and broad-spectrum antivirals.
Collapse
Affiliation(s)
- Rhian Jones
- Aix-Marseille Université, CNRS, AFMB UMR 7257, 13288 Marseille, France
| | - Sana Lessoued
- Aix-Marseille Université, CNRS, AFMB UMR 7257, 13288 Marseille, France
| | - Kristina Meier
- Bernhard Nocht Institute for Tropical Medicine, Department of Virology, D-20359 Hamburg, Germany
| | - Stéphanie Devignot
- Institute for Virology, FB10-Veterinary Medicine, Justus-Liebig University, D-35392 Giessen, Germany
| | | | - Maria Mate
- Aix-Marseille Université, CNRS, AFMB UMR 7257, 13288 Marseille, France
| | | | - Friedemann Weber
- Institute for Virology, FB10-Veterinary Medicine, Justus-Liebig University, D-35392 Giessen, Germany
| | - Maria Rosenthal
- Bernhard Nocht Institute for Tropical Medicine, Department of Virology, D-20359 Hamburg, Germany
| | - Juan Reguera
- Aix-Marseille Université, CNRS, AFMB UMR 7257, 13288 Marseille, France.,INSERM, AFMB UMR7257,13288 Marseille, France
| |
Collapse
|
4
|
Woelfl F, Léger P, Oreshkova N, Pahmeier F, Windhaber S, Koch J, Stanifer M, Roman Sosa G, Uckeley ZM, Rey FA, Boulant S, Kortekaas J, Wichgers Schreur PJ, Lozach PY. Novel Toscana Virus Reverse Genetics System Establishes NSs as an Antagonist of Type I Interferon Responses. Viruses 2020; 12:v12040400. [PMID: 32260371 PMCID: PMC7232479 DOI: 10.3390/v12040400] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/30/2020] [Accepted: 04/03/2020] [Indexed: 12/13/2022] Open
Abstract
The sand fly-borne Toscana virus (TOSV) is the major cause of human meningoencephalitis in the Mediterranean basin during the summer season. In this work, we have developed a T7 RNA polymerase-driven reverse genetics system to recover infectious particles of a lineage B strain of TOSV. The viral protein pattern and growth properties of the rescued virus (rTOSV) were found to be similar to those of the corresponding wild-type (wt) virus. Using this system, we genetically engineered a TOSV mutant lacking expression of the non-structural protein NSs (rTOSVɸNSs). Unlike rTOSV and the wt virus, rTOSVɸNSs was unable to (i) suppress interferon (IFN)-b messenger RNA induction; and (ii) grow efficiently in cells producing IFN-b. Together, our results highlight the importance of NSs for TOSV in evading the IFN response and provide a comprehensive toolbox to investigate the TOSV life cycle in mammalian and insect host cells, including several novel polyclonal antibodies.
Collapse
Affiliation(s)
- Franziska Woelfl
- CellNetworks Cluster of Excellence, University Hospital Heidelberg, 69120 Heidelberg, Germany; (F.W.); (P.L.); (F.P.); (S.W.); (J.K.); (Z.M.U.)
- Center for Integrative Infectious Diseases Research (CIID), Virology, University Hospital Heidelberg, 69120 Heidelberg, Germany;
| | - Psylvia Léger
- CellNetworks Cluster of Excellence, University Hospital Heidelberg, 69120 Heidelberg, Germany; (F.W.); (P.L.); (F.P.); (S.W.); (J.K.); (Z.M.U.)
- Center for Integrative Infectious Diseases Research (CIID), Virology, University Hospital Heidelberg, 69120 Heidelberg, Germany;
| | - Nadia Oreshkova
- Wageningen Bioveterinary Research, Department of Virology, 8221 RA Lelystad, The Netherlands; (N.O.); (J.K.)
| | - Felix Pahmeier
- CellNetworks Cluster of Excellence, University Hospital Heidelberg, 69120 Heidelberg, Germany; (F.W.); (P.L.); (F.P.); (S.W.); (J.K.); (Z.M.U.)
- Center for Integrative Infectious Diseases Research (CIID), Virology, University Hospital Heidelberg, 69120 Heidelberg, Germany;
| | - Stefan Windhaber
- CellNetworks Cluster of Excellence, University Hospital Heidelberg, 69120 Heidelberg, Germany; (F.W.); (P.L.); (F.P.); (S.W.); (J.K.); (Z.M.U.)
- Center for Integrative Infectious Diseases Research (CIID), Virology, University Hospital Heidelberg, 69120 Heidelberg, Germany;
| | - Jana Koch
- CellNetworks Cluster of Excellence, University Hospital Heidelberg, 69120 Heidelberg, Germany; (F.W.); (P.L.); (F.P.); (S.W.); (J.K.); (Z.M.U.)
- Center for Integrative Infectious Diseases Research (CIID), Virology, University Hospital Heidelberg, 69120 Heidelberg, Germany;
| | - Megan Stanifer
- Center for Integrative Infectious Diseases Research (CIID), Molecular Virology, University Hospital Heidelberg, 69120 Heidelberg, Germany;
| | - Gleyder Roman Sosa
- Structural Virology Unit, Pasteur Institute, 75015 Paris, France; (G.R.S.); (F.A.R.)
| | - Zina M. Uckeley
- CellNetworks Cluster of Excellence, University Hospital Heidelberg, 69120 Heidelberg, Germany; (F.W.); (P.L.); (F.P.); (S.W.); (J.K.); (Z.M.U.)
- Center for Integrative Infectious Diseases Research (CIID), Virology, University Hospital Heidelberg, 69120 Heidelberg, Germany;
| | - Felix A. Rey
- Structural Virology Unit, Pasteur Institute, 75015 Paris, France; (G.R.S.); (F.A.R.)
| | - Steeve Boulant
- Center for Integrative Infectious Diseases Research (CIID), Virology, University Hospital Heidelberg, 69120 Heidelberg, Germany;
| | - Jeroen Kortekaas
- Wageningen Bioveterinary Research, Department of Virology, 8221 RA Lelystad, The Netherlands; (N.O.); (J.K.)
- Laboratory of Virology, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Paul J. Wichgers Schreur
- Wageningen Bioveterinary Research, Department of Virology, 8221 RA Lelystad, The Netherlands; (N.O.); (J.K.)
- Correspondence: (P.J.W.S.); (P.-Y.L.)
| | - Pierre-Yves Lozach
- CellNetworks Cluster of Excellence, University Hospital Heidelberg, 69120 Heidelberg, Germany; (F.W.); (P.L.); (F.P.); (S.W.); (J.K.); (Z.M.U.)
- Center for Integrative Infectious Diseases Research (CIID), Virology, University Hospital Heidelberg, 69120 Heidelberg, Germany;
- INRAE, EPHE, Viral Infections and Comparative Pathology (IVPC), University Claude Bernard Lyon1, University of Lyon, UMR754, 69007 Lyon, France
- Correspondence: (P.J.W.S.); (P.-Y.L.)
| |
Collapse
|
5
|
Olschewski S, Cusack S, Rosenthal M. The Cap-Snatching Mechanism of Bunyaviruses. Trends Microbiol 2020; 28:293-303. [PMID: 31948728 DOI: 10.1016/j.tim.2019.12.006] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 12/09/2019] [Indexed: 11/25/2022]
Abstract
In common with all segmented negative-sense RNA viruses, bunyavirus transcripts contain heterologous sequences at their 5' termini originating from capped host cell RNAs. These heterologous sequences are acquired by a so-called cap-snatching mechanism. Whereas for nuclear replicating influenza virus the source of capped primers as well as the cap-binding and endonuclease activities of the viral polymerase needed for cap snatching have been functionally and structurally well characterized, our knowledge on the expected counterparts of cytoplasmic replicating bunyaviruses is still limited and controversial. This review focuses on the cap-snatching mechanism of bunyaviruses in the light of recent structural and functional data.
Collapse
Affiliation(s)
- Silke Olschewski
- Bernhard Nocht Institute for Tropical Medicine, Department of Virology, Hamburg, Germany
| | | | - Maria Rosenthal
- Bernhard Nocht Institute for Tropical Medicine, Department of Virology, Hamburg, Germany.
| |
Collapse
|
6
|
Wang W, Shin WJ, Zhang B, Choi Y, Yoo JS, Zimmerman MI, Frederick TE, Bowman GR, Gross ML, Leung DW, Jung JU, Amarasinghe GK. The Cap-Snatching SFTSV Endonuclease Domain Is an Antiviral Target. Cell Rep 2020; 30:153-163.e5. [PMID: 31914382 PMCID: PMC7214099 DOI: 10.1016/j.celrep.2019.12.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 10/31/2019] [Accepted: 12/06/2019] [Indexed: 01/08/2023] Open
Abstract
Severe fever with thrombocytopenia syndrome virus (SFTSV) is a tick-borne virus with 12%-30% case mortality rates and is related to the Heartland virus (HRTV) identified in the United States. Together, SFTSV and HRTV are emerging segmented, negative-sense RNA viral (sNSV) pathogens with potential global health impact. Here, we characterize the amino-terminal cap-snatching endonuclease domain of SFTSV polymerase (L) and solve a 2.4-Å X-ray crystal structure. While the overall structure is similar to those of other cap-snatching sNSV endonucleases, differences near the C terminus of the SFTSV endonuclease suggest divergence in regulation. Influenza virus endonuclease inhibitors, including the US Food and Drug Administration (FDA) approved Baloxavir (BXA), inhibit the endonuclease activity in in vitro enzymatic assays and in cell-based studies. BXA displays potent activity with a half maximal inhibitory concentration (IC50) of ∼100 nM in enzyme inhibition and an EC50 value of ∼250 nM against SFTSV and HRTV in plaque assays. Together, our data support sNSV endonucleases as an antiviral target.
Collapse
Affiliation(s)
- Wenjie Wang
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Woo-Jin Shin
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Bojie Zhang
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Younho Choi
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Ji-Seung Yoo
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Maxwell I Zimmerman
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Thomas E Frederick
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Gregory R Bowman
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michael L Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Daisy W Leung
- Division of Infectious Diseases, John T. Milliken Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jae U Jung
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| | - Gaya K Amarasinghe
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
7
|
Lin W, Wu R, Qiu P, Jing Jin, Yang Y, Wang J, Lin Z, Zhang J, Wu Z, Du Z. A convenient in vivo cap donor delivery system to investigate the cap snatching of plant bunyaviruses. Virology 2020; 539:114-120. [PMID: 31710910 DOI: 10.1016/j.virol.2019.10.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 01/19/2023]
Abstract
Like their animal-infecting counterparts, plant bunyaviruses use capped RNA leaders cleaved from host cellular mRNAs to prime viral genome transcription in a process called cap-snatching, but in vivo systems to investigate the details of this process are lacking for them. Here, we report that Rice stripe tenuivirus (RSV) and Tomato spotted wilt tospovirus (TSWV) cleave capped RNA leaders from mRNAs transiently expressed by agroinfiltration, which makes it possible to artificially deliver defined cap donors to the two plant bunyaviruses with unprecedented convenience. With this system, some ideas regarding how plant bunyaviruses select and use capped RNA leaders can be tested easily. We were also able to obtain clear evidence that the capped RNA leaders selected by TSWV are generally longer than those by RSV. TSWV frequently uses the prime-and-realign mechanism in transcription primed by capped RNA leaders shorter than a certain length, like that has been demonstrated recently for RSV.
Collapse
Affiliation(s)
- Wenzhong Lin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fuzhou, 350002, China; Plant virus research institute, Fujian Agricultural and Forestry University, Fuzhou, 350002, China
| | - Ran Wu
- Plant virus research institute, Fujian Agricultural and Forestry University, Fuzhou, 350002, China
| | - Ping Qiu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fuzhou, 350002, China; Plant virus research institute, Fujian Agricultural and Forestry University, Fuzhou, 350002, China
| | - Jing Jin
- Plant virus research institute, Fujian Agricultural and Forestry University, Fuzhou, 350002, China
| | - Yunyue Yang
- Plant virus research institute, Fujian Agricultural and Forestry University, Fuzhou, 350002, China
| | - Jinglin Wang
- Plant virus research institute, Fujian Agricultural and Forestry University, Fuzhou, 350002, China
| | - Zhonglong Lin
- China Tobacco Corporation Yunnan Company, Kunming, 650001, China
| | - Jie Zhang
- Plant virus research institute, Fujian Agricultural and Forestry University, Fuzhou, 350002, China
| | - Zujian Wu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fuzhou, 350002, China; Plant virus research institute, Fujian Agricultural and Forestry University, Fuzhou, 350002, China.
| | - Zhenguo Du
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fuzhou, 350002, China; Plant virus research institute, Fujian Agricultural and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|