1
|
Liu T, Lee S, Kim M, Fan P, Boughton RK, Boucher C, Jeong KC. A study at the wildlife-livestock interface unveils the potential of feral swine as a reservoir for extended-spectrum β-lactamase-producing Escherichia coli. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134694. [PMID: 38788585 DOI: 10.1016/j.jhazmat.2024.134694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/19/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
Wildlife is known to serve as carriers and sources of antimicrobial resistance (AMR). Due to their unrestricted movements and behaviors, they can spread antimicrobial resistant bacteria among livestock, humans, and the environment, thereby accelerating the dissemination of AMR. Extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae is one of major concerns threatening human and animal health, yet transmission mechanisms at the wildlife-livestock interface are not well understood. Here, we investigated the mechanisms of ESBL-producing bacteria spreading across various hosts, including cattle, feral swine, and coyotes in the same habitat range, as well as from environmental samples over a two-year period. We report a notable prevalence and clonal dissemination of ESBL-producing E. coli in feral swine and coyotes, suggesting their persistence and adaptation within wildlife hosts. In addition, in silico studies showed that horizontal gene transfer, mediated by conjugative plasmids and insertion sequences elements, may play a key role in spreading the ESBL genes among these bacteria. Furthermore, the shared gut resistome of cattle and feral swine suggests the dissemination of antibiotic resistance genes at the wildlife-livestock interface. Taken together, our results suggest that feral swine may serve as a reservoir of ESBL-producing E. coli.
Collapse
Affiliation(s)
- Ting Liu
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611 USA; Department of Animal Sciences, College of Agricultural and Life Sciences, University of Florida, Gainesville, FL 32611 USA
| | - Shinyoung Lee
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611 USA; Department of Animal Sciences, College of Agricultural and Life Sciences, University of Florida, Gainesville, FL 32611 USA
| | - Miju Kim
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611 USA; Department of Animal Sciences, College of Agricultural and Life Sciences, University of Florida, Gainesville, FL 32611 USA; Department of Food Science and Biotechnology, Kyung Hee University, Yongin, Republic of Korea
| | - Peixin Fan
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611 USA; Department of Animal Sciences, College of Agricultural and Life Sciences, University of Florida, Gainesville, FL 32611 USA
| | - Raoul K Boughton
- Range Cattle Research and Education Center, Wildlife Ecology and Conservation, University of Florida, Ona, FL 33865, USA
| | - Christina Boucher
- Department of Computer and Information Science and Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL 32611 USA
| | - Kwangcheol C Jeong
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611 USA; Department of Animal Sciences, College of Agricultural and Life Sciences, University of Florida, Gainesville, FL 32611 USA.
| |
Collapse
|
2
|
Harmer CJ, Hall RM. IS 26 and the IS 26 family: versatile resistance gene movers and genome reorganizers. Microbiol Mol Biol Rev 2024; 88:e0011922. [PMID: 38436262 PMCID: PMC11332343 DOI: 10.1128/mmbr.00119-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024] Open
Abstract
SUMMARYIn Gram-negative bacteria, the insertion sequence IS26 is highly active in disseminating antibiotic resistance genes. IS26 can recruit a gene or group of genes into the mobile gene pool and support their continued dissemination to new locations by creating pseudo-compound transposons (PCTs) that can be further mobilized by the insertion sequence (IS). IS26 can also enhance expression of adjacent potential resistance genes. IS26 encodes a DDE transposase but has unique properties. It forms cointegrates between two separate DNA molecules using two mechanisms. The well-known copy-in (replicative) route generates an additional IS copy and duplicates the target site. The recently discovered and more efficient and targeted conservative mechanism requires an IS in both participating molecules and does not generate any new sequence. The unit of movement for PCTs, known as a translocatable unit or TU, includes only one IS26. TU formed by homologous recombination between the bounding IS26s can be reincorporated via either cointegration route. However, the targeted conservative reaction is key to generation of arrays of overlapping PCTs seen in resistant pathogens. Using the copy-in route, IS26 can also act on a site in the same DNA molecule, either inverting adjacent DNA or generating an adjacent deletion plus a circular molecule carrying the DNA segment lost and an IS copy. If reincorporated, these circular molecules create a new PCT. IS26 is the best characterized IS in the IS26 family, which includes IS257/IS431, ISSau10, IS1216, IS1006, and IS1008 that are also implicated in spreading resistance genes in Gram-positive and Gram-negative pathogens.
Collapse
Affiliation(s)
- Christopher J. Harmer
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Ruth M. Hall
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
3
|
Dalazen G, Fuentes-Castillo D, Pedroso LG, Fontana H, Sano E, Cardoso B, Esposito F, Moura Q, Matinata BS, Silveira LF, Mohsin M, Matushima ER, Lincopan N. CTX-M-producing Escherichia coli ST602 carrying a wide resistome in South American wild birds: Another pandemic clone of One Health concern. One Health 2023; 17:100586. [PMID: 37415721 PMCID: PMC10320584 DOI: 10.1016/j.onehlt.2023.100586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 07/08/2023] Open
Abstract
Wild birds have emerged as novel reservoirs and potential spreaders of antibiotic-resistant priority pathogens, being proposed as sentinels of anthropogenic activities related to the use of antimicrobial compounds. The aim of this study was to investigate the occurrence and genomic features of extended-spectrum β-lactamase (ESBL)-producing bacteria in wild birds in South America. In this regard, we have identified two ESBL (CTX-M-55 and CTX-M-65)-positive Escherichia coli (UNB7 and GP188 strains) colonizing Creamy-bellied Thrush (Turdus amaurochalinus) and Variable Hawk (Geranoaetus polyosoma) inhabiting synanthropic and wildlife environments from Brazil and Chile, respectively. Whole-genome sequence (WGS) analysis revealed that E. coli UNB7 and GP188 belonged to the globally disseminated clone ST602, carrying a wide resistome against antibiotics (β-lactams), heavy metals (arsenic, copper, mercury), disinfectants (quaternary ammonium compounds), and pesticides (glyphosate). Additionally, E. coli UNB7 and GP188 strains harbored virulence genes encoding hemolysin E, type II and III secretion systems, increased serum survival, adhesins and siderophores. SNP-based phylogenomic analysis, using an international genome database, revealed genomic relatedness (19-363 SNP differences) of GP188 with livestock and poultry strains, and genomic relatedness (61-318 differences) of UNB7 with environmental, human and livestock strains (Table S1), whereas phylogeographical analysis confirmed successful expansion of ST602 as a global clone of One Health concern. In summary, our results support that ESBL-producing E. coli ST602 harboring a wide resistome and virulome have begun colonizing wild birds in South America, highlighting a potential new reservoir of critical priority pathogens.
Collapse
Affiliation(s)
- Gislaine Dalazen
- Laboratory of Wildlife Comparative Pathology, Department of Pathology, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil
| | - Danny Fuentes-Castillo
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil
- Departamento de Patología y Medicina Preventiva, Facultad de Ciencias Veterinarias, Universidad de Concepción, Chillán, Chile
| | - Luiz G. Pedroso
- Laboratory of Acarology, Department of Zoology, São Paulo State University, Rio Claro, São Paulo, Brazil
| | - Herrison Fontana
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil
- Department of Clinical Analysis, Faculty of Pharmacy, University of São Paulo, São Paulo, Brazil
| | - Elder Sano
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Brenda Cardoso
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Fernanda Esposito
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil
- Department of Clinical Analysis, Faculty of Pharmacy, University of São Paulo, São Paulo, Brazil
| | - Quezia Moura
- Federal Institute of Espírito Santo, Vila Velha, Brazil
| | - Bianca S. Matinata
- Zoology Museum of the University of São Paulo, University of São Paulo, São Paulo, Brazil
| | - Luiz F. Silveira
- Zoology Museum of the University of São Paulo, University of São Paulo, São Paulo, Brazil
| | - Mashkoor Mohsin
- Institute of Microbiology, University of Agriculture, Faisalabad, Pakistan
| | - Eliana R. Matushima
- Laboratory of Wildlife Comparative Pathology, Department of Pathology, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil
| | - Nilton Lincopan
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil
- Department of Clinical Analysis, Faculty of Pharmacy, University of São Paulo, São Paulo, Brazil
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
4
|
Gálvez-Benítez L, de la Rosa JMO, Rodriguez-Villodres A, Casimiro-Soriguer CS, Molina-Panadero I, Alvarez-Marin R, Bonnin RA, Naas T, Pachón J, Cisneros JM, Lepe JA, Smani Y. Role of bla TEM and OmpC in the piperacillin-tazobactam resistance evolution by E. coli in patients with complicated intra-abdominal infection. J Infect 2023; 87:220-229. [PMID: 37442373 DOI: 10.1016/j.jinf.2023.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/30/2023] [Accepted: 07/09/2023] [Indexed: 07/15/2023]
Abstract
Piperacillin-tazobactam resistance (P/T-R) is increasingly reported among Escherichia coli isolates. Although in vitro experiments have suggested that blaTEM gene plays a key role in the P/T-R acquisition, no clinical in vivo study has yet confirmed the role of blaTEM or other genes. Therefore, we aimed to identify the mechanisms underlying P/T-R by following up patients with E. coli complicated intra-abdominal infections (cIAI) who experienced P/T treatment failure. Four pairs of strains, clonally related from four patients, were isolated both before and after treatment with P/T dosed at 4 g/0.5 g intravenously. The P/T MIC was tested using broth microdilution, and β-lactamase activity was determined in these isolates. Whole-genome sequencing (WGS) was performed to decipher the role of blaTEM and other genes associated with P/T-R. Changes in the outer membrane protein (OMP) profile were analyzed using SDS-PAGE, and blaTEM and ompC transcription levels were measured by RT-qPCR. In addition, in vitro competition fitness was performed between each pairs of strains (P/T-susceptible vs. P/T-resistant). We found a higher copy number of blaTEM gene in P/T-R isolates, generated by three different genetic events: (1) IS26-mediated duplication of the blaTEM gene, (2) generation of a small multicopy plasmid (ColE-like) carrying blaTEM, and (3) adaptive evolution via reduction of plasmid size, leading to a higher plasmid copy number. Moreover, two P/T-R strains showed reduced expression of OmpC. This study describes the mechanisms involved in the acquisition of P/T-R by E. coli in patients with cIAI. The understanding of P/T-R evolution is crucial for effectively treating infected patients and preventing the spread of resistant microorganisms.
Collapse
Affiliation(s)
- Lydia Gálvez-Benítez
- Clinical Unit of Infectious Diseases, Microbiology and Parasitology, Virgen del Rocío University Hospital, Seville, Spain; Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital/CSIC/University of Seville, Seville, Spain
| | - José Manuel Ortiz de la Rosa
- Clinical Unit of Infectious Diseases, Microbiology and Parasitology, Virgen del Rocío University Hospital, Seville, Spain; Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital/CSIC/University of Seville, Seville, Spain
| | - Angel Rodriguez-Villodres
- Clinical Unit of Infectious Diseases, Microbiology and Parasitology, Virgen del Rocío University Hospital, Seville, Spain; Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital/CSIC/University of Seville, Seville, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC, ISCIII), Madrid, Spain
| | - Carlos S Casimiro-Soriguer
- Clinical Unit of Infectious Diseases, Microbiology and Parasitology, Virgen del Rocío University Hospital, Seville, Spain; Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital/CSIC/University of Seville, Seville, Spain
| | - Irene Molina-Panadero
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía, Sevilla, Spain
| | - Rocío Alvarez-Marin
- Clinical Unit of Infectious Diseases, Microbiology and Parasitology, Virgen del Rocío University Hospital, Seville, Spain; Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital/CSIC/University of Seville, Seville, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC, ISCIII), Madrid, Spain
| | - Rémy A Bonnin
- Team ReSIST, INSERM U1184, Université Paris-Saclay, CEA, Inserm, Immunologie des Maladies Virales, Auto-Immunes, Hématologiques et Bactériennes (IMVA-HB/IDMIT), 94270 Le Kremlin Bicêtre, France; Service de Bactériologie-Hygiène, Hôpital Bicêtre, AP-HP, 94270 Le Kremlin-Bicêtre, France; Associated French National Reference Center for Antibiotic Resistance: Carbapenemase-Producing Enterobacteriales, 94270 Le Kremlin-Bicêtre, France
| | - Thierry Naas
- Team ReSIST, INSERM U1184, Université Paris-Saclay, CEA, Inserm, Immunologie des Maladies Virales, Auto-Immunes, Hématologiques et Bactériennes (IMVA-HB/IDMIT), 94270 Le Kremlin Bicêtre, France; Service de Bactériologie-Hygiène, Hôpital Bicêtre, AP-HP, 94270 Le Kremlin-Bicêtre, France; Associated French National Reference Center for Antibiotic Resistance: Carbapenemase-Producing Enterobacteriales, 94270 Le Kremlin-Bicêtre, France
| | - Jerónimo Pachón
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital/CSIC/University of Seville, Seville, Spain; Department of Medicine, School of Medicine, University of Seville, Seville, Spain
| | - José Miguel Cisneros
- Clinical Unit of Infectious Diseases, Microbiology and Parasitology, Virgen del Rocío University Hospital, Seville, Spain; Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital/CSIC/University of Seville, Seville, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC, ISCIII), Madrid, Spain
| | - José Antonio Lepe
- Clinical Unit of Infectious Diseases, Microbiology and Parasitology, Virgen del Rocío University Hospital, Seville, Spain; Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital/CSIC/University of Seville, Seville, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC, ISCIII), Madrid, Spain
| | - Younes Smani
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital/CSIC/University of Seville, Seville, Spain; Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía, Sevilla, Spain; Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Sevilla, Spain.
| |
Collapse
|
5
|
Lian ZJ, Phan MD, Hancock SJ, Nhu NTK, Paterson DL, Schembri MA. Genetic basis of I-complex plasmid stability and conjugation. PLoS Genet 2023; 19:e1010773. [PMID: 37347771 PMCID: PMC10286972 DOI: 10.1371/journal.pgen.1010773] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/05/2023] [Indexed: 06/24/2023] Open
Abstract
Plasmids are major drivers of increasing antibiotic resistance, necessitating an urgent need to understand their biology. Here we describe a detailed dissection of the molecular components controlling the genetics of I-complex plasmids, a group of antibiotic resistance plasmids found frequently in pathogenic Escherichia coli and other Enterobacteriaceae that cause significant human disease. We show these plasmids cluster into four distinct subgroups, with the prototype IncI1 plasmid R64 subgroup displaying low nucleotide sequence conservation to other I-complex plasmids. Using pMS7163B, an I-complex plasmid distantly related to R64, we performed a high-resolution transposon-based genetic screen and defined genes involved in replication, stability, and conjugative transfer. We identified the replicon and a partitioning system as essential for replication/stability. Genes required for conjugation included the type IV secretion system, relaxosome, and several uncharacterised genes located in the pMS7163B leading transfer region that exhibited an upstream strand-specific transposon insertion bias. The overexpression of these genes severely impacted host cell growth or reduced fitness during mixed competitive growth, demonstrating that their expression must be controlled to avoid deleterious impacts. These genes were present in >80% of all I-complex plasmids and broadly conserved across multiple plasmid incompatibility groups, implicating an important role in plasmid dissemination.
Collapse
Affiliation(s)
- Zheng Jie Lian
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, Queensland, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Minh-Duy Phan
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, Queensland, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Steven J. Hancock
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Nguyen Thi Khanh Nhu
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, Queensland, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - David L. Paterson
- The University of Queensland Centre for Clinical Research, Brisbane, Australia
| | - Mark A. Schembri
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, Queensland, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
6
|
Madni WA, Mohsin M, Nawaz Z, Muzammil S, Zahoor MA, Asif R. Molecular mechanism of antimicrobial co-resistance Colistin (mcr-1) and ESBLs genes among Escherichia coli isolates from commercial chickens in Pakistan. BRAZ J BIOL 2023; 84:e267494. [PMID: 36722678 DOI: 10.1590/1519-6984.267494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/30/2022] [Indexed: 02/02/2023] Open
Abstract
Emergence of plasmid mediated colistin and extended spectrum β-lactamases (ESBL) resistant genes has been impacted the efficacy of colistin and β-lactams drugs like 3rd, 4th generation cephalosporin. Current study was aimed to investigate antimicrobial resistance genes (ARGs) among Escherichia coli isolates from meat producing commercial broilers in Pakistan. Two hundred (n=200) fecal samples were collected during January-2018 to August-2019. For isolation of E. coli, pink colonies on MacConkey agar were transferred to EMB agar. Metallic sheen color colonies were tested biochemically using API-20E kit. The molecular identification of E. coli (n=153) was targeted by amplification of uid gene through polymerase chain reaction (PCR) and different ARGs i.e. gentamicin, streptomycin, tetracycline, colistin, β-lactams drugs, quinolone and ampicillin followed by sequence analysis. Genotypically, followed by phenotypically of resistant ARGs of isolated PCR-confirmed E. coli (153) shoed resistant against gentamicin (aac(3)-IV), streptomycin (aadA1), tetracycline (tetA), colistine (mcr-1), ampicillin (bla-TEM) and bla-CTX-M were 86%, 88%, 86%, 88%, 83% & 77% respectively. 33/38 (86%) of the isolate was positive for quinolone resistance. Colistine (mcr-1), ESBLs (bla-TEM) and (bla-CTX-M) resistance genes were 88%, 83% and 77% respectively. About 33 isolated E. coli harbored the both mcr-1 and ESBLs genes. All of E. coli isolates were found sensitive to ceftriaxone (CTX-30) and imipenem (IMP-10). The Isolated E. coli showed single or multi clade decadency. The E. coli and ARGs sequences showed single or multi clade decadency. This is first comprehensive study from Pakistan that described the molecular evidences of ARGs and their co-existence in single isolates originated from commercial poultry. Commercial chicken (Broilers) can act as melting pot of antibiotic resistance genes for human being. It is alarming situation for surveillance of antibiotic resistance program because of more regulated prescription of antimicrobial agents in Pakistan.
Collapse
Affiliation(s)
- W A Madni
- Government College University, Department of Microbiology, Faisalabad, Pakistan
| | - M Mohsin
- University of Agriculture, Institute of Microbiology, Faisalabad, Pakistan
| | - Z Nawaz
- Government College University, Department of Microbiology, Faisalabad, Pakistan
| | - S Muzammil
- Government College University, Department of Microbiology, Faisalabad, Pakistan
| | - M A Zahoor
- Government College University, Department of Microbiology, Faisalabad, Pakistan
| | - R Asif
- Qarshi University Lahore, Department of Eastern Medicine, Lahore, Pakistan
| |
Collapse
|
7
|
Shahkolahi S, Shakibnia P, Shahbazi S, Sabzi S, Badmasti F, Asadi Karam MR, Habibi M. Detection of ESBL and AmpC producing Klebsiella pneumoniae ST11 and ST147 from urinary tract infections in Iran. Acta Microbiol Immunol Hung 2022; 69:303-313. [PMID: 36112491 DOI: 10.1556/030.2022.01808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/25/2022] [Indexed: 12/13/2022]
Abstract
In the present study a total of 200 Klebsiella pneumoniae isolates were collected from patients with urinary tract infections (UTIs) in Tehran, Iran. Antibiotic resistance was determined by disk diffusion and broth dilution methods. Detection of extended-spectrum β-lactamases (ESBLs) and AmpCs was performed using phenotypic tests. Polymerase chain reaction (PCR) was applied to detect the ESBL, AmpC, and integron genes. Analysis of AmpC and cassette arrays of integron genes was performed using DNA sequencing. Plasmids were analyzed by PCR-based replicon typing and conjugation. Pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST) were applied to explore the genomic relatedness among the isolates. The highest levels of resistance were observed against ampicillin (100%), followed by piperacillin (57.5%), ceftazidime (46%), trimethoprim/sulfamethoxazole (44%), ciprofloxacin (32.5%), and imipenem (19%). Approximately, 66.5% of isolates harbored at least one of the beta-lactamase genes (blaTEM, blaSHV, blaCTX-M, and blaOXA-1). In addition, 22.5% of isolates carried at least one of the AmpC genes including blaDHA and blaCIT. Integron class I was the most prevalent integron among resistant isolates. According to the results of replicon typing, IncFII, IncL/M, and IncA/C were the most frequent replicons, respectively. All selected isolates were able to transfer blaCTX-M, also two isolates transferred the blaDHA-1 gene to Escherichia coli K12 through conjugation. Finally, 21 isolates were categorized into 4 pulsotypes and 11 unique clusters in PFGE. MLST identified ST147 and ST11 sequence types but ST147 was the most prevalent in the current study.
Collapse
Affiliation(s)
| | - Pegah Shakibnia
- 2Department of Microbiology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Shahla Shahbazi
- 1Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| | - Samira Sabzi
- 1Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| | - Farzad Badmasti
- 3Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | | | - Mehri Habibi
- 1Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
8
|
Molecular Characterizations and Antimicrobial Susceptibility of Extended-Spectrum ß-lactamase (ESBL) Producing Proteus spp. Clinical Isolates in Babol, Northern Iran. JOURNAL OF MEDICAL MICROBIOLOGY AND INFECTIOUS DISEASES 2022. [DOI: 10.52547/jommid.10.3.114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
|
9
|
Jobling MG. The Retraction of a Plasmid-Phage Chimera Genome Assembly Study Leaves Serious Issues Unaddressed-Essentially, Nolo Contendere. Antimicrob Agents Chemother 2022; 66:e0022022. [PMID: 35862747 PMCID: PMC9380549 DOI: 10.1128/aac.00220-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Affiliation(s)
- Michael G. Jobling
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
10
|
Li Q, Qian C, Zhang X, Zhu T, Shi W, Gao M, Feng C, Xu M, Lin H, Lin L, Lu J, Lin X, Li K, Xu T, Bao Q, Li C, Zhang H. Colistin Resistance and Molecular Characterization of the Genomes of mcr-1-Positive Escherichia coli Clinical Isolates. Front Cell Infect Microbiol 2022; 12:854534. [PMID: 35601104 PMCID: PMC9120429 DOI: 10.3389/fcimb.2022.854534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/08/2022] [Indexed: 11/13/2022] Open
Abstract
Research on resistance against polymyxins induced by the mcr-1 gene is gaining interest. In this study, using agar dilution method, polymerase chain reaction, and comparative genomic analysis, we investigated the colistin resistance mechanism of clinical E. coli isolates. The minimum inhibitory concentration (MIC) analysis results revealed that of the 515 isolates tested, bacteria with significantly increased MIC levels against colistin were isolated in 2019. Approximately one-fifth (17.14% to 19.65%) of the isolates showed MIC values ≥1 mg/L against colistin in 2015, 2016, and 2017. However, in 2019, up to three-quarters (74.11%, 146/197) of the isolates showed MIC values ≥1 mg/L against colistin indicating an increase in colistin resistance. Six isolates (EC7518, EC4968, EC3769, EC16, EC117, EC195, 1.13%, 6/515) were found to carry the mcr-1 gene and a novel mcr-1 variant with Met2Ile mutation was identified in EC3769. All six strains showed higher MIC levels (MIC=4 mg/L) than any mcr-1-negative strains (MIC ≤ 2 mg/L). Whole-genome sequencing of the six mcr-1-positive isolates revealed that EC195 carried the highest number of resistance genes (n = 28), nearly a half more than those of the following EC117 (n = 19). Thus, EC195 showed a wider resistance spectrum and higher MIC levels against the antimicrobials tested than the other five isolates. Multi-locus sequence typing demonstrated that these mcr-1-positive strains belonged to six different sequence types. The six mcr-1 genes were located in three different incompatibility group plasmids (IncI2, IncHI2 and IncX4). The genetic context of mcr-1 was related to a sequence derived from Tn6330 (ISApl1-mcr-1-pap2-ISApl1). Investigations into the colistin resistance mechanism and characterization of the molecular background of the mcr genes may help trace the development and spread of colistin resistance in clinical settings.
Collapse
Affiliation(s)
- Qiaoling Li
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Changrui Qian
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xueya Zhang
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Tingting Zhu
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
| | - Weina Shi
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Mengdi Gao
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Chunlin Feng
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Ming Xu
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
| | - Hailong Lin
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Li Lin
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
| | - Junwan Lu
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xi Lin
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Kewei Li
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Teng Xu
- Institute of Translational Medicine, Baotou Central Hospital, Baotou, China
| | - Qiyu Bao
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Hailin Zhang, ; Changchong Li, ; Qiyu Bao,
| | - Changchong Li
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Hailin Zhang, ; Changchong Li, ; Qiyu Bao,
| | - Hailin Zhang
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Hailin Zhang, ; Changchong Li, ; Qiyu Bao,
| |
Collapse
|
11
|
Thani ASB. Interference of novobiocin in the expression of a truncated blaCTX-M gene causes a phenotypic variation in the production of β-lactamases in Escherichia coli strain EC1091. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Hapuarachchi IU, Hannaway RF, Roman T, Biswas A, Dyet K, Morgan X, Ussher JE. Genetic evaluation of ESBL-producing Escherichia coli urinary isolates in Otago, New Zealand. JAC Antimicrob Resist 2021; 3:dlab147. [PMID: 34778763 PMCID: PMC8578626 DOI: 10.1093/jacamr/dlab147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 09/01/2021] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVES The incidence of infections with ESBL-producing Escherichia coli (ESBL-Ec) in New Zealand is increasing. ESBL-Ec most commonly cause urinary tract infections and are seen in both community and hospitalized patients. The reason for the increasing incidence of ESBL-Ec infections is unknown. METHODS In this study, 65 urinary ESBL-Ec isolates from the Otago region in 2015 were fully genetically characterized to understand the mechanisms of transmission. The ESBL gene, E. coli STs, plasmid types and genetic context (e.g. insertion sequences) of ESBL genes were determined by a combination of whole genome and plasmid sequencing. The phylogenetic relationships of the isolates were compared with ESBL-Ec isolates sequenced as part of the 2016 nationwide survey. RESULTS Significant diversity of E. coli strains, plasmids, and the genetic context of ESBL genes was seen. However, there was evidence of common mobile genetic elements in unrelated ESBL-Ec. CONCLUSIONS Multiple introductions of ESBL resistance genes or resistant bacterial strains with limited horizontal transmission of mobile genetic elements accounts for the increased incidence of ESBL-Ec in this low prevalence area. Future studies should investigate modes of transmission of ESBL-Ec in the Otago region.
Collapse
Affiliation(s)
- Isuri U Hapuarachchi
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Rachel F Hannaway
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Tabatha Roman
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Ambarish Biswas
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
- AgResearch, Palmerston North, New Zealand
| | | | - Xochitl Morgan
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - James E Ussher
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
- Southern Community Laboratories, Dunedin, New Zealand
| |
Collapse
|
13
|
Zeng S, Luo J, Li X, Zhuo C, Wu A, Chen X, Huang L. Molecular Epidemiology and Characteristics of CTX-M-55 Extended-Spectrum β-Lactamase-Producing Escherichia coli From Guangzhou, China. Front Microbiol 2021; 12:730012. [PMID: 34707587 PMCID: PMC8542904 DOI: 10.3389/fmicb.2021.730012] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/20/2021] [Indexed: 11/13/2022] Open
Abstract
In recent years, the CTX-M-55 extended-spectrum β-lactamase (ESBL)-positive rate has gradually increased in the clinic. To identify the molecular epidemiology and characteristics of bla CTX-M -55-positive isolates, a total of 374 non-repetitive ESBL-producing Escherichia coli strains were collected from patients in two hospitals in Guangzhou, and 89 bla CTX-M -55-positive isolates were selected by CTX-M-1-group PCR amplification and confirmed by DNA sequencing. Whole-genome sequencing was used to analyze the resistance phenotype, plasmid types, phylogenetic relationships and genetic environment of the bla CTX-M -55 gene. Conjugation experiments and PCR were performed to confirm whether the plasmid harboring bla CTX-M-55 gene could be transferred. The results showed that all bla CTX-M-55-positive isolates were resistant to ceftriaxone, and 88.76 and 76.40% were resistant to ceftazidime and cefepime, respectively. The resistance rates to levofloxacin and sulfamethoxazole were 66.29 and 59.55%, respectively. However, the sensitivity rate of piperacillin/tazobactam, amoxicillin/clavulanate, and amikacin exceeded 90%. All bla CTX-M-55-positive isolates were sensitive to carbapenems. Thirty-two STs were detected in the bla CTX-M-55-positive isolates, among which the detection rate of ST1193 was relatively high (19.10%, 17/89), and other ST types were scattered. It remains to be seen whether ST1193 carrying the bla CTX-M -55 gene can become a popular clone strain in this region in the future. The plasmid types carrying the bla CTX-M -55 gene included IncI1, IncFII, IncFIC, IncFIB, IncHI2, IncI2, and IncX/Y, among which the IncI1 and IncFII plasmids were the main plasmids, accounting for 37.80 and 28.09%, respectively. Among them, 11 strains of the IncI1 plasmid existed in ST1193 strains. The bla CTX-M -55 gene was found on chromosomes of 13 isolates, and seemed to be increasing annually. Up to five distinct types of genetic environments surrounding the bla CTX-M -55 gene were analyzed. The most common structure was type II "ISEcp1-bla CTX-M -55-ORF477." In conclusion, whether ST1193, which carries bla CTX-M -55 gene, will be an epidemic clone of this region in the future remains to be concerned. The plasmids IncI1 and IncFII, and mobile elements such as ISEcp1 and IS26 may be the main factors leading to the spread and prevalence of CTX-M-55 genotypes.
Collapse
Affiliation(s)
- Shihan Zeng
- KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China
| | - Jiajun Luo
- Department of Clinical Laboratory, Fifth Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoyan Li
- Department of Clinical Laboratory, Fifth Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Chao Zhuo
- State Key Laboratory of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Aiwu Wu
- KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China
| | - Xiankai Chen
- Department of Clinical Laboratory, Fifth Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - LiShao Huang
- Department of Clinical Laboratory, Fifth Affiliated Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
14
|
Widyatama FS, Yagi N, Sarassari R, Shirakawa T, Le DT, Bui MHT, Kuntaman K, Hirai I. Analysis of the upstream genetic structures of the ISEcp1-bla CTX-M transposition units in Escherichia coli isolates carrying bla CTX-M obtained from the Indonesian and Vietnamese communities. Microbiol Immunol 2021; 65:542-550. [PMID: 34581451 DOI: 10.1111/1348-0421.12938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 11/30/2022]
Abstract
Extended spectrum β-lactamase (ESBL)-producing Escherichia coli have been found in healthy individuals in Indonesia and Vietnam. The ISEcp1-blaCTX-M transposition unit of ESBL-producing bacterial isolates has been considered responsible for the production of CTX-M type ESBL and it is important for the dissemination of blaCTX-M . This study aimed to characterize the upstream genetic structure (UGS) of E. coli isolates possessing blaCTX-M-1 group and/or blaCTX-M-9 group genes obtained from healthy individuals in Indonesia and Vietnam. A total of 501 CTX-M type ESBL-producing E. coli isolates possessing blaCTX-M-1 group and/or blaCTX-M-9 group genes were obtained from healthy individuals of the two countries in 2018. The UGSs of the ISEcp1-blaCTX-M transposition unit of the 501 ESBL-producing E. coli isolates were amplified by barcode-adaptor-ligation-mediated PCR and analyzed using the Nanopore sequencer. The obtained sequence information was used to classify the UGSs of the ISEcp1-blaCTX-M transposition unit. From the 501 ESBL-producing E. coli isolates, 502 UGSs were obtained, which were classified into 85 UGS types based on the sequence. ISEcp1 of 359 (71.5%) of the 502 UGSs was disrupted by gene insertion, and ISEcp1-blaCTX-M transposition unit of most (87.1%) of the determined UGSs was confirmed as plasmidic. Only 6 (7.1%) of the 85 UGS types were common to both countries. Our results indicated that many different UGSs of ISEcp1-blaCTX-M transposition units were detected in Indonesia and Vietnam; hence, we suggest that structurally different kinds of plasmids harboring blaCTX-M were separately distributed in the two countries.
Collapse
Affiliation(s)
- Fikri S Widyatama
- Laboratory of Microbiology, School of Health Sciences, Faculty of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Nobuyoshi Yagi
- Laboratory of Microbiology, School of Health Sciences, Faculty of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Rosantia Sarassari
- Laboratory of Microbiology, School of Health Sciences, Faculty of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Toshiro Shirakawa
- Department of Organ Therapeutics, Division of Urology, Faculty of Medicine, Kobe University Graduate School of Medicine, Kobe, Japan.,Department of International Health, Division of Infectious Diseases, Kobe University Graduate School of Health Sciences, Kobe, Japan.,Division of Advanced Medical Science, Kobe University Graduate School of Science, Technology and Innovation, Kobe, Japan
| | - Danh Tuyen Le
- Department of Food Science and Food Safety, National Institute of Nutrition, Hanoi, Vietnam
| | - Mai Huong Thi Bui
- Department of Food Science and Food Safety, National Institute of Nutrition, Hanoi, Vietnam
| | - Kuntaman Kuntaman
- Department of Clinical Microbiology, Dr Soetomo Hospital - Faculty of Medicine, Airlangga University, Surabaya, Indonesia
| | - Itaru Hirai
- Laboratory of Microbiology, School of Health Sciences, Faculty of Medicine, University of the Ryukyus, Okinawa, Japan
| |
Collapse
|
15
|
Alonso CA, de Toro M, de la Cruz F, Torres C. Genomic Insights into Drug Resistance and Virulence Platforms, CRISPR-Cas Systems and Phylogeny of Commensal E. coli from Wildlife. Microorganisms 2021; 9:999. [PMID: 34063152 PMCID: PMC8148099 DOI: 10.3390/microorganisms9050999] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 12/30/2022] Open
Abstract
Commensal bacteria act as important reservoirs of virulence and resistance genes. However, existing data are generally only focused on the analysis of human or human-related bacterial populations. There is a lack of genomic studies regarding commensal bacteria from hosts less exposed to antibiotics and other selective forces due to human activities, such as wildlife. In the present study, the genomes of thirty-eight E. coli strains from the gut of various wild animals were sequenced. The analysis of their accessory genome yielded a better understanding of the role of the mobilome on inter-bacterial dissemination of mosaic virulence and resistance plasmids. The study of the presence and composition of the CRISPR/Cas systems in E. coli from wild animals showed some viral and plasmid sequences among the spacers, as well as the relationship between CRISPR/Cas and E. coli phylogeny. Further, we constructed a single nucleotide polymorphisms-based core tree with E. coli strains from different sources (humans, livestock, food and extraintestinal environments). Bacteria from humans or highly human-influenced settings exhibit similar genetic patterns in CRISPR-Cas systems, plasmids or virulence/resistance genes-carrying modules. These observations, together with the absence of significant genetic changes in their core genome, suggest an ongoing flow of both mobile elements and E. coli lineages between human and natural ecosystems.
Collapse
Affiliation(s)
- Carla Andrea Alonso
- Área de Bioquímica y Biología Molecular, Universidad de La Rioja, 26006 Logroño, Spain;
- Servicio de Microbiología, Hospital San Pedro, 26006 Logroño, Spain
| | - María de Toro
- Plataforma de Genómica y Bioinformática, Centro de Investigación Biomédica de La Rioja (CIBIR), 26006 Logroño, Spain;
| | - Fernando de la Cruz
- Departamento de Biología Molecular, Universidad de Cantabria and Instituto de Biomedicina y Biotecnología de Cantabria (Universidad de Cantabria-CSIC), 39011 Santander, Spain;
| | - Carmen Torres
- Área de Bioquímica y Biología Molecular, Universidad de La Rioja, 26006 Logroño, Spain;
| |
Collapse
|
16
|
Varani A, He S, Siguier P, Ross K, Chandler M. The IS6 family, a clinically important group of insertion sequences including IS26. Mob DNA 2021; 12:11. [PMID: 33757578 PMCID: PMC7986276 DOI: 10.1186/s13100-021-00239-x] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 02/25/2021] [Indexed: 12/12/2022] Open
Abstract
The IS6 family of bacterial and archaeal insertion sequences, first identified in the early 1980s, has proved to be instrumental in the rearrangement and spread of multiple antibiotic resistance. Two IS, IS26 (found in many enterobacterial clinical isolates as components of both chromosome and plasmids) and IS257 (identified in the plasmids and chromosomes of gram-positive bacteria), have received particular attention for their clinical impact. Although few biochemical data are available concerning the transposition mechanism of these elements, genetic studies have provided some interesting observations suggesting that members of the family might transpose using an unexpected mechanism. In this review, we present an overview of the family, the distribution and phylogenetic relationships of its members, their impact on their host genomes and analyse available data concerning the particular transposition pathways they may use. We also provide a mechanistic model that explains the recent observations on one of the IS6 family transposition pathways: targeted cointegrate formation between replicons.
Collapse
Affiliation(s)
- Alessandro Varani
- School of Agricultural and Veterinary Sciences, Universidade Estadual Paulista, Jaboticabal, Sao Paulo, Brazil
| | - Susu He
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Patricia Siguier
- Centre de Biologie Intégrative-Université Paul SABATIER, CNRS - Laboratoire de Microbiologie et Génétique Moléculaires, UMR 5100 - bât. CNRS-IBCG, Toulouse, France
| | - Karen Ross
- Protein Information Resource, Department of Biochem., Mol. and Cell. Biol, Georgetown University Medical Center, Washington, DC, USA
| | - Michael Chandler
- Department of Biochem., Mol. and Cell. Biol, Georgetown University Medical Center, Washington, DC, USA.
| |
Collapse
|
17
|
He DD, Zhao SY, Wu H, Hu GZ, Zhao JF, Zong ZY, Pan YS. Antimicrobial resistance-encoding plasmid clusters with heterogeneous MDR regions driven by IS26 in a single Escherichia coli isolate. J Antimicrob Chemother 2020; 74:1511-1516. [PMID: 30820562 DOI: 10.1093/jac/dkz044] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 12/27/2018] [Accepted: 01/08/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND IS26-flanked transposons played an increasingly important part in the mobilization and development of resistance determinants. Heterogeneous resistance-encoding plasmid clusters with polymorphic MDR regions (MRRs) conferred by IS26 in an individual Escherichia coli isolate have not yet been detected. OBJECTIVES To characterize the complete sequence of a novel blaCTX-M-65- and fosA3-carrying IncZ-7 plasmid with dynamic MRRs from an E. coli isolate, and to depict the mechanism underlying the spread of resistance determinants and genetic polymorphisms. METHODS The molecular characterization of a strain carrying blaCTX-M-65 and fosA3 was analysed by antimicrobial susceptibility testing and MLST. The transferability of a plasmid bearing blaCTX-M-65 and fosA3 was determined by conjugation assays, and the complete structure of the plasmid was obtained by Illumina, PacBio and conventional PCR mapping, respectively. The circular forms derived from IS26-flanked transposons were detected by reverse PCR and sequencing. RESULTS A novel IncZ-7 plasmid pEC013 (∼118kb) harbouring the blaCTX-M-65 and fosA3 genes was recovered from E. coli isolate EC013 belonging to D-ST117. The plasmid was found to have heterogeneous and dynamic MRRs in an individual strain and the IS26-flanked composite transposon-derived circular intermediates were identified and characterized in pEC013. CONCLUSIONS The heterogeneous MRRs suggested that a single plasmid may actually be a cluster of plasmids with the same backbone but varied MRRs, reflecting the plasmid's heterogeneity and the survival benefits of having a response to antimicrobial-related threatening conditions in an individual strain.
Collapse
Affiliation(s)
- Dan Dan He
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Shi Yu Zhao
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Hua Wu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Gong Zheng Hu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Jin Feng Zhao
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Zhi Yong Zong
- West China Hospital, Sichuan University, Chengdu, China
| | - Yu Shan Pan
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
18
|
Song J, Oh SS, Kim J, Park S, Shin J. Clinically Relevant Extended-Spectrum β-Lactamase-Producing Escherichia coli Isolates From Food Animals in South Korea. Front Microbiol 2020; 11:604. [PMID: 32390965 PMCID: PMC7188773 DOI: 10.3389/fmicb.2020.00604] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 03/18/2020] [Indexed: 12/23/2022] Open
Abstract
Extended-spectrum β-lactam antimicrobials have been broadly used in food animals and humans to control infectious diseases. However, the emergence and rapid spread of extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae, mainly Escherichia coli, have seriously threatened global health in recent decades. In this study, we determined the prevalence, antimicrobial susceptibility, and genetic properties of ESBL-producing E. coli (ESBL-EC) strains isolated from food animals in South Korea. A total of 150 fecal samples from healthy chickens (n = 34), pigs (n = 59), and cattle (n = 57) were screened from January to July 2018. Among these, 77 non-duplicate cefotaxime-resistant ESBL-EC strains were isolated from 32 chicken, 41 pig, and 4 cattle samples, with the corresponding occurrence rates of 94.1, 69.5, and 7.0%, respectively. All the isolates showed multidrug resistance (MDR) and produced at least one type of β-lactamase, including CTX-M (98.7%) and TEM (40.3%). CTX-M-14 (53.1%), CTX-M-55 (53.7%), and CTX-M-65 (50.0%) were the predominant genotypes in the chicken, pig, and cattle samples, respectively. Multilocus sequence typing revealed 46 different sequence types (STs), including the human-associated extraintestinal pathogenic E. coli ST131 (n = 2), ST10 (n = 5), ST38 (n = 1), ST410 (n = 4), ST354 (n = 2), ST58 (n = 3), ST117 (n = 1), and ST457 (n = 1). To the best of our knowledge, this is the first report of pandemic E. coli ST131 in non-human isolates in South Korea. Our results demonstrate the high prevalence and diversity of MDR-ESBL-EC in food animals and highlight them as potential pathogenic ESBL-EC reservoirs that may pose a high risk to human health.
Collapse
Affiliation(s)
- Jihyun Song
- Department of Microbiology, College of Medicine, Inha University, Incheon, South Korea
| | - Sung-Suck Oh
- Incheon Research Institute of Public Health and Environment, Incheon, South Korea
| | - Junghee Kim
- Incheon Research Institute of Public Health and Environment, Incheon, South Korea
| | - Sukyoung Park
- Department of Microbiology, College of Medicine, Inha University, Incheon, South Korea
| | - Jinwook Shin
- Department of Microbiology, College of Medicine, Inha University, Incheon, South Korea
| |
Collapse
|
19
|
Incompatibility and phylogenetic relationship of I-complex plasmids. Plasmid 2020; 109:102502. [PMID: 32171735 DOI: 10.1016/j.plasmid.2020.102502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 02/12/2020] [Accepted: 02/19/2020] [Indexed: 12/12/2022]
Abstract
Plasmid incompatibility is the inability of two plasmids to be stably maintained in one cell, resulting in loss of one of the plasmids in daughter cells. Dislodgement is a phenotypically distinct form of incompatibility, described as an imperfect reproduction, manifesting in rapid exclusion of a resident plasmid after superinfection. The relationship between plasmids of the phenotypic incompatibility groups IncB/O and IncZ is unclear. Their inability to co-exist was initially referred to as dislodgement while other research reached the conclusion that IncB/O and IncZ plasmids are incompatible. In this manuscript we re-evaluated the relationship between IncB/O and IncZ plasmids to settle these conflicting conclusions. We performed dislodgement testing of R16Δ (IncB/O) and pSFE-059 (IncZ) plasmids by electroporation in a bacterial cell and checked their stability. Stability tests of the obtained plasmid pair showed that the IncB/O plasmid was exclusively and almost completely lost from the heteroplasmid Escherichia coli population. Other IncB/O - IncZ pairs could not form a heteroplasmid population, using conjugation or electroporation. Our data supports the previous suggestion that IncB/O and IncZ plasmids may be considered phenotypically incompatible.
Collapse
|
20
|
Ramovic E, Madigan G, McDonnell S, Griffin D, Bracken E, NiGhallchoir E, Quinless E, Galligan A, Egan J, Prendergast DM. A pilot study using environmental screening to determine the prevalence of Mycobacterium avium subspecies paratuberculosis (MAP) and antimicrobial resistance (AMR) in Irish cattle herds. Ir Vet J 2020; 73:3. [PMID: 32082542 PMCID: PMC7024553 DOI: 10.1186/s13620-020-0156-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 01/26/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Dairy and beef cattle can be reservoirs of many pathogens, including Salmonella and Mycobacterium avium subsp. paratuberculosis (MAP), the causative agent of Johne's disease (JD). Farm environments may provide potential entry points for the transmission of infectious agents into the food chain. Antibiotics are used to treat a wide variety of infections on farms, and administration of antimicrobial agents to cattle is considered to be a driving factor for antimicrobial resistance (AMR). Control of JD and AMR are priority for animal health initiatives in Ireland. A national JD pilot programme was introduced by Animal Health Ireland in 2014, while the national action plan launched by Department of Health and Department of Agriculture, Food and Marine introduced in 2017 aims to improve the surveillance of AMR. The current investigation was undertaken as a pilot study to determine the proportion of herds positive for MAP, Salmonella species (Salmonella spp), commensal Escherichia coli (E. coli), Extended-spectrum beta-lactamase (ESBL) AmpC β-lactamase and carbapenemase-producing E. coli from 157 environmental faecal samples in Irish farms. RESULTS MAP was detected in 10.2% of samples collected; on culture in 4 (4.9%) of the dairy herds and from 1 (1.3%) of the beef/suckler herds, and by PCR in 10 (12.3%) and 6 (7.9%) of these herds respectively. All culture positive herds were also positive by PCR. An additional 11 herds were positive by PCR only. Salmonella was not detected, while commensal E. coli were isolated from 70.7% of the samples (111/157) with 101 of these isolates shown to be fully susceptible to all antimicrobials tested. Of the 27 presumptive ESBL AmpC β-lactamase producing E. coli detected, one isolate was resistant to ten antimicrobials, nine isolates were resistant to nine antimicrobials, and four isolates were resistant to eight antimicrobials. Carbapenemase-producing E. coli were not isolated. CONCLUSIONS The results highlight the importance of monitoring farm environments for Johne's disease. This disease is a growing concern for dairy and beef producers in Ireland, and sampling the farm environment may offer a useful means to rapidly screen for the presence of MAP. Non-pathogenic common enteric commensal and multiple-drug-resistant E. coli may contribute to AMR acting as a reservoir and transferring resistance to other species/pathogens in the environment.
Collapse
Affiliation(s)
- Elvira Ramovic
- Central Veterinary Research Laboratory, Department of Agriculture, Food and the Marine, Backweston Complex, Celbridge, Co. Kildare Ireland
| | - Gillian Madigan
- Central Veterinary Research Laboratory, Department of Agriculture, Food and the Marine, Backweston Complex, Celbridge, Co. Kildare Ireland
| | - Shannon McDonnell
- Central Veterinary Research Laboratory, Department of Agriculture, Food and the Marine, Backweston Complex, Celbridge, Co. Kildare Ireland
| | - Denise Griffin
- Central Veterinary Research Laboratory, Department of Agriculture, Food and the Marine, Backweston Complex, Celbridge, Co. Kildare Ireland
| | - Elaine Bracken
- Central Veterinary Research Laboratory, Department of Agriculture, Food and the Marine, Backweston Complex, Celbridge, Co. Kildare Ireland
| | - Eadaoin NiGhallchoir
- Central Veterinary Research Laboratory, Department of Agriculture, Food and the Marine, Backweston Complex, Celbridge, Co. Kildare Ireland
| | - Emma Quinless
- Central Veterinary Research Laboratory, Department of Agriculture, Food and the Marine, Backweston Complex, Celbridge, Co. Kildare Ireland
| | - Aoife Galligan
- Central Veterinary Research Laboratory, Department of Agriculture, Food and the Marine, Backweston Complex, Celbridge, Co. Kildare Ireland
| | - John Egan
- Central Veterinary Research Laboratory, Department of Agriculture, Food and the Marine, Backweston Complex, Celbridge, Co. Kildare Ireland
| | - Deirdre M. Prendergast
- Central Veterinary Research Laboratory, Department of Agriculture, Food and the Marine, Backweston Complex, Celbridge, Co. Kildare Ireland
| |
Collapse
|
21
|
Abstract
Extraintestinal pathogenic Escherichia coli (ExPEC) strains are responsible for a majority of human extraintestinal infections globally, resulting in enormous direct medical and social costs. ExPEC strains are comprised of many lineages, but only a subset is responsible for the vast majority of infections. Few systematic surveillance systems exist for ExPEC. To address this gap, we systematically reviewed and meta-analyzed 217 studies (1995 to 2018) that performed multilocus sequence typing or whole-genome sequencing to genotype E. coli recovered from extraintestinal infections or the gut. Twenty major ExPEC sequence types (STs) accounted for 85% of E. coli isolates from the included studies. ST131 was the most common ST from 2000 onwards, covering all geographic regions. Antimicrobial resistance-based isolate study inclusion criteria likely led to an overestimation and underestimation of some lineages. European and North American studies showed similar distributions of ExPEC STs, but Asian and African studies diverged. Epidemiology and population dynamics of ExPEC are complex; summary proportion for some STs varied over time (e.g., ST95), while other STs were constant (e.g., ST10). Persistence, adaptation, and predominance in the intestinal reservoir may drive ExPEC success. Systematic, unbiased tracking of predominant ExPEC lineages will direct research toward better treatment and prevention strategies for extraintestinal infections.
Collapse
|
22
|
Genomic Diversity, Virulence, and Antimicrobial Resistance of Klebsiella pneumoniae Strains from Cows and Humans. Appl Environ Microbiol 2019; 85:AEM.02654-18. [PMID: 30610074 DOI: 10.1128/aem.02654-18] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 12/21/2018] [Indexed: 12/30/2022] Open
Abstract
Klebsiella pneumoniae is a leading cause of severe infections in humans and dairy cows, and these infections are rapidly becoming untreatable due to the emergence of multidrug-resistant (MDR) strains. However, little is known about the relationship between bovine and human K. pneumoniae isolates at the genome population level. Here, we investigated the genomic structures, pangenomic profiles, virulence determinants, and resistomes of 308 K. pneumoniae isolates from humans and dairy cows, including 96 newly sequenced cow isolates. We identified 177 functional protein families that were significantly different across human and bovine isolates; genes expressing proteins related to metal ion (iron, zinc, and calcium) metabolism were significantly more prevalent among the bovine isolates. Siderophore systems were found to be prevalent in both the bovine and the human isolates. In addition, we found that the Klebsiella ferric uptake operon kfuABC was significantly more prevalent in clinical mastitis cases than in healthy cows. Furthermore, on two dairy farms, we identified a unique IncN-type plasmid, pC5, coharboring bla CTX-M-1 and mph(A) genes, which confer resistance to cephalosporins and macrolides, respectively. We provide here the complete annotated sequence of this plasmid.IMPORTANCE We demonstrate here the genetic diversity of K. pneumoniae isolates from dairy cows and the mixed phylogenetic lineages between bovine and human isolates. The ferric uptake operon kfuABC genes were more prevalent in strains from clinical mastitis cows. Furthermore, we report the emergence of an IncN-type plasmid carrying the bla CTX-M-1 and mph(A) genes among dairy farms in the United States. Our study evaluated the genomic diversity of the bovine and human isolates, and the findings uncovered different profiles of virulence determinants among bovine and human K. pneumoniae isolates at the genome population level.
Collapse
|
23
|
Comparative Genome Analysis of an Extensively Drug-Resistant Isolate of Avian Sequence Type 167 Escherichia coli Strain Sanji with Novel In Silico Serotype O89b:H9. mSystems 2019; 4:mSystems00242-18. [PMID: 30834329 PMCID: PMC6392093 DOI: 10.1128/msystems.00242-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 01/23/2019] [Indexed: 02/07/2023] Open
Abstract
E. coli strain Sanji is the first sequenced and analyzed genome of the recently emerged pathogenic XDR strains with sequence type ST167 and novel in silico serotype O89b:H9. Comparison of the genomes of Sanji with other ST167 strains revealed distinct sets of different plasmids, mobile IS elements, and antibiotic resistance genes in each genome, indicating that there exist multiple paths toward achieving XDR. The emergence of these pathogenic ST167 E. coli strains with diverse XDR capabilities highlights the difficulty of preventing or mitigating the development of XDR properties in bacteria and points to the importance of better understanding of the shared underlying virulence mechanisms and physiology of pathogenic bacteria. Extensive drug resistance (XDR) is an escalating global problem. Escherichia coli strain Sanji was isolated from an outbreak of pheasant colibacillosis in Fujian province, China, in 2011. This strain has XDR properties, exhibiting sensitivity to carbapenems but no other classes of known antibiotics. Whole-genome sequencing revealed a total of 32 known antibiotic resistance genes, many associated with insertion sequence 26 (IS26) elements. These were found on the Sanji chromosome and 2 of its 6 plasmids, pSJ_255 and pSJ_82. The Sanji chromosome also harbors a type 2 secretion system (T2SS), a type 3 secretion system (T3SS), a type 6 secretion system (T6SS), and several putative prophages. Sanji and other ST167 strains have a previously uncharacterized O-antigen (O89b) that is most closely related to serotype O89 as determined on the basis of analysis of the wzm-wzt genes and in silico serotyping. This O89b-antigen gene cluster was also found in the genomes of a few other pathogenic sequence type 617 (ST617) and ST10 complex strains. A time-scaled phylogeny inferred from comparative single nucleotide variant analysis indicated that development of these O89b-containing lineages emerged about 30 years ago. Comparative sequence analysis revealed that the core genome of Sanji is nearly identical to that of several recently sequenced strains of pathogenic XDR E. coli belonging to the ST167 group. Comparison of the mobile elements among the different ST167 genomes revealed that each genome carries a distinct set of multidrug resistance genes on different types of plasmids, indicating that there are multiple paths toward the emergence of XDR in E. coli. IMPORTANCEE. coli strain Sanji is the first sequenced and analyzed genome of the recently emerged pathogenic XDR strains with sequence type ST167 and novel in silico serotype O89b:H9. Comparison of the genomes of Sanji with other ST167 strains revealed distinct sets of different plasmids, mobile IS elements, and antibiotic resistance genes in each genome, indicating that there exist multiple paths toward achieving XDR. The emergence of these pathogenic ST167 E. coli strains with diverse XDR capabilities highlights the difficulty of preventing or mitigating the development of XDR properties in bacteria and points to the importance of better understanding of the shared underlying virulence mechanisms and physiology of pathogenic bacteria. Author Video: An author video summary of this article is available.
Collapse
|
24
|
Cummins ML, Reid CJ, Roy Chowdhury P, Bushell RN, Esbert N, Tivendale KA, Noormohammadi AH, Islam S, Marenda MS, Browning GF, Markham PF, Djordjevic SP. Whole genome sequence analysis of Australian avian pathogenic Escherichia coli that carry the class 1 integrase gene. Microb Genom 2019; 5. [PMID: 30672731 PMCID: PMC6421350 DOI: 10.1099/mgen.0.000250] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Avian pathogenic Escherichia coli (APEC) cause widespread economic losses in poultry production and are potential zoonotic pathogens. Genome sequences of 95 APEC from commercial poultry operations in four Australian states that carried the class 1 integrase gene intI1, a proxy for multiple drug resistance (MDR), were characterized. Sequence types ST117 (22/95), ST350 (10/95), ST429 and ST57 (each 9/95), ST95 (8/95) and ST973 (7/95) dominated, while 24 STs were represented by one or two strains. FII and FIB repA genes were the predominant (each 93/95, 98 %) plasmid incompatibility groups identified, but those of B/O/K/Z (25/95, 26 %) and I1 (24/95, 25 %) were also identified frequently. Virulence-associated genes (VAGs) carried by ColV and ColBM virulence plasmids, including those encoding protectins [iss (91/95, 96 %), ompT (91/95, 96 %) and traT (90/95, 95 %)], iron-acquisition systems [sitA (88/95, 93 %), etsA (87/95, 92 %), iroN (84/95, 89 %) and iucD/iutA (84/95, 89 %)] and the putative avian haemolysin hylF (91/95, 96 %), featured prominently. Notably, mobile resistance genes conferring resistance to fluoroquinolones, colistin, extended-spectrum β-lactams and carbapenems were not detected in the genomes of these 95 APEC but carriage of the sulphonamide resistance gene, sul1 (59/95, 63 %), the trimethoprim resistance gene cassettes dfrA5 (48/95, 50 %) and dfrA1 (25/95, 27 %), the tetracycline resistance determinant tet(A) (51/95, 55 %) and the ampicillin resistance genes blaTEM-1A/B/C (48/95, 52 %) was common. IS26 (77/95, 81 %), an insertion element known to capture and mobilize a wide spectrum of antimicrobial resistance genes, was also frequently identified. These studies provide a baseline snapshot of drug-resistant APEC in Australia and their role in the carriage of ColV-like virulence plasmids.
Collapse
Affiliation(s)
- Max L Cummins
- 1The ithree Institute, University of Technology Sydney, Ultimo, NSW, Australia
| | - Cameron J Reid
- 1The ithree Institute, University of Technology Sydney, Ultimo, NSW, Australia
| | - Piklu Roy Chowdhury
- 1The ithree Institute, University of Technology Sydney, Ultimo, NSW, Australia
| | - Rhys N Bushell
- 2Asia-Pacific Centre for Animal Health, Department of Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, and Werribee, Victoria 3030, Australia
| | - Nicolas Esbert
- 2Asia-Pacific Centre for Animal Health, Department of Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, and Werribee, Victoria 3030, Australia
| | - Kelly A Tivendale
- 2Asia-Pacific Centre for Animal Health, Department of Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, and Werribee, Victoria 3030, Australia
| | - Amir H Noormohammadi
- 2Asia-Pacific Centre for Animal Health, Department of Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, and Werribee, Victoria 3030, Australia
| | - Shaiful Islam
- 2Asia-Pacific Centre for Animal Health, Department of Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, and Werribee, Victoria 3030, Australia
| | - Marc S Marenda
- 2Asia-Pacific Centre for Animal Health, Department of Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, and Werribee, Victoria 3030, Australia
| | - Glenn F Browning
- 2Asia-Pacific Centre for Animal Health, Department of Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, and Werribee, Victoria 3030, Australia
| | - Philip F Markham
- 2Asia-Pacific Centre for Animal Health, Department of Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, and Werribee, Victoria 3030, Australia
| | - Steven P Djordjevic
- 1The ithree Institute, University of Technology Sydney, Ultimo, NSW, Australia
| |
Collapse
|
25
|
Prevalence of Integrons and Insertion Sequences in ESBL-Producing E. coli Isolated from Different Sources in Navarra, Spain. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15102308. [PMID: 30347800 PMCID: PMC6209886 DOI: 10.3390/ijerph15102308] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/11/2018] [Accepted: 10/18/2018] [Indexed: 11/17/2022]
Abstract
Mobile genetic elements play an important role in the dissemination of antibiotic resistant bacteria among human and environmental sources. Therefore, the aim of this study was to determine the occurrence and patterns of integrons and insertion sequences of extended-spectrum β-lactamase (ESBL)-producing Escherichia coli isolated from different sources in Navarra, northern Spain. A total of 150 isolates coming from food products, farms and feeds, aquatic environments, and humans (healthy people and hospital inpatients), were analyzed. PCRs were applied for the study of class 1, 2, and 3 integrons (intI1, intI2, and intI3), as well as for the determination of insertion sequences (IS26, ISEcp1, ISCR1, and IS903). Results show the wide presence and dissemination of intI1 (92%), while intI3 was not detected. It is remarkable, the prevalence of intI2 among food isolates, as well as the co-existence of class 1 and class 2 (8% of isolates). The majority of isolates have two or three IS elements, with the most common being IS26 (99.4%). The genetic pattern IS26⁻ISEcp1 (related with the pathogen clone ST131) was present in the 22% of isolates (including human isolates). In addition, the combination ISEcp1⁻IS26⁻IS903⁻ISCR1 was detected in 11 isolates being, to our knowledge, the first study that describes this genetic complex. Due to the wide variability observed, no relationship was determined among these mobile genetic elements and β-lactam resistance. More investigations regarding the genetic composition of these elements are needed to understand the role of multiple types of integrons and insertion sequences on the dissemination of antimicrobial resistance genes among different environments.
Collapse
|
26
|
Tadesse DA, Li C, Mukherjee S, Hsu CH, Bodeis Jones S, Gaines SA, Kabera C, Loneragan GH, Torrence M, Harhay DM, McDermott PF, Zhao S. Whole-Genome Sequence Analysis of CTX-M Containing Escherichia coli Isolates from Retail Meats and Cattle in the United States. Microb Drug Resist 2018; 24:939-948. [PMID: 30148698 PMCID: PMC6154757 DOI: 10.1089/mdr.2018.0206] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
In recent years, there have been increased reports on the detection of extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli and Salmonella strains from food-producing animals and animal products in the United States. We characterized 18 ESBL E. coli isolates from cattle (n = 5), chicken breast (n = 5), ground turkey (n = 6), ground beef (n = 1), and pork chops (n = 1) that were collected by the National Antimicrobial Resistance Monitoring System (NARMS) between 2011 and 2015. In vitro antimicrobial susceptibility testing was done against a panel of 14 antimicrobials followed by a secondary panel of 9 β-lactam agents. Whole-genome sequencing was used to characterize the resistome, plasmids, and the genetic structures of the ESBL genes. All ESBL-producing E. coli isolates were resistant to at least three antimicrobial classes and carried various blaCTX-M genes. Most of the cattle and ground turkey isolates carried blaCTX-M-27. In chicken breast isolates, blaCTX-M-1 was present as part of an ISEcp1 transposition unit carried on a plasmid that shares sequence similarity with the backbone structure of the IncI plasmid. Isolates carrying the blaCTX-M-14 and blaCTX-M-15 genes, widely distributed in human clinical isolates, were also isolated. To our knowledge, this is the first report of the widely distributed blaCTX-M-14 and blaCTX-M-15 in E. coli isolates from retail meat samples in the United States. Different insertional sequences were identified upstream of these blaCTX-Ms, including ISEcp1, IS26, and IS903-D. CTX-M in E. coli from food animals and retail chicken breast were often present on plasmids with other resistance genes. Other resistance genes identified included aadA, strA, strB, aac(3)-IId, aac(3)-VIa, aph(3′)-Ic, blaTEM, blaHERA-3, floR, sul1, sul2, catA1, tetA, tetB, dfrA, and qacE. These data describe the emergence of CTX-M-carrying E. coli isolates in food animals and animal products monitored by NARMS program.
Collapse
Affiliation(s)
- Daniel A Tadesse
- 1 Division of Animal and Food Microbiology , U.S. FDA, CVM, Laurel, Maryland
| | - Cong Li
- 1 Division of Animal and Food Microbiology , U.S. FDA, CVM, Laurel, Maryland
| | - Sampa Mukherjee
- 1 Division of Animal and Food Microbiology , U.S. FDA, CVM, Laurel, Maryland
| | - Chih-Hao Hsu
- 1 Division of Animal and Food Microbiology , U.S. FDA, CVM, Laurel, Maryland
| | - Sonya Bodeis Jones
- 1 Division of Animal and Food Microbiology , U.S. FDA, CVM, Laurel, Maryland
| | - Stuart A Gaines
- 1 Division of Animal and Food Microbiology , U.S. FDA, CVM, Laurel, Maryland
| | - Claudine Kabera
- 1 Division of Animal and Food Microbiology , U.S. FDA, CVM, Laurel, Maryland
| | - Guy H Loneragan
- 2 Texas Tech University , Department of Animal and Food Science, Lubbock, Texas
| | - Mary Torrence
- 3 U.S. FDA-CFSAN, Office of Applied Research and Safety Assessment (OARSA) , Laurel, Maryland
| | - Dayna M Harhay
- 4 USDA-ARS, U.S. Meat Animal Research Center, Meat Safety and Quality Research Unit, Clay Center , Nebraska
| | - Patrick F McDermott
- 1 Division of Animal and Food Microbiology , U.S. FDA, CVM, Laurel, Maryland
| | - Shaohua Zhao
- 1 Division of Animal and Food Microbiology , U.S. FDA, CVM, Laurel, Maryland
| |
Collapse
|
27
|
Alousi S, Salloum T, Arabaghian H, Matar GM, Araj GF, Tokajian ST. Genomic Characterization of MDR Escherichia coli Harboring blaOXA-48 on the IncL/M-type Plasmid Isolated from Blood Stream Infection. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3036143. [PMID: 30050923 PMCID: PMC6046176 DOI: 10.1155/2018/3036143] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 05/17/2018] [Indexed: 12/22/2022]
Abstract
Escherichia coli is responsible for a wide variety of community and hospital acquired extraintestinal infections, and the emergence of ESBL resistant isolates is a major clinical concern. In this study, we characterized the genomic attributes of an OXA-48 and CTX-M-3 producing E. coli EC-IMP153. Whole-genome initial assembly produced 146 contigs with a combined 5,504,170 bp in size and a G+C content of 50.5%. wgSNPs-based phylogenetic comparison with 36 publically available genomes was also performed. Comprehensive genomic analysis showed that EC-IMP153 belonged to sequence type ST-405 and harbored several resistance determinants including the β-lactam resistance genes blaOXA-48, blaCTX-M-3, blaTEM-1B, blaOXA-1, and blaCMY-70, aminoglycoside fyuA and aac(3)IId, tetracycline tet(A) and tet(R), and fluoroquinolone gyrA, parC, and mfd resistance determinants. Plasmids with the following incompatibility groups were detected in silico and confirmed using PBRT: IncI1-α, IncL, IncW, Col (BS512), and IncF. To our knowledge this is the first in-depth genomic analysis of an OXA-48 producing E. coli ST-405 isolated from a patient in Lebanon and linked to a blood stream infection. Continuous monitoring is necessary to better understand the continued diffusion of such pathogens, especially in view of the population movements triggered by unrest in the Middle East.
Collapse
Affiliation(s)
- S. Alousi
- Department of Natural Sciences, School of Arts & Sciences, Lebanese American University, Byblos, Lebanon
| | - T. Salloum
- Department of Natural Sciences, School of Arts & Sciences, Lebanese American University, Byblos, Lebanon
| | - H. Arabaghian
- Department of Natural Sciences, School of Arts & Sciences, Lebanese American University, Byblos, Lebanon
| | - G. M. Matar
- Center for Infectious Diseases Research, American University of Beirut Medical Center, Beirut, Lebanon
- Department of Experimental Pathology, Immunology & Microbiology, Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - G. F. Araj
- Center for Infectious Diseases Research, American University of Beirut Medical Center, Beirut, Lebanon
- Department of Pathology & Laboratory Medicine, Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - S. T. Tokajian
- Department of Natural Sciences, School of Arts & Sciences, Lebanese American University, Byblos, Lebanon
| |
Collapse
|
28
|
Okpara EO, Ojo OE, Awoyomi OJ, Dipeolu MA, Oyekunle MA, Schwarz S. Antimicrobial usage and presence of extended-spectrum β-lactamase-producing Enterobacteriaceae in animal-rearing households of selected rural and peri-urban communities. Vet Microbiol 2018; 218:31-39. [DOI: 10.1016/j.vetmic.2018.03.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 03/05/2018] [Accepted: 03/13/2018] [Indexed: 10/17/2022]
|
29
|
Occurrence and characterisation of ESBL-encoding plasmids among Escherichia coli isolates from fresh vegetables. Vet Microbiol 2018; 219:63-69. [PMID: 29778206 DOI: 10.1016/j.vetmic.2018.03.028] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/22/2018] [Accepted: 03/28/2018] [Indexed: 01/11/2023]
Abstract
Extended-spectrum β-lactamase (ESBL)-producing Escherichia coli isolates have been increasingly reported in different reservoirs. The aims of this study were to investigate the presence of ESBL-producing E. coli in fresh vegetables and to characterise their ESBL gene-carrying plasmids. Among the 245 samples from vegetables investigated during 2011-2013, seven putative ESBL-producing E. coli (salad n = 2, sprouts n = 5) were found. They were subjected to ESBL phenotypic confirmatory tests, detection/sequencing of ESBL genes, antimicrobial susceptibility testing (AST), phylotyping, XbaI-macrorestriction analysis, multilocus sequence typing and transformation. Transformants were characterised by AST, S1-nuclease PFGE, replicon typing, conjugation and investigated for co-located antimicrobial resistance genes. Two ESBL gene-carrying plasmids were sequenced using a HiSeq 2500 system. The seven isolates were confirmed as ESBL producers, displayed unrelated XbaI-patterns and unique sequence types (STs) and belonged to the phylogroups A, B1 or D. The ESBL genes were located on plasmids. Two plasmids carrying blaCTX-M-14 genes (incompatibility group IncK or IncHI2) were seen in isolates from salad (ST973) and sprout (ST527). Two blaCTX-M-15- (IncFIB; non-typeable) and the IncN blaCTX-M-65- and IncHI2 blaCTX-M-125-carrying plasmids were found in isolates from sprouts (ST410, ST847, ST10, ST542). All plasmids were conjugative, except for the IncFIA-FIB blaCTX-M-2-carrying plasmid. Sequence analysis of two plasmids identified the ESBL genes in close location to other resistance genes: sulfonamide resistance gene sul2, streptomycin resistance genes strA and strB, the plasmid-mediated quinolone resistance gene qnrS1 and blaTEM-1 (sul2-strA-strB-IS66-blaTEM-1-tnpR-ΔtnpA-ISEcp1-blaCTX-M-15-Δorf477-ΔtnpA-qnrS1) or the fosfomycin resistance gene fosA3 (ΔISEcp1-blaCTX-M-125-ΔIS903B-fosA3). These observations underline the importance of vegetables as reservoirs for multidrug resistant ESBL-producing E. coli.
Collapse
|
30
|
Hu X, Gou J, Guo X, Cao Z, Li Y, Jiao H, He X, Ren Y, Tian F. Genetic contexts related to the diffusion of plasmid-mediated CTX-M-55 extended-spectrum beta-lactamase isolated from Enterobacteriaceae in China. Ann Clin Microbiol Antimicrob 2018; 17:12. [PMID: 29571292 PMCID: PMC5865355 DOI: 10.1186/s12941-018-0265-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Accepted: 03/09/2018] [Indexed: 11/12/2022] Open
Abstract
Background CTX-M-55 extended-spectrum beta-lactamases are being rapidly disseminated and transmitted in clinical practices around the world. The genetic contexts of the transferable plasmid-mediated blaCTX-M-55 gene in Enterobacteriaceae were detected and characterized in this study. Methods Isolates were obtained from the First Affiliated Hospital of Zhengzhou University between September 2015 and March 2016. Based on polymerase chain reaction and BLAST analysis, resistance genes and genetic context of the blaCTX-M-55 gene were investigated. Conjugation experiments and multilocus sequence typing were performed to demonstrate plasmid-mediated blaCTX-M-55 transmission. Results Thirteen blaCTX-M-55-positive isolates of Enterobacteriaceae were obtained. Seven isolates were Escherichia coli, 3 were Klebsiella pneumoniae, 1 was Citrobacter freundii, 1 was Morganella morganii and 1 was Serratia marcescens. The blaCTX-M-55 gene has not previously been identified from C. freundii and M. morganii. Four different blaCTX-M-55 genetic contexts were identified, and all of them harbored ISEcp1 in the region upstream of blaCTX-M-55 (in two cases, ISEcp1 was truncated by IS26, and in one case, it was truncated by IS1294), whereas ORF477 was detected downstream of the blaCTX-M-55 gene from 12 of 13 strains. The novel genetic context of ISEcp1∆-blaCTX-M-55-∆IS903 was firstly detected the IS903 element which was identified downstream of blaCTX-M-55. A conjugation assay revealed that all blaCTX-M-55 plasmids were quickly and easily transferable to recipient E. coli, which then presented resistance to multiple antibiotics. Conclusions Numerous blaCTX-M-55-positive strains were isolated in a short period of 7 months. The findings indicate that blaCTX-M-55 was rapidly disseminated. The genetic context and conjugative transfer found in this study demonstrate that there is active transmission of blaCTX-M-55 among strains of Enterobacteriaceae in China, which could give rise to an urgent global public health threat.
Collapse
Affiliation(s)
- Xiaoxin Hu
- Department of Clinical Laboratory, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jianjun Gou
- Department of Clinical Laboratory, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China. .,Key Laboratory of Laboratory Medicine of Henan Province, Zhengzhou, Henan, China.
| | - Xiaobing Guo
- Department of Clinical Laboratory, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Key Laboratory of Laboratory Medicine of Henan Province, Zhengzhou, Henan, China
| | - Zaiqiu Cao
- School of Medicine, Pusan National University, Busan, Republic of Korea
| | - Yuan Li
- Department of Clinical Laboratory, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hongjian Jiao
- Department of Medical Laboratory Technology, Xinyang Vocational and Technical College, Xinyang, Henan, China
| | - Xiaohong He
- Department of Clinical Laboratory, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yihui Ren
- Department of Clinical Laboratory, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Fuyun Tian
- Department of Clinical Laboratory, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
31
|
Yu Y, Fang JT, Sun J, Zheng M, Zhang Q, He JS, Liao XP, Liu YH. Efficacy of Cefquinome against Escherichia coli Environmental Mastitis Assessed by Pharmacokinetic and Pharmacodynamic Integration in Lactating Mouse Model. Front Microbiol 2017; 8:1445. [PMID: 28824576 PMCID: PMC5539083 DOI: 10.3389/fmicb.2017.01445] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 07/17/2017] [Indexed: 11/25/2022] Open
Abstract
This work investigates the pharmacodynamic effectiveness of cefquinome against environmental Escherichia coli mastitis infection, following an intramammary administration. We established the pharmacokinetic and pharmacodynamic (PK/PD) model in lactating mice. The PK/PD parameters were identified to achieve an antibacterial efficacy as indicated by PD activity, cytokine expression and PK/PD simulation. From our findings, given an 200 μg/gland dose once daily can achieve a considerable therapeutic effectiveness in experimental circumstance.
Collapse
Affiliation(s)
- Yang Yu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural UniversityGuangzhou, China.,National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural UniversityGuangzhou, China.,Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural UniversityGuangzhou, China
| | - Jin-Tao Fang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural UniversityGuangzhou, China.,National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural UniversityGuangzhou, China.,Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural UniversityGuangzhou, China
| | - Jian Sun
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural UniversityGuangzhou, China.,National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural UniversityGuangzhou, China.,Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural UniversityGuangzhou, China
| | - Mei Zheng
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural UniversityGuangzhou, China
| | - Qing Zhang
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural UniversityGuangzhou, China
| | - Jie-Shun He
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural UniversityGuangzhou, China
| | - Xiao-Ping Liao
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural UniversityGuangzhou, China.,National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural UniversityGuangzhou, China.,Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural UniversityGuangzhou, China
| | - Ya-Hong Liu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural UniversityGuangzhou, China.,National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural UniversityGuangzhou, China.,Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural UniversityGuangzhou, China
| |
Collapse
|
32
|
Lei CW, Kong LH, Ma SZ, Liu BH, Chen YP, Zhang AY, Wang HN. A novel type 1/2 hybrid IncC plasmid carrying fifteen antimicrobial resistance genes recovered from Proteus mirabilis in China. Plasmid 2017; 93:1-5. [PMID: 28757095 DOI: 10.1016/j.plasmid.2017.07.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 07/13/2017] [Accepted: 07/25/2017] [Indexed: 11/26/2022]
Abstract
IncC plasmids are of great concern as vehicles of broad-spectrum cephalosporins and carbapenems resistance genes blaCMY and blaNDM. The aim of this study was to sequence and characterize a multidrug resistance (MDR) IncC plasmid (pPm14C18) recovered from Proteus mirabilis. pPm14C18 was identified in a CMY-2-producing P. mirabilis isolate from chicken in China in 2014, and could be transferred to Escherichia coli conferring an MDR phenotype. Whole genome sequencing confirmed pPm14C18 was a novel type 1/2 hybrid IncC plasmid 165,992bp in size, containing fifteen antimicrobial resistance genes. It harboured a novel MDR mosaic region comprised of a hybrid Tn21tnp-pDUmer, in which blaCTX-M-65, dfrA32 and ereA were firstly reported in IncC plasmid. Phylogenetic relationship reconstruction based on the nucleotide sequences of the 52 IncC backbones showed all type 1 IncC plasmids were clustered into one clade, and then merged with pPm14C18 and finally with the type 2 IncC plasmids and another type 1/2 hybrid IncC plasmid pYR1. The MDR IncC plasmids in P. mirabilis of animal origin might threaten public health, which should be drawn more attention.
Collapse
Affiliation(s)
- Chang-Wei Lei
- College of Life science, Sichuan University, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, 985 Project Science Innovative Platform for Resource and Environment Protection of Southwestern China, Chengdu, People's Republic of China
| | - Ling-Han Kong
- College of Life science, Sichuan University, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, 985 Project Science Innovative Platform for Resource and Environment Protection of Southwestern China, Chengdu, People's Republic of China
| | - Su-Zhen Ma
- College of Life science, Sichuan University, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, 985 Project Science Innovative Platform for Resource and Environment Protection of Southwestern China, Chengdu, People's Republic of China
| | - Bi-Hui Liu
- College of Life science, Sichuan University, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, 985 Project Science Innovative Platform for Resource and Environment Protection of Southwestern China, Chengdu, People's Republic of China
| | - Yan-Peng Chen
- College of Life science, Sichuan University, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, 985 Project Science Innovative Platform for Resource and Environment Protection of Southwestern China, Chengdu, People's Republic of China
| | - An-Yun Zhang
- College of Life science, Sichuan University, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, 985 Project Science Innovative Platform for Resource and Environment Protection of Southwestern China, Chengdu, People's Republic of China
| | - Hong-Ning Wang
- College of Life science, Sichuan University, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, 985 Project Science Innovative Platform for Resource and Environment Protection of Southwestern China, Chengdu, People's Republic of China.
| |
Collapse
|
33
|
Freitag C, Michael GB, Kadlec K, Hassel M, Schwarz S. Detection of plasmid-borne extended-spectrum β-lactamase (ESBL) genes in Escherichia coli isolates from bovine mastitis. Vet Microbiol 2017; 200:151-156. [DOI: 10.1016/j.vetmic.2016.08.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 07/26/2016] [Accepted: 08/13/2016] [Indexed: 11/16/2022]
|
34
|
Bukhari AA, Arshad MI, Raza S, Azam M, Sajjad-ur-Rahman, Mohsin M. Emergence of extended spectrum beta-lactamases-producing strains belonging to cefotaxime-M-1 class from intensive care units patients and environmental surfaces in Pakistan. INTERNATIONAL JOURNAL OF ONE HEALTH 2016. [DOI: 10.14202/ijoh.2016.69-74] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
35
|
Frickmann H, Wiemer D, Frey C, Hagen RM, Hinz R, Podbielski A, Köller T, Warnke P. Low Enteric Colonization with Multidrug-Resistant Pathogens in Soldiers Returning from Deployments- Experience from the Years 2007-2015. PLoS One 2016; 11:e0162129. [PMID: 27598775 PMCID: PMC5012679 DOI: 10.1371/journal.pone.0162129] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 08/17/2016] [Indexed: 11/24/2022] Open
Abstract
This assessment describes the enteric colonization of German soldiers 8–12 weeks after returning from mostly but not exclusively subtropical or tropical deployment sites with third-generation cephalosporin-resistant Enterobacteriaceae, vancomycin-resistant enterococci (VRE), and methicillin-resistant Staphylococcus aureus (MRSA). Between 2007 and 2015, 828 stool samples from returning soldiers were enriched in nonselective broth and incubated on selective agars for Enterobacteriaceae expressing extended-spectrum beta-lactamases (ESBL), VRE and MRSA. Identification and resistance testing of suspicious colonies was performed using MALDI-TOF-MS, VITEK-II and agar diffusion gradient testing (bioMérieux, Marcy-l’Étoile, France). Isolates with suspicion of ESBL were characterized by ESBL/ampC disc-(ABCD)-testing and molecular approaches (PCR, Sanger sequencing). Among the returnees, E. coli with resistance against third-generation cephalosporins (37 ESBL, 1 ESBL + ampC, 1 uncertain mechanism) were found in 39 instances (4.7%). Associated quinolone resistance was found in 46.2% of these isolates. Beta-lactamases of the blaCTX-M group 1 predominated among the ESBL mechanisms, followed by the blaCTX-M group 9, and blaSHV. VRE of vanA-type was isolated from one returnee (0.12%). MRSA was not isolated at all. There was no clear trend regarding the distribution of resistant isolates during the assessment period. Compared with colonization with resistant bacteria described in civilians returning from the tropics, the colonization in returned soldiers is surprisingly low and stable. This finding, together with high colonization rates found in previous screenings on deployment, suggests a loss of colonization during the 8- to 12-week period between returning from the deployments and assessment.
Collapse
Affiliation(s)
- Hagen Frickmann
- Department of Tropical Medicine at the Bernhard Nocht Institute, German Armed Forces Hospital of Hamburg, Hamburg, Germany
- Institute for Medical Microbiology, Virology and Hygiene, University Medicine Rostock, Rostock, Germany
- * E-mail:
| | - Dorothea Wiemer
- Department of Tropical Medicine at the Bernhard Nocht Institute, German Armed Forces Hospital of Hamburg, Hamburg, Germany
| | - Claudia Frey
- Department of Tropical Medicine at the Bernhard Nocht Institute, German Armed Forces Hospital of Hamburg, Hamburg, Germany
| | - Ralf Matthias Hagen
- Deployment Health Surveillance Capability, NATO Center of Excellence for Military Medicine, Munich, Germany
| | - Rebecca Hinz
- Department of Tropical Medicine at the Bernhard Nocht Institute, German Armed Forces Hospital of Hamburg, Hamburg, Germany
| | - Andreas Podbielski
- Institute for Medical Microbiology, Virology and Hygiene, University Medicine Rostock, Rostock, Germany
| | - Thomas Köller
- Institute for Medical Microbiology, Virology and Hygiene, University Medicine Rostock, Rostock, Germany
| | - Philipp Warnke
- Institute for Medical Microbiology, Virology and Hygiene, University Medicine Rostock, Rostock, Germany
| |
Collapse
|
36
|
Porse A, Schønning K, Munck C, Sommer MOA. Survival and Evolution of a Large Multidrug Resistance Plasmid in New Clinical Bacterial Hosts. Mol Biol Evol 2016; 33:2860-2873. [PMID: 27501945 PMCID: PMC5062321 DOI: 10.1093/molbev/msw163] [Citation(s) in RCA: 164] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Large conjugative plasmids are important drivers of bacterial evolution and contribute significantly to the dissemination of antibiotic resistance. Although plasmid borne multidrug resistance is recognized as one of the main challenges in modern medicine, the adaptive forces shaping the evolution of these plasmids within pathogenic hosts are poorly understood. Here we study plasmid–host adaptations following transfer of a 73 kb conjugative multidrug resistance plasmid to naïve clinical isolates of Klebsiella pneumoniae and Escherichia coli. We use experimental evolution, mathematical modelling and population sequencing to show that the long-term persistence and molecular integrity of the plasmid is highly influenced by multiple factors within a 25 kb plasmid region constituting a host-dependent burden. In the E. coli hosts investigated here, improved plasmid stability readily evolves via IS26 mediated deletions of costly regions from the plasmid backbone, effectively expanding the host-range of the plasmid. Although these adaptations were also beneficial to plasmid persistence in a naïve K. pneumoniae host, they were never observed in this species, indicating that differential evolvability can limit opportunities of plasmid adaptation. While insertion sequences are well known to supply plasmids with adaptive traits, our findings suggest that they also play an important role in plasmid evolution by maintaining the plasticity necessary to alleviate plasmid–host constrains. Further, the observed evolutionary strategy consistently followed by all evolved E. coli lineages exposes a trade-off between horizontal and vertical transmission that may ultimately limit the dissemination potential of clinical multidrug resistance plasmids in these hosts.
Collapse
Affiliation(s)
- Andreas Porse
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark
| | - Kristian Schønning
- Department of Clinical Microbiology, Hvidovre University Hospital, Hvidovre, Denmark and Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christian Munck
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark
| | - Morten O A Sommer
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark
| |
Collapse
|
37
|
Hagen RM, Hinz R, Frickmann H. β-Lactamases Encoded by blaCTX-M Group I Genes as Determinants of Resistance of Esbl-Positive Enterobacteriaceae in European Soldiers in Tropical Mali. Eur J Microbiol Immunol (Bp) 2015; 5:281-4. [PMID: 26716016 PMCID: PMC4681355 DOI: 10.1556/1886.2015.00037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 10/03/2015] [Indexed: 11/21/2022] Open
Abstract
ESBL (extended-spectrum-β-lactamase)-positive Enterobacteriaceae, which colonized European soldiers in tropical Western African Mali, were subjected to a molecular assessment of their resistance determinants. By doing so, a better insight into the locally endemic pattern of ESBL-associated β-lactamase genes was aspired. From a previous study on diarrhea in European soldiers on deployment in tropical Mali, 15 ESBL-positive Escherichia coli with demonstrated high clonal diversity and one positive Klebsiella pneumoniae were assessed. Polymerase chain reactions (PCRs) for blaTEM and blaSHV β-lactamase genes with subsequent sequencing for the discrimination of ESBL- and non-ESBL variants were performed, followed by four group-specific PCRs for blaCTX-M genes. Non-ESBL-associated blaTEM-1 was identified in six out of 15 (40%) E. coli strains, while 100% of the assessed strains were positive for group I blaCTX-M. Considering the known clonal diversity of the assessed strains, the striking restriction to one group of blaCTX-M genes accounting for the ESBL phenotypes of the isolates suggests little genetic exchange in the local setting. Under such circumstances of restricted numbers of locally endemic target genes, PCR-based screening approaches for ESBL colonization might be promising.
Collapse
Affiliation(s)
- Ralf Matthias Hagen
- Department of Tropical Medicine at the Bernhard Nocht Institute, German Armed Forces Hospital of Hamburg , Germany
| | - Rebecca Hinz
- Department of Tropical Medicine at the Bernhard Nocht Institute, German Armed Forces Hospital of Hamburg , Germany
| | - Hagen Frickmann
- Department of Tropical Medicine at the Bernhard Nocht Institute, German Armed Forces Hospital of Hamburg , Germany ; Institute for Microbiology and Immunology, University Medicine Rostock , Germany
| |
Collapse
|
38
|
Characterization of IncI1 sequence type 71 epidemic plasmid lineage responsible for the recent dissemination of CTX-M-65 extended-spectrum β-lactamase in the Bolivian Chaco region. Antimicrob Agents Chemother 2015; 59:5340-7. [PMID: 26100713 DOI: 10.1128/aac.00589-15] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 06/10/2015] [Indexed: 11/20/2022] Open
Abstract
During the last decade, a significant diffusion of CTX-M-type extended-spectrum β-lactamases (ESBLs) was observed in commensal Escherichia coli from healthy children in the Bolivian Chaco region, with initial dissemination of CTX-M-2, which was then replaced by CTX-M-15 and CTX-M-65. In this work, we demonstrate that the widespread dissemination of CTX-M-65 observed in this context was related to the polyclonal spreading of an IncI1 sequence type 71 (ST71) epidemic plasmid lineage. The structure of the epidemic plasmid population was characterized by complete sequencing of four representatives and PCR mapping of the remainder (n = 16). Sequence analysis showed identical plasmid backbones (similar to that of the reference IncI1 plasmid, R64) and a multiresistance region (MRR), which underwent local microevolution. The MRR harbored genes responsible for resistance to β-lactams, aminoglycosides, florfenicol, and fosfomycin (with microevolution mainly consisting of deletion events of resistance modules). The bla CTX-M-65 module harbored by the IncI1 ST71 epidemic plasmid was apparently derived from IncN-type plasmids, likely via IS26-mediated mobilization. The plasmid could be transferred by conjugation to several different enterobacterial species (Escherichia coli, Cronobacter sakazakii, Enterobacter cloacae, Klebsiella oxytoca, Klebsiella pneumoniae, and Salmonella enterica) and was stably maintained without selective pressure in these species, with the exception of K. oxytoca and S. enterica. Fitness assays performed in E. coli recipients demonstrated that the presence of the epidemic plasmid was apparently not associated with a significant biological cost.
Collapse
|
39
|
Piotrowska M, Popowska M. Insight into the mobilome of Aeromonas strains. Front Microbiol 2015; 6:494. [PMID: 26074893 PMCID: PMC4444841 DOI: 10.3389/fmicb.2015.00494] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 05/05/2015] [Indexed: 11/13/2022] Open
Abstract
The mobilome is a pool of genes located within mobile genetic elements (MGE), such as plasmids, IS elements, transposons, genomic/pathogenicity islands, and integron-associated gene cassettes. These genes are often referred to as “flexible” and may encode virulence factors, toxic compounds as well as resistance to antibiotics. The phenomenon of MGE transfer between bacteria, known as horizontal gene transfer (HGT), is well documented. The genes present on MGE are subject to continuous processes of evolution and environmental changes, largely induced or significantly accelerated by man. For bacteria, the only chance of survival in an environment contaminated with toxic chemicals, heavy metals and antibiotics is the acquisition of genes providing the ability to survive in such conditions. The process of acquiring and spreading antibiotic resistance genes (ARG) is of particular significance, as it is important for the health of humans and animals. Therefore, it is important to thoroughly study the mobilome of Aeromonas spp. that is widely distributed in various environments, causing many diseases in fishes and humans. This review discusses the recently published information on MGE prevalent in Aeromonas spp. with special emphasis on plasmids belonging to different incompatibility groups, i.e., IncA/C, IncU, IncQ, IncF, IncI, and ColE-type. The vast majority of plasmids carry a number of different transposons (Tn3, Tn21, Tn1213, Tn1721, Tn4401), the 1st, 2nd, or 3rd class of integrons, IS elements (e.g., IS26, ISPa12, ISPa13, ISKpn8, ISKpn6) and encode determinants such as antibiotic and mercury resistance genes, as well as virulence factors. Although the actual role of Aeromonas spp. as a human pathogen remains controversial, species of this genus may pose a serious risk to human health. This is due to the considerable potential of their mobilome, particularly in terms of antibiotic resistance and the possibility of the horizontal transfer of resistance genes.
Collapse
Affiliation(s)
- Marta Piotrowska
- Department of Applied Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw Warsaw, Poland
| | - Magdalena Popowska
- Department of Applied Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw Warsaw, Poland
| |
Collapse
|
40
|
Abstract
ABSTRACT
The number and diversity of known prokaryotic insertion sequences (IS) have increased enormously since their discovery in the late 1960s. At present the sequences of more than 4000 different IS have been deposited in the specialized ISfinder database. Over time it has become increasingly apparent that they are important actors in the evolution of their host genomes and are involved in sequestering, transmitting, mutating and activating genes, and in the rearrangement of both plasmids and chromosomes. This review presents an overview of our current understanding of these transposable elements (TE), their organization and their transposition mechanism as well as their distribution and genomic impact. In spite of their diversity, they share only a very limited number of transposition mechanisms which we outline here. Prokaryotic IS are but one example of a variety of diverse TE which are being revealed due to the advent of extensive genome sequencing projects. A major conclusion from sequence comparisons of various TE is that frontiers between the different types are becoming less clear. We detail these receding frontiers between different IS-related TE. Several, more specialized chapters in this volume include additional detailed information concerning a number of these.
In a second section of the review, we provide a detailed description of the expanding variety of IS, which we have divided into families for convenience. Our perception of these families continues to evolve and families emerge regularly as more IS are identified. This section is designed as an aid and a source of information for consultation by interested specialist readers.
Collapse
|
41
|
Persistence and epidemic propagation of a Pseudomonas aeruginosa sequence type 235 clone harboring an IS26 composite transposon carrying the blaIMP-1 integron in Hiroshima, Japan, 2005 to 2012. Antimicrob Agents Chemother 2015; 59:2678-87. [PMID: 25712351 DOI: 10.1128/aac.04207-14] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 02/09/2015] [Indexed: 12/14/2022] Open
Abstract
A 9-year surveillance for multidrug-resistant (MDR) Pseudomonas aeruginosa in the Hiroshima region showed that the number of isolates harboring the metallo-β-lactamase gene bla(IMP-1) abruptly increased after 2004, recorded the highest peak in 2006, and showed a tendency to decline afterwards, indicating a history of an epidemic. PCR mapping of the variable regions of the integrons showed that this epidemic was caused by the clonal persistence and propagation of an MDR P. aeruginosa strain harboring the bla(IMP-1) gene and an aminoglycoside 6'-N-acetyltransferase gene, aac(6')-Iae in a class I integron (In113), whose integrase gene intl1 was disrupted by an IS26 insertion. Sequence analysis of the representative strain PA058447 resistance element containing the In113-derived gene cassette array showed that the element forms an IS26 transposon embedded in the chromosome. It has a Tn21 backbone and is composed of two segments sandwiched by three IS26s. In Japan, clonal nationwide expansion of an MDR P. aeruginosa NCGM2.S1 harboring chromosomally encoded In113 with intact intl1 is reported. Multilocus sequence typing and genomic comparison strongly suggest that PA058447 and NCGM2.S1 belong to the same clonal lineage. Moreover, the structures of the resistance element in the two strains are very similar, but the sites of insertion into the chromosome are different. Based on tagging information of the IS26 present in both resistance elements, we suggest that the MDR P. aeruginosa clone causing the epidemic in Hiroshima for the past 9 years originated from a common ancestor genome of PA058447 and NCGM2.S1 through an IS26 insertion into intl1 of In113 and through IS26-mediated genomic rearrangements.
Collapse
|
42
|
Abstract
In 2008, a previously unknown Escherichia coli clonal group, sequence type 131 (ST131), was identified on three continents. Today, ST131 is the predominant E. coli lineage among extraintestinal pathogenic E. coli (ExPEC) isolates worldwide. Retrospective studies have suggested that it may originally have risen to prominence as early as 2003. Unlike other classical group B2 ExPEC isolates, ST131 isolates are commonly reported to produce extended-spectrum β-lactamases, such as CTX-M-15, and almost all are resistant to fluoroquinolones. Moreover, ST131 E. coli isolates are considered to be truly pathogenic, due to the spectrum of infections they cause in both community and hospital settings and the large number of virulence-associated genes they contain. ST131 isolates therefore seem to contradict the widely held view that high levels of antimicrobial resistance are necessarily associated with a fitness cost leading to a decrease in pathogenesis. Six years after the first description of E. coli ST131, this review outlines the principal traits of ST131 clonal group isolates, based on the growing body of published data, and highlights what is currently known and what we need to find out to provide public health authorities with better information to help combat ST131.
Collapse
|
43
|
Matsumura Y, Johnson JR, Yamamoto M, Nagao M, Tanaka M, Takakura S, Ichiyama S. CTX-M-27- and CTX-M-14-producing, ciprofloxacin-resistant Escherichia coli of the H30 subclonal group within ST131 drive a Japanese regional ESBL epidemic. J Antimicrob Chemother 2015; 70:1639-49. [PMID: 25687644 DOI: 10.1093/jac/dkv017] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 01/05/2015] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVES The global increase in ESBL-producing Escherichia coli is associated with the ST131 clonal group, especially its CTX-M-15-producing H30Rx subset. To understand the rapid spread of ESBL-producing E. coli in Japan, we investigated the molecular epidemiology and ESBL-associated genetic environments of Japanese ST131 isolates. METHODS Between 2001 and 2012, 1079 ESBL-producing E. coli isolates were collected at 10 Japanese acute-care hospitals. ESBL types, ST131 status, fimH allele, H30Rx-defining sequences and ESBL-associated genetic environments were defined using PCR and sequencing. Subclonal groups were defined based on fimH allele and H30Rx status. RESULTS Overall, 461 (43%) of the 1079 ESBL-producing E. coli isolates represented ST131. According to fimH-based subclonal typing, the ST131 isolates included 398 fimH allele 30 (H30) isolates, 49 H41 isolates, 10 H22 isolates and 4 other fimH-type isolates. The 398 H30 isolates included 396 ciprofloxacin-resistant H30R isolates, of which 64 (16%) represented the H30Rx subset. Between 2001 and 2007, the CTX-M-14-producing H30R subgroup predominated, accounting for 46% of ST131 isolates, whereas the CTX-M-27-producing H30R and CTX-M-15-producing H30Rx subgroups were rarely detected. In contrast, from 2008 onward the latter two subgroups rose to dominance, accounting for 45% and 24% of ST131 isolates, respectively, versus only 15% for the (formerly dominant) CTX-M-14-producing H30R subgroup. The emergent CTX-M-27-H30R subgroup frequently had an IS26-ΔISEcp1-blaCTX-M-27-ΔIS903D-IS26-like structure, whereas the older CTX-M-14-H30R subgroup frequently had an ISEcp1-blaCTX-M-14-IS903D-like structure. CONCLUSIONS This Japanese regional ESBL-producing E. coli epidemic is closely associated with newly identified CTX-M-27- and CTX-M-14-producing ST131 H30R subclonal groups and with mobile elements IS26, ISEcp1 and IS903D.
Collapse
Affiliation(s)
- Yasufumi Matsumura
- Department of Clinical Laboratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - James R Johnson
- Veterans Affairs Medical Center and University of Minnesota, Minneapolis, MN, USA
| | - Masaki Yamamoto
- Department of Clinical Laboratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Miki Nagao
- Department of Clinical Laboratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Michio Tanaka
- Department of Clinical Laboratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Shunji Takakura
- Department of Clinical Laboratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Satoshi Ichiyama
- Department of Clinical Laboratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | | |
Collapse
|
44
|
Wang J, Stephan R, Zurfluh K, Hächler H, Fanning S. Characterization of the genetic environment of bla ESBL genes, integrons and toxin-antitoxin systems identified on large transferrable plasmids in multi-drug resistant Escherichia coli. Front Microbiol 2015; 5:716. [PMID: 25610429 PMCID: PMC4285173 DOI: 10.3389/fmicb.2014.00716] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 12/01/2014] [Indexed: 01/08/2023] Open
Abstract
Objectives: Previously 14 conjugative plasmids from multi-drug resistant (MDR) Escherichia coli from healthy humans and food-producing animals in Switzerland were sequenced. The aim of this study was to extend the genetic characterization of these plasmids with a focus on blaESBL genes including blaCTX-M-1 and blaTEM, class 1 integrons and toxin-antitoxin (TA) systems contained therein. Methods: The nucleotide sequences and subsequent annotation therein of 14 conjugative plasmids were previously determined from their corresponding transconjugants. The TA loci were confirmed by RASTA-Bacteria. Results: Eight of the conjugative plasmids identified were found to encode genes expressing ESBLs. Structural heterogeneity was noted in the regions flanking both the blaCTX-M-1 and blaTEM genes. The blaCTX-M-1 genes were associated with the common insertion sequences ISEcp1 and IS26, and uniquely with an IS5 element in one case; while blaTEM genes were found to be associated with IS26 and Tn2. A new blaTEM-210 gene was identified. Seven class 1 integrons were also identified and assigned into 3 groups, denoted as In54, In369 and In501. Sixteen TA loci belonging to 4 of the TA gene families (relBE, vapBC, ccd and mazEF) were identified on 11 of these plasmids. Conclusions: Comparative sequence analysis of these plasmids provided data on the structures likely to contribute to sequence diversity associated with these accessory genes, including IS26, ISEcp1 and Tn2. All of them contribute to the dissemination of the corresponding resistance genes located on the different plasmids. There appears to be no association between β-lactam encoding genes and TA systems.
Collapse
Affiliation(s)
- Juan Wang
- UCD Centre for Food Safety, School of Public Health, Physiotherapy and Population Science, University College Dublin Dublin, Ireland
| | - Roger Stephan
- Vetsuisse Faculty, Institute for Food Safety and Hygiene, University of Zurich Zürich, Switzerland
| | - Katrin Zurfluh
- Vetsuisse Faculty, Institute for Food Safety and Hygiene, University of Zurich Zürich, Switzerland
| | - Herbert Hächler
- Vetsuisse Faculty, Institute for Food Safety and Hygiene, University of Zurich Zürich, Switzerland
| | - Séamus Fanning
- UCD Centre for Food Safety, School of Public Health, Physiotherapy and Population Science, University College Dublin Dublin, Ireland ; School of Biological Sciences, Institute for Global Food Security, Queen's University Belfast Belfast, UK
| |
Collapse
|
45
|
Lanza VF, de Toro M, Garcillán-Barcia MP, Mora A, Blanco J, Coque TM, de la Cruz F. Plasmid flux in Escherichia coli ST131 sublineages, analyzed by plasmid constellation network (PLACNET), a new method for plasmid reconstruction from whole genome sequences. PLoS Genet 2014; 10:e1004766. [PMID: 25522143 PMCID: PMC4270462 DOI: 10.1371/journal.pgen.1004766] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Accepted: 09/19/2014] [Indexed: 11/19/2022] Open
Abstract
Bacterial whole genome sequence (WGS) methods are rapidly overtaking classical sequence analysis. Many bacterial sequencing projects focus on mobilome changes, since macroevolutionary events, such as the acquisition or loss of mobile genetic elements, mainly plasmids, play essential roles in adaptive evolution. Existing WGS analysis protocols do not assort contigs between plasmids and the main chromosome, thus hampering full analysis of plasmid sequences. We developed a method (called plasmid constellation networks or PLACNET) that identifies, visualizes and analyzes plasmids in WGS projects by creating a network of contig interactions, thus allowing comprehensive plasmid analysis within WGS datasets. The workflow of the method is based on three types of data: assembly information (including scaffold links and coverage), comparison to reference sequences and plasmid-diagnostic sequence features. The resulting network is pruned by expert analysis, to eliminate confounding data, and implemented in a Cytoscape-based graphic representation. To demonstrate PLACNET sensitivity and efficacy, the plasmidome of the Escherichia coli lineage ST131 was analyzed. ST131 is a globally spread clonal group of extraintestinal pathogenic E. coli (ExPEC), comprising different sublineages with ability to acquire and spread antibiotic resistance and virulence genes via plasmids. Results show that plasmids flux in the evolution of this lineage, which is wide open for plasmid exchange. MOBF12/IncF plasmids were pervasive, adding just by themselves more than 350 protein families to the ST131 pangenome. Nearly 50% of the most frequent γ–proteobacterial plasmid groups were found to be present in our limited sample of ten analyzed ST131 genomes, which represent the main ST131 sublineages. Plasmids are difficult to analyze in WGS datasets, due to the fragmented nature of the obtained sequences. We developed a method, called PLACNET, which greatly facilitates this analysis. As an example, we analyzed the plasmidome of E. coli ST131, an ExPEC clonal group involved in human urinary tract infections and septicemia. Relevant variation within this clone (e.g., antibiotic resistance and virulence) is frequently caused by the acquisition and loss of plasmids and other mobile genetic elements. Nevertheless, our knowledge of the ST131 plasmidome is limited to a few antibiotic resistance plasmids and to identification of replicons from known plasmid groups. PLACNET analysis extends the number of sequenced plasmids in ST131, which can be used for comparative genomics, from 11 to 50. The ST131 plasmidome is seemingly huge, encompassing roughly 50% of the main plasmid groups of γ–proteobacteria. MOBF12/IncF plasmids are apparently the most active players in the dissemination of relevant genetic information.
Collapse
Affiliation(s)
- Val F. Lanza
- Departamento de Biología Molecular (Universidad de Cantabria) and Instituto de Biomedicina y Biotecnología de Cantabria IBBTEC (UC-SODERCAN-CSIC), Santander, Spain
| | - María de Toro
- Departamento de Biología Molecular (Universidad de Cantabria) and Instituto de Biomedicina y Biotecnología de Cantabria IBBTEC (UC-SODERCAN-CSIC), Santander, Spain
| | - M. Pilar Garcillán-Barcia
- Departamento de Biología Molecular (Universidad de Cantabria) and Instituto de Biomedicina y Biotecnología de Cantabria IBBTEC (UC-SODERCAN-CSIC), Santander, Spain
| | - Azucena Mora
- Laboratorio de Referencia de E. coli (LREC), Departamento de Microbiología y Parasitología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, Spain
| | - Jorge Blanco
- Laboratorio de Referencia de E. coli (LREC), Departamento de Microbiología y Parasitología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, Spain
| | - Teresa M. Coque
- Departamento de Microbiología, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- Unidad de Resistencia a Antibióticos y Virulencia Bacteriana asociada al Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Centros de Investigación Biomédica en Red de Epidemiología y Salud Pública, (CIBER-ESP), Madrid, Spain
| | - Fernando de la Cruz
- Departamento de Biología Molecular (Universidad de Cantabria) and Instituto de Biomedicina y Biotecnología de Cantabria IBBTEC (UC-SODERCAN-CSIC), Santander, Spain
- * E-mail:
| |
Collapse
|
46
|
Zurfluh K, Power KA, Klumpp J, Wang J, Fanning S, Stephan R. A novel Tn3-like composite transposon harboring blaVIM-1 in Klebsiella pneumoniae spp. pneumoniae isolated from river water. Microb Drug Resist 2014; 21:43-9. [PMID: 25098892 DOI: 10.1089/mdr.2014.0055] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVES We present a new plasmid (pOW16C2) with a novel Tn3-like transposon harboring blaVIM-1 from a Klebsiella pneumoniae strain isolated from river water in Switzerland. METHODS Complete nucleotide sequence of pOW16C2 was obtained using a Pacific Biosciences SMRT sequencing approach and coding sequences were predicted. RESULTS The 59,228 bp sequence included a typical IncN-like backbone and a mosaic structure with blaVIM-1, aacA4, aphA15, aadA1, catB2, qnrS1, sul1, and dfrA14 conferring resistance to carbapenems and other β-lactam antibiotics, aminoglycosides, chloramphenicol, quinolones, sulfonamides, and trimethoprim, respectively. Most of these resistance genes were inserted in a class 1 integron that was embedded in a novel Tn3-like composite transposon. CONCLUSIONS IncN plasmids carrying carbapenemases are frequently isolated from K. pneumoniae strains in clinical settings. The dissemination of K. pneumoniae harboring blaVIM-1 in surface water is a cause for increased concern to public health.
Collapse
Affiliation(s)
- Katrin Zurfluh
- 1 Vetsuisse Faculty, Institute for Food Safety and Hygiene, University of Zurich , Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
47
|
Wang J, Stephan R, Power K, Yan Q, Hächler H, Fanning S. Nucleotide sequences of 16 transmissible plasmids identified in nine multidrug-resistant Escherichia coli isolates expressing an ESBL phenotype isolated from food-producing animals and healthy humans. J Antimicrob Chemother 2014; 69:2658-68. [PMID: 24920651 DOI: 10.1093/jac/dku206] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES Nine extended-spectrum β-lactamase (ESBL)-producing Escherichia coli isolated from healthy humans and food-producing animals were found to transfer their cefotaxime resistance marker at high frequency in laboratory conjugation experiments. The objective of this study was to completely characterize 16 transmissible plasmids that were detected in these bacterial isolates. METHODS The nucleotide sequences of all 16 plasmids were determined from transconjugants using next-generation sequencing technology. Open reading frames were assigned using Rapid Annotation using Subsystem Technology and analysed by BLASTn and BLASTp. The standard method was used for plasmid multilocus sequence typing (pMLST) analysis. Plasmid structures were subsequently confirmed by PCR amplification of selected regions. RESULTS The complete circularized nucleotide sequence of 14 plasmids was determined, along with that of a further two plasmids that could not be confirmed as closed. These ranged in size from 1.8 to 166.6 kb. Incompatibility groups and pMLSTs identified included IncI1/ST3, IncI1/ST36, IncN/ST1, IncF and IncB/O, and those of the same Inc types presented a similar backbone structure despite being isolated from different sources. Eight plasmids contained bla(CTX-M-1) genes that were associated with either ISEcp1 or IS26 insertion sequence elements. Six plasmids isolated from humans and chickens were identical or closely related to the IncI1 reference plasmid, R64. CONCLUSIONS These data, based on comparative sequence analysis, highlight the successful spread of blaESBL-harbouring plasmids of different Inc types among isolates of human and food-producing animal origin and provide further evidence for potential dissemination routes.
Collapse
Affiliation(s)
- Juan Wang
- UCD Centre for Food Safety, School of Public Health, Physiotherapy & Population Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Roger Stephan
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 272, CH-8057 Zurich, Switzerland
| | - Karen Power
- UCD Centre for Food Safety, School of Public Health, Physiotherapy & Population Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Qiongqiong Yan
- UCD Centre for Food Safety, School of Public Health, Physiotherapy & Population Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Herbert Hächler
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 272, CH-8057 Zurich, Switzerland
| | - Séamus Fanning
- UCD Centre for Food Safety, School of Public Health, Physiotherapy & Population Science, University College Dublin, Belfield, Dublin 4, Ireland Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Stranmillis Road, Belfast BT9 5AG, Northern Ireland
| |
Collapse
|
48
|
Dolejska M, Villa L, Minoia M, Guardabassi L, Carattoli A. Complete sequences of IncHI1 plasmids carrying blaCTX-M-1 and qnrS1 in equine Escherichia coli provide new insights into plasmid evolution. J Antimicrob Chemother 2014; 69:2388-93. [PMID: 24862095 DOI: 10.1093/jac/dku172] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES To determine the structure of two multidrug-resistant IncHI1 plasmids carrying blaCTX-M-1 in Escherichia coli isolates disseminated in an equine clinic in the Czech Republic. METHODS A complete nucleotide sequencing of 239 kb IncHI1 (pEQ1) and 287 kb IncHI1/X1 (pEQ2) plasmids was performed using the 454-Genome Sequencer FLX system. The sequences were compared using bioinformatic tools with other sequenced IncHI1 plasmids. RESULTS A comparative analysis of pEQ1 and pEQ2 identified high nucleotide identity with the IncHI1 type 2 plasmids. A novel 24 kb module containing an operon involved in short-chain fructooligosaccharide uptake and metabolism was found in the pEQ backbones. The role of the pEQ plasmids in the metabolism of short-chain fructooligosaccharides was demonstrated by studying the growth of E. coli cells in the presence of these sugars. The module containing the blaCTX-M-1 gene was formed by a truncated macrolide resistance cluster and flanked by IS26 as previously observed in IncI1 and IncN plasmids. The IncHI1 plasmid changed size and gained the quinolone resistance gene qnrS1 as a result of IS26-mediated fusion with an IncX1 plasmid. CONCLUSIONS Our data highlight the structure and evolution of IncHI1 from equine E. coli. A plasmid-mediated sugar metabolic element could play a key role in strain fitness, contributing to the successful dissemination and maintenance of these plasmids in the intestinal microflora of horses.
Collapse
Affiliation(s)
- Monika Dolejska
- Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho tr. 1/3, 612 42 Brno, Czech Republic CEITEC VFU, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho tr. 1/3, 612 42 Brno, Czech Republic
| | - Laura Villa
- Department of Infectious, Parasitic and Immune-Mediated Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Marco Minoia
- Department of Veterinary Disease Biology, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg C, Denmark
| | - Luca Guardabassi
- Department of Veterinary Disease Biology, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg C, Denmark
| | - Alessandra Carattoli
- Department of Infectious, Parasitic and Immune-Mediated Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| |
Collapse
|
49
|
Belmar Campos C, Fenner I, Wiese N, Lensing C, Christner M, Rohde H, Aepfelbacher M, Fenner T, Hentschke M. Prevalence and genotypes of extended spectrum beta-lactamases in Enterobacteriaceae isolated from human stool and chicken meat in Hamburg, Germany. Int J Med Microbiol 2014; 304:678-84. [PMID: 24856867 DOI: 10.1016/j.ijmm.2014.04.012] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 04/22/2014] [Accepted: 04/27/2014] [Indexed: 12/18/2022] Open
Abstract
Chicken meat has been proposed to constitute a source for extended spectrum beta-lactamase (ESBL)-carrying Enterobacteriaceae that colonize and infect humans. In this study the prevalence of ESBL-producing Enterobacteriaceae in stool samples from ambulatory patients who presented in the emergency department of the University Medical Centre Hamburg-Eppendorf with gastrointestinal complains and in chicken meat samples from the Hamburg region were analysed and compared with respect to ESBL-genotypes, sequence types and antibiotic resistance profiles. Twenty-nine (4.1%) of 707 stool samples and 72 (60%) of 120 chicken meat samples were positive for ESBL-producing Enterobacteriaceae. The distribution of ESBL genes in the stool vs. chicken meat isolates (given as % of total isolates from stool vs. chicken meat) was as follows: CTX-M-15 (38% vs. 0%), CTX-M-14 (17% vs. 6%), CTX-M-1 (17% vs. 69%), SHV-12 (3% vs. 18%) and TEM-52 (3% each). Comparison of ESBL- and multilocus sequence type revealed no correlation between isolates of human and chicken. Furthermore, ESBL-producing E. coli from stool samples were significantly more resistant to fluoroquinolones, aminoglycosides and/or trimethoprim-sulfamethoxazole than chicken isolates. The differences in ESBL-genotypes, sequence types and antibiotic resistance patterns indicate that in our clinical setting chicken meat is not a major contributor to human colonization with ESBL-carrying Enterobacteriaceae.
Collapse
Affiliation(s)
- Cristina Belmar Campos
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Centre Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany.
| | - Ines Fenner
- Fen-Lab GmbH, Bergstrasse 14, 20095 Hamburg, Germany
| | - Nicole Wiese
- Fen-Lab GmbH, Bergstrasse 14, 20095 Hamburg, Germany
| | | | - Martin Christner
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Centre Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Holger Rohde
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Centre Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Martin Aepfelbacher
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Centre Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Thomas Fenner
- Fen-Lab GmbH, Bergstrasse 14, 20095 Hamburg, Germany
| | - Moritz Hentschke
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Centre Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| |
Collapse
|
50
|
Wang Y, Song C, Duan G, Zhu J, Yang H, Xi Y, Fan Q. Transposition of ISEcp1 modulates blaCTX-M-55-mediated Shigella flexneri resistance to cefalothin. Int J Antimicrob Agents 2013; 42:507-12. [PMID: 24207017 DOI: 10.1016/j.ijantimicag.2013.08.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 08/09/2013] [Accepted: 08/12/2013] [Indexed: 11/19/2022]
Abstract
The aim of this study was to uncover the mechanisms underlying Shigella flexneri resistance to cefalothin. In this study, a resistance-related S. flexneri isolate, S. flexneri YDC, was obtained from S. flexneri mel-1998023/zz pre-incubated with cefalothin at a dose of 0.5 × the minimum inhibitory concentration. The ISEcp1 coding element was identified upstream of bla(CTX-M-55) in S. flexneri YDC. To further determine the role of ISEcp1 in S. flexneri resistance, plasmids containing bla(CTX-M-55) recombinant with or without the ISEcp1 sequence were constructed and named as pCTX and pISECTX, respectively. It was shown that Escherichia coli DH5α(pISECTX) was resistant to all β-lactams tested. In contrast, E. coli DH5α(pCTX) was sensitive to all except β-lactams cefazolin and cefalothin. In addition, reverse transcription PCR showed that expression levels of bla(CTX-M-55) were higher in E. coli DH5α(pISECTX). The Clinical and Laboratory Standards Institute (CLSI) assay demonstrated that extended-spectrum β-lactamase was only positively detected in E. coli DH5α(pISECTX) but not in E. coli DH5α(pCTX). Taken together, these results suggest that the translocated ISEcp1 element upstream of bla(CTX-M-55) is required for overexpression of bla(CTX-M-55), leading to cephalosporin resistance.
Collapse
Affiliation(s)
- Yingfang Wang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China; Henan University of Science and Technology, Luoyang, Henan, PR China
| | | | | | | | | | | | | |
Collapse
|