1
|
Schlechter RO, Marti E, Remus-Emsermann MNP, Drissner D, Gekenidis MT. Correlation of in vitro biofilm formation capacity with persistence of antibiotic-resistant Escherichia coli on gnotobiotic lamb's lettuce. Appl Environ Microbiol 2025; 91:e0029925. [PMID: 40293242 DOI: 10.1128/aem.00299-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Accepted: 03/31/2025] [Indexed: 04/30/2025] Open
Abstract
Bacterial contamination of fresh produce is a growing concern for food safety, as apart from human pathogens, antibiotic-resistant bacteria (ARB) can persist on fresh leafy produce. A prominent persistence trait in bacteria is biofilm formation, as it provides increased tolerance to stressful conditions. We screened a comprehensive collection of 174 antibiotic-susceptible and -resistant Escherichia coli originating from fresh leafy produce and its production environment. We tested the ability of these strains to produce biofilms, ranging from none or weak to extreme biofilm-forming bacteria. Next, we tested the ability of selected antibiotic-resistant isolates to colonize gnotobiotic lamb's lettuce (Valerianella locusta) plants. We hypothesized that a higher in vitro biofilm formation capacity correlates with increased colonization of gnotobiotic plant leaves. Despite a marked difference in the ability to form in vitro biofilms for a number of E. coli strains, in vitro biofilm formation was not associated with increased survival on gnotobiotic V. locusta leaf surfaces. However, all tested strains persisted for at least 21 days, highlighting potential food safety risks through unwanted ingestion of resistant bacteria. Population densities of biofilm-forming E. coli exhibited a complex pattern, with subpopulations more successful in colonizing gnotobiotic V. locusta leaves. These findings emphasize the complex behavior of ARB on leaf surfaces and their implications for human safety.IMPORTANCEEach raw food contains a collection of microorganisms, including bacteria. This is of special importance for fresh produce such as leafy salads or herbs, as these foods are usually consumed raw or after minimal processing, whereby higher loads of living bacteria are ingested than with a food that is heated before consumption. A common bacterial lifestyle involves living in large groups embedded in secreted protective substances. Such bacterial assemblies, so-called biofilms, confer high persistence and resistance of bacteria to external harsh conditions. In our research, we investigated whether stronger in vitro biofilm formation by antibiotic-resistant Escherichia coli correlates with better survival on lamb's lettuce leaves. Although no clear correlation was observed between biofilm formation capacity and population density on the salad, all tested isolates could survive for at least 3 weeks with no significant decline over time, highlighting a potential food safety risk independently of in vitro biofilm formation.
Collapse
Affiliation(s)
- Rudolf O Schlechter
- Institute of Microbiology, Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Elisabet Marti
- Research Group Microbiological Food Safety, Agroscope, Bern, Switzerland
| | - Mitja N P Remus-Emsermann
- Institute of Microbiology, Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - David Drissner
- Department of Life Sciences, Albstadt-Sigmaringen University, Sigmaringen, Germany
| | | |
Collapse
|
2
|
Ferri G, Olivieri V, Di Vittori C, Vergara A. Seasonal prevalence and antimicrobial resistance profiles in Enterococcus spp. identified from mussels farmed along the coasts of the Abruzzo region. Ital J Food Saf 2025. [PMID: 40178009 DOI: 10.4081/ijfs.2025.13563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 02/13/2025] [Indexed: 04/05/2025] Open
Abstract
The present study aimed to investigate the antimicrobial resistance (AMR) circulation through the different seasons in the Enterococcus genus isolated from mussels (Mytilus galloprovincialis) for human consumption and farmed along the coasts of the central Adriatic Sea (Abruzzo region, Italy). A total of 250 mussels were collected, and 32 Enterococci (90.62% Enterococcus faecium and 9.37% Enterococcus durans) were identified using the VITEK 2 system (bioMérieux, France). Antibiograms included 26 molecules used for the treatment of veterinary and human infections. Biomolecular screenings involved 45 genetic determinants responsible for AMR. Results showed mainly resistance against tetracycline (44.44%), vancomycin (27.78%), quinupristin-dalfopristin (16.67%), nitrofurantoin, and linezolid (11.11%). Concerning the antibiotic resistance genes (ARGs), multiplex end-point polymerase chain reaction assays mostly amplified tetC (59.37%), tetD (50.00%), cfr (43.75%), vanA and vanD (37.50%), vatE (21.87%), vatD, poxtA and qnrS (18.75%) and 52.67% and 35.11% in winter and spring seasons, respectively. The consistent environmental ARG circulation confirms the genetic pollution of marine environments, and the season variable (water temperatures) significantly influences their horizontal circulation and phenotypical expression. The AMR phenomenon, defined as uncontrolled, represents a crucial public health concern that needs to be monitored.
Collapse
Affiliation(s)
- Gianluigi Ferri
- Department of Veterinary Medicine, Post-Graduate Specialization School in Food Inspection "G. Tiecco", University of Teramo, Piano d'Accio, Teramo.
| | - Vincenzo Olivieri
- Department of Veterinary Medicine, Post-Graduate Specialization School in Food Inspection "G. Tiecco", University of Teramo, Piano d'Accio, Teramo.
| | - Chiara Di Vittori
- Department of Veterinary Medicine, Post-Graduate Specialization School in Food Inspection "G. Tiecco", University of Teramo, Piano d'Accio, Teramo.
| | - Alberto Vergara
- Department of Veterinary Medicine, Post-Graduate Specialization School in Food Inspection "G. Tiecco", University of Teramo, Piano d'Accio, Teramo.
| |
Collapse
|
3
|
Slater D, Hutt Vater K, Sridhar S, Hwang W, Bielawski D, Turbett SE, LaRocque RC, Harris JB. Multiplexed real-time PCR for the detection and differentiation of Klebsiella pneumoniae O-antigen serotypes. Microbiol Spectr 2024; 12:e0037524. [PMID: 39115309 PMCID: PMC11371267 DOI: 10.1128/spectrum.00375-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 06/12/2024] [Indexed: 09/01/2024] Open
Abstract
Klebsiella pneumoniae has emerged as a global health threat due to its role in the spread of antimicrobial resistance and because it is a frequent cause of hospital-acquired infections and neonatal sepsis. Capsular and lipopolysaccharide (LPS) O-antigen polysaccharide surface antigens are major immunogens that are useful for strain classification and are candidates for vaccine development. We have developed real-time PCR reagents for molecular serotyping, subtyping, and quantitation of the most prevalent LPS O-antigen types (i.e., O1, O2, O3, and O5) of Klebsiella pneumoniae. We describe two applications for this O-typing assay: for screening culture isolates and for direct typing of Klebsiella pneumoniae present in stool samples. We find 100% concordance between the results of the O-typing assay and whole-genome sequencing of 81 culture isolates, and >90% agreement in O-typing performed directly on specimens of human stool, with disagreement arising primarily from a lack of sensitivity of the culture-based comparator method. Additionally, we find evidence for mixed O-type populations at varying levels of abundance in direct tests of stool from a hospitalized patient population. Taken together, these results demonstrate that this novel O-typing assay can be a useful tool for K. pneumoniae epidemiologic and vaccine studies.IMPORTANCEKlebsiella pneumoniae is an important opportunistic pathogen. The gastrointestinal (GI) tract is the primary reservoir of K. pneumoniae in humans, and GI carriage is believed to be a prerequisite for invasive infection. Knowledge about the dynamics and duration of GI carriage has been hampered by the lack of tools suitable for detection and strain discrimination. Real-time PCR is particularly suited to the higher-throughput workflows used in population-based studies, which are needed to improve our understanding of carriage dynamics and the factors influencing K. pneumoniae colonization.
Collapse
Affiliation(s)
- Damien Slater
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Kian Hutt Vater
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Sushmita Sridhar
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Wontae Hwang
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Derek Bielawski
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Sarah E Turbett
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Regina C LaRocque
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Jason B Harris
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Ozma MA, Ghotaslou R, Asgharzadeh M, Abbasi A, Rezaee MA, Kafil HS. Cytotoxicity assessment and antimicrobial effects of cell-free supernatants from probiotic lactic acid bacteria and yeast against multi-drug resistant Escherichia coli. Lett Appl Microbiol 2024; 77:ovae084. [PMID: 39237462 DOI: 10.1093/lambio/ovae084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/10/2024] [Accepted: 09/04/2024] [Indexed: 09/07/2024]
Abstract
The antibacterial, antibiofilm, and cytotoxicity activity of cell-free supernatants (CFSs) from probiotics, including Lactobacillus plantarum, Bifidobacterium bifidum, and Saccharomyces cerevisiae against multi-drug resistant Escherichia coli evaluated in current research. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of the CFSs were determined by analyzing inhibition zone formation using agar disk diffusion for antibacterial activity, microtiter plate for biofilm analysis, and auto-aggregation were done. CFSs substances were analyzed by GC-MS. The MTT assay on HEK293 cells investigated CFS's influence on cell viability. CFSs were examined for biofilm-related virulence genes, including aggR and fimH using real-time polymerase chain reaction (real-time PCR). All CFSs had bacteriostatic and bactericidal effects. The B. bifidum exhibited the highest antibiofilm activity compared to the others. Bifidobacterium bifidum, L. plantarum, and S. cerevisiae produce 19, 16, and 11 mm inhibition zones against E. coli, respectively. GC-MS indicated that Hydroxyacetone, 3-Hydroxybutyric acid, and Oxime-methoxy-phenyl-dominated CFSs from L. plantarum, B. bifidum, and S. cerevisiae CFSs, respectively. The MTT test demonstrated a cell viability rate of over 90%. Statistically, adding all CFSs lowered the relative expression of both aggR and fimH virulence genes.
Collapse
Affiliation(s)
- Mahdi Asghari Ozma
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz 5166616471, Iran
| | - Reza Ghotaslou
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz 5166616471, Iran
| | - Mohammad Asgharzadeh
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz 5166616471, Iran
| | - Amin Abbasi
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran 1983969411, Iran
| | | | - Hossein Samadi Kafil
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz 5166616471, Iran
| |
Collapse
|
5
|
Matope G, Chaima K, Bande B, Bare W, Kadzviti F, Jinjika F, Tivapasi M. Isolation of multi-drug-resistant strains of Escherichia coli from faecal samples of dogs and cats from Harare, Zimbabwe. Vet Med Sci 2024; 10:e1472. [PMID: 39031748 PMCID: PMC11190846 DOI: 10.1002/vms3.1472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 04/04/2024] [Accepted: 04/21/2024] [Indexed: 07/22/2024] Open
Abstract
BACKGROUND The escalation of antimicrobial resistance (AMR) in recent years has been of major public health concern globally. Escherichia coli are amongst the bacteria that have been targeted for AMR surveillance due to their ability to cause infection in both animals and humans. Their propensity to produce extended spectrum beta-lactamases further complicates the choices of treatment regimens. OBJECTIVES To investigate the prevalence of antimicrobial-resistance in E. coli strains isolated from faecal samples of dogs and cats from selected veterinary surgeries and animal shelters from Harare, Zimbabwe. MATERIALS AND METHODS A cross-sectional study was carried out to select animals by a systematic random procedure. Faecal samples were collected for culture and isolation of E. coli. Their susceptibility to antimicrobial drugs was assessed using the disc diffusion method. RESULTS A total of 95% (133/140) of the samples from cats (n = 40) and dogs (n = 93) yielded E. coli. Resistance was recorded for ampicillin (45.9%), trimethoprim-sulphamethoxazole (44.4%), nalidixic acid (29.3%), ceftazidime (15.8%) and azithromycin (12.8%), but not for gentamicin and imipenem. A total of 18% of the isolates were multi-drug-resistant where resistance to nalidixic acid, ampicillin and trimethoprim-sulphamethoxazole predominated. CONCLUSION We observed relatively high AMR of E. coli strains against ampicillin. The isolation of multi-drug-resistant strains of E. coli may signal the dissemination of resistance genes in the ecosystem of these bacteria which may have a public health impact.
Collapse
Affiliation(s)
- Gift Matope
- Department of Veterinary Pathobiology, Faculty of Veterinary ScienceUniversity of ZimbabweHarareZimbabwe
| | - Kudzai Chaima
- Department of Clinical Veterinary Sciences, Faculty of Veterinary ScienceUniversity of ZimbabweHarareZimbabwe
| | - Beauty Bande
- Department of Clinical Veterinary Sciences, Faculty of Veterinary ScienceUniversity of ZimbabweHarareZimbabwe
| | - Winnet Bare
- Department of Veterinary Pathobiology, Faculty of Veterinary ScienceUniversity of ZimbabweHarareZimbabwe
| | - Faith Kadzviti
- Department of Veterinary Pathobiology, Faculty of Veterinary ScienceUniversity of ZimbabweHarareZimbabwe
| | - Farai Jinjika
- Department of Veterinary ServicesUniversity of ZimbabweHarareZimbabwe
| | - Musavenga Tivapasi
- Department of Clinical Veterinary Sciences, Faculty of Veterinary ScienceUniversity of ZimbabweHarareZimbabwe
| |
Collapse
|
6
|
Omar KM, Kitundu GL, Jimoh AO, Namikelwa DN, Lisso FM, Babajide AA, Olufemi SE, Awe OI. Investigating antimicrobial resistance genes in Kenya, Uganda and Tanzania cattle using metagenomics. PeerJ 2024; 12:e17181. [PMID: 38666081 PMCID: PMC11044882 DOI: 10.7717/peerj.17181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/11/2024] [Indexed: 04/28/2024] Open
Abstract
Antimicrobial resistance (AMR) is a growing problem in African cattle production systems, posing a threat to human and animal health and the associated economic value chain. However, there is a poor understanding of the resistomes in small-holder cattle breeds in East African countries. This study aims to examine the distribution of antimicrobial resistance genes (ARGs) in Kenya, Tanzania, and Uganda cattle using a metagenomics approach. We used the SqueezeMeta-Abricate (assembly-based) pipeline to detect ARGs and benchmarked this approach using the Centifuge-AMRplusplus (read-based) pipeline to evaluate its efficiency. Our findings reveal a significant number of ARGs of critical medical and economic importance in all three countries, including resistance to drugs of last resort such as carbapenems, suggesting the presence of highly virulent and antibiotic-resistant bacterial pathogens (ESKAPE) circulating in East Africa. Shared ARGs such as aph(6)-id (aminoglycoside phosphotransferase), tet (tetracycline resistance gene), sul2 (sulfonamide resistance gene) and cfxA_gen (betalactamase gene) were detected. Assembly-based methods revealed fewer ARGs compared to read-based methods, indicating the sensitivity and specificity of read-based methods in resistome characterization. Our findings call for further surveillance to estimate the intensity of the antibiotic resistance problem and wider resistome classification. Effective management of livestock and antibiotic consumption is crucial in minimizing antimicrobial resistance and maximizing productivity, making these findings relevant to stakeholders, agriculturists, and veterinarians in East Africa and Africa at large.
Collapse
Affiliation(s)
- Kauthar M. Omar
- Department of Biochemistry and Biotechnology, School of Pure and Applied Sciences, Pwani University, Kilifi, Kenya
| | - George L. Kitundu
- Department of Biochemistry and Biotechnology, School of Pure and Applied Sciences, Pwani University, Kilifi, Kenya
| | - Adijat O. Jimoh
- Division of Immunology, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Genetics, Genomics and Bioinformatics Department, National Biotechnology Development Agency, Abuja, Nigeria
| | - Dorcus N. Namikelwa
- Department of Data Management, Modelling and Geo-Information Unit, International Centre of Insect Physiology and Ecology, Nairobi, Kenya
| | - Felix M. Lisso
- Department of Biochemistry and Biotechnology, School of Pure and Applied Sciences, Pwani University, Kilifi, Kenya
| | - Abiola A. Babajide
- South African National Bioinformatics Institute, University of the Western Cape, Cape Town, South Africa
| | - Seun E. Olufemi
- Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Olaitan I. Awe
- African Society for Bioinformatics and Computational Biology, Cape Town, South Africa
- Department of Computer Science, University of Ibadan, Ibadan, Oyo State, Nigeria
| |
Collapse
|
7
|
Ferri G, Olivieri V, Olivastri A, Pennisi L, Vergara A. Multidrug resistant Vibrio spp. identified from mussels farmed for human consumption in Central Italy. J Appl Microbiol 2024; 135:lxae098. [PMID: 38609347 DOI: 10.1093/jambio/lxae098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 04/14/2024]
Abstract
AIMS This study investigated phenotypic and genotypic antimicrobial resistance profiles of Vibrio strains identified from Mytilus galloprovincialis farmed for human consumption in the Adriatic Sea Central Italy. METHODS AND RESULTS A total of 475 mussels (M. galloprovincialis) were involved in the present study, and culture-dependent microbiological methods permitted to identify a total of 50 Vibrio strains that were tested for antibiotic susceptibility followed by the genetic determinant detections. Antibiograms showed resistance against ampicillin (36.0%), amoxicillin-clavulanic acid (30.0%), gentamycin (14.0%), and imipenem (18.0%). Biomolecular assays amplified a total of 264 antibiotic resistance genes harbored by both susceptible and resistant Vibrio species. Among resistance genes, aacC2 (62.0%) and aadA (58.0%) for aminoglycosides, blaTEM (54.0%) for beta-lactams, qnrS (24.0%) for quinolones, tetD (66.0%) for tetracyclines, and vanB (60.0%) for glycopeptides were mainly amplified by PCR assays. CONCLUSIONS Vibrio genus is involved in the antibiotic resistance phenomenon diffusion in the aquatic environments, as demonstrated by the harboring of many genetic determinants representing a kind of genetic "dark world".
Collapse
Affiliation(s)
- Gianluigi Ferri
- Post-Graduate Specialization School in Food Inspection "G. Tiecco", Department of Veterinary Medicine, University of Teramo, Strada Provinciale 18, 64100, Piano d'Accio, Teramo, Italy
| | - Vincenzo Olivieri
- Post-Graduate Specialization School in Food Inspection "G. Tiecco", Department of Veterinary Medicine, University of Teramo, Strada Provinciale 18, 64100, Piano d'Accio, Teramo, Italy
| | | | - Luca Pennisi
- Post-Graduate Specialization School in Food Inspection "G. Tiecco", Department of Veterinary Medicine, University of Teramo, Strada Provinciale 18, 64100, Piano d'Accio, Teramo, Italy
| | - Alberto Vergara
- Post-Graduate Specialization School in Food Inspection "G. Tiecco", Department of Veterinary Medicine, University of Teramo, Strada Provinciale 18, 64100, Piano d'Accio, Teramo, Italy
| |
Collapse
|
8
|
Rahman Z, McLaws M, Thomas T. Genomic characterization of extended-spectrum beta-lactamase-producing and carbapenem-resistant Escherichia coli from urban wastewater in Australia. Microbiologyopen 2024; 13:e1403. [PMID: 38488803 PMCID: PMC10941799 DOI: 10.1002/mbo3.1403] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/25/2024] [Accepted: 02/27/2024] [Indexed: 03/17/2024] Open
Abstract
This study investigates extended-spectrum beta-lactamase-producing and carbapenem-resistant Escherichia coli isolates from Sydney's wastewater. These isolates exhibit resistance to critical antibiotics and harbor novel resistance mechanisms. The findings highlight the importance of wastewater-based surveillance in monitoring resistance beyond the clinical setting.
Collapse
Affiliation(s)
- Zillur Rahman
- School of Biological, Earth and Environmental Sciences, Centre for Marine Science and InnovationUNSW SydneySydneyNew South WalesAustralia
| | - Mary‐Louise McLaws
- School of Population HealthUNSW SydneySydneyNew South WalesAustralia
- UNSW Global Water InstituteUNSW SydneySydneyNew South WalesAustralia
| | - Torsten Thomas
- School of Biological, Earth and Environmental Sciences, Centre for Marine Science and InnovationUNSW SydneySydneyNew South WalesAustralia
| |
Collapse
|
9
|
Patangia DV, Grimaud G, O'Shea CA, Ryan CA, Dempsey E, Stanton C, Ross RP. Early life exposure of infants to benzylpenicillin and gentamicin is associated with a persistent amplification of the gut resistome. MICROBIOME 2024; 12:19. [PMID: 38310316 PMCID: PMC10837951 DOI: 10.1186/s40168-023-01732-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 11/24/2023] [Indexed: 02/05/2024]
Abstract
BACKGROUND Infant gut microbiota is highly malleable, but the long-term longitudinal impact of antibiotic exposure in early life, together with the mode of delivery on infant gut microbiota and resistome, is not extensively studied. METHODS Two hundred and eight samples from 45 infants collected from birth until 2 years of age over five time points (week 1, 4, 8, 24, year 2) were analysed. Based on shotgun metagenomics, the gut microbial composition and resistome profile were compared in the early life of infants divided into three groups: vaginal delivery/no-antibiotic in the first 4 days of life, C-section/no-antibiotic in the first 4 days of life, and C-section/antibiotic exposed in first 4 days of life. Gentamycin and benzylpenicillin were the most commonly administered antibiotics during this cohort's first week of life. RESULTS Newborn gut microbial composition differed in all three groups, with higher diversity and stable composition seen at 2 years of age, compared to week 1. An increase in microbial diversity from week 1 to week 4 only in the C-section/antibiotic-exposed group reflects the effect of antibiotic use in the first 4 days of life, with a gradual increase thereafter. Overall, a relative abundance of Actinobacteria and Bacteroides was significantly higher in vaginal delivery/no-antibiotic while Proteobacteria was higher in C-section/antibiotic-exposed infants. Strains from species belonging to Bifidobacterium and Bacteroidetes were generally persistent colonisers, with Bifidobacterium breve and Bifidobacterium bifidum species being the major persistent colonisers in all three groups. Bacteroides persistence was dominant in the vaginal delivery/no-antibiotic group, with species Bacteroides ovatus and Phocaeicola vulgatus found to be persistent colonisers in the no-antibiotic groups. Most strains carrying antibiotic-resistance genes belonged to phyla Proteobacteria and Firmicutes, with the C-section/antibiotic-exposed group presenting a higher frequency of antibiotic-resistance genes (ARGs). CONCLUSION These data show that antibiotic exposure has an immediate and persistent effect on the gut microbiome in early life. As such, the two antibiotics used in the study selected for strains (mainly Proteobacteria) which were multiple drug-resistant (MDR), presumably a reflection of their evolutionary lineage of historical exposures-leading to what can be an extensive and diverse resistome. Video Abstract.
Collapse
Affiliation(s)
- Dhrati V Patangia
- School of Microbiology, University College Cork, Cork, Ireland
- Teagasc Food Research Centre, Moorepark, Fermoy Co., Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - Ghjuvan Grimaud
- Teagasc Food Research Centre, Moorepark, Fermoy Co., Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | | | - C A Ryan
- APC Microbiome Ireland, Cork, Ireland
| | - Eugene Dempsey
- APC Microbiome Ireland, Cork, Ireland
- Department of Paediatrics and Child Health, University College Cork, Cork, Ireland
- Infant Research Centre, University College Cork, Cork, Ireland
| | - Catherine Stanton
- Teagasc Food Research Centre, Moorepark, Fermoy Co., Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - R Paul Ross
- School of Microbiology, University College Cork, Cork, Ireland.
- APC Microbiome Ireland, Cork, Ireland.
| |
Collapse
|
10
|
Mahmud MR, Tamanna SK, Akter S, Mazumder L, Akter S, Hasan MR, Acharjee M, Esti IZ, Islam MS, Shihab MMR, Nahian M, Gulshan R, Naser S, Pirttilä AM. Role of bacteriophages in shaping gut microbial community. Gut Microbes 2024; 16:2390720. [PMID: 39167701 PMCID: PMC11340752 DOI: 10.1080/19490976.2024.2390720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/23/2024] Open
Abstract
Phages are the most diversified and dominant members of the gut virobiota. They play a crucial role in shaping the structure and function of the gut microbial community and consequently the health of humans and animals. Phages are found mainly in the mucus, from where they can translocate to the intestinal organs and act as a modulator of gut microbiota. Understanding the vital role of phages in regulating the composition of intestinal microbiota and influencing human and animal health is an emerging area of research. The relevance of phages in the gut ecosystem is supported by substantial evidence, but the importance of phages in shaping the gut microbiota remains unclear. Although information regarding general phage ecology and development has accumulated, detailed knowledge on phage-gut microbe and phage-human interactions is lacking, and the information on the effects of phage therapy in humans remains ambiguous. In this review, we systematically assess the existing data on the structure and ecology of phages in the human and animal gut environments, their development, possible interaction, and subsequent impact on the gut ecosystem dynamics. We discuss the potential mechanisms of prophage activation and the subsequent modulation of gut bacteria. We also review the link between phages and the immune system to collect evidence on the effect of phages on shaping the gut microbial composition. Our review will improve understanding on the influence of phages in regulating the gut microbiota and the immune system and facilitate the development of phage-based therapies for maintaining a healthy and balanced gut microbiota.
Collapse
Affiliation(s)
- Md. Rayhan Mahmud
- Department of Production Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | | | - Sharmin Akter
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
| | - Lincon Mazumder
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
- Department of Biology, Texas A&M University, College Station, TX, USA
| | - Sumona Akter
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
| | | | - Mrityunjoy Acharjee
- Department of Microbiology, Stamford University Bangladesh, Dhaka, Bangladesh
| | - Israt Zahan Esti
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
- Department of Molecular Systems Biology, Faculty of Technology, University of Turku, Turku, Finland
| | - Md. Saidul Islam
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
| | | | - Md. Nahian
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
| | - Rubaiya Gulshan
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
| | - Sadia Naser
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
| | | |
Collapse
|
11
|
Ade J, Riehm JM, Stadler J, Klose C, Zablotski Y, Ritzmann M, Kümmerlen D. Antimicrobial Susceptibility from a One Health Perspective Regarding Porcine Escherichia coli from Bavaria, Germany. Antibiotics (Basel) 2023; 12:1424. [PMID: 37760720 PMCID: PMC10525436 DOI: 10.3390/antibiotics12091424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Antimicrobial resistance is one of the most crucial One Health topics worldwide. Consequently, various national and international surveillance programs collect data and report trends regularly. Ceftiofur, colistin and enrofloxacin belong to the most important and critical class of anti-infective medications in both human and veterinary medicine. In the present study, antimicrobial resistance was analyzed using the epidemiological cut-off (ECOFF) value on 6569 Escherichia coli isolated from pigs in Bavaria, Germany, during five years, from 2016 to 2020. The statistically relevant results regarding antimicrobial resistance revealed a decrease for colistin, an increase for enrofloxacin, and a constant level for ceftiofur. In Germany, the usage of all three antimicrobial substances in livestock has fallen by 43.6% for polypeptides, 59.0% for fluoroquinolones and 57.8% for the 3rd + 4th generation cephalosporines during this time. Despite the decline in antimicrobial usage, a reduction regarding antimicrobial resistance was solely observed for colistin. This finding illustrates that in addition to the restriction of pharmaceutical consumption, further measures should be considered. Improved biosecurity concepts, a reduction in crowding, and controlled animal movements on farms may play a key role in finally containing the resistance mechanisms of bacteria in farm animals.
Collapse
Affiliation(s)
- Julia Ade
- Clinic for Swine, Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität München Sonnenstrasse 16, 85764 Oberschleissheim, Germany; (J.A.); (J.S.)
| | - Julia M. Riehm
- Bavarian Health and Food Safety Authority, Veterinaerstrasse 2, 85764 Oberschleissheim, Germany (C.K.)
| | - Julia Stadler
- Clinic for Swine, Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität München Sonnenstrasse 16, 85764 Oberschleissheim, Germany; (J.A.); (J.S.)
| | - Corinna Klose
- Bavarian Health and Food Safety Authority, Veterinaerstrasse 2, 85764 Oberschleissheim, Germany (C.K.)
| | - Yury Zablotski
- Clinic for Ruminants with Ambulatory and Herd Health Services, Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität München, Sonnenstrasse 16, 85764 Oberschleissheim, Germany
| | - Mathias Ritzmann
- Clinic for Swine, Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität München Sonnenstrasse 16, 85764 Oberschleissheim, Germany; (J.A.); (J.S.)
| | - Dolf Kümmerlen
- Division of Swine Medicine, Department for Farm Animals, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland
| |
Collapse
|
12
|
Chen K, McCulloch J, Das Neves R, Rodrigues G, Hsieh WT, Gong W, Yoshimura T, Huang J, O'hUigin C, Difilippantonio S, McCollum M, Jones G, Durum SK, Trinchieri G, Wang JM. The beneficial effects of commensal E. coli for colon epithelial cell recovery are related with Formyl peptide receptor 2 (Fpr2) in epithelial cells. Gut Pathog 2023; 15:28. [PMID: 37322488 PMCID: PMC10268441 DOI: 10.1186/s13099-023-00557-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/06/2023] [Indexed: 06/17/2023] Open
Abstract
BACKGROUND Formyl peptide receptor 2 (Fpr2) plays a crucial role in colon homeostasis and microbiota balance. Commensal E. coli is known to promote the regeneration of damaged colon epithelial cells. The aim of the study was to investigate the connection between E. coli and Fpr2 in the recovery of colon epithelial cells. RESULTS The deficiency of Fpr2 was associated with impaired integrity of the colon mucosa and an imbalance of microbiota, characterized by the enrichment of Proteobacteria in the colon. Two serotypes of E. coli, O22:H8 and O91:H21, were identified in the mouse colon through complete genome sequencing. E. coli O22:H8 was found to be prevalent in the gut of mice and exhibited lower virulence compared to O91:H21. Germ-free (GF) mice that were pre-orally inoculated with E. coli O22:H8 showed reduced susceptibility to chemically induced colitis, increased proliferation of epithelial cells, and improved mouse survival. Following infection with E. coli O22:H8, the expression of Fpr2 in colon epithelial cells was upregulated, and the products derived from E. coli O22:H8 induced migration and proliferation of colon epithelial cells through Fpr2. Fpr2 deficiency increased susceptibility to chemically induced colitis, delayed the repair of damaged colon epithelial cells, and heightened inflammatory responses. Additionally, the population of E. coli was observed to increase in the colons of Fpr2-/- mice with colitis. CONCLUSION Commensal E. coli O22:H8 stimulated the upregulation of Fpr2 expression in colon epithelial cells, and the products from E. coli induced migration and proliferation of colon epithelial cells through Fpr2. Fpr2 deficiency led to an increased E. coli population in the colon and delayed recovery of damaged colon epithelial cells in mice with colitis. Therefore, Fpr2 is essential for the effects of commensal E. coli on colon epithelial cell recovery.
Collapse
Affiliation(s)
- Keqiang Chen
- Laboratory of Cancer Innovation, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702, USA.
| | - John McCulloch
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Rodrigo Das Neves
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Gisele Rodrigues
- Laboratory of Cancer Innovation, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702, USA
| | - Wang-Ting Hsieh
- Animal Health Diagnostic Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Wanghua Gong
- Basic Research Program, Leidos Biomedical Research, Inc, Frederick, MD, 21702, USA
| | - Teizo Yoshimura
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8558, Japan
| | - Jiaqiang Huang
- Laboratory of Cancer Innovation, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702, USA
- College of Life Sciences, Beijing Jiaotong University, Beijing, 100044, People's Republic of China
| | - Colm O'hUigin
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Simone Difilippantonio
- Gnotobiotics Facility, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Matthew McCollum
- Gnotobiotics Facility, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Georgette Jones
- Gnotobiotics Facility, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Scott K Durum
- Laboratory of Cancer Innovation, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702, USA
| | - Giorgio Trinchieri
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Ji Ming Wang
- Laboratory of Cancer Innovation, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702, USA
| |
Collapse
|
13
|
Ferri G, Lauteri C, Festino AR, Vergara A. ARGs Detection in Listeria Monocytogenes Strains Isolated from the Atlantic Salmon ( Salmo salar) Food Industry: A Retrospective Study. Microorganisms 2023; 11:1509. [PMID: 37375010 DOI: 10.3390/microorganisms11061509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/01/2023] [Accepted: 06/04/2023] [Indexed: 06/29/2023] Open
Abstract
Among bacterial foodborne pathogens, Listeria monocytogenes represents one of the most important public health concerns in seafood industries. This study was designed as a retrospective study which aimed to investigate the trend of antibiotic resistance genes (ARGs) circulation in L. monocytogenes isolates identified (in the last 15 years) from Atlantic salmon (Salmo salar) fresh and smoked fillets and environmental samples. For these purposes, biomolecular assays were performed on 120 L. monocytogenes strains collected in certain years and compared to the contemporary scientific literature. A total of 52.50% (95% CI: 43.57-61.43%) of these samples were resistant to at least one antibiotic class, and 20.83% (95% CI: 13.57-28.09%) were classified as multidrug resistant. Concerning ARGs circulation, tetracycline (tetC, tetD, tetK, tetL, tetS), aminoglycoside (aadA, strA, aacC2, aphA1, aphA2), macrolide (cmlA1, catI, catII), and oxazolidinone (cfr, optrA, poxtA) gene determinants were majorly amplified. This study highlights the consistent ARGs circulation from fresh and processed finfish products and environmental samples, discovering resistance to the so-called critical important antimicrobials (CIA) since 2007. The obtained ARGs circulation data highlight the consistent increase in their diffusion when compared to similar contemporary investigations. This scenario emerges as the result of decades of improper antimicrobial administration in human and veterinary medicine.
Collapse
Affiliation(s)
- Gianluigi Ferri
- Department of Veterinary Medicine, Post-Graduate Specialization School in Food Inspection "G. Tiecco", University of Teramo, Strada Provinciale 18, Piano d'Accio, 64100 Teramo, Italy
| | - Carlotta Lauteri
- Department of Veterinary Medicine, Post-Graduate Specialization School in Food Inspection "G. Tiecco", University of Teramo, Strada Provinciale 18, Piano d'Accio, 64100 Teramo, Italy
| | - Anna Rita Festino
- Department of Veterinary Medicine, Post-Graduate Specialization School in Food Inspection "G. Tiecco", University of Teramo, Strada Provinciale 18, Piano d'Accio, 64100 Teramo, Italy
| | - Alberto Vergara
- Department of Veterinary Medicine, Post-Graduate Specialization School in Food Inspection "G. Tiecco", University of Teramo, Strada Provinciale 18, Piano d'Accio, 64100 Teramo, Italy
| |
Collapse
|
14
|
Ilyin V, Orlov O, Skedina M, Korosteleva A, Molodtsova D, Plotnikov E, Artamonov A. Mathematical Model of Antibiotic Resistance Determinants' Stability Under Space Flight Conditions. ASTROBIOLOGY 2023; 23:407-414. [PMID: 36827596 DOI: 10.1089/ast.2022.0076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Increasing antibiotic resistance (AR) poses dangers of treatment complications and even treatment failure to astronauts. An AR determinant is a gene of resistance carried by bacteria. This article considers the issue of the stability of AR determinants and the influence of manned spaceflight conditions on this characteristic. A phenomenological model has been developed that makes it possible to evaluate the integral value of the stability of determinants of AR in bacteria as a function of time. Based on experimental results obtained during implementation of the SALYUT 7 space program, the stability of determinants of AR in Escherichia coli strains isolated before and after a spaceflight in 16 astronauts was evaluated. In addition, an assessment was made of the integral value of the stability of determinants of AR in bacteria during in vitro experiments, both in spaceflight and terrestrial conditions, after preincubation in space. The calculation using the developed phenomenological model showed that the stability of AR determinants in E. coli bacteria isolated from astronauts before the spaceflight is 33% higher than after the flight. The in vitro experiment carried out on board the International Space Station showed the opposite situation-an increase in the stability of AR determinants by 33% in cultures that have been in space compared with terrestrial control. This indicates an additional influence on the stability of determinants and of the astronaut's immune system, as well as space conditions. The common result in these two types of studies is the experimental fact that the largest number of bacteria, in space conditions, had two determinants of AR. The importance of fighting bacteria with two determinants is that at least three different antibiotics are required to have an effect. This circumstance makes it possible to predict a possible strategy for the use of antibiotics in autonomous spaceflights.
Collapse
Affiliation(s)
- Vyacheslav Ilyin
- Institute for Biomedical Problems, Russian Academy of Sciences (IMBP RAS), Moscow, Russia
| | - Oleg Orlov
- Institute for Biomedical Problems, Russian Academy of Sciences (IMBP RAS), Moscow, Russia
| | - Marina Skedina
- Institute for Biomedical Problems, Russian Academy of Sciences (IMBP RAS), Moscow, Russia
| | - Alexandra Korosteleva
- Institute for Biomedical Problems, Russian Academy of Sciences (IMBP RAS), Moscow, Russia
| | - Daria Molodtsova
- State Research Center-Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency (SRC-FMBC), Moscow, Russia
| | - Evgenii Plotnikov
- Research School of Chemistry and Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk, Russia
| | - Anton Artamonov
- Institute for Biomedical Problems, Russian Academy of Sciences (IMBP RAS), Moscow, Russia
| |
Collapse
|
15
|
Ramírez-Bayard IE, Mejía F, Medina-Sánchez JR, Cornejo-Reyes H, Castillo M, Querol-Audi J, Martínez-Torres AO. Prevalence of Plasmid-Associated Tetracycline Resistance Genes in Multidrug-Resistant Escherichia coli Strains Isolated from Environmental, Animal and Human Samples in Panama. Antibiotics (Basel) 2023; 12:280. [PMID: 36830191 PMCID: PMC9952377 DOI: 10.3390/antibiotics12020280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/20/2023] [Accepted: 01/21/2023] [Indexed: 02/04/2023] Open
Abstract
Antimicrobial resistance bacteria are nowadays ubiquitous. Its presence has been reported in almost every type of source, from water for agricultural and recreative use, water distribution pipes, and wastewater, to food, fomites, and clinical samples. Enterobacteriaceae, especially Escherichia coli, are not the exception, showing an increased resistance to several antibiotics, causing a global health and economic burden. Therefore, the monitoring of fecal microbiota is important because it is present in numerous reservoirs where gene transfer between commensal and virulent bacteria can take place, representing a potential source of resistant E. coli. In this work, antibiotic resistance profiles of 150 E. coli isolates from environmental, animal, and human samples, collected in three rural areas in Panama, were analyzed. A total of 116 isolates were resistant to at least one of the nine antibiotics tested. Remarkably, almost 100% of these exhibited resistance to tetracycline. Plasmid-associated tetA and tetB genes were detected in 42.86% of the isolates analyzed, tetA being the most prevalent. These results suggest that tetracycline resistance would be used as a convenient indicator of genetic horizontal transfer within a community.
Collapse
Affiliation(s)
- I. E. Ramírez-Bayard
- Experimental and Applied Microbiology Laboratory, Vice Rectory of Research and Postgraduate Affairs, Universidad de Panamá, Panama City 0820, Panama
- Water Microbiology Laboratory, Vice Rectory of Research and Postgraduate Affairs, Universidad de Panamá, Panama City 0820, Panama
- Master in Environmental Microbiology, Faculty of Natural and Exact Sciences and Technology, Universidad de Panamá, Panama City 0820, Panama
| | - F. Mejía
- Experimental and Applied Microbiology Laboratory, Vice Rectory of Research and Postgraduate Affairs, Universidad de Panamá, Panama City 0820, Panama
- Water Microbiology Laboratory, Vice Rectory of Research and Postgraduate Affairs, Universidad de Panamá, Panama City 0820, Panama
- Master in Environmental Microbiology, Faculty of Natural and Exact Sciences and Technology, Universidad de Panamá, Panama City 0820, Panama
| | - J. R. Medina-Sánchez
- Experimental and Applied Microbiology Laboratory, Vice Rectory of Research and Postgraduate Affairs, Universidad de Panamá, Panama City 0820, Panama
- Water Microbiology Laboratory, Vice Rectory of Research and Postgraduate Affairs, Universidad de Panamá, Panama City 0820, Panama
- Master in Environmental Microbiology, Faculty of Natural and Exact Sciences and Technology, Universidad de Panamá, Panama City 0820, Panama
| | - H. Cornejo-Reyes
- Experimental and Applied Microbiology Laboratory, Vice Rectory of Research and Postgraduate Affairs, Universidad de Panamá, Panama City 0820, Panama
- Water Microbiology Laboratory, Vice Rectory of Research and Postgraduate Affairs, Universidad de Panamá, Panama City 0820, Panama
- Master in Environmental Microbiology, Faculty of Natural and Exact Sciences and Technology, Universidad de Panamá, Panama City 0820, Panama
| | | | - J. Querol-Audi
- Experimental and Applied Microbiology Laboratory, Vice Rectory of Research and Postgraduate Affairs, Universidad de Panamá, Panama City 0820, Panama
- Water Microbiology Laboratory, Vice Rectory of Research and Postgraduate Affairs, Universidad de Panamá, Panama City 0820, Panama
- Master in Environmental Microbiology, Faculty of Natural and Exact Sciences and Technology, Universidad de Panamá, Panama City 0820, Panama
- Sistema Nacional de Investigación (SNI), SENACYT, Panama City 0816, Panama
| | - A. O. Martínez-Torres
- Experimental and Applied Microbiology Laboratory, Vice Rectory of Research and Postgraduate Affairs, Universidad de Panamá, Panama City 0820, Panama
- Water Microbiology Laboratory, Vice Rectory of Research and Postgraduate Affairs, Universidad de Panamá, Panama City 0820, Panama
- Master in Environmental Microbiology, Faculty of Natural and Exact Sciences and Technology, Universidad de Panamá, Panama City 0820, Panama
- Sistema Nacional de Investigación (SNI), SENACYT, Panama City 0816, Panama
| |
Collapse
|
16
|
The Impact of Non-Pathogenic Bacteria on the Spread of Virulence and Resistance Genes. Int J Mol Sci 2023; 24:ijms24031967. [PMID: 36768286 PMCID: PMC9916357 DOI: 10.3390/ijms24031967] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
This review discusses the fate of antimicrobial resistance and virulence genes frequently present among microbiomes. A central concept in epidemiology is the mean number of hosts colonized by one infected host in a population of susceptible hosts: R0. It characterizes the disease's epidemic potential because the pathogen continues its propagation through susceptible hosts if it is above one. R0 is proportional to the average duration of infections, but non-pathogenic microorganisms do not cause host death, and hosts do not need to be rid of them. Therefore, commensal bacteria may colonize hosts for prolonged periods, including those harboring drug resistance or even a few virulence genes. Thus, their R0 is likely to be (much) greater than one, with peculiar consequences for the spread of virulence and resistance genes. For example, computer models that simulate the spread of these genes have shown that their diversities should correlate positively throughout microbiomes. Bioinformatics analysis with real data corroborates this expectation. Those simulations also anticipate that, contrary to the common wisdom, human's microbiomes with a higher diversity of both gene types are the ones that took antibiotics longer ago rather than recently. Here, we discuss the mechanisms and robustness behind these predictions and other public health consequences.
Collapse
|
17
|
Russell BJ, Brown SD, Siguenza N, Mai I, Saran AR, Lingaraju A, Maissy ES, Dantas Machado AC, Pinto AFM, Sanchez C, Rossitto LA, Miyamoto Y, Richter RA, Ho SB, Eckmann L, Hasty J, Gonzalez DJ, Saghatelian A, Knight R, Zarrinpar A. Intestinal transgene delivery with native E. coli chassis allows persistent physiological changes. Cell 2022; 185:3263-3277.e15. [PMID: 35931082 PMCID: PMC9464905 DOI: 10.1016/j.cell.2022.06.050] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/15/2022] [Accepted: 06/25/2022] [Indexed: 12/26/2022]
Abstract
Live bacterial therapeutics (LBTs) could reverse diseases by engrafting in the gut and providing persistent beneficial functions in the host. However, attempts to functionally manipulate the gut microbiome of conventionally raised (CR) hosts have been unsuccessful because engineered microbial organisms (i.e., chassis) have difficulty in colonizing the hostile luminal environment. In this proof-of-concept study, we use native bacteria as chassis for transgene delivery to impact CR host physiology. Native Escherichia coli bacteria isolated from the stool cultures of CR mice were modified to express functional genes. The reintroduction of these strains induces perpetual engraftment in the intestine. In addition, engineered native E. coli can induce functional changes that affect physiology of and reverse pathology in CR hosts months after administration. Thus, using native bacteria as chassis to “knock in” specific functions allows mechanistic studies of specific microbial activities in the microbiome of CR hosts and enables LBT with curative intent. Native E. coli strains isolated from mouse stool are genetically engineered for long-term engraftment in the conventional mouse gut and enable long-term systemic effects on the host, such as improvements in insulin sensitivity in mouse models of type 2 diabetes.
Collapse
Affiliation(s)
- Baylee J Russell
- Division of Gastroenterology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Steven D Brown
- Division of Gastroenterology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Nicole Siguenza
- Division of Gastroenterology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Irene Mai
- Division of Gastroenterology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Anand R Saran
- Division of Gastroenterology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Amulya Lingaraju
- Division of Gastroenterology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Erica S Maissy
- Division of Gastroenterology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ana C Dantas Machado
- Division of Gastroenterology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Antonio F M Pinto
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Concepcion Sanchez
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Leigh-Ana Rossitto
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yukiko Miyamoto
- Division of Gastroenterology, University of California, San Diego, La Jolla, CA 92093, USA
| | - R Alexander Richter
- Division of Gastroenterology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Samuel B Ho
- Division of Gastroenterology, University of California, San Diego, La Jolla, CA 92093, USA; VA Health Sciences San Diego, La Jolla, CA 92161, USA
| | - Lars Eckmann
- Division of Gastroenterology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jeff Hasty
- BioCircuits Institute, University of California, San Diego, La Jolla, CA 92093, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA; Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA 92093, USA
| | - David J Gonzalez
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA 92093, USA
| | - Alan Saghatelian
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Rob Knight
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA; Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA; Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA 92093, USA; Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Amir Zarrinpar
- Division of Gastroenterology, University of California, San Diego, La Jolla, CA 92093, USA; VA Health Sciences San Diego, La Jolla, CA 92161, USA; Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
18
|
Draft Genome Sequences of Multidrug-Resistant Escherichia coli Strains Isolated from River Water in Malaysia. Microbiol Resour Announc 2022; 11:e0039922. [PMID: 35678586 PMCID: PMC9302170 DOI: 10.1128/mra.00399-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Antimicrobial resistance has become a primary concern in clinical and public health. Escherichia coli is one of the bacteria that carries and disseminates antimicrobial resistance genes to the community. Here, we report the draft genome sequence of three multidrug-resistant E. coli strains that were isolated from river water in Malaysia.
Collapse
|
19
|
The Resistance Patterns in E. coli Isolates among Apparently Healthy Adults and Local Drivers of Antimicrobial Resistance: A Mixed-Methods Study in a Suburban Area of Nepal. Trop Med Infect Dis 2022; 7:tropicalmed7070133. [PMID: 35878145 PMCID: PMC9324341 DOI: 10.3390/tropicalmed7070133] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 06/29/2022] [Accepted: 07/07/2022] [Indexed: 02/05/2023] Open
Abstract
Evidence-based decision-making to combat antimicrobial resistance (AMR) mandates a well-built community-based surveillance system for assessing resistance patterns among commensals and pathogenic organisms. As there is no such surveillance system in Nepal, we attempted to describe the antimicrobial resistance pattern in E. coli isolated from the fecal samples of apparently healthy individuals in Dhulikhel municipality and also explored the local drivers of AMR. We used a mixed-method design with a cross-sectional quantitative component and a descriptive qualitative component, with focus group discussion and key informant interviews as the data collection method. Fecal samples were collected from 424 individuals randomly selected for the study. E. coli was isolated from 85.9% of human fecal samples, of which 14% were resistant to ≥3 class of antimicrobials (multidrug resistant). Of the 368 isolates, resistance to ampicillin (40.0%), tetracycline (20.7%) and cefotaxime (15.5%) were most prevalent. The major drivers of AMR were: lack of awareness of AMR, weak regulations on sales of antimicrobials, poor adherence to prescribed medications, and incomplete dosage due to financial constraints. These findings indicate the need for strict implementation of a national drug act to limit the over-the-counter sales of antimicrobials. Additionally, awareness campaigns with a multimedia mix are essential for educating people on AMR.
Collapse
|
20
|
Wyrsch ER, Dolejska M, Djordjevic SP. Genomic Analysis of an I1 Plasmid Hosting a sul3-Class 1 Integron and blaSHV-12 within an Unusual Escherichia coli ST297 from Urban Wildlife. Microorganisms 2022; 10:microorganisms10071387. [PMID: 35889108 PMCID: PMC9319951 DOI: 10.3390/microorganisms10071387] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 07/06/2022] [Indexed: 02/04/2023] Open
Abstract
Wild birds, particularly silver gulls (Chroicocephalus novaehollandiae) that nest near anthropogenic sites, often harbour bacteria resistant to multiple antibiotics, including those considered of clinical importance. Here, we describe the whole genome sequence of Escherichia coli isolate CE1867 from a silver gull chick sampled in 2012 that hosted an I1 pST25 plasmid with blaSHV-12, a β-lactamase gene that encodes the ability to hydrolyze oxyimino β-lactams, and other antibiotic resistance genes. Isolate CE1867 is an ST297 isolate, a phylogroup B1 lineage, and clustered with a large ST297 O130:H11 clade, which carry Shiga toxin genes. The I1 plasmid belongs to plasmid sequence type 25 and is notable for its carriage of an atypical sul3-class 1 integron with mefB∆260, a structure most frequently reported in Australia from swine. This integron is a typical example of a Tn21-derived element that captured sul3 in place of the standard sul1 structure. Interestingly, the mercury resistance (mer) module of Tn21 is missing and has been replaced with Tn2-blaTEM-1 and a blaSHV-12 encoding module flanked by direct copies of IS26. Comparisons to similar plasmids, however, demonstrate a closely related family of ARG-carrying plasmids that all host variants of the sul3-associated integron with conserved Tn21 insertion points and a variable presence of both mer and mefB truncations, but predominantly mefB∆260.
Collapse
Affiliation(s)
- Ethan R. Wyrsch
- Australian Institute for Microbiology & Infection, University of Technology Sydney, Ultimo, NSW 2007, Australia;
| | - Monika Dolejska
- CEITEC VETUNI, University of Veterinary Sciences Brno, 61242 Brno, Czech Republic;
- Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, 61242 Brno, Czech Republic
- Department of Clinical Microbiology and Immunology, Institute of Laboratory Medicine, University Hospital Brno, 62500 Brno, Czech Republic
| | - Steven P. Djordjevic
- Australian Institute for Microbiology & Infection, University of Technology Sydney, Ultimo, NSW 2007, Australia;
- Correspondence:
| |
Collapse
|
21
|
Multiple Antibiotic Resistance in Escherichia coli Isolates from Fecal and Water Sources in Laguna Lake, Philippines. WATER 2022. [DOI: 10.3390/w14091517] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Due to the misuse and overuse of antibiotics, antibiotic residues accumulate in natural environments, leading to the development of antibiotic-resistant bacteria (ARBs). The presence of ARBs in bodies of water poses health hazards to the surrounding community. This study focused on Laguna Lake, the largest lake in the Philippines, which serves as a water source for agriculture and domestic purposes. We aimed to detect the presence of antibiotic-resistant Escherichia coli from the lake waters and potential reservoirs of resistance as well as determine the multiple antibiotic resistance (MAR) indices of the isolates. E. coli (n = 450) was isolated from fecal-associated samples (chicken, cow, pig, human, sewage) and water samples (sites in Laguna Lake and selected river tributaries). The isolates were subjected to an antibiotic resistance assay using VITEK 2®. Among the 16 antibiotics tested, the isolates exhibited varying resistance to 14, but complete susceptibility to amikacin and tigecycline was observed. Isolates were most frequently resistant to ampicillin (196/450, 43.6%). Among fecal-associated samples, chicken isolates exhibited the highest MAR index (0.174), whereas samples from Pila River exhibited the highest MAR index (0.152) among water samples. The results of this study demonstrate the presence of multidrug-resistant E. coli in samples collected around Laguna Lake and reveal fecal and sewage sources as potential reservoirs of ARBs in the water body. With this information, the public is urged to use antibiotics responsibly to help mitigate the spread of antibiotic resistance.
Collapse
|
22
|
Onohuean H, Igere BE. Occurrence, Antibiotic Susceptibility and Genes Encoding Antibacterial Resistance of Salmonella spp. and Escherichia coli From Milk and Meat Sold in Markets of Bushenyi District, Uganda. Microbiol Insights 2022; 15:11786361221088992. [PMID: 35431556 PMCID: PMC9008818 DOI: 10.1177/11786361221088992] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 02/25/2022] [Indexed: 11/10/2022] Open
Abstract
The bacteriological safety of food/food products and the menace of antimicrobial
resistance amongst enteropathogenic bacteria raise therapeutic management
concerns within the public health system. Recently consumers of food/food
products purchased from the public market of Bushenyi District presents with
Enterobacteriaceae infection-associated symptoms and clinical conditions. We
determine the molecular characterization and antibiotic signatures of some
enteric bacterial recovered from foods/food products in markets of Bushenyi
District, Uganda. Standard molecular biology techniques (Polymerase chain
reaction PCR) and microbiological procedures were applied. Meat (MT) and milk
(MK) samples were collected from 4 communities/town markets (Kizinda, Ishaka,
Bushenyi, kashenyi) between April and September 2020 and analyzed. Our result
reveals high differential counts of Salmonella species
(175.33 ± 59.71 Log 10 CFU/100 ml) and Escherichia coli
(53.33 ± 26.03 Log 10 CFU/100 ml) within the 4 markets with the count of
Salmonella species higher than that of E.
coli in each sampled market. The PCR further confirmed the detected
strains (22.72% of E. coli and 54.29% of
Salmonella species) and diverse multiple
antibiotic-resistant determinants {TEM: (12 (23.1%) blaTEM-2
gene, 3 (5.8%) blaTEM gene}, 5 (9.6%) blaSHV
gene, 3 (5.8%) bla-CTX-M-2, 1 (1.9%)
bla-CTX-M-9 }. Other resistance genes detected were {10 (21.7%)
strA gene} and 8 (17.4%) aadA gene}
indicating a potential antibiotic failure. The need for alternative medicine and
therapeutic measure is suggestive. Astute and routine surveillance/monitoring of
potential pathogens and food products in the public market remains a core for
maintaining future consumer safety.
Collapse
Affiliation(s)
- Hope Onohuean
- Biomolecules, Metagenomics, Endocrine and Tropical Disease Research Group (BMETDREG), Kampala International University, Western Campus, Ishaka-Bushenyi, Uganda
- Biopharmaceutics unit, Department of Pharmacology and Toxicology, School of Pharmacy, Kampala International University Uganda, Ishaka, Uganda
| | - Bright E Igere
- Department of Microbiology and Biotechnology, Western Delta University Oghara, Delta State, Nigeria
| |
Collapse
|
23
|
Amin MB, Hoque KI, Roy S, Saha SR, Islam MR, Julian TR, Islam MA. Identifying the Sources of Intestinal Colonization With Extended-Spectrum β-Lactamase-Producing Escherichia coli in Healthy Infants in the Community. Front Microbiol 2022; 13:803043. [PMID: 35432268 PMCID: PMC9008759 DOI: 10.3389/fmicb.2022.803043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
The prevalence of fecal colonization with extended-spectrum β-lactamase-producing Escherichia coli (ESBL-Ec) among children in low- and middle-income countries is alarmingly high. This study aimed to identify the sources of ESBL-Ec colonization in children < 1 year old through comparative analysis of E. coli isolates from child stool, child’s mother stool, and point-of-use drinking water from 46 rural households in Bangladesh. The pairwise similarity in antibiotic susceptibility of E. coli from all three sources was evaluated, followed by phylogenetic clustering using enterobacterial repetitive intergenic consensus polymerase chain reaction and whole-genome sequence analysis of the isolates. Matching antibiotic susceptibility and enterobacterial repetitive intergenic consensus polymerase chain reaction patterns were found among ESBL-Ec isolates from child–mother dyads of 24 and 11 households, respectively, from child–water dyads of 5 and 4 households, respectively, and from child–mother–water triads of 3 and 4 households, respectively. Whole-genome sequence analysis of 30 isolates from 10 households revealed that ESBL-Ec from children in five households (50%) was clonally related to ESBL-Ec either from their mothers (2 households), drinking water sources (2 households), or both mother and drinking-water sources (1 household) based on serotype, phylogroup, sequence type, antibiotic resistance genes, mobile genetic elements, core single-nucleotide polymorphisms, and whole-genome multilocus sequence typing. Overall, this study provides empirical evidence that ESBL-Ec colonization in children is linked to the colonization status of mothers and exposure to the household environments contaminated with ESBL-Ec. Interventions such as improved hygiene practices and a safe drinking water supply may help reduce the transmission of ESBL-Ec at the household level.
Collapse
Affiliation(s)
- Mohammed Badrul Amin
- Laboratory of Food Safety and One Health, Laboratory Sciences and Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr, b), Dhaka, Bangladesh
- *Correspondence: Mohammed Badrul Amin,
| | - Kazi Injamamul Hoque
- Laboratory of Food Safety and One Health, Laboratory Sciences and Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr, b), Dhaka, Bangladesh
| | - Subarna Roy
- Laboratory of Food Safety and One Health, Laboratory Sciences and Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr, b), Dhaka, Bangladesh
| | - Sumita Rani Saha
- Laboratory of Food Safety and One Health, Laboratory Sciences and Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr, b), Dhaka, Bangladesh
| | - Md. Rayhanul Islam
- Laboratory of Food Safety and One Health, Laboratory Sciences and Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr, b), Dhaka, Bangladesh
| | - Timothy R. Julian
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Mohammad Aminul Islam
- Laboratory of Food Safety and One Health, Laboratory Sciences and Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr, b), Dhaka, Bangladesh
- Paul G. Allen School for Global Health, Washington State University, Pullman, DC, United States
- Mohammad Aminul Islam,
| |
Collapse
|
24
|
Liang YB, Li HB, Chen ZS, Yang YD, Shi DY, Chen TJ, Yang D, Yin J, Zhou SQ, Cheng CY, Shao YF, Li JW, Jin M. Spatial behavior and source tracking of extracellular antibiotic resistance genes in a chlorinated drinking water distribution system. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:127942. [PMID: 34902725 DOI: 10.1016/j.jhazmat.2021.127942] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/23/2021] [Accepted: 11/26/2021] [Indexed: 06/14/2023]
Abstract
Antibiotic resistance genes (ARGs) are receiving increasing concerns due to the antibiotic resistance crisis. Nevertheless, little is known about the spatial behavior and sources of extracellular ARGs (eARGs) in the chlorinated drinking water distribution systems (DWDSs). Here, tap water was continuously collected to reveal the occurrence of both eARGs and intracellular ARGs (iARGs) along a chlorinated DWDS. Afterward, the correlation between eARGs, eDNA-releasing communities, and communities of planktonic bacteria was further analyzed. The eARG concentration decreased significantly, whereas the proportion of vanA and blaNDM-1 increased. Further, the diversity of the eDNA-releasing community increased markedly with increasing distance from the drinking water treatment plant (DWTP). Moreover, the dominant eDNA-releasing bacteria shifted from Acinetobacter, Pseudomonas, and Methylobacterium-Methylorubrum in finished water from the DWTP to Bacteroides, Faecalibacterium, Staphylococcus, and Parabacteroides in the DWDS. In terms of eARG source, thirty genera were significantly correlated with seven types of eARGs that resulted from the lysis of dead planktonic bacteria and detached biofilms. Conversely, the iARGs concentration increased, whereas the biodiversity of the planktonic bacteria community decreased in the sampling points along the DWDSs. Our findings provide critical insights into the spatial behavior and sources of eARGs, highlighting the health risks associated with ARGs in DWDSs.
Collapse
Affiliation(s)
- Yong-Bing Liang
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No.1 Dali Road, Tianjin 300050, China
| | - Hai-Bei Li
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No.1 Dali Road, Tianjin 300050, China
| | - Zheng-Shan Chen
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No.1 Dali Road, Tianjin 300050, China
| | - Yi-di Yang
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No.1 Dali Road, Tianjin 300050, China
| | - Dan-Yang Shi
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No.1 Dali Road, Tianjin 300050, China
| | - Tian-Jiao Chen
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No.1 Dali Road, Tianjin 300050, China
| | - Dong Yang
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No.1 Dali Road, Tianjin 300050, China
| | - Jing Yin
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No.1 Dali Road, Tianjin 300050, China
| | - Shu-Qing Zhou
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No.1 Dali Road, Tianjin 300050, China
| | - Chun-Yan Cheng
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No.1 Dali Road, Tianjin 300050, China
| | - Yi-Fan Shao
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No.1 Dali Road, Tianjin 300050, China
| | - Jun-Wen Li
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No.1 Dali Road, Tianjin 300050, China
| | - Min Jin
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No.1 Dali Road, Tianjin 300050, China.
| |
Collapse
|
25
|
Hu B, Hou P, Teng L, Miao S, Zhao L, Ji S, Li T, Kehrenberg C, Kang D, Yue M. Genomic Investigation Reveals a Community Typhoid Outbreak Caused by Contaminated Drinking Water in China, 2016. Front Med (Lausanne) 2022; 9:753085. [PMID: 35308507 PMCID: PMC8925297 DOI: 10.3389/fmed.2022.753085] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 02/04/2022] [Indexed: 12/27/2022] Open
Abstract
Typhoid fever is a life-threatening disease caused by Salmonella enterica serovar Typhi (S. Typhi) and remains a significant public health burden in developing countries. In China, typhoid fever is endemic with a limited number of reported outbreaks. Recently, Chinese local Center for Disease Prevention and Control is starting to apply whole genome sequencing for tracking the source of outbreak isolates. In this study, we conducted a retrospective investigation into a community outbreak of typhoid fever in Lanling, China, in 2016. A total of 26 S. Typhi isolates were recovered from the drinking water (n = 1) and patients' blood (n = 24) and stool (n = 1). Phylogenetic analysis indicated the persistence of the outbreak isolates in drinking water for more than 3 months. The genomic comparison demonstrated a high similarity between the isolate from water and isolates from patients in their genomic content, virulence gene profiles, and antimicrobial resistance gene profile, indicating the S. Typhi isolate from drinking water was responsible for the examined outbreak. The result of pulsed-field gel electrophoresis (PFGE) revealed these isolates had identical PFGE pattern, indicating they are clonal variants. Additionally, phylogeographical analysis of global S. Typhi isolates suggested the outbreak isolates are evolutionarily linked to the isolates from the United Kingdom and Vietnam. Taken together, this study highlights the drinking water and international travel as critical control points of mitigating the outbreak, emphasizing the necessity of regular monitoring of this pathogen in China.
Collapse
Affiliation(s)
- Bin Hu
- Shandong Provincial Center for Disease Control and Prevention, Jinan, China
| | - Peibin Hou
- Shandong Provincial Center for Disease Control and Prevention, Jinan, China
| | - Lin Teng
- Department of Veterinary Medicine, College of Veterinary Medicine, Zhejiang University, Hangzhou, China
| | - Song Miao
- Shandong Medical College, Jinan, China
| | - Lijiang Zhao
- Linyi Center for Disease Control and Prevention, Linyi, China
| | - Shengxiang Ji
- Linyi Center for Disease Control and Prevention, Linyi, China
| | - Tao Li
- Linyi Center for Disease Control and Prevention, Linyi, China
| | - Corinna Kehrenberg
- Institute for Veterinary Food Science, Justus-Liebig-University Giessen, Giessen, Germany
| | - Dianmin Kang
- Shandong Provincial Center for Disease Control and Prevention, Jinan, China
- *Correspondence: Dianmin Kang
| | - Min Yue
- Department of Veterinary Medicine, College of Veterinary Medicine, Zhejiang University, Hangzhou, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- The Hainan Institute of Zhejiang University, Sanya, China
- Min Yue
| |
Collapse
|
26
|
Patangia DV, Anthony Ryan C, Dempsey E, Paul Ross R, Stanton C. Impact of antibiotics on the human microbiome and consequences for host health. Microbiologyopen 2022; 11:e1260. [PMID: 35212478 PMCID: PMC8756738 DOI: 10.1002/mbo3.1260] [Citation(s) in RCA: 327] [Impact Index Per Article: 109.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/10/2021] [Accepted: 12/10/2021] [Indexed: 12/12/2022] Open
Abstract
It is well established that the gut microbiota plays an important role in host health and is perturbed by several factors including antibiotics. Antibiotic-induced changes in microbial composition can have a negative impact on host health including reduced microbial diversity, changes in functional attributes of the microbiota, formation, and selection of antibiotic-resistant strains making hosts more susceptible to infection with pathogens such as Clostridioides difficile. Antibiotic resistance is a global crisis and the increased use of antibiotics over time warrants investigation into its effects on microbiota and health. In this review, we discuss the adverse effects of antibiotics on the gut microbiota and thus host health, and suggest alternative approaches to antibiotic use.
Collapse
Affiliation(s)
- Dhrati V. Patangia
- School of MicrobiologyUniversity College CorkCorkIreland
- Teagasc Food Research Centre, MooreparkFermoy Co.CorkIreland
- APC MicrobiomeCorkIreland
| | | | - Eugene Dempsey
- School of MicrobiologyUniversity College CorkCorkIreland
| | - Reynolds Paul Ross
- School of MicrobiologyUniversity College CorkCorkIreland
- APC MicrobiomeCorkIreland
| | - Catherine Stanton
- Teagasc Food Research Centre, MooreparkFermoy Co.CorkIreland
- APC MicrobiomeCorkIreland
| |
Collapse
|
27
|
Hu D, Fuller NR, Caterson ID, Holmes AJ, Reeves PR. Single-gene long-read sequencing illuminates Escherichia coli strain dynamics in the human intestinal microbiome. Cell Rep 2022; 38:110239. [PMID: 35021078 DOI: 10.1016/j.celrep.2021.110239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 10/17/2021] [Accepted: 12/17/2021] [Indexed: 02/01/2023] Open
Abstract
Gut microbiome is of major interest due to its close relationship to health and disease. Bacteria usually vary in gene content, leading to functional variations within species, so resolution higher than species-level methods is needed for ecological and clinical relevance. We design a protocol to identify strains in selected species with high discrimination and in high numbers by amplicon sequencing of the flagellin gene. We apply the protocol to fecal samples from a human diet trial, targeting Escherichia coli. Across the 119 samples from 16 individuals, there are 1,532 amplicon sequence variants (ASVs), but only 32 ASVs are dominant in one or more fecal samples, despite frequent dominant strain turnover. Major strains in an intestine are found to be commonly accompanied by a large number of satellite cells, and many are identified as potential extraintestinal pathogens. The protocol could be used to track epidemics or investigate the intra- or inter-host diversity of pathogens.
Collapse
Affiliation(s)
- Dalong Hu
- School of Life and Environmental Sciences, Charles Perkins Centre, University of Sydney, Camperdown, NSW 2006, Australia
| | - Nicholas R Fuller
- The Boden Institute, Charles Perkins Centre, University of Sydney, Camperdown, NSW 2006, Australia; Metabolism and Obesity Services, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
| | - Ian D Caterson
- School of Life and Environmental Sciences, Charles Perkins Centre, University of Sydney, Camperdown, NSW 2006, Australia; The Boden Institute, Charles Perkins Centre, University of Sydney, Camperdown, NSW 2006, Australia; Metabolism and Obesity Services, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
| | - Andrew J Holmes
- School of Life and Environmental Sciences, Charles Perkins Centre, University of Sydney, Camperdown, NSW 2006, Australia
| | - Peter R Reeves
- School of Life and Environmental Sciences, Charles Perkins Centre, University of Sydney, Camperdown, NSW 2006, Australia.
| |
Collapse
|
28
|
Characterisation of Early Positive mcr-1 Resistance Gene and Plasmidome in Escherichia coli Pathogenic Strains Associated with Variable Phylogroups under Colistin Selection. Antibiotics (Basel) 2021; 10:antibiotics10091041. [PMID: 34572623 PMCID: PMC8466100 DOI: 10.3390/antibiotics10091041] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/19/2021] [Accepted: 08/23/2021] [Indexed: 01/08/2023] Open
Abstract
An antibiotic susceptibility monitoring programme was conducted from 2004 to 2010, resulting in a collection of 143 Escherichia coli cultured from bovine faecal samples (diarrhoea) and milk-aliquots (mastitis). The isolates were subjected to whole-genome sequencing and were distributed in phylogroups A, B1, B2, C, D, E, and G with no correlation for particular genotypes with pathotypes. In fact, the population structure showed that the strains belonging to the different phylogroups matched broadly to ST complexes; however, the isolates are randomly associated with the diseases, highlighting the necessity to investigate the virulence factors more accurately in order to identify the mechanisms by which they cause disease. The antimicrobial resistance was assessed phenotypically, confirming the genomic prediction on three isolates that were resistant to colistin, although one isolate was positive for the presence of the gene mcr-1 but susceptible to colistin. To further characterise the genomic context, the four strains were sequenced by using a single-molecule long read approach. Genetic analyses indicated that these four isolates harboured complex and diverse plasmids encoding not only antibiotic resistant genes (including mcr-1 and bla) but also virulence genes (siderophore, ColV, T4SS). A detailed description of the plasmids of these four E. coli strains, which are linked to bovine mastitis and diarrhoea, is presented for the first time along with the characterisation of the predicted antibiotic resistance genes. The study highlighted the diversity of incompatibility types encoding complex antibiotic resistance elements such as Tn6330, ISEcp1, Tn6029, and IS5075. The mcr-1 resistance determinant was identified in IncHI2 plasmids pCFS3273-1 and pCFS3292-1, thus providing some of the earliest examples of mcr-1 reported in Europe, and these sequences may be a representative of the early mcr-1 plasmidome characterisation in the EU/EEA.
Collapse
|
29
|
Leão C, Clemente L, Moura L, Seyfarth AM, Hansen IM, Hendriksen RS, Amaro A. Emergence and Clonal Spread of CTX-M-65-Producing Escherichia coli From Retail Meat in Portugal. Front Microbiol 2021; 12:653595. [PMID: 34354678 PMCID: PMC8329498 DOI: 10.3389/fmicb.2021.653595] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/10/2021] [Indexed: 12/24/2022] Open
Abstract
The emergence and dissemination of resistance to third- and fourth-generation cephalosporins among Enterobacteriaceae from different sources impose a global public health threat. Here, we characterized by whole-genome sequencing four Escherichia coli strains harboring the blaCTX–M–65 gene identified among 49 isolates from beef and pork collected at retail. The genomic content was determined using the Center for Genomic Epidemiology web tools. Additionally, the prediction and reconstruction of plasmids were conducted, the genetic platform of the blaCTX–M–65 genes was investigated, and phylogenetic analysis was carried out using 17 other genomes with the same sequence type and harboring the blaCTX–M–65 gene. All strains harbored blaCTX–M–65, blaOXA–1, and blaTEM–1B, and one also carried the blaSHV–12 gene. Other resistance genes, namely, qnrS2, aac(6′)-Ib-c, dfrA14, sul2, tetA, and mphA, were present in all the genomes; the mcr-1.1 gene was identified in the colistin-resistant strains. They belong to sequence type 2179, phylogenetic group B1, and serotype O9:H9 and carried plasmids IncI, IncFIC(FII), and IncFIB. All strains share an identical genetic environment with IS903 and ISEcp1 flanking the blaCTX–M–65 gene. It seems likely that the blaCTX–M–65 gene is located in the chromosome in all isolates based on deep in silico analysis. Our findings showed that the strains are clonally related and belong to two sub-lineages. This study reports the emergence of CTX-M-65-producing E. coli in Portugal in food products of animal origin. The chromosomal location of the blaCTX–M–65 gene may ensure a stable spread of resistance in the absence of selective pressure.
Collapse
Affiliation(s)
- Célia Leão
- Laboratory of Bacteriology and Mycology, National Institute of Agrarian and Veterinary Research (INIAV, IP), Oeiras, Portugal.,MED - Mediterranean Institute for Agriculture, Environment and Development, Évora, Portugal
| | - Lurdes Clemente
- Laboratory of Bacteriology and Mycology, National Institute of Agrarian and Veterinary Research (INIAV, IP), Oeiras, Portugal.,Faculty of Veterinary Science, CIISA- Centre for Interdisciplinary Research in Animal Health, Lisbon, Portugal
| | - Laura Moura
- Laboratory of Bacteriology and Mycology, National Institute of Agrarian and Veterinary Research (INIAV, IP), Oeiras, Portugal.,Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Anne Mette Seyfarth
- EURL-AR, European Reference Laboratory for Antimicrobial Resistance, Technical University of Denmark (DTU), National Food Institute, Lyngby, Denmark
| | - Inge M Hansen
- EURL-AR, European Reference Laboratory for Antimicrobial Resistance, Technical University of Denmark (DTU), National Food Institute, Lyngby, Denmark
| | - Rene S Hendriksen
- EURL-AR, European Reference Laboratory for Antimicrobial Resistance, Technical University of Denmark (DTU), National Food Institute, Lyngby, Denmark
| | - Ana Amaro
- Laboratory of Bacteriology and Mycology, National Institute of Agrarian and Veterinary Research (INIAV, IP), Oeiras, Portugal
| |
Collapse
|
30
|
Dagher LA, Hassan J, Kharroubi S, Jaafar H, Kassem II. Nationwide Assessment of Water Quality in Rivers across Lebanon by Quantifying Fecal Indicators Densities and Profiling Antibiotic Resistance of Escherichia coli. Antibiotics (Basel) 2021; 10:antibiotics10070883. [PMID: 34356804 PMCID: PMC8300662 DOI: 10.3390/antibiotics10070883] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/02/2021] [Accepted: 07/16/2021] [Indexed: 11/23/2022] Open
Abstract
The use of contaminated water has been associated with severe disease outbreaks. Due to widespread pollution with untreated sewage, concerns have been raised over water quality in Lebanon, a country with well-documented challenges in infrastructure. Here, we evaluated the water quality of major rivers in Lebanon by quantifying the densities of fecal indicator bacteria (fecal coliforms and Escherichia coli). Additionally, we assessed the dissemination of antibiotic-resistant E. coli in river water. Composite water samples (n = 132) were collected from fourteen rivers, and 378 E. coli were isolated and analyzed. Fecal coliforms and E. coli were detected in 96.29% and 95.5% of the samples, respectively. Additionally, 73.48–61.3% and 31.81% of the samples exceeded the microbiological acceptability standards for irrigation and the fecal coliform limit for recreational activities, respectively. The E. coli exhibited resistance to ampicillin (40% of isolates), amoxicillin + clavulanic acid (42%), cefepime (4%), cefotaxime (14%), cefalexin (46%), cefixime (17%), doripenem (0.3%), imipenem (0.5%), gentamicin (6%), kanamycin (9%), streptomycin (35%), tetracycline (35%), ciprofloxacin (10%), norfloxacin (7%), trimethoprim-sulfamethoxazole (32%), and chloramphenicol (13%). Notably, 45.8% of the isolates were classified as multidrug resistant (MDR). Our results highlight the need to urgently address fecal pollution and the dissemination of antibiotic resistance in Lebanese rivers.
Collapse
Affiliation(s)
- Lea A. Dagher
- Department of Nutrition and Food Sciences, Faculty of Agricultural and Food Sciences, American University of Beirut (AUB), Beirut 1107 2020, Lebanon; (L.A.D.); (S.K.)
| | - Jouman Hassan
- Center for Food Safety, Department of Food Science and Technology, University of Georgia, 1109 Experiment Street, Griffin, GA 30223, USA;
| | - Samer Kharroubi
- Department of Nutrition and Food Sciences, Faculty of Agricultural and Food Sciences, American University of Beirut (AUB), Beirut 1107 2020, Lebanon; (L.A.D.); (S.K.)
| | - Hadi Jaafar
- Department of Agriculture, Faculty of Agricultural and Food Sciences, American University of Beirut (AUB), Beirut 1107 2020, Lebanon;
| | - Issmat I. Kassem
- Department of Nutrition and Food Sciences, Faculty of Agricultural and Food Sciences, American University of Beirut (AUB), Beirut 1107 2020, Lebanon; (L.A.D.); (S.K.)
- Center for Food Safety, Department of Food Science and Technology, University of Georgia, 1109 Experiment Street, Griffin, GA 30223, USA;
- Correspondence:
| |
Collapse
|
31
|
Dungan RS, Bjorneberg DL. Antimicrobial Resistance in Escherichia coli and Enterococcal Isolates From Irrigation Return Flows in a High-Desert Watershed. Front Microbiol 2021; 12:660697. [PMID: 34054760 PMCID: PMC8149595 DOI: 10.3389/fmicb.2021.660697] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/13/2021] [Indexed: 11/25/2022] Open
Abstract
Irrigation return flows (IRFs) collect surface runoff and subsurface drainage, causing them to have elevated contaminant and bacterial levels, and making them a potential source of pollutants. The purpose of this study was to determine antimicrobial susceptibility among Escherichia coli and enterococcal isolates that were collected from IRFs in a south-central Idaho watershed. Environmental isolates can be a potentially important source of antimicrobial resistance (AMR) and IRFs may be one way resistance genes are transported out of agroecosystems. Water samples were collected from nine IRFs and one background site (canal water from Snake River) on a biweekly basis during 2018. Escherichia coli and enterococci were enumerated via a most probable number (MPN) technique, then subsamples were plated on selective media to obtain isolates. Isolates of E. coli (187) or enterococci (185) were tested for antimicrobial susceptibility using Sensititre broth microdilution plates. For E. coli, 13% (25/187) of isolates were resistant to tetracycline, with fewer numbers being resistant to 13 other antimicrobials, with none resistant to gentamicin. While 75% (141/187) of the E. coli isolates were pan-susceptible, 12 multidrug resistance (MDR) patterns with 17 isolates exhibiting resistance to up to seven drug classes (10 antimicrobials). For the enterococcal species, only 9% (16/185) of isolates were pan-susceptible and the single highest resistance was to lincomycin (138/185; 75%) followed by nitrofurantoin (56/185; 30%) and quinupristin/dalfopristin (34/185; 18%). In addition, 13 enterococcal isolates belonging to Enterococcus faecalis, Enterococcus faecium, Enterococcus casseliflavus, and Enterococcus thailandicus, were determined to be MDR to up to six different antimicrobial drug classes. None of the enterococcal isolates were resistant to gentamycin, linezolid, tigecycline, and vancomycin.
Collapse
Affiliation(s)
- Robert S Dungan
- Northwest Irrigation and Soils Research Laboratory, Agricultural Research Service, United States Department of Agriculture, Kimberly, ID, United States
| | - David L Bjorneberg
- Northwest Irrigation and Soils Research Laboratory, Agricultural Research Service, United States Department of Agriculture, Kimberly, ID, United States
| |
Collapse
|
32
|
Odumosu BT, Obeten HI, Bamidele TA. Incidence of Multidrug-Resistant Escherichia coli Harbouring blaTEM and tetA Genes Isolated from Seafoods in Lagos Nigeria. Curr Microbiol 2021; 78:2414-2419. [PMID: 33961094 DOI: 10.1007/s00284-021-02511-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 04/25/2021] [Indexed: 10/21/2022]
Abstract
The presence of multidrug-resistant Escherichia coli of fecal origin in seafood is a serious concern. Seafood containing MDR E. coli can serve as a medium for the transfer of resistant bacteria to consumers. The aim of the present study is to isolate and identify multidrug-resistant E. coli and associated resistant genes from selected seafood (catfish, crabs and tilapia fish) purchased from wholesalers and retailers at sea landing areas in Lagos state, Nigeria. A total of two hundred and thirty-eight (238) samples consisting of catfish (52), tilapia fish (78) and crab (108) were collected and investigated for the presence of E. coli from the period of June 2018-April 2019. Colonies that showed metallic sheen were considered presumptive E. coli isolates, and positive isolates were chosen for further confirmed by biochemical methods using IMViC tests, Oxidase test, triple sugar iron agar test and sugar fermentation test. Antimicrobial susceptibility of the isolates to eight classes of antibiotics was determined by disc diffusion methods while amplification of suspected antibiotic resistance genes were done by the polymerase chain reaction (PCR) using specific primers. A total of 105 (44.1%) E. coli were isolated from selected samples by standard microbiological procedures. The grand total of 59 (56.2%) isolates showed multiple antibiotic-resistant patterns. The overall result showed high-level resistance to tetracycline 101/105 (96.1%) and trimethoprim 90/105 (85.7%), cefotaxime 67/105 (42.9%) while the highest susceptibility of 101/105 (96.2%) was recorded for amikacin followed by gentamicin 84/105 (80%), meropenem 75/105 (71.4%), ceftazidime (69.5). The presence of tetA and blaTEM was prevalent among the isolates. Our results indicate that seafood may be a reservoir of β-lactam and tetracycline-resistance determinants.
Collapse
Affiliation(s)
| | | | - Tajudeen Akanji Bamidele
- Department of Molecular Biology and Biotechnology, Nigerian Institute of Medical Research, Yaba, Lagos, Nigeria
| |
Collapse
|
33
|
Mitchell S, Bull M, Muscatello G, Chapman B, Coleman NV. The equine hindgut as a reservoir of mobile genetic elements and antimicrobial resistance genes. Crit Rev Microbiol 2021; 47:543-561. [PMID: 33899656 DOI: 10.1080/1040841x.2021.1907301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Antibiotic resistance in bacterial pathogens is a growing problem for both human and veterinary medicine. Mobile genetic elements (MGEs) such as plasmids, transposons, and integrons enable the spread of antibiotic resistance genes (ARGs) among bacteria, and the overuse of antibiotics drives this process by providing the selection pressure for resistance genes to establish and persist in bacterial populations. Because bacteria, MGEs, and resistance genes can readily spread between different ecological compartments (e.g. soil, plants, animals, humans, wastewater), a "One Health" approach is needed to combat this problem. The equine hindgut is an understudied but potentially significant reservoir of ARGs and MGEs, since horses have close contact with humans, their manure is used in agriculture, they have a dense microbiome of both bacteria and fungi, and many antimicrobials used for equine treatment are also used in human medicine. Here, we collate information to date about resistance genes, plasmids, and class 1 integrons from equine-derived bacteria, we discuss why the equine hindgut deserves increased attention as a potential reservoir of ARGs, and we suggest ways to minimize the selection for ARGs in horses, in order to prevent their spread to the wider community.
Collapse
Affiliation(s)
- Scott Mitchell
- School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | | | - Gary Muscatello
- School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | | | - Nicholas V Coleman
- School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| |
Collapse
|
34
|
Li X, Stokholm J, Brejnrod A, Vestergaard GA, Russel J, Trivedi U, Thorsen J, Gupta S, Hjelmsø MH, Shah SA, Rasmussen MA, Bisgaard H, Sørensen SJ. The infant gut resistome associates with E. coli, environmental exposures, gut microbiome maturity, and asthma-associated bacterial composition. Cell Host Microbe 2021; 29:975-987.e4. [PMID: 33887206 DOI: 10.1016/j.chom.2021.03.017] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/03/2021] [Accepted: 03/26/2021] [Indexed: 02/06/2023]
Abstract
Antimicrobial resistance (AMR) is an accelerating global threat, yet the nature of AMR in the gut microbiome and how AMR is acquired during early life remain largely unknown. In a cohort of 662 Danish children, we characterized the antibiotic resistance genes (ARGs) acquired during the first year of life and assessed the impacts of diverse environmental exposures on ARG load. Our study reveals a clear bimodal distribution of ARG richness that is driven by the composition of the gut microbiome, especially E. coli. ARG profiles were significantly affected by various environmental factors. Among these factors, the importance of antibiotics diminished with time since treatment. Finally, ARG load and ARG clusters were also associated with the maturity of the gut microbiome and a bacterial composition associated with increased risk of asthma. These findings broaden our understanding of AMR in early life and have critical implications for efforts to mitigate its spread.
Collapse
Affiliation(s)
- Xuanji Li
- Department of Biology, Section of Microbiology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Jakob Stokholm
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, 2820 Copenhagen, Denmark
| | - Asker Brejnrod
- Skaggs School of Pharmacy, University of California, San Diego, La Jolla, CA 9500, USA
| | - Gisle Alberg Vestergaard
- Technical University of Denmark, Section of Bioinformatics, Department of Health Technology, 2800 Kongens Lyngby, Denmark
| | - Jakob Russel
- Department of Biology, Section of Microbiology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Urvish Trivedi
- Department of Biology, Section of Microbiology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Jonathan Thorsen
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, 2820 Copenhagen, Denmark
| | - Shashank Gupta
- Department of Biology, Section of Microbiology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Mathis Hjort Hjelmsø
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, 2820 Copenhagen, Denmark
| | - Shiraz A Shah
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, 2820 Copenhagen, Denmark
| | - Morten Arendt Rasmussen
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, 2820 Copenhagen, Denmark
| | - Hans Bisgaard
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, 2820 Copenhagen, Denmark
| | - Søren Johannes Sørensen
- Department of Biology, Section of Microbiology, University of Copenhagen, 2100 Copenhagen, Denmark.
| |
Collapse
|
35
|
Antimicrobial Resistance Profile and ExPEC Virulence Potential in Commensal Escherichia coli of Multiple Sources. Antibiotics (Basel) 2021; 10:antibiotics10040351. [PMID: 33810387 PMCID: PMC8067153 DOI: 10.3390/antibiotics10040351] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 02/06/2023] Open
Abstract
We recently described the genetic antimicrobial resistance and virulence profile of a collection of 279 commensal E. coli of food-producing animal (FPA), pet, wildlife and human origin. Phenotypic antimicrobial resistance (AMR) and the role of commensal E. coli as reservoir of extra-intestinal pathogenic Escherichia coli (ExPEC) virulence-associated genes (VAGs) or as potential ExPEC pathogens were evaluated. The most common phenotypic resistance was to tetracycline (76/279, 27.24%), sulfamethoxazole/trimethoprim (73/279, 26.16%), streptomycin and sulfisoxazole (71/279, 25.45% both) among the overall collection. Poultry and rabbit were the sources mostly associated to AMR, with a significant resistance rate (p > 0.01) to quinolones, streptomycin, sulphonamides, tetracycline and, only for poultry, to ampicillin and chloramphenicol. Finally, rabbit was the source mostly associated to colistin resistance. Different pandemic (ST69/69*, ST95, ST131) and emerging (ST10/ST10*, ST23, ST58, ST117, ST405, ST648) ExPEC sequence types (STs) were identified among the collection, especially in poultry source. Both ST groups carried high number of ExPEC VAGs (pandemic ExPEC STs, mean = 8.92; emerging ExPEC STs, mean = 6.43) and showed phenotypic resistance to different antimicrobials (pandemic ExPEC STs, mean = 2.23; emerging ExPEC STs, mean = 2.43), suggesting their role as potential ExPEC pathogens. Variable phenotypic resistance and ExPEC VAG distribution was also observed in uncommon ExPEC lineages, suggesting commensal flora as a potential reservoir of virulence (mean = 3.80) and antimicrobial resistance (mean = 1.69) determinants.
Collapse
|
36
|
Chen K, Yoshimura T, Gong W, Tian C, Huang J, Trinchieri G, Wang JM. Requirement of CRAMP for mouse macrophages to eliminate phagocytosed E. coli through an autophagy pathway. J Cell Sci 2021; 134:jcs252148. [PMID: 33468624 PMCID: PMC7970306 DOI: 10.1242/jcs.252148] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 12/30/2020] [Indexed: 01/19/2023] Open
Abstract
Host-derived antimicrobial peptides play an important role in the defense against extracellular bacterial infections. However, the capacity of antimicrobial peptides derived from macrophages as potential antibacterial effectors against intracellular pathogens remains unknown. In this study, we report that normal (wild-type, WT) mouse macrophages increased their expression of cathelin-related antimicrobial peptide (CRAMP, encoded by Camp) after infection by viable E. coli or stimulation with inactivated E. coli and its product lipopolysaccharide (LPS), a process involving activation of NF-κB followed by protease-dependent conversion of CRAMP from an inactive precursor to an active form. The active CRAMP was required by WT macrophages for elimination of phagocytosed E. coli, with participation of autophagy-related proteins ATG5, LC3-II and LAMP-1, as well as for aggregation of the bacteria with p62 (also known as SQSTM1). This process was impaired in CRAMP-/- macrophages, resulting in retention of intracellular bacteria and fragmentation of macrophages. These results indicate that CRAMP is a critical component in autophagy-mediated clearance of intracellular E. coli by mouse macrophages.
Collapse
Affiliation(s)
- Keqiang Chen
- Laboratory of Cancer ImmunoMetabolism, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Teizo Yoshimura
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan
| | - Wanghua Gong
- Basic Research Program, Leidos Biomedical Research, Inc., Frederick, MD 21702, USA
| | - Cuimeng Tian
- Laboratory of Cancer ImmunoMetabolism, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
- Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Jiaqiang Huang
- Laboratory of Cancer ImmunoMetabolism, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
- College of Life Sciences, Beijing Jiaotong University, Beijing 100044, China
| | - Giorgio Trinchieri
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Ji Ming Wang
- Laboratory of Cancer ImmunoMetabolism, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| |
Collapse
|
37
|
Mpondo L, Ebomah KE, Okoh AI. Multidrug-Resistant Listeria Species Shows Abundance in Environmental Waters of a Key District Municipality in South Africa. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:E481. [PMID: 33435627 PMCID: PMC7826511 DOI: 10.3390/ijerph18020481] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/01/2021] [Accepted: 01/03/2021] [Indexed: 11/16/2022]
Abstract
The prevalence of bacteria with multidrug-resistance (MDR) is a significant threat to public health globally. Listeria spp. are naturally ubiquitous, with L. monocytogenes particularly being ranked as important foodborne disease-causing microorganisms. This study aimed to evaluate the incidence and determine the antimicrobial resistance (AMR) profiles of multidrug-resistant Listeria spp. (MDRL) isolated from different environmental samples (river and irrigation water) in the Sarah Baartman District Municipality (SBDM), Eastern Cape Province (ECP), South Africa. Molecular identification and characterization were carried out using polymerase chain reaction (PCR) and isolates that exhibited phenotypic resistance were further screened for relevant antimicrobial-resistant genes (ARGs). Findings revealed a total of 124 presumptive Listeria isolates; 69 were molecularly confirmed Listeria species. Out of the confirmed species, 41 isolates (59%) were classified as L. monocytogenes while 9 (13%) were classified as L. welshimeri. All Listeria spp. exhibited phenotypic resistance against ampicillin, penicillin, and trimethoprim-sulphamethoxazole and further screening revealed ARGs in the following proportions: sulI (71%), blaTEM (66%), tetA (63%), and blaCIT (33%). Results confirmed the occurrence of ARGs among Listeria inhabiting surface waters of ECP. The present study indicates that the river water samples collected from SBDM are highly contaminated with MDRL, hence, constituting a potential health risk.
Collapse
Affiliation(s)
- Liyabona Mpondo
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice 5700, South Africa; (K.E.E.); (A.I.O.)
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice 5700, South Africa
| | - Kingsley Ehi Ebomah
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice 5700, South Africa; (K.E.E.); (A.I.O.)
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice 5700, South Africa
| | - Anthony Ifeanyi Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice 5700, South Africa; (K.E.E.); (A.I.O.)
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice 5700, South Africa
| |
Collapse
|
38
|
Msolo L, Iweriebor BC, Okoh AI. Antimicrobial Resistance Profiles of Diarrheagenic E. coli (DEC) and Salmonella Species Recovered from Diarrheal Patients in Selected Rural Communities of the Amathole District Municipality, Eastern Cape Province, South Africa. Infect Drug Resist 2020; 13:4615-4626. [PMID: 33376367 PMCID: PMC7764871 DOI: 10.2147/idr.s269219] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/08/2020] [Indexed: 12/18/2022] Open
Abstract
Purpose The emergence of multidrug-resistant bacteria remains as one of the major impediments towards the prevention and treatment of microbial infections and continues to be a serious threat to medicine. Henceforth, this study aimed at elucidating the antimicrobial resistance profiles of diarrheagenic E. coli (DEC) and Salmonella species recovered from diarrheal patients in selected rural communities of the Amathole District Municipality (ADM), Eastern Cape Province, South Africa (SA). Methods The antimicrobial resistance profiles of diarrheagenic E. coli (DEC) and Salmonella isolates were evaluated using antimicrobial susceptibility tests and the relevant antimicrobial resistance factors were elucidated by the Polymerase Chain Reaction technique. Results A sum of 324 diarrheagenic E. coli (DEC) and 62 Salmonella isolates were recovered from diarrheal stool specimens collected amongst diarrheal patients admitted in medical facilities/health-care centers within the ADM in the Eastern Cape Province, South Africa. Multiple antimicrobial resistance index mean values of 0.7 and 0.5 for DEC and Salmonella isolates, respectively, were observed in this study, indicating that these isolates were from sources where antimicrobials were frequently used. The antimicrobial resistance factors ampC, blaTEM, SulI and II, tet A and aadA were detected among antimicrobial-resistant DEC pathotypes and Salmonella isolates recovered in this study. Conclusion The occurrence of the multiple antimicrobial-resistant DEC and Salmonella isolates with the relevant antimicrobial resistance factors in this study suggests a portentous human health threat associated with diarrhea and a major deterrent in medicine.
Collapse
Affiliation(s)
- Luyanda Msolo
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, Eastern Cape, South Africa.,Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice, Eastern Cape, South Africa
| | - Benson C Iweriebor
- Sefako Makgatho Health Sciences University, Ga-rankuwa, Pretoria, Gauteng, South Africa
| | - Anthony I Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, Eastern Cape, South Africa.,Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice, Eastern Cape, South Africa
| |
Collapse
|
39
|
Łusiak-Szelachowska M, Weber-Dąbrowska B, Żaczek M, Borysowski J, Górski A. The Presence of Bacteriophages in the Human Body: Good, Bad or Neutral? Microorganisms 2020; 8:E2012. [PMID: 33339331 PMCID: PMC7767151 DOI: 10.3390/microorganisms8122012] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/15/2020] [Accepted: 12/15/2020] [Indexed: 12/15/2022] Open
Abstract
The presence of bacteriophages (phages) in the human body may impact bacterial microbiota and modulate immunity. The role of phages in human microbiome studies and diseases is poorly understood. However, the correlation between a greater abundance of phages in the gut in ulcerative colitis and diabetes has been suggested. Furthermore, most phages found at different sites in the human body are temperate, so their therapeutic effects and their potential beneficial effects remain unclear. Hence, far, no correlation has been observed between the presence of widespread crAssphage in the human population and human health and diseases. Here, we emphasize the beneficial effects of phage transfer in fecal microbiota transplantation (FMT) in Clostridioides difficile infection. The safety of phage use in gastrointestinal disorders has been demonstrated in clinical studies. The significance of phages in the FMT as well as in gastrointestinal disorders remains to be established. An explanation of the multifaceted role of endogenous phages for the development of phage therapy is required.
Collapse
Affiliation(s)
- Marzanna Łusiak-Szelachowska
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland; (M.Ł.-S.); (B.W.-D.); (M.Ż.)
| | - Beata Weber-Dąbrowska
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland; (M.Ł.-S.); (B.W.-D.); (M.Ż.)
- Phage Therapy Unit, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland
| | - Maciej Żaczek
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland; (M.Ł.-S.); (B.W.-D.); (M.Ż.)
| | - Jan Borysowski
- Department of Clinical Immunology, Transplantation Institute, Medical University of Warsaw, 02-006 Warsaw, Poland;
| | - Andrzej Górski
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland; (M.Ł.-S.); (B.W.-D.); (M.Ż.)
- Phage Therapy Unit, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland
- Infant Jesus Hospital, Medical University of Warsaw, 02-005 Warsaw, Poland
| |
Collapse
|
40
|
Mahmoodi F, Rezatofighi SE, Akhoond MR. Antimicrobial resistance and metallo-beta-lactamase producing among commensal Escherichia coli isolates from healthy children of Khuzestan and Fars provinces; Iran. BMC Microbiol 2020; 20:366. [PMID: 33256594 PMCID: PMC7708168 DOI: 10.1186/s12866-020-02051-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 11/23/2020] [Indexed: 02/06/2023] Open
Abstract
Background The emergence of metallo-β-lactamase (MBL)-producing isolates is alarming since they carry mobile genetic elements with great ability to spread; therefore, early detection of these isolates, particularly their reservoir, is crucial to prevent their inter- and intra-care setting dissemination and establish suitable antimicrobial therapies. The current study was designed to evaluate the frequency of antimicrobial resistance (AMR), MBL producers and identification of MBL resistance genes in Escherichia coli strains isolated from fecal samples of the healthy children under 3 years old. A total of 412 fecal E. coli isolates were collected from October 2017 to December 2018. The study population included healthy infants and children aged < 3 years who did not exhibit symptoms of any diseases, especially gastrointestinal diseases. E. coli isolates were assessed to determine the pattern of AMR. E. coli isolates were assessed to determine the pattern of AMR, the production of extended spectrum β-lactamase (ESBL) and MBL by phenotypic methods. Carbapenem-resistant isolates were investigated for the presence of MBL and carbapenemase genes, plasmid profiling, and the ability of conjugation. Results In sum, AMR, multi-drug resistance (MDR) and ESBL production were observed in more than 54.9, 36.2 and 11.7% of commensal E. coli isolates, respectively. Out of six isolates resistant to imipenem and meropenem, four isolates were phenotypically detected as MBL producers. Two and one E. coli strains carried the blaNDM-1 and blaVIM-2 genes, respectively and were able to transmit imipenem resistance through conjugation. Conclusion Our findings showed that children not exposed to antibiotics can be colonized by E. coli isolates resistant to the commonly used antimicrobial compounds and can be a good indicator for the occurrence and prevalence of AMR in the community. These bacteria can act as a potential reservoir of AMR genes including MBL genes of pathogenic bacteria and lead to the dissemination of resistance mechanisms to other bacteria.
Collapse
Affiliation(s)
- Fahimeh Mahmoodi
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Postal code: 6135743135, Iran
| | - Seyedeh Elham Rezatofighi
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Postal code: 6135743135, Iran.
| | - Mohammad Reza Akhoond
- Mathematical Sciences and Computer Faculty, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
41
|
Mota R, Pinto M, Palmeira J, Gonçalves D, Ferreira H. Multidrug-resistant bacteria as intestinal colonizers and evolution of intestinal colonization in healthy university students in Portugal. Access Microbiol 2020; 3:acmi000182. [PMID: 33997613 PMCID: PMC8115976 DOI: 10.1099/acmi.0.000182] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/02/2020] [Indexed: 12/18/2022] Open
Abstract
Multidrug-resistant bacteria have been increasingly described in healthcare institutions, however community resistance also seems to be emerging. Escherichia coli an intestinal commensal bacteria, is also a pathogen and represents an important intestinal reservoir of resistance. Our aim was the study of the intestinal colonization and of the persistence of antibiotic resistant intestinal bacteria in healthy university students of Porto, in the north of Portugal. Samples from 30 university students were collected and analysed. Two E. coli isolates were randomly obtained from each student and Gram-negative bacilli resistant to antibiotics were studied. In addition, we evaluated changes in the Gram-negative intestinal colonization of ten university students in a short period of time. Molecular characterization showed a high presence of bla TEM in commensal E. coli . Gram-negative bacteria with intrinsic and extrinsic resistance were isolated, namely Pseudomonas spp., Enterobacter spp. and Pantoea spp. We isolated three ESBL-producing E. coli from two students. These isolates showed bla CTX-M group 1 (n=1), bla CTX-M group 9 (n=2), bla TEM (n=2), bla SHV (n=1) and tetA (n=2) genes. Additionally, they showed specific virulence factors and conjugational transfer of antibiotic resistance and virulence genes. One Pseudomonas spp. isolate resistant to carbapenems was detected colonizing one student. Our results confirm that healthy young adults may be colonized with commensals showing clinically relevant antibiotic resistance mechanisms, creating a risk of silent spread of these bacteria in the community.
Collapse
Affiliation(s)
- Raquel Mota
- UCIBIO, Microbiology, Faculty of Pharmacy of University of Porto, Portugal.,Microbiology, Faculty of Pharmacy of University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Marisa Pinto
- UCIBIO, Microbiology, Faculty of Pharmacy of University of Porto, Portugal.,Microbiology, Faculty of Pharmacy of University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Josman Palmeira
- UCIBIO, Microbiology, Faculty of Pharmacy of University of Porto, Portugal.,Microbiology, Faculty of Pharmacy of University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Daniela Gonçalves
- UCIBIO, Microbiology, Faculty of Pharmacy of University of Porto, Portugal.,Microbiology, Faculty of Pharmacy of University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.,Instituto Superior de Saúde, Rua Castelo de Almourol, 4720-155 Amares, Portugal
| | - Helena Ferreira
- UCIBIO, Microbiology, Faculty of Pharmacy of University of Porto, Portugal.,Microbiology, Faculty of Pharmacy of University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
42
|
Wallace MJ, Fishbein SRS, Dantas G. Antimicrobial resistance in enteric bacteria: current state and next-generation solutions. Gut Microbes 2020; 12:1799654. [PMID: 32772817 PMCID: PMC7524338 DOI: 10.1080/19490976.2020.1799654] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 06/19/2020] [Accepted: 07/13/2020] [Indexed: 02/03/2023] Open
Abstract
Antimicrobial resistance is one of the largest threats to global health and imposes substantial burdens in terms of morbidity, mortality, and economic costs. The gut is a key conduit for the genesis and spread of antimicrobial resistance in enteric bacterial pathogens. Distinct bacterial species that cause enteric disease can exist as invasive enteropathogens that immediately evoke gastrointestinal distress, or pathobionts that can arise from established bacterial commensals to inflict dysbiosis and disease. Furthermore, various environmental reservoirs and stressors facilitate the evolution and transmission of resistance. In this review, we present a comprehensive discussion on circulating resistance profiles and gene mobilization strategies of the most problematic species of enteric bacterial pathogens. Importantly, we present emerging approaches toward surveillance of pathogens and their resistance elements as well as promising treatment strategies that can circumvent common resistance mechanisms.
Collapse
Affiliation(s)
- M. J. Wallace
- Department of Pathology & Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - S. R. S. Fishbein
- Department of Pathology & Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - G. Dantas
- Department of Pathology & Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
43
|
Massella E, Reid CJ, Cummins ML, Anantanawat K, Zingali T, Serraino A, Piva S, Giacometti F, Djordjevic SP. Snapshot Study of Whole Genome Sequences of Escherichia coli from Healthy Companion Animals, Livestock, Wildlife, Humans and Food in Italy. Antibiotics (Basel) 2020; 9:antibiotics9110782. [PMID: 33172096 PMCID: PMC7694828 DOI: 10.3390/antibiotics9110782] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/13/2022] Open
Abstract
Animals, humans and food are all interconnected sources of antimicrobial resistance (AMR), allowing extensive and rapid exchange of AMR bacteria and genes. Whole genome sequencing (WGS) was used to characterize 279 Escherichia coli isolates obtained from animals (livestock, companion animals, wildlife), food and humans in Italy. E. coli predominantly belonged to commensal phylogroups B1 (46.6%) and A (29%) using the original Clermont criteria. One hundred and thirty-six sequence types (STs) were observed, including different pandemic (ST69, ST95, ST131) and emerging (ST10, ST23, ST58, ST117, ST405, ST648) extraintestinal pathogenic Escherichia coli (ExPEC) lineages. Eight antimicrobial resistance genes (ARGs) and five chromosomal mutations conferring resistance to highest priority critically important antimicrobials (HP-CIAs) were identified (qnrS1, qnrB19, mcr-1, blaCTX-M1,15,55, blaCMY-2, gyrA/parC/parE, ampC and pmrB). Twenty-two class 1 integron arrangements in 34 strains were characterized and 11 ARGs were designated as intI1 related gene cassettes (aadA1, aadA2, aadA5, aad23, ant2_Ia, dfrA1, dfrA7, dfrA14, dfrA12, dfrA17, cmlA1). Notably, most intI1 positive strains belonged to rabbit (38%) and poultry (24%) sources. Three rabbit samples carried the mcr-1 colistin resistance gene in association with IS6 family insertion elements. Poultry meat harbored some of the most prominent ExPEC STs, including ST131, ST69, ST10, ST23, and ST117. Wildlife showed a high average number of virulence-associated genes (VAGs) (mean = 10), mostly associated with an ExPEC pathotype and some predominant ExPEC lineages (ST23, ST117, ST648) were identified.
Collapse
Affiliation(s)
- Elisa Massella
- Department of Veterinary Medical Sciences, University of Bologna, 40126 Bologna, Italy; (E.M.); (A.S.); (S.P.); (F.G.)
| | - Cameron J. Reid
- The ithree Institute, University of Technology Sydney, City Campus, Ultimo, NSW 2007, Australia; (C.J.R.); (M.L.C.); (K.A.); (T.Z.)
| | - Max L. Cummins
- The ithree Institute, University of Technology Sydney, City Campus, Ultimo, NSW 2007, Australia; (C.J.R.); (M.L.C.); (K.A.); (T.Z.)
| | - Kay Anantanawat
- The ithree Institute, University of Technology Sydney, City Campus, Ultimo, NSW 2007, Australia; (C.J.R.); (M.L.C.); (K.A.); (T.Z.)
| | - Tiziana Zingali
- The ithree Institute, University of Technology Sydney, City Campus, Ultimo, NSW 2007, Australia; (C.J.R.); (M.L.C.); (K.A.); (T.Z.)
| | - Andrea Serraino
- Department of Veterinary Medical Sciences, University of Bologna, 40126 Bologna, Italy; (E.M.); (A.S.); (S.P.); (F.G.)
| | - Silvia Piva
- Department of Veterinary Medical Sciences, University of Bologna, 40126 Bologna, Italy; (E.M.); (A.S.); (S.P.); (F.G.)
| | - Federica Giacometti
- Department of Veterinary Medical Sciences, University of Bologna, 40126 Bologna, Italy; (E.M.); (A.S.); (S.P.); (F.G.)
| | - Steven P. Djordjevic
- The ithree Institute, University of Technology Sydney, City Campus, Ultimo, NSW 2007, Australia; (C.J.R.); (M.L.C.); (K.A.); (T.Z.)
- Correspondence:
| |
Collapse
|
44
|
Evolution of IS26-bounded pseudo-compound transposons carrying the tet(C) tetracycline resistance determinant. Plasmid 2020; 112:102541. [DOI: 10.1016/j.plasmid.2020.102541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/08/2020] [Accepted: 09/10/2020] [Indexed: 12/13/2022]
|
45
|
Hanna N, Purohit M, Diwan V, Chandran SP, Riggi E, Parashar V, Tamhankar AJ, Lundborg CS. Monitoring of Water Quality, Antibiotic Residues, and Antibiotic-Resistant Escherichia coli in the Kshipra River in India over a 3-Year Period. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17217706. [PMID: 33105585 PMCID: PMC7659961 DOI: 10.3390/ijerph17217706] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/08/2020] [Accepted: 10/19/2020] [Indexed: 12/11/2022]
Abstract
The emergence of antibiotic resistance is a major global and environmental health issue, yet the presence of antibiotic residues and resistance in the water and sediment of a river subjected to excessive anthropogenic activities and their relationship with water quality of the river are not well studied. The objectives of the present study were a) to investigate the occurrence of antibiotic residues and antibiotic-resistant Escherichia coli (E. coli) in the water and sediment of the Kshipra river in India at seven selected sites during different seasons of the years 2014, 2015, and 2016 and b) to investigate the association between antibiotic residues and antibiotic-resistant E. coli in water and sediment and measured water quality parameters of the river. Antibiotic residues and resistant E. coli were present in the water and sediment and were associated with the measured water quality parameters. Sulfamethoxazole was the most frequently detected antibiotic in water at the highest concentration of 4.66 µg/L and was positively correlated with the water quality parameters. Significant (p < 0.05) seasonal and spatial variations of antibiotic-resistant E. coli in water and sediment were found. The resistance of E. coli to antibiotics (e.g., sulfamethiazole, norfloxacin, ciprofloxacine, cefotaxime, co-trimoxazole, ceftazidime, meropenem, ampicillin, amikacin, metronidazole, tetracycline, and tigecycline) had varying associations with the measured water and sediment quality parameters. Based on the results of this study, it is suggested that regular monitoring and surveillance of water quality, including antibiotic residues and antibiotic resistance, of all rivers should be taken up as a key priority, in national and Global Action Plans as these can have implications for the buildup of antibiotic resistance.
Collapse
Affiliation(s)
- Nada Hanna
- Department of Global Public Health, Health Systems and Policy (HSP): Medicines Focusing Antibiotics, Karolinska Institutet, 171 77 Stockholm, Sweden; (V.D.); (A.J.T.); (C.S.L.)
- Correspondence: (N.H.); (M.P.)
| | - Manju Purohit
- Department of Global Public Health, Health Systems and Policy (HSP): Medicines Focusing Antibiotics, Karolinska Institutet, 171 77 Stockholm, Sweden; (V.D.); (A.J.T.); (C.S.L.)
- Department of Pathology, R.D. Gardi Medical College, Ujjain 456006, India
- Correspondence: (N.H.); (M.P.)
| | - Vishal Diwan
- Department of Global Public Health, Health Systems and Policy (HSP): Medicines Focusing Antibiotics, Karolinska Institutet, 171 77 Stockholm, Sweden; (V.D.); (A.J.T.); (C.S.L.)
- Department of Public Health and Environment, R.D. Gardi Medical College, Ujjain 456006, India;
- ICMR—National Institute for Research in Environmental Health, Bhopal 462030, India
| | | | - Emilia Riggi
- SSD Epidemiologia screening—CPO, University Hospital ‘Cittàdella Salute della Scienza’, 10126 Turin, Italy;
| | - Vivek Parashar
- Department of Public Health and Environment, R.D. Gardi Medical College, Ujjain 456006, India;
| | - Ashok J. Tamhankar
- Department of Global Public Health, Health Systems and Policy (HSP): Medicines Focusing Antibiotics, Karolinska Institutet, 171 77 Stockholm, Sweden; (V.D.); (A.J.T.); (C.S.L.)
- Indian Initiative for Management of Antibiotic Resistance, Department of Environmental Medicine, R.D. Gardi Medical College, Ujjain 456006, India
| | - Cecilia Stålsby Lundborg
- Department of Global Public Health, Health Systems and Policy (HSP): Medicines Focusing Antibiotics, Karolinska Institutet, 171 77 Stockholm, Sweden; (V.D.); (A.J.T.); (C.S.L.)
| |
Collapse
|
46
|
Sarwar A, Ahmad I, Amin A, Saleem MA. Paper currency harbours antibiotic-resistant coliform bacteria and integron integrase. J Appl Microbiol 2020; 130:1721-1729. [PMID: 32966644 DOI: 10.1111/jam.14856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 09/07/2020] [Accepted: 09/13/2020] [Indexed: 01/16/2023]
Abstract
AIMS This study was designed to analyse the prevalence of class 1 and class 2 integron integrase genes among antibiotic-resistant coliform bacteria isolated from paper currency circulating in Pakistan. METHODS AND RESULTS A total of 500 individual currency notes were collected from different food vending sites at Lahore, Pakistan. Bacterial population were identified by biochemical and PCR techniques. Antimicrobial susceptibility testing was performed by disc diffusion assay. The highest bacterial population on currency was found from street vendors and butcher shops. Escherichia coli was found to be the most prevalent coliform bacteria followed by Klebsiella sp. and Enterobacter sp. PCR amplification of antimicrobial resistance gene showed the presence of ampC, blaTEM , blaNDM-1 , qnrA, tet(A) and tet(B) genes among coliform isolates. A total of 47 integron integrase bearing strains of coliform bacteria were analysed. Sequence analysis showed the presence of dfrA1-aadA1, dfrA1, dfrA5, dfrA7, aadA1, aadA4 cassette arrays in class 1 integron and dfrA1-sat2-aadA1 in class 2 integrase genes. CONCLUSION Circulating currency was heavily contaminated with antimicrobial-resistant coliform bacteria bearing class 1 and class 2 integron integrase genes. SIGNIFICANCE AND IMPACT OF THE STUDY This study describes a potential threat of severe bacterial infections due to improper hand hygiene and community sanitation when dealing with the currency notes.
Collapse
Affiliation(s)
- A Sarwar
- Department of Microbiology, Faculty of Life Sciences, University of Central Punjab, Lahore, Pakistan
| | - I Ahmad
- Department of Microbiology, Faculty of Life Sciences, University of Central Punjab, Lahore, Pakistan
| | - A Amin
- Department of Microbiology, Faculty of Life Sciences, University of Central Punjab, Lahore, Pakistan
| | - M A Saleem
- Department of Microbiology, Faculty of Life Sciences, University of Central Punjab, Lahore, Pakistan
| |
Collapse
|
47
|
Virulence Characteristics and Antibiotic Resistance Profiles of Shiga Toxin-Producing Escherichia coli Isolates from Diverse Sources. Antibiotics (Basel) 2020; 9:antibiotics9090587. [PMID: 32911679 PMCID: PMC7559023 DOI: 10.3390/antibiotics9090587] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/02/2020] [Accepted: 09/07/2020] [Indexed: 12/18/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) is an enteric pathogen that causes several gastrointestinal ailments in humans across the world. STEC’s ability to cause ailment is attributed to the presence of a broad range of known and putative virulence factors (VFs) including those that encode Shiga toxins. A total of 51 E. coli strains belonging to serogroups O26, O45, O103, O104, O113, O121, O145, and O157 were tested for the presence of nine VFs via PCR and for their susceptibility to 17 frequently used antibiotics using the disc diffusion method. The isolates belonged to eight different serotypes, including eight O serogroups and 12 H types. The frequency of the presence of key VFs were stx1 (76.47%), stx2 (86.27%), eae (100%), ehxA (98.03%), nleA (100%), ureC (94.11%), iha (96.07%), subA (9.80%), and saa (94.11%) in the E. coli strains. All E. coli strains carried seven or more distinct VFs and, among these, four isolates harbored all tested VFs. In addition, all E. coli strains had a high degree of antibiotic resistance and were multidrug resistant (MDR). These results show a high incidence frequency of VFs and heterogeneity of VFs and MDR profiles of E. coli strains. Moreover, half of the E. coli isolates (74.5%) were resistant to > 9 classes of antibiotics (more than 50% of the tested antibiotics). Thus, our findings highlight the importance of appropriate epidemiological and microbiological surveillance and control measures to prevent STEC disease in humans worldwide.
Collapse
|
48
|
Kwak S, Choi J, Hink T, Reske KA, Blount K, Jones C, Bost MH, Sun X, Burnham CAD, Dubberke ER, Dantas G, for the CDC Prevention Epicenter Program. Impact of investigational microbiota therapeutic RBX2660 on the gut microbiome and resistome revealed by a placebo-controlled clinical trial. MICROBIOME 2020; 8:125. [PMID: 32862830 PMCID: PMC7457799 DOI: 10.1186/s40168-020-00907-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/11/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Intestinal microbiota restoration can be achieved by complementing a subject's perturbed microbiota with that of a healthy donor. Recurrent Clostridioides difficile infection (rCDI) is one key application of such treatment. Another emerging application of interest is reducing antibiotic-resistant genes (ARGs) and organisms (AROs). In this study, we investigated fecal specimens from a multicenter, randomized, double-blind, placebo-controlled phase 2b study of microbiota-based investigational drug RBX2660. Patients were administered either placebo, 1 dose of RBX2660 and 1 placebo, or 2 doses of RBX2660 via enema and longitudinally tracked for changes in their microbiome and antibiotic resistome. RESULTS All patients exhibited significant recovery of gut microbiome diversity and a decrease of ARG relative abundance during the first 7 days post-treatment. However, the microbiome and resistome shifts toward average configurations from unperturbed individuals were more significant and longer-lasting in RBX2660 recipients compared to placebo. We quantified microbiome and resistome modification by RBX2660 using a novel "transplantation index" metric. We identified taxonomic and metabolic features distinguishing the baseline microbiome of non-transplanted patients and taxa specifically enriched during the process of transplantation. We elucidated the correlation between resistome and taxonomic transplantations and post-treatment dynamics of patient-specific and RBX2660-specific ARGs. Whole genome sequencing of AROs cultured from RBX2660 product and patient samples indicate ARO eradication in patients via RBX2660 administration, but also, to a lesser extent, introduction of RBX2660-derived AROs. CONCLUSIONS Through shotgun metagenomic sequencing, we elucidated the effects of RBX2660 in the microbiome and resistome. Antibiotic discontinuation alone resulted in significant recovery of gut microbial diversity and reduced ARG relative abundance, but RBX2660 administration more rapidly and completely changed the composition of patients' microbiome, resistome, and ARO colonization by transplanting RBX2660 microbiota into the recipients. Although ARGs and AROs were transmitted through RBX2660, the resistome post-RBX2660 more closely resembled that of the administered product-a proxy for the donor-than an antibiotic perturbed state. TRIAL REGISTRATION ClinicalTrials.gov, NCT02299570 . Registered 19 November 2014 Video Abstract.
Collapse
Affiliation(s)
- Suryang Kwak
- The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110 USA
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO 63110 USA
| | - JooHee Choi
- The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110 USA
| | - Tiffany Hink
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine in St. Louis, St. Louis, MO 63110 USA
| | - Kimberly A. Reske
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine in St. Louis, St. Louis, MO 63110 USA
| | - Kenneth Blount
- Rebiotix Inc. a Ferring Company, Minneapolis, MN 55113 USA
| | - Courtney Jones
- Rebiotix Inc. a Ferring Company, Minneapolis, MN 55113 USA
| | - Margaret H. Bost
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine in St. Louis, St. Louis, MO 63110 USA
| | - Xiaoqing Sun
- The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110 USA
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO 63110 USA
| | - Carey-Ann D. Burnham
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO 63110 USA
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine in St. Louis, St. Louis, MO 63110 USA
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110 USA
| | - Erik R. Dubberke
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine in St. Louis, St. Louis, MO 63110 USA
| | - Gautam Dantas
- The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110 USA
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO 63110 USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63110 USA
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110 USA
| | - for the CDC Prevention Epicenter Program
- The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110 USA
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO 63110 USA
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine in St. Louis, St. Louis, MO 63110 USA
- Rebiotix Inc. a Ferring Company, Minneapolis, MN 55113 USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63110 USA
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110 USA
| |
Collapse
|
49
|
Pereira RV, Altier C, Siler JD, Mann S, Jordan D, Warnick LD. Longitudinal effects of enrofloxacin or tulathromycin use in preweaned calves at high risk of bovine respiratory disease on the shedding of antimicrobial-resistant fecal Escherichia coli. J Dairy Sci 2020; 103:10547-10559. [PMID: 32861496 DOI: 10.3168/jds.2019-17989] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 05/13/2020] [Indexed: 12/26/2022]
Abstract
The objective of this study was to longitudinally quantify Escherichia coli resistant to ciprofloxacin and ceftriaxone in calves treated with enrofloxacin or tulathromycin for the control of bovine respiratory disease (BRD). Dairy calves 2 to 3 wk of age not presenting clinical signs of pneumonia and at high risk of developing BRD were randomly enrolled in 1 of 3 groups receiving the following treatments: (1) single label dose of enrofloxacin (ENR); (2) single label dose of tulathromycin (TUL); or (3) no antimicrobial treatment (control, CTL). Fecal samples were collected immediately before administration of treatment and at d 2, 4, 7, 14, 21, 28, 56, and 112 d after beginning treatment. Samples were used for qualification of E. coli using a selective hydrophobic grid membrane filter (HGMF) master grid. The ENR group had a significantly higher proportion of E. coli resistant to ciprofloxacin compared with CTL and TUL at time points 2, 4, and 7. At time point 28, a significantly higher proportion of E. coli resistant to ciprofloxacin was observed only compared with CTL. The TUL group had a significantly higher proportion of E. coli resistant to ciprofloxacin compared with CTL at time points 2, 4, and 7. None of the treatment groups resulted in a significantly higher proportion of E. coli isolates resistant to ceftriaxone. Our study identified that treatment of calves at high risk of developing BRB with either enrofloxacin or tulathromycin resulted in a consistently higher proportion of ciprofloxacin-resistant E. coli in fecal samples.
Collapse
Affiliation(s)
- R V Pereira
- Department of Population Health and Reproduction, College of Veterinary Medicine, University of California Davis, Davis 95616.
| | - C Altier
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14850
| | - J D Siler
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14850
| | - S Mann
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14850
| | - D Jordan
- New South Wales Department of Primary Industries, Wollongbar, NSW, Australia 2477
| | - L D Warnick
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14850
| |
Collapse
|
50
|
F Plasmids Are the Major Carriers of Antibiotic Resistance Genes in Human-Associated Commensal Escherichia coli. mSphere 2020; 5:5/4/e00709-20. [PMID: 32759337 PMCID: PMC7407071 DOI: 10.1128/msphere.00709-20] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Rising antibiotic resistance in human-associated bacterial pathogens is a serious threat to our ability to treat many infectious diseases. It is critical to understand how acquired resistance genes move in and through bacteria associated with humans, particularly for species such as Escherichia coli that are very common in the human gut but can also be dangerous pathogens. This work combined two distinct DNA sequencing approaches to allow us to explore the genomes of E. coli from college students to show that the antibiotic resistance genes these bacteria have acquired are usually carried on a specific type of plasmid that is naturally transferrable to other E. coli, and likely to other related bacteria. The evolution and propagation of antibiotic resistance by bacterial pathogens are significant threats to global public health. Contemporary DNA sequencing tools were applied here to gain insight into carriage of antibiotic resistance genes in Escherichia coli, a ubiquitous commensal bacterium in the gut microbiome in humans and many animals, and a common pathogen. Draft genome sequences generated for a collection of 101 E. coli strains isolated from healthy undergraduate students showed that horizontally acquired antibiotic resistance genes accounted for most resistance phenotypes, the primary exception being resistance to quinolones due to chromosomal mutations. A subset of 29 diverse isolates carrying acquired resistance genes and 21 control isolates lacking such genes were further subjected to long-read DNA sequencing to enable complete or nearly complete genome assembly. Acquired resistance genes primarily resided on F plasmids (101/153 [67%]), with smaller numbers on chromosomes (30/153 [20%]), IncI complex plasmids (15/153 [10%]), and small mobilizable plasmids (5/153 [3%]). Nearly all resistance genes were found in the context of known transposable elements. Very few structurally conserved plasmids with antibiotic resistance genes were identified, with the exception of an ∼90-kb F plasmid in sequence type 1193 (ST1193) isolates that appears to serve as a platform for resistance genes and may have virulence-related functions as well. Carriage of antibiotic resistance genes on transposable elements and mobile plasmids in commensal E. coli renders the resistome highly dynamic. IMPORTANCE Rising antibiotic resistance in human-associated bacterial pathogens is a serious threat to our ability to treat many infectious diseases. It is critical to understand how acquired resistance genes move in and through bacteria associated with humans, particularly for species such as Escherichia coli that are very common in the human gut but can also be dangerous pathogens. This work combined two distinct DNA sequencing approaches to allow us to explore the genomes of E. coli from college students to show that the antibiotic resistance genes these bacteria have acquired are usually carried on a specific type of plasmid that is naturally transferrable to other E. coli, and likely to other related bacteria.
Collapse
|