1
|
Huggins LG, Namgyel U, Wangchuk P, Atapattu U, Traub R, Colella V. Metabarcoding using nanopore sequencing enables identification of diverse and zoonotic vector-borne pathogens from neglected regions: A case study investigating dogs from Bhutan. One Health 2024; 19:100839. [PMID: 39005237 PMCID: PMC11238191 DOI: 10.1016/j.onehlt.2024.100839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 07/16/2024] Open
Abstract
The diversity and prevalence of canine vector-borne pathogens (VBPs) in Bhutan have to date remained unexplored, whilst recent epidemiological surveys in other South Asian nations have found diseases caused by VBPs to be rife in local dog populations. Importantly, many of such VBPs can infect people as well, with a building body of evidence identifying potentially zoonotic rickettsial organisms infecting humans in Bhutan. Given the lack of data on canine pathogens in Bhutan we employed a suite of deep-sequencing metabarcoding methods using Oxford Nanopore Technologies' MinION™ device to holistically characterise the bacterial, apicomplexan and filarial worm blood-borne pathogens of dogs in the country's south. Of the 95 stray, owned and community dogs sampled 78% (95% CI = 69%-85%) were infected with at least one VBP. Pathogen species detected were highly diverse including the bacteria Mycoplasma haemocanis in 16% (95% CI: 10-24%), Ehrlichia canis in 4% (95% CI: 2-10%), Anaplasma platys in 2% (95% CI: 0.5-7%) of dogs as well as the zoonotic species Bartonella clarridgeiae in 1% (95% CI: 0.1-6%), a potentially novel Bartonella spp. and an Ehrlichia chaffeensis-like bacterium, both in 1% (95% CI: 0.1-6%) of dogs. The apicomplexan haemoparasites Hepatozoon canis in 62% (95% CI: 52-71%), Babesia gibsoni in 45% (95% CI: 36-55%) and Babesia vogeli in 3% (95% CI: 1-9%) of dogs were also detected. Finally, 5% (95% CI: 2-12%) of dogs were found to be infected with the filarioid Acanthocheilonema reconditum and 1% (95% CI: 0.1-6%) with zoonotic Dirofilaria sp. hongkongensis. One canine was found positive to the filarioid Setaria tundra, a species normally found infecting cervids. The elucidated diversity of VBP communities highlights the strength of assumption-free diagnostics, such as metabarcoding, in detecting rare, novel, and unexpected pathogens. This approach to identifying pathogen diversity is of critical importance when investigating regions and populations that have thus far been neglected, with the findings aiding the development of future One Health informed strategies for disease control.
Collapse
Affiliation(s)
- Lucas G. Huggins
- Melbourne Veterinary School, Faculty of Science, University of Melbourne, Parkville, Victoria 3050, Australia
| | - Ugyen Namgyel
- National Centre for Animal Health, Serbithang, Thimphu 11001, Bhutan
| | - Pelden Wangchuk
- National Centre for Animal Health, Serbithang, Thimphu 11001, Bhutan
| | - Ushani Atapattu
- Melbourne Veterinary School, Faculty of Science, University of Melbourne, Parkville, Victoria 3050, Australia
| | - Rebecca Traub
- Melbourne Veterinary School, Faculty of Science, University of Melbourne, Parkville, Victoria 3050, Australia
- CityU Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Vito Colella
- Melbourne Veterinary School, Faculty of Science, University of Melbourne, Parkville, Victoria 3050, Australia
| |
Collapse
|
2
|
Pustijanac E, Buršić M, Millotti G, Paliaga P, Iveša N, Cvek M. Tick-Borne Bacterial Diseases in Europe: Threats to public health. Eur J Clin Microbiol Infect Dis 2024; 43:1261-1295. [PMID: 38676855 DOI: 10.1007/s10096-024-04836-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
BACKGROUND Tick-borne diseases, caused by bacterial pathogens, pose a growing threat to public health in Europe. This paper provides an overview of the historical context of the discovery of the most impactful pathogens transmitted by ticks, including Borrelia burgdorferi sensu lato, Rickettsia spp., Anaplasma spp., Francisella spp., Ehrlichia spp., and Neoehrlichia mikurensis. Understanding the historical context of their discovery provides insight into the evolution of our understanding of these pathogens. METHODS AND RESULTS Systematic investigation of the prevalence and transmission dynamics of these bacterial pathogens is provided, highlighting the intricate relationships among ticks, host organisms, and the environment. Epidemiology is explored, providing an in-depth analysis of clinical features associated with infections. Diagnostic methodologies undergo critical examination, with a spotlight on technological advancements that enhance detection capabilities. Additionally, the paper discusses available treatment options, addressing existing therapeutic strategies and considering future aspects. CONCLUSIONS By integrating various pieces of information on these bacterial species, the paper aims to provide a comprehensive resource for researchers and healthcare professionals addressing the impact of bacterial tick-borne diseases in Europe. This review underscores the importance of understanding the complex details influencing bacterial prevalence and transmission dynamics to better combat these emerging public health threats.
Collapse
Affiliation(s)
- Emina Pustijanac
- Faculty of Natural Sciences, Juraj Dobrila University of Pula, Zagrebačka 30, 52100, Pula, Croatia.
| | - Moira Buršić
- Faculty of Natural Sciences, Juraj Dobrila University of Pula, Zagrebačka 30, 52100, Pula, Croatia
| | - Gioconda Millotti
- Faculty of Natural Sciences, Juraj Dobrila University of Pula, Zagrebačka 30, 52100, Pula, Croatia
| | - Paolo Paliaga
- Faculty of Natural Sciences, Juraj Dobrila University of Pula, Zagrebačka 30, 52100, Pula, Croatia
| | - Neven Iveša
- Faculty of Natural Sciences, Juraj Dobrila University of Pula, Zagrebačka 30, 52100, Pula, Croatia
| | - Maja Cvek
- Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000, Rijeka, Croatia
- Teaching Institute of Public Health of the Region of Istria, Nazorova 23, 52100, Pula, Croatia
| |
Collapse
|
3
|
Taques IIGG, Melo ALT, Horta MC, Pereira NA, Aguiar DM. Serological Evidence Supporting the Occurrence of Ehrlichia chaffeensis or a Closely Related Species in Brazilian Dogs. Pathogens 2023; 12:1024. [PMID: 37623984 PMCID: PMC10458213 DOI: 10.3390/pathogens12081024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/05/2023] [Accepted: 08/08/2023] [Indexed: 08/26/2023] Open
Abstract
Ehrlichia chaffeensis is a tick-borne bacterium that causes human monocytotropic ehrlichiosis, an emerging life-threatening disease in humans transmitted by Amblyomma americanum. Although most studies have reported bacterial isolations and clinical cases in the United States, their occurrence is not restricted to North America. Some studies in the Southern Cone of South America have molecularly detected a close phylogenetic relative of E. chaffeensis in ticks and wild mammals. Even so, many gaps must be filled to confirm the presence of this agent in the region. To add new data on this issue, we report the first detection of specific anti-E. chaffeensis antibodies in dogs collected from all regions of Brazil. By means of IFA and ELISA with crude and specific antigens of E. chaffeensis, sera from 1134 dogs were analyzed. Serological analyses using ELISA showed nine (0.7%) seropositive dogs, with seven of them exhibiting IFA titers ranging from 160 to 5120. All regions of Brazil had at least one seropositive dog. Our results support the evidence for the occurrence of E. chaffeensis in South America. As dogs have a close relationship with humans, they can be used as an environmental sentinel for these infections because they can act as a bridge to human parasitism or infection with ehrlichial agents.
Collapse
Affiliation(s)
- Isis Indaiara Gonçalves Granjeiro Taques
- Laboratory of Virology and Rickettsial Infections, Veterinary Hospital, Federal University of Mato Grosso, Av. Fernando Correa da Costa 2367, Cuiabá 78090-900, MT, Brazil; (I.I.G.G.T.); (N.A.P.)
| | | | - Mauricio Claudio Horta
- Laboratory of Parasitic Diseases, Federal University of São Francisco Valley, Petrolina 56304-917, PE, Brazil;
| | - Nathalia Assis Pereira
- Laboratory of Virology and Rickettsial Infections, Veterinary Hospital, Federal University of Mato Grosso, Av. Fernando Correa da Costa 2367, Cuiabá 78090-900, MT, Brazil; (I.I.G.G.T.); (N.A.P.)
- VetVida Veterinary Center of Diagnostic and Research, Cuiabá 78045-100, MT, Brazil
| | - Daniel Moura Aguiar
- Laboratory of Virology and Rickettsial Infections, Veterinary Hospital, Federal University of Mato Grosso, Av. Fernando Correa da Costa 2367, Cuiabá 78090-900, MT, Brazil; (I.I.G.G.T.); (N.A.P.)
| |
Collapse
|
4
|
Richardson SS, Mainville CA, Arguello-Marin A, Whalley D, Burton W, Breitschwerdt EB, Qurollo BA. A second-generation, point-of-care immunoassay provided improved detection of Anaplasma and Ehrlichia antibodies in PCR-positive dogs naturally infected with Anaplasma or Ehrlichia species. J Vet Diagn Invest 2023; 35:366-373. [PMID: 37161312 PMCID: PMC10331380 DOI: 10.1177/10406387231172723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023] Open
Abstract
A validated second-generation SNAP 4Dx Plus (Idexx) incorporates new peptides for improved detection of antibodies against Anaplasma and Ehrlichia tick-borne pathogens in dogs. We compared the first- and second-generation SNAP 4Dx Plus using dogs naturally infected with Anaplasma or Ehrlichia species, or dogs seroreactive by an E. canis indirect fluorescent antibody test (IFAT). The second-generation immunoassay was more sensitive than the first-generation for dogs infected with A. phagocytophilum (51.1% and 29.2%, respectively), A. platys (63.6% and 35.3%, respectively), E. canis (96.2% and 88.3%, respectively), or E. ewingii (73.7% and 70.8%, respectively), and for dogs seroreactive by E. canis IFAT (87.3% and 83.9%, respectively). The second-generation immunoassay detected significantly more Anaplasma- or Ehrlichia-infected dogs that were Anaplasma (p < 0.001) or Ehrlichia (p = 0.031) seroreactive, respectively, than did the first-generation test. When Ehrlichia seroreactivity by E. canis IFAT and both immunoassays was compared, significantly more E. canis-infected dogs were seroreactive by E. canis IFAT than the first-generation (p = 0.006) but not the second-generation (p = 0.125) immunoassay. Significantly more E. ewingii-infected dogs were seroreactive by the first- (p = 0.011) and second-generation (p = 0.049) immunoassays than the E. canis IFAT. Medical records available for 7 dogs that were Anaplasma seroreactive by the second-generation but not the first-generation immunoassay revealed case management decisions that might have been different with an immediate anaplasmosis diagnosis, including earlier doxycycline therapy and less hospitalization. The second-generation SNAP 4Dx Plus test offered improved serologic detection of Anaplasma and Ehrlichia in naturally infected dogs.
Collapse
Affiliation(s)
- Safari S. Richardson
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | | | | | | | | | - Edward B. Breitschwerdt
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Barbara A. Qurollo
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
5
|
Efficacy and Immune Correlates of OMP-1B and VirB2-4 Vaccines for Protection of Dogs from Tick Transmission of Ehrlichia chaffeensis. mBio 2022; 13:e0214022. [PMID: 36342170 PMCID: PMC9765013 DOI: 10.1128/mbio.02140-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Ehrlichia chaffeensis, an obligatory intracellular bacterium, causes human monocytic ehrlichiosis, an emerging disease transmitted by the Lone Star tick, Amblyomma americanum. Here, we investigated the vaccine potential of OMP-1B and VirB2-4. Among the highly expressed and immunodominant E. chaffeensis porin P28s/OMP-1s, OMP-1B is predominantly expressed by E. chaffeensis in A. americanum ticks, whereas VirB2-4 is a pilus protein of the type IV secretion system essential for E. chaffeensis infection of host cells. Immunization with recombinant OMP-1B (rOMP-1B) or recombinant VirB2-4 (rVirB2-4) protected mice from E. chaffeensis infection as effectively as Entry-triggering protein of Ehrlichia immunization. Dogs vaccinated with a nanoparticle vaccine composed of rOMP-1B or rVirB2-4 and an immunostimulating complex developed high antibody titers against the respective antigen. Upon challenge with E. chaffeensis-infected A. americanum ticks, E. chaffeensis was undetectable in the blood of rOMP-1B or rVirB2-4 immunized dogs on day 3 or 6 post-tick attachment and for the duration of the experiment, whereas dogs sham-vaccinated with the complex alone were persistently infected for the duration of the experiment. E. chaffeensis exponentially replicates in blood-feeding ticks to facilitate transmission. Previously infected ticks removed from OMP-1B-immunized dogs showed significantly lower bacterial load relative to ticks removed from sham-immunized dogs, suggesting in-tick neutralization. Peripheral blood leukocytes from rVirB2-4-vaccinated dogs secreted significantly elevated amounts of interferon-γ soon after tick attachment by ELISpot assay and reverse transcription-quantitative PCR, suggesting interferon-γ-mediated Ehrlichia inhibition. Thus, Ehrlichia surface-exposed proteins OMP-1B and VirB2-4 represent new potential vaccine candidates for blocking tick-borne ehrlichial transmission. IMPORTANCE Ehrlichia are tick-borne pathogens that cause a potentially fatal illness-ehrlichiosis-in animals and humans worldwide. Currently, no vaccine is available for ehrlichiosis, and treatment options are limited. Ticks are biological vectors of Ehrlichia, i.e., Ehrlichia exponentially replicates in blood-sucking ticks before infecting animals. Ticks also inoculate immunomodulatory substances into animals. Thus, it is important to study effects of candidate vaccines on Ehrlichia infection in both animals and ticks and the immune responses of animals shortly after infected tick challenge. Here, we investigated the efficacy of vaccination with functionality-defined two surface-exposed outer membrane proteins of Ehrlichia chaffeensis, OMP-1B and VirB2-4, in a mouse infection model and then in a dog-tick transmission model. Our results begin to fill gaps in our understanding of Ehrlichia-derived protective antigens against tick-transmission and immune correlates and mechanisms that could help future development of vaccines for immunization of humans and animals to counter tick-transmitted ehrlichiosis.
Collapse
|
6
|
Diniz PPV, Moura de Aguiar D. Ehrlichiosis and Anaplasmosis. Vet Clin North Am Small Anim Pract 2022; 52:1225-1266. [DOI: 10.1016/j.cvsm.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
7
|
An Entry-Triggering Protein of Ehrlichia Is a New Vaccine Candidate against Tick-Borne Human Monocytic Ehrlichiosis. mBio 2020; 11:mBio.00895-20. [PMID: 32723916 PMCID: PMC7387794 DOI: 10.1128/mbio.00895-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The incidence of tick-borne diseases has risen dramatically in the past two decades and continues to rise. Discovered in 1986 and designated a nationally notifiable disease in 1998 by the Centers for Disease Control and Prevention, human monocytic ehrlichiosis, which is caused by the bacterium Ehrlichia chaffeensis, is one of the most prevalent, life-threatening, emerging tick-borne zoonoses in the United States. We investigated the role of the E. chaffeensis protein EtpE in transmission of the bacterium from tick to human cells and in vaccinated dogs with EtpE to assess the efficacy of vaccination against E. chaffeensis-infected tick challenge. Our results help fill gaps in our understanding of E. chaffeensis-derived protective antigens that could be used in a candidate vaccine for immunization of humans to counter tick-transmitted ehrlichiosis. Ehrlichia chaffeensis is an obligatory intracellular bacterium that causes human monocytic ehrlichiosis, an emerging disease transmitted by the Lone Star tick, Amblyomma americanum. E. chaffeensis outer membrane protein entry triggering protein of Ehrlichia (EtpE) is necessary for bacterial entry into human cells. We investigated the role of EtpE in transmission of the bacteria from tick to human cells and whether or not vaccination with EtpE can prevent transmission of ehrlichiae from ticks to mammals. An antiserum against the recombinant C terminus of EtpE (rEtpE-C), which binds a mammalian cell-surface receptor and triggers bacterial entry, significantly inhibited E. chaffeensis transmission from infected tick cells to human monocytes in culture. Each of five specific-pathogen-free dogs were vaccinated with rEtpE-C along with an immunostimulating complex or were sham vaccinated with the complex alone. Dogs vaccinated with rEtpE-C developed high antibody titers against rEtpE-C and produced interferon-γ-secreting cells, as assessed with the ELISpot assay. All 10 dogs were challenged with A. americanum adult ticks infected as nymphs by syringe inoculation with E. chaffeensis. Upon challenge, both the vaccinated and control dogs became infected by day 1 post-tick attachment, but the majority of rEtpE-C-vaccinated dogs rapidly cleared the infection from the bloodstream as soon as day 7, whereas most of sham-vaccinated dogs remained infected at day 35. Peripheral blood leukocytes from vaccinated dogs had significantly elevated interferon-γ mRNA levels and secreted significantly elevated interferon-γ soon after tick attachment. Thus, the EtpE-C vaccine represents the first ehrlichial protein vaccine demonstrated to reduce bacterial infection in mammals upon challenge with infected ticks.
Collapse
|
8
|
Lee S, Lee H, Park JW, Yoon SS, Seo HJ, Noh J, Yoo MS, Kim KH, Park Y, Cho YS, So BJ. Prevalence of antibodies against Anaplasma spp., Borrelia burgdorferi sensu lato, Babesia gibsoni, and Ehrlichia spp. in dogs in the Republic of Korea. Ticks Tick Borne Dis 2020; 11:101412. [PMID: 32173299 DOI: 10.1016/j.ttbdis.2020.101412] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 12/20/2019] [Accepted: 02/24/2020] [Indexed: 11/20/2022]
Abstract
There is a lack of comprehensive studies on the seroprevalence of tick-borne pathogens in the Republic of Korea. Therefore, the aim of this study was to investigate the seroprevalences of Anaplasma spp. (A. phagocytophilum/A. platys), Borrelia burgdorferi sensu lato, Babesia gibsoni, Ehrlichia spp. (E. canis/E. ewingii), and Ehrlichia chaffeensis in dogs across the Republic of Korea in 2017 and 2018. A total of 2215 serum samples collected from 938 companion dogs, 969 shelter dogs, and 308 military working dogs were examined using commercial enzyme-linked immunosorbent assay (ELISA) and indirect fluorescence immunoassay (IFA) kits. Data collected for each animal, including breed, sex, age, region, season, and dog type, were used for statistical analysis. The overall seroprevalence was highest for Anaplasma spp. (15.1 %), followed by Ehrlichia spp. (10.3 %), B. burgdorferi sensu lato (6.4 %), E. chaffeensis (2.3 %), and B. gibsoni (1.7 %). One hundred and sixty-one dogs had antibodies against two or three different pathogens. The most common combinations were Anaplasma spp. - Ehrlichia spp. (2.1 %), Anaplasma spp. - E. chaffeensis (1.4 %), and Anaplasma spp. - B. burgdorferi sensu lato (1.2 %). Season was significantly associated with the seroprevalences of B. burgdorferi sensu lato and Ehrlichia spp., with dogs presenting the highest percentage of positive results during summer. Anaplasma spp. and B. gibsoni were significantly more prevalent in the northern and southern regions, respectively. The seroprevalences of Anaplasma spp., B. burgdorferi sensu lato, and Ehrlichia spp. were significantly higher in military working dogs, while the seroprevalence of E. chaffeensis was higher in companion dogs. The current findings are important for future surveillance of canine tick-borne pathogens and designing appropriate approaches for the diagnosis and control of these pathogens in the Republic of Korea.
Collapse
Affiliation(s)
- Seunghee Lee
- Pathologic Diagnostic Laboratory, Animal Disease Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea.
| | - Hyunkyoung Lee
- Pathologic Diagnostic Laboratory, Animal Disease Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea.
| | - Jung-Won Park
- Pathologic Diagnostic Laboratory, Animal Disease Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea.
| | - Soon-Seek Yoon
- Pathologic Diagnostic Laboratory, Animal Disease Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea.
| | - Hyun-Ji Seo
- Parasitic and Insect Disease Laboratory, Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea.
| | - Jinhyeong Noh
- Parasitic and Insect Disease Laboratory, Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea.
| | - Mi-Sun Yoo
- Parasitic and Insect Disease Laboratory, Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea.
| | - Keun-Ho Kim
- Parasitic and Insect Disease Laboratory, Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea.
| | - Yeojin Park
- Parasitic and Insect Disease Laboratory, Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea.
| | - Yun Sang Cho
- Parasitic and Insect Disease Laboratory, Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea.
| | - Byung Jae So
- Pathologic Diagnostic Laboratory, Animal Disease Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea.
| |
Collapse
|
9
|
McGill JL, Wang Y, Ganta CK, Boorgula GDY, Ganta RR. Antigen-Specific CD4 +CD8 + Double-Positive T Cells Are Increased in the Blood and Spleen During Ehrlichia chaffeensis Infection in the Canine Host. Front Immunol 2018; 9:1585. [PMID: 30050533 PMCID: PMC6050357 DOI: 10.3389/fimmu.2018.01585] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 06/26/2018] [Indexed: 12/11/2022] Open
Abstract
Ehrlichia chaffeensis is an obligate intracellular bacterium belonging to the order, Rickettsiales and is a frequent cause of severe and fatal tick-borne infection in people in North America. The reservoir host for E. chaffeensis is the white-tailed deer, while humans and dogs are regarded as common incidental hosts. In dogs, we and others have shown that E. chaffeensis establishes a chronic infection that persists for several weeks to months, while promoting the development of Th1 and Th17 cellular responses and pathogen-specific humoral immunity. We demonstrate here that vaccination with a live, attenuated clone of E. chaffeensis bearing a targeted mutation in the Ech_0230 gene neither promotes the development of long-lived cellular or humoral immunity, nor confers protection against secondary wild-type E. chaffeensis challenge. In dogs, a population of mature CD4+CD8+ double-positive (DP) T cells exists in the periphery that shares similarities with the DP T cell populations that have been described in humans and swine. Little is known about the function of these cells, particularly in the context of infectious diseases. Here, we demonstrate that canine DP T cells expand significantly in response to E. chaffeensis infection. Using in vitro antigen recall assays, we further demonstrate that canine DP T cells undergo clonal expansion, produce IFNγ and IL-17, and upregulate expression of granzyme B and granulysin. Together, our results demonstrate that DP T cells accumulate in the host during E. chaffeensis infection, and suggest that alternative lymphocyte populations may participate in the immune response to tick-borne infections in the incidental host.
Collapse
Affiliation(s)
- Jodi L. McGill
- Department of Veterinary Microbiology and Preventative Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Ying Wang
- Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Chanran K. Ganta
- Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Gunavanthi D. Y. Boorgula
- Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Roman R. Ganta
- Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
10
|
Nair ADS, Cheng C, Ganta CK, Sanderson MW, Alleman AR, Munderloh UG, Ganta RR. Comparative Experimental Infection Study in Dogs with Ehrlichia canis, E. chaffeensis, Anaplasma platys and A. phagocytophilum. PLoS One 2016; 11:e0148239. [PMID: 26840398 PMCID: PMC4739612 DOI: 10.1371/journal.pone.0148239] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 01/14/2016] [Indexed: 11/30/2022] Open
Abstract
Dogs acquire infections with the Anaplasmataceae family pathogens, E. canis, E. chaffeensis, E. ewingii, A. platys and A. phagocytophilum mostly during summer months when ticks are actively feeding on animals. These pathogens are also identified as causing diseases in people. Despite the long history of tick-borne diseases in dogs, much remains to be defined pertaining to the clinical and pathological outcomes of infections with these pathogens. In the current study, we performed experimental infections in dogs with E. canis, E. chaffeensis, A. platys and A. phagocytophilum. Animals were monitored for 42 days to evaluate infection-specific clinical, hematological and pathological differences. All four pathogens caused systemic persistent infections detectible throughout the 6 weeks of infection assessment. Fever was frequently detected in animals infected with E. canis, E. chaffeensis, and A. platys, but not in dogs infected with A. phagocytophilum. Hematological differences were evident in all four infected groups, although significant overlap existed between the groups. A marked reduction in packed cell volume that correlated with reduced erythrocytes and hemoglobin was observed only in E. canis infected animals. A decline in platelet numbers was common with E. canis, A. platys and A. phagocytophilum infections. Histopathological lesions in lung, liver and spleen were observed in all four groups of infected dogs; infection with E. canis had the highest pathological scores, followed by E. chaffeensis, then A. platys and A. phagocytophilum. All four pathogens induced IgG responses starting on day 7 post infection, which was predominantly comprised of IgG2 subclass antibodies. This is the first detailed investigation comparing the infection progression and host responses in dogs after inoculation with four pathogens belonging to the Anaplasmataceae family. The study revealed a significant overlap in clinical, hematological and pathological changes resulting from the infections.
Collapse
Affiliation(s)
- Arathy D. S. Nair
- Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, United States of America
| | - Chuanmin Cheng
- Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, United States of America
| | - Chanran K. Ganta
- Kansas State Veterinary Diagnostic Laboratory, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, United States of America
| | - Michael W Sanderson
- Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, United States of America
| | - Arthur R. Alleman
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Ulrike G. Munderloh
- Department of Entomology, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Roman R. Ganta
- Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, United States of America
- * E-mail:
| |
Collapse
|
11
|
McGill JL, Nair ADS, Cheng C, Rusk RA, Jaworski DC, Ganta RR. Vaccination with an Attenuated Mutant of Ehrlichia chaffeensis Induces Pathogen-Specific CD4+ T Cell Immunity and Protection from Tick-Transmitted Wild-Type Challenge in the Canine Host. PLoS One 2016; 11:e0148229. [PMID: 26841025 PMCID: PMC4739596 DOI: 10.1371/journal.pone.0148229] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 01/14/2016] [Indexed: 01/02/2023] Open
Abstract
Ehrlichia chaffeensis is a tick-borne rickettsial pathogen and the causative agent of human monocytic ehrlichiosis. Transmitted by the Amblyomma americanum tick, E. chaffeensis also causes disease in several other vertebrate species including white-tailed deer and dogs. We have recently described the generation of an attenuated mutant strain of E. chaffeensis, with a mutation in the Ech_0660 gene, which is able to confer protection from secondary, intravenous-administered, wild-type E. chaffeensis infection in dogs. Here, we extend our previous results, demonstrating that vaccination with the Ech_0660 mutant protects dogs from physiologic, tick-transmitted, secondary challenge with wild-type E. chaffeensis; and describing, for the first time, the cellular and humoral immune responses induced by Ech_0660 mutant vaccination and wild-type E. chaffeensis infection in the canine host. Both vaccination and infection induced a rise in E. chaffeensis-specific antibody titers and a significant Th1 response in peripheral blood as measured by E. chaffeensis antigen-dependent CD4+ T cell proliferation and IFNγ production. Further, we describe for the first time significant IL-17 production by peripheral blood leukocytes from both Ech_0660 mutant vaccinated animals and control animals infected with wild-type E. chaffeensis, suggesting a previously unrecognized role for IL-17 and Th17 cells in the immune response to rickettsial pathogens. Our results are a critical first step towards defining the role of the immune system in vaccine-induced protection from E. chaffeensis infection in an incidental host; and confirm the potential of the attenuated mutant clone, Ech_0660, to be used as a vaccine candidate for protection against tick-transmitted E. chaffeensis infection.
Collapse
Affiliation(s)
- Jodi L. McGill
- Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, United States of America
- * E-mail:
| | - Arathy D. S. Nair
- Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, United States of America
| | - Chuanmin Cheng
- Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, United States of America
| | - Rachel A. Rusk
- Pathobiology Graduate Program, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, United States of America
| | - Deborah C. Jaworski
- Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, United States of America
| | - Roman R. Ganta
- Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, United States of America
| |
Collapse
|
12
|
Qurollo BA, Chandrashekar R, Hegarty BC, Beall MJ, Stillman BA, Liu J, Thatcher B, Pultorak E, Cerrito B, Walsh M, Breitschwerdt EB. A serological survey of tick-borne pathogens in dogs in North America and the Caribbean as assessed by Anaplasma phagocytophilum, A. platys, Ehrlichia canis, E. chaffeensis, E. ewingii, and Borrelia burgdorferi species-specific peptides. Infect Ecol Epidemiol 2014; 4:24699. [PMID: 25405006 PMCID: PMC4212082 DOI: 10.3402/iee.v4.24699] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 09/11/2014] [Accepted: 09/19/2014] [Indexed: 12/02/2022] Open
Abstract
Introduction Tick-borne pathogens cause a spectrum of disease manifestations in both dogs and humans. Recognizing regional and temporal shifts in exposure are important as tick distributions change. To better delineate regional exposure to canine tick-borne pathogens, an expanded set of species-specific peptides were used to detect Anaplasma phagocytophilum (Aph), Anaplasma platys (Apl), Ehrlichia canis (Ec), Ehrlichia chaffeensis (Ech), Ehrlichia ewingii (Eew), and Borrelia burgdorferi (Bb) antibodies in canine serum. Methods Archived canine serum samples (n=6,582) collected during 2008–2010 and in 2012 from the US, Canada, and the Caribbean were retrospectively screened for antibodies against Ehrlichia and Anaplasma species-specific peptides. Overall, regional and temporal seroprevalence rates were determined. Results Overall Bb and Eew were the most seroprevalent pathogens. During 2008–2010, seroprevalence rates increased overall for Aph and Ech, and regionally, Bb and Aph seroprevalence rates increased in the South. Canada had unexpectedly high seroprevalence rates for Ec and Apl. The most common co-exposures were Eew+Ech, followed by Aph+Bb and Eew+Bb. Conclusions This study demonstrated significant shifts in canine vector-borne disease seroprevalence rates. The use of specific peptides facilitated improved geographic delineation of tick-borne pathogen distributions among dogs, which may enhance epidemiological surveillance of vector-borne pathogens shared by dogs and humans.
Collapse
Affiliation(s)
- Barbara A Qurollo
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | | | - Barbara C Hegarty
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | | | | | - Jiayou Liu
- IDEXX Laboratories Inc, Westbrook, ME, USA
| | | | - Elizabeth Pultorak
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Brian Cerrito
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Mary Walsh
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Edward B Breitschwerdt
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
13
|
Ehrlichia chaffeensis infection in the reservoir host (white-tailed deer) and in an incidental host (dog) is impacted by its prior growth in macrophage and tick cell environments. PLoS One 2014; 9:e109056. [PMID: 25303515 PMCID: PMC4193820 DOI: 10.1371/journal.pone.0109056] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 09/01/2014] [Indexed: 12/29/2022] Open
Abstract
Ehrlichia chaffeensis, transmitted from Amblyomma americanum ticks, causes human monocytic ehrlichiosis. It also infects white-tailed deer, dogs and several other vertebrates. Deer are its reservoir hosts, while humans and dogs are incidental hosts. E. chaffeensis protein expression is influenced by its growth in macrophages and tick cells. We report here infection progression in deer or dogs infected intravenously with macrophage- or tick cell-grown E. chaffeensis or by tick transmission in deer. Deer and dogs developed mild fever and persistent rickettsemia; the infection was detected more frequently in the blood of infected animals with macrophage inoculum compared to tick cell inoculum or tick transmission. Tick cell inoculum and tick transmission caused a drop in tick infection acquisition rates compared to infection rates in ticks fed on deer receiving macrophage inoculum. Independent of deer or dogs, IgG antibody response was higher in animals receiving macrophage inoculum against macrophage-derived Ehrlichia antigens, while it was significantly lower in the same animals against tick cell-derived Ehrlichia antigens. Deer infected with tick cell inoculum and tick transmission caused a higher antibody response to tick cell cultured bacterial antigens compared to the antibody response for macrophage cultured antigens for the same animals. The data demonstrate that the host cell-specific E. chaffeensis protein expression influences rickettsemia in a host and its acquisition by ticks. The data also reveal that tick cell-derived inoculum is similar to tick transmission with reduced rickettsemia, IgG response and tick acquisition of E. chaffeensis.
Collapse
|
14
|
Stoffel RT, McClure JC, Butcher MM, Johnson GC, Roland W, Cheng C, Sirigireddy KR, Ganta R, Boughan K, Ewing SA, Stich RW. Experimental infection of Rhipicephalus sanguineus with Ehrlichia chaffeensis. Vet Microbiol 2014; 172:334-8. [PMID: 24894131 DOI: 10.1016/j.vetmic.2014.04.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 01/11/2014] [Accepted: 04/23/2014] [Indexed: 10/25/2022]
Abstract
Ehrlichia chaffeensis, the etiologic agent of human monocytic ehrlichiosis, is a tick-borne rickettsial pathogen that is infective to a wide range of mammals, including dogs and people. Amblyomma americanum, the lone star tick, is considered the primary vector of E. chaffeensis, but this pathogen has been detected in other tick species, including the brown dog tick, Rhipicephalus sanguineus. We hypothesized that the Arkansas strain of E. chaffeensis is infective to R. sanguineus, and used a novel PCR assay to test for acquisition of this pathogen by R. sanguineus and A. americanum ticks that were simultaneously fed on experimentally infected dogs. Although E. chaffeensis was not frequently detected in peripheral blood of these dogs, the pathogen was detected in both tick species and in canine lung, kidney, lymph node, bone marrow and frontal lobe samples. One dog (AFL) was maintained for several years, and ticks again acquired E. chaffeensis from this dog 566 days after intradermal inoculation with E. chaffeensis, but the pathogen was not detected in ticks fed on the same dog at 764 or 1086 days after the intradermal inoculation.
Collapse
Affiliation(s)
- Ryan T Stoffel
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| | - Jennifer C McClure
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| | - Marion M Butcher
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| | - Gayle C Johnson
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| | - Will Roland
- Department of Internal Medicine Infectious Disease Division, University of Missouri, Columbia, MO 65211, USA
| | - Chuanmin Cheng
- Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, KS 66506, USA
| | - Kamesh R Sirigireddy
- Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, KS 66506, USA
| | - Roman Ganta
- Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, KS 66506, USA
| | - Kirstin Boughan
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - S A Ewing
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Roger W Stich
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
15
|
Transcription of Ehrlichia chaffeensis genes is accomplished by RNA polymerase holoenzyme containing either sigma 32 or sigma 70. PLoS One 2013; 8:e81780. [PMID: 24278458 PMCID: PMC3836757 DOI: 10.1371/journal.pone.0081780] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 10/22/2013] [Indexed: 11/19/2022] Open
Abstract
Bacterial gene transcription is initiated by RNA polymerase containing a sigma factor. To understand gene regulation in Ehrlichia chaffeensis, an important tick-transmitted rickettsiae responsible for human monocytic ehrlichiosis, we initiated studies evaluating the transcriptional machinery of several genes of this organism. We mapped the transcription start sites of 10 genes and evaluated promoters of five genes (groE, dnaK, hup, p28-Omp14 and p28-Omp19 genes). We report here that the RNA polymerase binding elements of E. chaffeensis gene promoters are highly homologous for its only two transcription regulators, sigma 32 and sigma 70, and that gene expression is accomplished by either of the transcription regulators. RNA analysis revealed that although transcripts for both sigma 32 and sigma 70 are upregulated during the early replicative stage, their expression patterns remained similar for the entire replication cycle. We further present evidence demonstrating that the organism’s -35 motifs are essential to transcription initiations. The data suggest that E. chaffeensis gene regulation has evolved to support the organism’s growth, possibly to facilitate its intraphagosomal growth. Considering the limited availability of genetic tools, this study offers a novel alternative in defining gene regulation in E. chaffeensis and other related intracellular pathogens.
Collapse
|
16
|
Rar V, Golovljova I. Anaplasma, Ehrlichia, and “Candidatus Neoehrlichia” bacteria: Pathogenicity, biodiversity, and molecular genetic characteristics, a review. INFECTION GENETICS AND EVOLUTION 2011; 11:1842-61. [DOI: 10.1016/j.meegid.2011.09.019] [Citation(s) in RCA: 182] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 09/23/2011] [Accepted: 09/23/2011] [Indexed: 12/18/2022]
|
17
|
Abstract
In the time since canine ehrlichiosis due to Ehrlichia canis was first described in 1935 and first recognized in the United States in 1962, many key advances have been made in our understanding of the diversity of the rickettsial organisms responsible for ehrlichiosis and anaplasmosis in dogs and, occasionally, cats, the vectors capable of transmitting these agents, and the role these organisms play as both important veterinary pathogens and zoonotic disease agents. Despite considerable progress in the field, much remains to be learned regarding mechanisms contributing to pathogenesis, effective treatment modalities, and prevention strategies that best protect pet health. This article highlights current understanding of the transmission, diagnosis, and management of ehrlichiosis and anaplasmosis in dogs and cats.
Collapse
Affiliation(s)
- Susan E Little
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078-2007, USA.
| |
Collapse
|
18
|
Little SE, O'Connor TP, Hempstead J, Saucier J, Reichard MV, Meinkoth K, Meinkoth JH, Andrews B, Ullom S, Ewing SA, Chandrashekar R. Ehrlichia ewingii infection and exposure rates in dogs from the southcentral United States. Vet Parasitol 2010; 172:355-60. [PMID: 20541322 DOI: 10.1016/j.vetpar.2010.05.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Revised: 04/06/2010] [Accepted: 05/05/2010] [Indexed: 11/26/2022]
Abstract
We used PCR and a novel serologic assay to determine infection and exposure rates to Ehrlichia ewingii in dogs from an area of northeast Oklahoma and northwest Arkansas where Amblyomma americanum ticks are abundant. Of 143 dogs assayed, 13 (9.1%) harbored E. ewingii by PCR and 64 (44.8%) had antibodies to E. ewingii detected using a peptide-based microtiter plate ELISA. Dogs were more likely (P=0.001) to be positive by PCR if sampled in August (30.8%) but no association was found between seropositive status and month of collection of sample (P>0.05). Additional testing revealed PCR evidence of Ehrlichia chaffeensis (4/143; 2.8%) and Anaplasma platys (5/143; 3.5%) as well as antibodies reactive to E. chaffeensis (25/143; 17.5%), Ehrlichia canis (2/143; 1.4%), and Anaplasma spp. (8/143; 5.6%). Testing of another 200 dogs from the area revealed additional PCR and/or serologic evidence of E. ewingii, E. canis, E. chaffeensis, and A. platys. None of the 343 dogs evaluated had evidence of Borrelia burgdorferi exposure. These data support the interpretation that E. ewingii may be the primary agent of canine ehrlichiosis in this region, and suggest that diagnostic evaluation of dogs suspected to have a tick-borne disease should include assays targeting this organism.
Collapse
Affiliation(s)
- Susan E Little
- Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Nicholson WL, Allen KE, McQuiston JH, Breitschwerdt EB, Little SE. The increasing recognition of rickettsial pathogens in dogs and people. Trends Parasitol 2010; 26:205-12. [PMID: 20207197 DOI: 10.1016/j.pt.2010.01.007] [Citation(s) in RCA: 174] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Revised: 01/16/2010] [Accepted: 01/25/2010] [Indexed: 12/25/2022]
|
20
|
Yabsley MJ. Natural history of Ehrlichia chaffeensis: vertebrate hosts and tick vectors from the United States and evidence for endemic transmission in other countries. Vet Parasitol 2009; 167:136-48. [PMID: 19819631 DOI: 10.1016/j.vetpar.2009.09.015] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Ehrlichia chaffeensis, an intracellular gram-negative zoonotic bacterium, is the causative agent of human monocytotropic ehrlichiosis (HME). In humans, the disease can range from a mild, non-specific illness with few to no clinical signs to a moderately severe to fatal disease, especially those with compromised immune systems. E. chaffeensis is maintained in a complex cycle involving white-tailed deer (WTD; Odocoileus virginianus) as a primary reservoir and the lone star tick (LST; Amblyomma americanum) as a primary vector. Numerous other species are naturally exposed to E. chaffeensis and disease has been documented in some domestic animals and wildlife including domestic dogs and ring-tailed lemurs. The organism has been found throughout the natural range of the LST and as the tick continues to expand its range, the geographic range of risk for E. chaffeensis infections will likely continue to expand. Recent data have indicated that E. chaffeensis, or a closely related organism, has been found in many species of ticks and vertebrate hosts in numerous countries.
Collapse
Affiliation(s)
- Michael J Yabsley
- Department of Population Health, The University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
21
|
McClure JC, Crothers ML, Schaefer JJ, Stanley PD, Stich RW. Rapid screening and cultivation of Ehrlichia canis from refrigerated carrier blood. Clin Microbiol Infect 2009; 15 Suppl 2:72-3. [PMID: 19438630 DOI: 10.1111/j.1469-0691.2008.02192.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- J C McClure
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| | | | | | | | | |
Collapse
|
22
|
Ganta RR, Peddireddi L, Seo GM, Dedonder SE, Cheng C, Chapes SK. Molecular characterization of Ehrlichia interactions with tick cells and macrophages. FRONT BIOSCI-LANDMRK 2009; 14:3259-73. [PMID: 19273271 PMCID: PMC4392924 DOI: 10.2741/3449] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Several tick-transmitted Anaplasmataceae family rickettsiales of the genera Ehrlichia and Anaplasma have been discovered in recent years. Some species are classified as pathogens causing emerging diseases with growing health concern for people. They include human monocytic ehrlichiosis, human granulocytic ewingii ehrlichiosis and human granulocytic anaplasmosis which are caused by Ehrlichia chaffeensis, E. ewingii and Anaplasma phagocytophilum, respectively. Despite the complex cellular environments and defense systems of arthropod and vertebrate hosts, rickettsials have evolved strategies to evade host clearance and persist in both vertebrate and tick host environments. For example, E. chaffeensis growing in vertebrate macrophages has distinct patterns of global host cell-specific protein expression and differs considerably in morphology compared with its growth in tick cells. Immunological studies suggest that host cell-specific differences in Ehrlichia gene expression aid the pathogen, extending its survival. Bacteria from tick cells persist longer when injected into mice compared with mammalian macrophage-grown bacteria, and the host response is also significantly different. This review presents the current understanding of tick-Ehrlichia interactions and implications for future.
Collapse
Affiliation(s)
- Roman Reddy Ganta
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA.
| | | | | | | | | | | |
Collapse
|
23
|
Yu DH, Li YH, Yoon JS, Lee JH, Lee MJ, Yu IJ, Chae JS, Park JH. Ehrlichia chaffeensisInfection in Dogs in South Korea. Vector Borne Zoonotic Dis 2008; 8:355-8. [DOI: 10.1089/vbz.2007.0226] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Do-Hyeon Yu
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Chonbuk National University, Jeonju, Jeonbuk, Korea
| | - Ying-Hua Li
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Chonbuk National University, Jeonju, Jeonbuk, Korea
| | - Ji-Seon Yoon
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Chonbuk National University, Jeonju, Jeonbuk, Korea
| | - Jong-Hyeon Lee
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Chonbuk National University, Jeonju, Jeonbuk, Korea
| | - Mi-Jin Lee
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Chonbuk National University, Jeonju, Jeonbuk, Korea
| | - Il-Jeoung Yu
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Chonbuk National University, Jeonju, Jeonbuk, Korea
| | - Joon-Seok Chae
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Jin-Ho Park
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Chonbuk National University, Jeonju, Jeonbuk, Korea
| |
Collapse
|
24
|
Proteomic analysis of and immune responses to Ehrlichia chaffeensis lipoproteins. Infect Immun 2008; 76:3405-14. [PMID: 18490460 DOI: 10.1128/iai.00056-08] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ehrlichia chaffeensis is an obligately intracellular gram-negative bacterium and is the etiologic agent of human monocytic ehrlichiosis (HME). Although E. chaffeensis induces the generation of several cytokines and chemokines by leukocytes, E. chaffeensis lacks lipopolysaccharide and peptidoglycan. Bioinfomatic analysis of the E. chaffeensis genome, however, predicted genes encoding 15 lipoproteins and 3 posttranslational lipoprotein-processing enzymes. The present study showed that by use of multidimensional liquid chromatography followed by tandem mass spectrometry, all predicted lipoproteins as well as lipoprotein-processing enzymes were expressed by E. chaffeensis cultured in the human promyelocytic leukemia cell line HL-60. Consistent with this observation, a signal peptidase II inhibitor, globomycin, was found to inhibit E. chaffeensis infection and lipoprotein processing in HL-60 cell culture. To study in vivo E. chaffeensis lipoprotein expression and host immune responses to E. chaffeensis lipoproteins, 13 E. chaffeensis lipoprotein genes were cloned into a mammalian expression vector. When the DNA constructs were inoculated into naïve dogs, or when dogs were infected with E. chaffeensis, the animals developed delayed-type hypersensitivity reactions at cutaneous sites of the DNA construct deposition and serum antibodies to these lipoproteins. This is the first demonstration of lipoprotein expression and elicitation of immune responses by a member of the order Rickettsiales. Multiple lipoproteins expressed by E. chaffeensis in vitro and in vivo may play key roles in pathogenesis and immune responses in HME.
Collapse
|
25
|
Delos Santos JRC, Boughan K, Bremer WG, Rizzo B, Schaefer JJ, Rikihisa Y, Needham GR, Capitini LA, Anderson DE, Oglesbee M, Ewing SA, Stich RW. Experimental infection of dairy calves with Ehrlichia chaffeensis. J Med Microbiol 2008; 56:1660-1668. [PMID: 18033836 DOI: 10.1099/jmm.0.47427-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human monocytic ehrlichiosis (HME) is a zoonotic emerging tick-borne disease with clinical signs that range from mild symptoms to multiple organ failure and death. Ehrlichia chaffeensis, the aetiologic agent of HME, is reported to infect a divergent range of mammals. Although cattle are common hosts of the primary vector of this pathogen, the susceptibility of this host to E. chaffeensis has not been reported to date. This study was undertaken to determine if cattle could provide a useful infection model of E. chaffeensis. Dairy calves were injected with DH82 cells infected with the Arkansas, St Vincent or 91HE17 strain of E. chaffeensis, and monitored for signs of clinical ehrlichiosis and for infection of peripheral blood and ticks by PCR assay. Splenectomized and spleen-intact calves were injected with cryopreserved stabilates of E. chaffeensis-infected DH82 cells for the first experiment. Mild clinical signs were occasionally observed among these calves, and only two blood samples were PCR-positive, while several ticks fed on each calf tested PCR-positive. The second experiment involved injection of normal calves with active cultures of the same E. chaffeensis strains. Interestingly, three of six calves inoculated with active cultures became recumbent and died or had to be euthanized. All of the surviving calves in this experiment tested PCR-positive on multiple dates, but fewer ticks fed on these calves were PCR-positive. These results suggest that a bovine disease model could facilitate the understanding of factors that affect the severity of HME.
Collapse
Affiliation(s)
- Jose R C Delos Santos
- Department of Veterinary Preventive Medicine, Ohio State University, Columbus, OH, USA
| | - Kirsten Boughan
- Department of Veterinary Preventive Medicine, Ohio State University, Columbus, OH, USA
| | - William G Bremer
- Department of Veterinary Preventive Medicine, Ohio State University, Columbus, OH, USA
| | - Brian Rizzo
- Department of Veterinary Preventive Medicine, Ohio State University, Columbus, OH, USA
| | - John J Schaefer
- Department of Entomology, Ohio State University, Columbus, OH, USA
| | - Yasuko Rikihisa
- Department of Veterinary Biosciences, Ohio State University, Columbus, OH, USA
| | - Glen R Needham
- Department of Entomology, Ohio State University, Columbus, OH, USA
| | - L A Capitini
- University Laboratory Animal Resources, Ohio State University, Columbus, OH, USA
| | - David E Anderson
- Department of Veterinary Clinical Sciences, Ohio State University, Columbus, OH, USA
| | - Michael Oglesbee
- Department of Veterinary Biosciences, Ohio State University, Columbus, OH, USA
| | - S A Ewing
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK, USA
| | - Roger W Stich
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, USA
| |
Collapse
|
26
|
Ganta RR, Cheng C, Miller EC, McGuire BL, Peddireddi L, Sirigireddy KR, Chapes SK. Differential clearance and immune responses to tick cell-derived versus macrophage culture-derived Ehrlichia chaffeensis in mice. Infect Immun 2007; 75:135-45. [PMID: 17060466 PMCID: PMC1828415 DOI: 10.1128/iai.01127-06] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2006] [Revised: 08/16/2006] [Accepted: 10/02/2006] [Indexed: 11/20/2022] Open
Abstract
Human monocytic ehrlichiosis is caused by a tick-transmitted rickettsia, Ehrlichia chaffeensis. We recently reported that E. chaffeensis grown in tick cells expresses different proteins than bacteria grown in macrophages. Therefore, we tested the hypothesis that immune responses against E. chaffeensis would be different if the mice are challenged with bacteria grown in macrophages or tick cells. We assessed the E. chaffeensis clearance from the peritoneum, spleen, and liver by C57BL/6J mice using a TaqMan-based real-time reverse transcription-PCR assay. Macrophage-grown E. chaffeensis was cleared in 2 weeks from the peritoneum, whereas the pathogen from tick cells persisted for nine additional days and included three relapses of increasing bacterial load separated by three-day intervals. Tick cell-grown bacteria also persisted in the livers and spleens with higher bacterial loads compared to macrophage-grown bacteria and fluctuated over a period of 35 days. Three-day periodic cycles were detected in T-cell CD62L/CD44 ratios in the spleen and bone marrow in response to infections with both tick cell- and macrophage-grown bacteria and were accompanied by similar periodic cycles of spleen cell cytokine secretions and nitric oxide and interleukin-6 by peritoneal macrophages. The E. chaffeensis-specific immunoglobulin G response was considerably higher and steadily increased in mice infected with the tick cell-derived E. chaffeensis compared to DH82-grown bacteria. In addition, antigens detected by the immunoglobulins were significantly different between mice infected with the E. chaffeensis originating from tick cells or macrophages. The differences in the immune response to tick cell-grown bacteria compared to macrophage-grown bacteria reflected a delay in the shift of gene expression from the tick cell-specific Omp 14 gene to the macrophage-specific Omp 19 gene. These data suggest that the host response to E. chaffeensis depends on the source of the bacteria and that this experimental model requires the most natural inoculum possible to allow for a realistic understanding of host resistance.
Collapse
Affiliation(s)
- Roman R Ganta
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Ave., Manhattan, KS 66506, USA.
| | | | | | | | | | | | | |
Collapse
|
27
|
Cárdenas AM, Doyle CK, Zhang X, Nethery K, Corstvet RE, Walker DH, McBride JW. Enzyme-linked immunosorbent assay with conserved immunoreactive glycoproteins gp36 and gp19 has enhanced sensitivity and provides species-specific immunodiagnosis of Ehrlichia canis infection. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2006; 14:123-8. [PMID: 17151186 PMCID: PMC1797795 DOI: 10.1128/cvi.00361-06] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Ehrlichia canis is the primary etiologic agent of canine monocytic ehrlichiosis, a globally distributed and potentially fatal disease of dogs. We previously reported on the identification of two conserved major immunoreactive antigens, gp36 and gp19, which are the first proteins to elicit an E. canis-specific antibody response, and gp200 and p28, which elicit strong antibody responses later in the acute phase of the infection. In this report, the sensitivities and specificities of five recombinant E. canis proteins for the immunodiagnosis of E. canis infection by an enzyme-linked immunosorbent assay (ELISA) were evaluated. Recombinant polypeptides gp36, gp19, and gp200 (N and C termini) exhibited 100% sensitivity and specificity for immunodiagnosis by the recombinant glycoprotein ELISA compared with the results obtained by an indirect fluorescent-antibody assay (IFA) for the detection of antibodies in dogs that were naturally infected with E. canis. Moreover, the enhanced sensitivities of gp36 and gp19 for immunodiagnosis by the recombinant glycoprotein ELISA compared to those obtained by IFA were demonstrated with dogs experimentally infected with E. canis, in which antibodies were detected as much as 2 weeks earlier, on day 14 postinoculation. gp36 and gp19 were not cross-reactive with antibodies in sera from E. chaffeensis-infected dogs and thus provided species-specific serologic discrimination between E. canis and E. chaffeensis infections. This is the first demonstration of the improved detection capability of the recombinant protein technology compared to the capability of the "gold standard" IFA and may eliminate the remaining obstacles associated with the immunodiagnosis of E. canis infections, including species-specific identification and the lack of sensitivity associated with low antibody titers early in the acute phase of the infection.
Collapse
Affiliation(s)
- Ana Maria Cárdenas
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Marsilio F, Di Martino B, Meridiani I, Bianciardi P. Direct identification of Ehrlichia canis by a novel polymerase chain reaction method and molecular analysis of the citrate synthase (gltA) gene from various Italian strains. J Vet Diagn Invest 2006; 18:215-7. [PMID: 16617707 DOI: 10.1177/104063870601800215] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Fourteen blood samples collected from dogs that were seropositive for Ehrlichia canis were examined for the presence of the citrate synthase gene using a highly specific and sensitive novel polymerase chain reaction assay. The assay detected E. canis DNA in 3 dogs. The complete nucleotide sequence of the citrate synthase gene was determined in 2 of the test-positive samples, and represents the first sequence of the gene to be derived from Italian isolates. The sequence data displayed high identity (99.2%) between the geographically separated Italian samples and the Oklahoma strain of E. canis. The high-sequence conservation revealed by molecular analysis confirmed the usefulness of the citrate synthase gene as a target for detection of E. canis.
Collapse
Affiliation(s)
- Fulvio Marsilio
- Department of Comparative Biomedical Sciences, University of Teramo, Italy.
| | | | | | | |
Collapse
|
29
|
Varela-Stokes AS, Stokes JV, Davidson WR, Little SE. Co-infection of White-Tailed Deer with Multiple Strains ofEhrlichia chaffeensis. Vector Borne Zoonotic Dis 2006; 6:140-51. [PMID: 16796511 DOI: 10.1089/vbz.2006.6.140] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We investigated the effect of exposing deer to multiple strains of Ehrlichia chaffeensis that differed in number of tandem repeats in either the variable-length PCR target (VLPT) gene or 120 kDa antigen gene. We hypothesized that infection with one strain would provide immunity to infection with other strains of E. chaffeensis. All deer initially exposed to strain A (604-2) became PCR and culture positive by 10 days post-infection (DPI). Three deer infected with strain A and subsequently inoculated with strain B (623-4) became infected with strain B. Two deer infected with strain A and subsequently inoculated with strain C (125B) became infected with strain C. Of three deer, each infected with strain B and subsequently inoculated with strain C, one was PCR positive for strain C. Of three deer previously inoculated with both strains A and B, and subsequently inoculated with strain C, one showed delayed evidence of strain C. Western blot analysis demonstrated that deer sera reacted differently to antigens from each exposed strain. A complementary in vitro study demonstrated that exposure to two strains differing in VLPT repeats may lead to co-infection of DH82 cells. These results complement a previous study and further show that deer can become sequentially infected with up to three strains of E. chaffeensis. This suggests that competitive exclusion, a phenomenon described in related organisms such as Anaplasma marginale whereby infection with one strain precludes subsequent infection by a second, distinct strain of the same species, may not occur with E. chaffeensis.
Collapse
Affiliation(s)
- Andrea S Varela-Stokes
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia 30602, USA.
| | | | | | | |
Collapse
|
30
|
Yabsley MJ, Norton TM, Powell MR, Davidson WR. Molecular and serologic evidence of tick-borne Ehrlichiae in three species of lemurs from St. Catherines Island, Georgia, USA. J Zoo Wildl Med 2005; 35:503-9. [PMID: 15732591 DOI: 10.1638/03-116] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In recent years, several species of ehrlichiae have been recognized as tick-borne disease agents of veterinary and medical importance. Clinically normal free-ranging or previously free-ranging lemurs, including 46 ring-tailed lemurs (Lemur catta), six blue-eyed black lemurs (Eulemur macaco flavifrons), and four black and white ruffed lemurs (Varecia variegata variegata) from St. Catherines Island, Georgia, were tested for evidence of exposure to tick-borne ehrlichiae. All 52 adult lemurs were serologically tested for exposure to Ehrlichia chaffeensis and Anaplasma phagocytophilum. Polymerase chain reaction (PCR) assays for E. chaffeensis, A. phagocytophilum, Ehrlichia ewingii, and Ehrlichia canis were conducted on blood samples from all 56 lemurs. Blood from all lemurs was inoculated into DH82 cell cultures for E. chaffeensis isolation. Of the adult lemurs, 20 (38.5%) and 16 (30.8%) had antibodies reactive (> or =1:128) for E. chaffeensis and A. phagocytophilum, respectively. Two ring-tailed lemurs were PCR and culture positive for E. chaffeensis. Molecular characterization of the two E. chaffeensis isolates showed that both contained 5-repeat variants of the variable-length PCR target (VLPT) antigen gene and 3-repeat variants of the 120-kDa antigen gene. Sequencing of the VLPT genes revealed a novel amino acid repeat unit (type-9). One lemur infected with E. chaffeensis was slightly hypoproteinemic and had moderately elevated serum alanine aminotransferase (ALT) levels. These lemurs from St. Catherines Island have been exposed to or infected with tick-borne ehrlichiae, or both, but showed no clinical disease.
Collapse
Affiliation(s)
- Michael J Yabsley
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | |
Collapse
|
31
|
Dugan VG, Gaydos JK, Stallknecht DE, Little SE, Beall AD, Mead DG, Hurd CC, Davidson WR. Detection ofEhrlichiaspp. in Raccoons (Procyon lotor) from Georgia. Vector Borne Zoonotic Dis 2005; 5:162-71. [PMID: 16011433 DOI: 10.1089/vbz.2005.5.162] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Raccoons (Procyonis lotor) and opossums (Didelphis virginianus) acquired from six contiguous counties in the Piedmont physiographic region of Georgia were investigated for their potential role in the epidemiology of ehrlichial and anaplasmal species. Serum was tested by indirect fluorescent antibody (IFA) assay for the presence of antibodies reactive to Ehrlichia chaffeensis, E. canis, and Anaplasma phagocytophilum (HGA agent). Nested polymerase chain reaction (PCR) assay was used to test whole blood or white blood cell preparations for the presence of Ehrlichia and Anaplasma spp. 16S rRNA (rDNA) gene fragments. In addition, ticks were collected from these animals and identified. Twenty-three of 60 raccoons (38.3%) had E. chaffeensis-reactive antibodies (>1:64), 13 of 60 raccoons (21.7%) had E. canis-reactive antibodies, and one of 60 raccoons (1.7%) had A. phagocytophilum- reactive antibodies. A sequence confirmed E. canis product was obtained from one of 60 raccoons and a novel Ehrlichia-like 16S rDNA sequence was detected in 32 of 60 raccoons. This novel sequence was most closely related to an Ehrlichia-like organism identified from Ixodes ticks and rodents in Asia and Europe. Raccoons were PCR negative for E. chaffeensis and E. ewingii DNA. Five tick species, including Dermacentor variabilis, Amblyomma americanum, Ixodes texanus, I. cookei, and I. scapularis, were identified from raccoons and represent potential vectors for the ehrlichiae detected. Opossums (n = 17) were free of ticks and negative on all IFA and PCR assays. This study suggests that raccoons are potentially involved in the epidemiology of multiple ehrlichial organisms with known or potential public health and veterinary implications.
Collapse
Affiliation(s)
- Vivien G Dugan
- Southeastern Cooperative Wildlife Disease Study and Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia 30602-4393, USA.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Singu V, Liu H, Cheng C, Ganta RR. Ehrlichia chaffeensis expresses macrophage- and tick cell-specific 28-kilodalton outer membrane proteins. Infect Immun 2005; 73:79-87. [PMID: 15618143 PMCID: PMC538988 DOI: 10.1128/iai.73.1.79-87.2005] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ehrlichia chaffeensis, a tick-transmitted rickettsial agent, causes human monocyte/macrophage-tropic ehrlichiosis. In this study, proteomic approaches were used to demonstrate host cell-specific antigenic expression by E. chaffeensis. The differentially expressed antigens include those from the 28-kDa outer membrane protein (p28-Omp) multigene locus. The proteins expressed in infected macrophages are the products of p28-Omp19 and p28-Omp20 genes, whereas in tick cells, the protein expressed is the p28-Omp14 gene product. The differentially expressed proteins are posttranslationally modified by phosphorylation and glycosylation to generate multiple expressed forms. Host cell-specific protein expression is not influenced by growth temperatures and is reversible. Host cell-specific protein expression coupled with posttranslational modifications may be a hallmark for the pathogen's adaptation to a dual-host life cycle and its persistence.
Collapse
Affiliation(s)
- Vijayakrishna Singu
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Ave., Manhattan, KS 66506, USA
| | | | | | | |
Collapse
|
33
|
Zhang JZ, Guo H, Winslow GM, Yu XJ. Expression of members of the 28-kilodalton major outer membrane protein family of Ehrlichia chaffeensis during persistent infection. Infect Immun 2004; 72:4336-43. [PMID: 15271888 PMCID: PMC470584 DOI: 10.1128/iai.72.8.4336-4343.2004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The 28-kDa immunodominant outer membrane proteins (P28 OMPs) of Ehrlichia chaffeensis are encoded by a multigene family. As an indirect measure of the in vivo expression of the members of the p28 multigene family of E. chaffeensis, sera from two beagle dogs experimentally infected with E. chaffeensis were evaluated for the presence of specific antibodies to P28 OMPs by enzyme-linked immunosorbent assay. Antigenic peptides unique to each of the P28s were identified within the first hypervariable region of each P28 OMP. Serological responses to peptides derived from all P28 OMPs were detected from day 30 postinoculation to day 468 and from day 46 until day 159 in the two beagles. Although antibody titers to the peptides fluctuated, the peak response to all of the peptides appeared simultaneously in each dog. The antibody responses to another outer membrane protein of E. chaffeensis (GP120) showed similar temporal and quantitative changes. These data suggest that the P28 OMPs are expressed concurrently during persistent Ehrlichia infection.
Collapse
Affiliation(s)
- Jian-zhi Zhang
- Department of Pathology, Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas 77555-0609, USA
| | | | | | | |
Collapse
|