1
|
Yan Z, Han J, Mi Z, Wang Z, Fu Y, Wang C, Dang N, Liu H, Zhang F. GPNMB disrupts SNARE complex assembly to maintain bacterial proliferation within macrophages. Cell Mol Immunol 2025; 22:512-526. [PMID: 40038549 PMCID: PMC12041529 DOI: 10.1038/s41423-025-01272-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 02/12/2025] [Indexed: 03/06/2025] Open
Abstract
Xenophagy plays a crucial role in restraining the growth of intracellular bacteria in macrophages. However, the machinery governing autophagosome‒lysosome fusion during bacterial infection remains incompletely understood. Here, we utilize leprosy, an ideal model for exploring the interactions between host defense mechanisms and bacterial infection. We highlight the glycoprotein nonmetastatic melanoma protein B (GPNMB), which is highly expressed in macrophages from lepromatous leprosy (L-Lep) patients and interferes with xenophagy during bacterial infection. Upon infection, GPNMB interacts with autophagosomal-localized STX17, leading to a reduced N-glycosylation level at N296 of GPNMB. This modification promotes the degradation of SNAP29, thus preventing the assembly of the STX17-SNAP29-VAMP8 SNARE complex. Consequently, the fusion of autophagosomes with lysosomes is disrupted, resulting in inhibited cellular autophagic flux. In addition to Mycobacterium leprae, GPNMB deficiency impairs the proliferation of various intracellular bacteria in human macrophages, suggesting a universal role of GPNMB in intracellular bacterial infection. Furthermore, compared with their counterparts, Gpnmbfl/fl Lyz2-Cre mice presented decreased Mycobacterium marinum amplification. Overall, our study reveals a previously unrecognized role of GPNMB in host antibacterial defense and provides insights into its regulatory mechanism in SNARE complex assembly.
Collapse
Affiliation(s)
- Zhenzhen Yan
- Hospital for Skin Diseases, Shandong First Medical University, Jinan, Shandong, China
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Department of Dermatology, Shandong Provincial Hospital Affiliated with Shandong First Medical University, Jinan, Shandong, China
| | - Jinghong Han
- Hospital for Skin Diseases, Shandong First Medical University, Jinan, Shandong, China
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Zihao Mi
- Hospital for Skin Diseases, Shandong First Medical University, Jinan, Shandong, China
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Zhenzhen Wang
- Hospital for Skin Diseases, Shandong First Medical University, Jinan, Shandong, China
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yixuan Fu
- Department of Dermatology, Shandong Provincial Hospital Affiliated with Shandong First Medical University, Jinan, Shandong, China
| | - Chuan Wang
- Hospital for Skin Diseases, Shandong First Medical University, Jinan, Shandong, China
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Ningning Dang
- Department of Dermatology, Shandong Provincial Hospital Affiliated with Shandong First Medical University, Jinan, Shandong, China
| | - Hong Liu
- Hospital for Skin Diseases, Shandong First Medical University, Jinan, Shandong, China.
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China.
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| | - Furen Zhang
- Hospital for Skin Diseases, Shandong First Medical University, Jinan, Shandong, China.
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China.
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| |
Collapse
|
2
|
Krausser L, Van Dyck-Lippens M, Balde R, Reenaers R, Al Mubarak R, Rigouts L, Walter ND, Voskuil MI, Van Rie A, de Jong BC, Braet SM. 70% ethanol preserves mycobacterial RNA from cultures more efficiently than GTC-TCEP. Sci Rep 2025; 15:12322. [PMID: 40210664 PMCID: PMC11986040 DOI: 10.1038/s41598-025-93699-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 03/10/2025] [Indexed: 04/12/2025] Open
Abstract
RNA-based assays hold great potential for assessing viability molecularly in slow- or non-growing mycobacteria, and RNAseq has evolved into a powerful tool in infectious disease research. Such applications require efficient RNA preservation for optimal results. The performance of 70% ethanol as simpler alternative to commonly-used GTC-based storage of mycobacteria at - 80 °C was compared on cultured Mycobacterium tuberculosis H37Ra subjected to following setups: a 45 °C heat shock to test immediate stabilisation, five freeze-thaw scenarios to mimic different shipping conditions, and long-term storage at -80 °C, -20 °C, 4 °C or 30 °C for up to twelve months. Treatment with 70% ethanol yielded overall higher RNA quantities compared to GTC-TCEP and RNA integrity was maintained at -20 °C for twelve months. Both buffers are reportedly mycobactericidal and, in this study, prevented heat stress-induced transcriptomic changes, thereby conserving a transcriptomic snapshot. RNA yield and integrity remained unaltered after treatment with 70% ethanol, even with up to three freeze-thaw cycles. Based on these results, we recommend 70% ethanol over GTC-TCEP for RNA preservation of mycobacterial cultures. While freeze-thawing, short-term high-temperature and - 20 °C long-term storage results are promising, this inexpensive, widely available buffer needs further validation prior to applying it for RNA-based analysis in clinical samples.
Collapse
Affiliation(s)
- Lena Krausser
- Department Biomedical Sciences, Institute of Tropical Medicine (ITM), Antwerp, Belgium.
- University of Antwerp, Antwerp, Belgium.
| | | | - Ramata Balde
- Department Biomedical Sciences, Institute of Tropical Medicine (ITM), Antwerp, Belgium
| | - Rabab Reenaers
- Department Biomedical Sciences, Institute of Tropical Medicine (ITM), Antwerp, Belgium
| | - Reem Al Mubarak
- Rocky Mountain Regional VA Medical Center, Aurora, CO, USA
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Leen Rigouts
- Department Biomedical Sciences, Institute of Tropical Medicine (ITM), Antwerp, Belgium
- University of Antwerp, Antwerp, Belgium
| | - Nicholas D Walter
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Consortium for Applied Microbial Metrics, Aurora, CO, USA
| | - Martin I Voskuil
- Consortium for Applied Microbial Metrics, Aurora, CO, USA
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | - Bouke C de Jong
- Department Biomedical Sciences, Institute of Tropical Medicine (ITM), Antwerp, Belgium
| | - Sofie M Braet
- Department Biomedical Sciences, Institute of Tropical Medicine (ITM), Antwerp, Belgium
| |
Collapse
|
3
|
Pereira-Dutra FS, Souza EK, Souza TS, Goltara-Gomes TC, Ferraro-Moreira F, Palhinha L, Cunha-Fernandes T, Rajão MA, Silva AR, Bozza PT. Accumulation of lipid droplets induced by Listeria monocytogenes in macrophages: implications for survival and evasion of innate immunity. J Leukoc Biol 2024; 116:1364-1371. [PMID: 38727078 DOI: 10.1093/jleuko/qiae115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 11/28/2024] Open
Abstract
Listeriosis, caused by Listeria monocytogenes (L.m.), poses a significant public health concern as one of the most severe foodborne diseases. The pathogenesis of L.m. involves critical steps such as phagosome rupture and escape upon internalization. Throughout infection, L.m. influences various host processes, including lipid metabolism pathways, yet the role of lipid droplets (LDs) remains unclear. Here, we reported a rapid, time-dependent increase in LD formation in macrophages induced by L.m. LD biogenesis was found to be dependent on L.m. viability and virulence genes, particularly on the activity of the pore-forming protein listeriolysin O (LLO). The prevention of LD formation by inhibiting diacylglycerol O-acyltransferase 1 (DGAT1) and cytosolic phospholipase A2 (cPLA2) significantly reduced intracellular bacterial survival, impaired prostaglandin E2 synthesis, and decreased interleukin-10 production. Additionally, inhibiting LD formation led to increased levels of tumor necrosis factor α and interferon β. Collectively, our data suggest a role for LDs in promoting L.m. cell survival and evasion within macrophages.
Collapse
Affiliation(s)
- Filipe S Pereira-Dutra
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation, Fiocruz, Brasil Ave, Rio de Janeiro, RJ, 21040-361, Brazil
- Center for Research, Innovation and Surveillance in COVID-19 and Heath Emergencies, Oswaldo Cruz Foundation, Fiocruz, Brasil Ave, Rio de Janeiro, RJ, 21040-361, Brazil
| | - Ellen K Souza
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation, Fiocruz, Brasil Ave, Rio de Janeiro, RJ, 21040-361, Brazil
| | - Tamyris S Souza
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation, Fiocruz, Brasil Ave, Rio de Janeiro, RJ, 21040-361, Brazil
- Center for Research, Innovation and Surveillance in COVID-19 and Heath Emergencies, Oswaldo Cruz Foundation, Fiocruz, Brasil Ave, Rio de Janeiro, RJ, 21040-361, Brazil
| | - Taynná C Goltara-Gomes
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation, Fiocruz, Brasil Ave, Rio de Janeiro, RJ, 21040-361, Brazil
| | - Felipe Ferraro-Moreira
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation, Fiocruz, Brasil Ave, Rio de Janeiro, RJ, 21040-361, Brazil
| | - Lohanna Palhinha
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation, Fiocruz, Brasil Ave, Rio de Janeiro, RJ, 21040-361, Brazil
- Center for Research, Innovation and Surveillance in COVID-19 and Heath Emergencies, Oswaldo Cruz Foundation, Fiocruz, Brasil Ave, Rio de Janeiro, RJ, 21040-361, Brazil
| | - Tamires Cunha-Fernandes
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation, Fiocruz, Brasil Ave, Rio de Janeiro, RJ, 21040-361, Brazil
- Center for Research, Innovation and Surveillance in COVID-19 and Heath Emergencies, Oswaldo Cruz Foundation, Fiocruz, Brasil Ave, Rio de Janeiro, RJ, 21040-361, Brazil
| | - Matheus A Rajão
- Program of Immunology and Tumor Biology, National Cancer Institute, INCA, André Cavalcanti St, Rio de Janeiro, RJ, 20231-050, Brazil
| | - Adriana R Silva
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation, Fiocruz, Brasil Ave, Rio de Janeiro, RJ, 21040-361, Brazil
- Center for Research, Innovation and Surveillance in COVID-19 and Heath Emergencies, Oswaldo Cruz Foundation, Fiocruz, Brasil Ave, Rio de Janeiro, RJ, 21040-361, Brazil
| | - Patrícia T Bozza
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation, Fiocruz, Brasil Ave, Rio de Janeiro, RJ, 21040-361, Brazil
- Center for Research, Innovation and Surveillance in COVID-19 and Heath Emergencies, Oswaldo Cruz Foundation, Fiocruz, Brasil Ave, Rio de Janeiro, RJ, 21040-361, Brazil
| |
Collapse
|
4
|
de Paula NA, Leite MN, de Faria Bertoluci DF, Soares CT, Rosa PS, Frade MAC. Human Skin as an Ex Vivo Model for Maintaining Mycobacterium leprae and Leprosy Studies. Trop Med Infect Dis 2024; 9:135. [PMID: 38922047 PMCID: PMC11209558 DOI: 10.3390/tropicalmed9060135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/09/2024] [Accepted: 06/13/2024] [Indexed: 06/27/2024] Open
Abstract
The in vitro cultivation of M. leprae has not been possible since it was described as causing leprosy, and the limitation of animal models for clinical aspects makes studies on leprosy and bacteria-human host interaction a challenge. Our aim was to standardize the ex vivo skin model (hOSEC) to maintenance and study of M. leprae as an alternative animal model. Bacillary suspensions were inoculated into human skin explants and sustained in DMEM medium for 60 days. Explants were evaluated by RT-PCR-16SrRNA and cytokine gene expression. The viability and infectivity of bacilli recovered from explants (D28 and D60) were evaluated using the Shepard's model. All explants were RT-PCR-16SrRNA positive. The viability and infectivity of recovered bacilli from explants, analyzed after 5 months of inoculation in mice, showed an average positivity of 31%, with the highest positivity in the D28 groups (80%). Furthermore, our work showed different patterns in cytokine gene expression (TGF-β, IL-10, IL-8, and TNF-α) in the presence of alive or dead bacilli. Although changes can be made to improve future experiments, our results have demonstrated that it is possible to use the hOSEC to maintain M. leprae for 60 days, interacting with the host system, an important step in the development of experimental models for studies on the biology of the bacillus, its interactions, and drug susceptibility.
Collapse
Affiliation(s)
- Natália Aparecida de Paula
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto14049-900, Brazil;
- Dermatology Division, Department of Medical Clinics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, Brazil;
- Reference Center for Sanitary Dermatology with Emphasis on Leprosy, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, Brazil
| | - Marcel Nani Leite
- Dermatology Division, Department of Medical Clinics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, Brazil;
| | | | - Cleverson Teixeira Soares
- Department of Anatomic Pathology, Lauro de Souza Lima Institute, Bauru 17034-971, Brazil; (D.F.d.F.B.); (C.T.S.)
| | - Patrícia Sammarco Rosa
- Division of Research and Education, Lauro de Souza Lima Institute, Bauru 17034-971, Brazil;
| | - Marco Andrey Cipriani Frade
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto14049-900, Brazil;
- Dermatology Division, Department of Medical Clinics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, Brazil;
- Reference Center for Sanitary Dermatology with Emphasis on Leprosy, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, Brazil
| |
Collapse
|
5
|
Lewtak K, Czaplewska P, Wydrych J, Keller R, Nowicka A, Skrzypiec K, Fiołka MJ. Antimycobacterial Activity of Sida hermaphrodita (L.) Rusby (Malvaceae) Seed Extract. Cells 2023; 12:397. [PMID: 36766739 PMCID: PMC9913413 DOI: 10.3390/cells12030397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 01/24/2023] Open
Abstract
The current prevalence of such lifestyle diseases as mycobacteriosis and tuberculosis is a result of the growing resistance of microorganisms to the available antibiotics and their significant toxicity. Therefore, plants can successfully become a source of new therapeutic agents. The aim of this study was to investigate the effect of protein extract from Sida hermaphrodita seeds on the morphology, structure, and viability of Mycobacterium smegmatis and to carry out proteomic characterization of the protein extract. The analyses were carried out using fluorescence and transmission microscopy, atomic force microscopy, and spectroscopy. The proteomic studies were performed using liquid chromatography coupled to tandem mass spectrometry. The studies showed that the seed extract applied at concentrations of 50-150 µg/mL exerted a statistically significant effect on M. smegmatis cells, that is, a reduction of the viability of the bacteria and induction of changes in the structure of the mycobacterial cell wall. Additionally, the SEM analysis confirmed that the extract did not have a cytotoxic or cytopathic effect on fibroblast cells. The proteomic analysis revealed the presence of structural, storage, and enzymatic proteins and peptides in the extract, which are typical for seeds. Proteins and peptides with antimicrobial activity identified as vicillins and lipid-transporting proteins were also determined in the protein profile of the extract.
Collapse
Affiliation(s)
- Kinga Lewtak
- Department of Cell Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| | - Paulina Czaplewska
- Laboratory of Mass Spectrometry, Intercollegiate Faculty of Biotechnology, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Jerzy Wydrych
- Department of Functional Anatomy and Cytobiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| | - Radosław Keller
- Analytical Laboratory, Institute of Chemical Sciences, Department of Chemistry, Maria Curie-Skłodowska University, Pl. M. Curie-Skłodowskiej 2, 20-031 Lublin, Poland
| | - Aldona Nowicka
- Analytical Laboratory, Institute of Chemical Sciences, Department of Chemistry, Maria Curie-Skłodowska University, Pl. M. Curie-Skłodowskiej 2, 20-031 Lublin, Poland
| | - Krzysztof Skrzypiec
- Analytical Laboratory, Institute of Chemical Sciences, Department of Chemistry, Maria Curie-Skłodowska University, Pl. M. Curie-Skłodowskiej 2, 20-031 Lublin, Poland
| | - Marta Julia Fiołka
- Department of Immunobiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| |
Collapse
|
6
|
Manivasagan P, Khan F, Rajan Dhatchayeny D, Park S, Joe A, Han HW, Seo SH, Thambi T, Giang Phan VH, Kim YM, Kim CS, Oh J, Jang ES. Antibody-targeted and streptomycin-chitosan oligosaccharide-modified gold nanoshells for synergistic chemo-photothermal therapy of drug-resistant bacterial infection. J Adv Res 2022:S2090-1232(22)00190-4. [PMID: 36041689 DOI: 10.1016/j.jare.2022.08.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/02/2022] [Accepted: 08/14/2022] [Indexed: 10/15/2022] Open
Abstract
Despite the many advanced strategies that are available, rapid gene mutation in multidrug-resistant bacterial infections remains a major challenge. Combining new therapeutic strategies such as chemo-photothermal therapy (PTT) with high antibacterial efficiency against drug-resistant Listeria monocytogenes (LM) is urgently needed. Here, we report synergistic chemo-PTT against drug-resistant LM based on antibody-targeted and streptomycin-chitosan oligosaccharide-modified gold nanoshells (anti-STR-CO-GNSs) as all-in-one nanotheranostic agents for the first time, which was used for accurate antibacterial applications. The anti-STR-CO-GNSs showed excellent photothermal conversion efficiency (31.97%) and were responsive to near-infrared (NIR) and pH dual stimuli-triggered antibiotic release, resulting in outstanding chemo-photothermal effects against LM. In vitro chemo-photothermal effect of anti-STR-CO-GNSs with laser irradiation caused a greater antibacterial effect (1.37%), resulting in more rapid killing of LM and prevention of LM regrowth. Most importantly, the mice receiving the anti-STR-CO-GNSs with laser irradiation specifically at the sites of LM infections healed almost completely, leaving only scars on the surface of the skin and resulting in superior inhibitory effects from combined chemo-PTT. Overall, our findings suggest that chemo-PTT using smart biocompatible anti-STR-CO-GNSs is a favorable potential alternative to combat the increasing threat of drug-resistant LM, which opens a new door for clinical anti-infection therapy in the future.
Collapse
Affiliation(s)
- Panchanathan Manivasagan
- Department of Applied Chemistry, Kumoh National Institute of Technology, Gumi, Gyeongbuk 730-701, Republic of Korea
| | - Fazlurrahman Khan
- Department of Food Science and Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Durai Rajan Dhatchayeny
- Department of Information and Communications Engineering, Pukyong National University, Busan, 48513, Republic of Korea
| | - Sumin Park
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, 48513, Republic of Korea
| | - Ara Joe
- Department of Applied Chemistry, Kumoh National Institute of Technology, Gumi, Gyeongbuk 730-701, Republic of Korea
| | - Hyo-Won Han
- Department of Applied Chemistry, Kumoh National Institute of Technology, Gumi, Gyeongbuk 730-701, Republic of Korea
| | - Sun-Hwa Seo
- Department of Applied Chemistry, Kumoh National Institute of Technology, Gumi, Gyeongbuk 730-701, Republic of Korea
| | - Thavasyappan Thambi
- School of Chemical Engineering, Theranostic Macromolecules Research Center, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - V H Giang Phan
- Biomaterials and Nanotechnology Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 70000, Vietnam
| | - Young-Mog Kim
- Department of Food Science and Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Chang-Seok Kim
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Junghwan Oh
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, 48513, Republic of Korea; New-senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan, 48513, Republic of Korea; Department of Biomedical Engineering, Pukyong National University, Busan, 48513, Republic of Korea.
| | - Eue-Soon Jang
- Department of Applied Chemistry, Kumoh National Institute of Technology, Gumi, Gyeongbuk 730-701, Republic of Korea.
| |
Collapse
|
7
|
Ojo O, Williams DL, Adams LB, Lahiri R. Mycobacterium leprae Transcriptome During In Vivo Growth and Ex Vivo Stationary Phases. Front Cell Infect Microbiol 2022; 11:817221. [PMID: 35096659 PMCID: PMC8790229 DOI: 10.3389/fcimb.2021.817221] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/20/2021] [Indexed: 11/13/2022] Open
Abstract
Mycobacterium leprae, the causative agent of leprosy, is an obligate intracellular pathogen primarily residing within host macrophages and Schwann cells. Whole genome sequencing predicts a highly degraded genome with approximately one third of the coding capacity resulting in the loss of many catabolic pathways. Therefore, it can be assumed that M. leprae obtains many of the necessary metabolites for intracellular survival and growth from the host cells. In this study, global transcriptomic analyses were done on freshly harvested M. leprae growing in athymic mouse footpads for five months (MFP5) and compared to those held in axenic medium for 48 (ML48) and 96 (ML96) hours. Results show that all of the genes and pseudogenes were transcribed under both in vivo and in vitro conditions. 24% and 33% of gene transcript levels were significantly altered in ML48 and ML96 respectively, compared to MFP5. Approximately 45% (39/86) of lipid metabolism genes were significantly downregulated in ML96 compared to MFP5, majority of which are in the β-oxidation pathway. Cholesterol oxidase, acyl-CoA dehydrogenase, and coenzyme F420-dependent oxidoreductase, were significantly upregulated in both ML48 and ML96 compared to MFP5. 30% of cell wall and cell processes functional category genes had altered gene transcription at 96hr compared to MFP5. 40% of 57 genes associated with mycobacterial virulence showed significantly altered transcript levels with 52% significantly downregulated in ML96, including most of the Pro-Glu/Pro-Pro-Glu genes. All 111 hypothetical protein genes with unknown function were expressed. Adenosine triphosphate (ATP) synthesis in M. leprae appears to be significantly downregulated under ex vivo conditions. This is the first study comparing M. leprae global gene expression during in vivo growth and ex vivo stationery phase in axenic medium confirming that during the growth phase in the footpads of experimentally infected mice, M. leprae is metabolically active and its primary source of energy production is probably lipids.
Collapse
Affiliation(s)
- Olabisi Ojo
- United States Department of Health and Human Services, Health Resources and Services Administration, Health Systems Bureau, National Hansen's Disease Program, Baton Rouge, LA, United States
| | - Diana L Williams
- United States Department of Health and Human Services, Health Resources and Services Administration, Health Systems Bureau, National Hansen's Disease Program, Baton Rouge, LA, United States
| | - Linda B Adams
- United States Department of Health and Human Services, Health Resources and Services Administration, Health Systems Bureau, National Hansen's Disease Program, Baton Rouge, LA, United States
| | - Ramanuj Lahiri
- United States Department of Health and Human Services, Health Resources and Services Administration, Health Systems Bureau, National Hansen's Disease Program, Baton Rouge, LA, United States
| |
Collapse
|
8
|
Collins J, Lenz S, Ray N, Balagon M, Hagge D, Lahiri R, Adams L. A Sensitive and Quantitative Assay to Enumerate and Measure Mycobacterium leprae Viability in Clinical and Experimental Specimens. Curr Protoc 2022; 2:e359. [PMID: 35113486 PMCID: PMC8936146 DOI: 10.1002/cpz1.359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Mycobacterium leprae, the etiologic agent of leprosy, cannot be cultured on artificial media. This characteristic, coupled with its long generation time, presents a number of unique challenges to studying this pathogen. One of the difficulties facing both researchers and clinicians is the absence of a rapid test to measure the viability of M. leprae in clinical or experimental specimens. The lack of such a tool limits the understanding of M. leprae immunopathogenesis and makes determining the efficacy of drug treatments difficult. With this in mind, we developed a robust two-step molecular viability assay (MVA) that first enumerates the M. leprae in the tissue; then, this data is used to normalize bacterial RNA quantities for the second step, in which the expression of M. leprae esxA and hsp18 are measured. This assay is specific and sensitive enough to be used on most clinical samples. This protocol describes the steps required to extract DNA and RNA from M. leprae-infected tissue, enumerate M. leprae, and measure M. leprae viability based on the normalized expression of two M. leprae-specific genes (hsp18 and esxA). This protocol also outlines an optimal laboratory design and workflow for performing this assay. © 2022 The Leprosy Mission Nepal. Current Protocols published by Wiley Periodicals LLC. This article has been contributed to by US Government employees and their work is in the public domain in the USA. Basic Protocol 1: DNA and RNA P purification from M. leprae-infected tissue Basic Protocol 2: Enumeration of M. leprae by RLEP qPCR on the DNA fraction Basic Protocol 3: Calculation of M. leprae per tissue and normalization of RNA Basic Protocol 4: Reverse-transcription of normalized RNA to generate cDNA Basic Protocol 5: Determination of M. leprae viability using HSP18 and ESXA qPCR on the cDNA Support Protocol 1: M. leprae qPCR primer/probe stock preparation Support Protocol 2: Preparation of plasmid stocks and standard curves.
Collapse
Affiliation(s)
- J.H. Collins
- United States Department of Health and Human Services, Health Resources and Services Administration, Health Systems Bureau, National Hansen’s Disease Programs, Baton Rouge, Louisiana, USA
| | - S.M. Lenz
- United States Department of Health and Human Services, Health Resources and Services Administration, Health Systems Bureau, National Hansen’s Disease Programs, Baton Rouge, Louisiana, USA
| | - N.A. Ray
- United States Department of Health and Human Services, Health Resources and Services Administration, Health Systems Bureau, National Hansen’s Disease Programs, Baton Rouge, Louisiana, USA
| | - M.F. Balagon
- Leonard Wood Memorial, Center for TB and Leprosy Research, Cebu, Philippines
| | - D.A. Hagge
- Mycobacterial Research Laboratories, Anandaban Hospital, Kathmandu, Nepal
| | - R. Lahiri
- United States Department of Health and Human Services, Health Resources and Services Administration, Health Systems Bureau, National Hansen’s Disease Programs, Baton Rouge, Louisiana, USA
| | - L.B. Adams
- United States Department of Health and Human Services, Health Resources and Services Administration, Health Systems Bureau, National Hansen’s Disease Programs, Baton Rouge, Louisiana, USA,Corresponding author: Linda B. Adams,
| |
Collapse
|
9
|
Kiarely Souza E, Pereira-Dutra FS, Rajão MA, Ferraro-Moreira F, Goltara-Gomes TC, Cunha-Fernandes T, Santos JDC, Prestes EB, Andrade WA, Zamboni DS, Bozza MT, Bozza PT. Lipid droplet accumulation occurs early following Salmonella infection and contributes to intracellular bacterial survival and replication. Mol Microbiol 2021; 117:293-306. [PMID: 34783412 DOI: 10.1111/mmi.14844] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 01/20/2023]
Abstract
Salmonellosis is a public health problem caused by Salmonella sp., a highly adapted facultative intracellular pathogen. After internalization, Salmonella sp. Manipulates several host processes, mainly through the activation of the type III secretion system (T3SS), including modification of host lipid metabolism and lipid droplet (LD) accumulation. LDs are dynamic and complex lipid-rich organelles involved in several cellular processes. The present study investigated the mechanism involved in LD biogenesis in Salmonella-infected macrophages and its role in bacterial pathogenicity. Here, we reported that S. Typhimurium induced a rapid time-dependent increase of LD formation in macrophages. The LD biogenesis was demonstrated to depend on Salmonella's viability and SPI1-related T3SS activity, with the participation of Toll-Like Receptor (TLR) signaling. We also observed that LD accumulation occurs through TLR2-dependent signaling and is counter-regulated by TLR4. Last, the pharmacologic modulation of LD formation by inhibiting diacylglycerol O-acyltransferase 1 (DGAT1) and cytosolic phospholipase A2 (cPLA2) significantly reduced the intracellular bacterial proliferation and impaired the prostaglandin E2 (PGE2 ) synthesis. Collectively, our data suggest the role of LDs on S. typhimurium intracellular survival and replication in macrophages. This data set provides new perspectives for future investigations about LDs in host-pathogen interaction.
Collapse
Affiliation(s)
- Ellen Kiarely Souza
- Laboratory of Immunopharmacology, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil.,Program of Immunology and Inflammation, Federal University of Rio de Janeiro, UFRJ, Rio de Janeiro, Brazil
| | - Filipe S Pereira-Dutra
- Laboratory of Immunopharmacology, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Matheus A Rajão
- Program of Immunology and Tumor Biology, Instituto Nacional do Câncer, INCA, Rio de Janeiro, Brazil
| | - Felipe Ferraro-Moreira
- Laboratory of Immunopharmacology, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Taynná C Goltara-Gomes
- Laboratory of Immunopharmacology, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Tamires Cunha-Fernandes
- Laboratory of Immunopharmacology, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Julia da Cunha Santos
- Laboratory of Immunopharmacology, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Elisa B Prestes
- Laboratory of Inflammation and Immunity, Department of Immunity, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro, Brazil
| | - Warrison A Andrade
- Department of Cellular and Molecular Biology and Pathogenic Bioagents, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Dario S Zamboni
- Department of Cellular and Molecular Biology and Pathogenic Bioagents, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Marcelo T Bozza
- Laboratory of Inflammation and Immunity, Department of Immunity, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro, Brazil
| | - Patrícia T Bozza
- Laboratory of Immunopharmacology, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| |
Collapse
|
10
|
Sharma R, Singh P, McCoy RC, Lenz SM, Donovan K, Ochoa MT, Estrada-Garcia I, Silva-Miranda M, Jurado-Santa Cruz F, Balagon MF, Stryjewska B, Scollard DM, Pena MT, Lahiri R, Williams DL, Truman RW, Adams LB. Isolation of Mycobacterium lepromatosis and Development of Molecular Diagnostic Assays to Distinguish Mycobacterium leprae and M. lepromatosis. Clin Infect Dis 2021; 71:e262-e269. [PMID: 31732729 DOI: 10.1093/cid/ciz1121] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 11/12/2019] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Mycobacterium leprae was thought to be the exclusive causative agent of leprosy until Mycobacterium lepromatosis was identified in a rare form of leprosy known as diffuse lepromatous leprosy (DLL). METHODS We isolated M. lepromatosis from a patient with DLL and propagated it in athymic nude mouse footpads. Genomic analysis of this strain (NHDP-385) identified a unique repetitive element, RLPM, on which a specific real-time quantitative polymerase chain reaction assay was developed. The RLPM assay, and a previously developed RLEP quantitative polymerase chain reaction assay for M. leprae, were validated as clinical diagnostic assays according to Clinical Laboratory Improvement Amendments guidelines. We tested DNA from archived histological sections, patient specimens from the United States, Philippines, and Mexico, and US wild armadillos. RESULTS The limit of detection for the RLEP and RLPM assays is 30 M. leprae per specimen (0.76 bacilli per reaction; coefficient of variation, 0.65%-2.44%) and 122 M. lepromatosis per specimen (3.05 bacilli per reaction; 0.84%-2.9%), respectively. In histological sections (n = 10), 1 lepromatous leprosy (LL), 1 DLL, and 3 Lucio reactions contained M. lepromatosis; 2 LL and 2 Lucio reactions contained M. leprae; and 1 LL reaction contained both species. M. lepromatosis was detected in 3 of 218 US biopsy specimens (1.38%). All Philippines specimens (n = 180) were M. lepromatosis negative and M. leprae positive. Conversely, 15 of 47 Mexican specimens (31.91%) were positive for M. lepromatosis, 19 of 47 (40.43%) were positive for M. leprae, and 2 of 47 (4.26%) contained both organisms. All armadillos were M. lepromatosis negative. CONCLUSIONS The RLPM and RLEP assays will aid healthcare providers in the clinical diagnosis and surveillance of leprosy.
Collapse
Affiliation(s)
- Rahul Sharma
- US Department of Health and Human Services, Health Resources and Services Administration, Healthcare Systems Bureau, National Hansen's Disease Program, Baton Rouge, Louisiana, USA
| | - Pushpendra Singh
- US Department of Health and Human Services, Health Resources and Services Administration, Healthcare Systems Bureau, National Hansen's Disease Program, Baton Rouge, Louisiana, USA.,National Institute of Research in Tribal Health, Jabalpur, MP India
| | - Rajiv C McCoy
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, USA
| | | | - Kelly Donovan
- Department of Dermatology, University of Southern California, Los Angeles, California, USA
| | - Maria T Ochoa
- Department of Dermatology, University of Southern California, Los Angeles, California, USA
| | - Iris Estrada-Garcia
- Departamento Immunologia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Mayra Silva-Miranda
- Consejo Nacional de Ciencia y Tecnologia (National Council of Science and Technology)-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Fermin Jurado-Santa Cruz
- Centro Dermatológico Dr. Ladislao de la Pascua, Secretaria de Salud de la Ciudad de México, Mexico City, Mexico
| | - Marivic F Balagon
- Leonard Wood Memorial, Center for Leprosy Research, Cebu, Philippines
| | - Barbara Stryjewska
- US Department of Health and Human Services, Health Resources and Services Administration, Healthcare Systems Bureau, National Hansen's Disease Program, Baton Rouge, Louisiana, USA
| | - David M Scollard
- US Department of Health and Human Services, Health Resources and Services Administration, Healthcare Systems Bureau, National Hansen's Disease Program, Baton Rouge, Louisiana, USA
| | - Maria T Pena
- US Department of Health and Human Services, Health Resources and Services Administration, Healthcare Systems Bureau, National Hansen's Disease Program, Baton Rouge, Louisiana, USA
| | - Ramanuj Lahiri
- US Department of Health and Human Services, Health Resources and Services Administration, Healthcare Systems Bureau, National Hansen's Disease Program, Baton Rouge, Louisiana, USA
| | - Diana L Williams
- US Department of Health and Human Services, Health Resources and Services Administration, Healthcare Systems Bureau, National Hansen's Disease Program, Baton Rouge, Louisiana, USA
| | - Richard W Truman
- US Department of Health and Human Services, Health Resources and Services Administration, Healthcare Systems Bureau, National Hansen's Disease Program, Baton Rouge, Louisiana, USA
| | - Linda B Adams
- US Department of Health and Human Services, Health Resources and Services Administration, Healthcare Systems Bureau, National Hansen's Disease Program, Baton Rouge, Louisiana, USA
| |
Collapse
|
11
|
Adams LB. Susceptibility and resistance in leprosy: Studies in the mouse model. Immunol Rev 2021; 301:157-174. [PMID: 33660297 PMCID: PMC8252540 DOI: 10.1111/imr.12960] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 12/24/2022]
Abstract
Leprosy is a chronic granulomatous infectious disease caused by the pathogen, Mycobacterium leprae, and the more recently discovered, M. lepromatosis. Described in 1873, M. leprae was among the first microorganisms to be proposed as a cause of a human infectious disease. As an obligate intracellular bacterium, it has still not thus far been reproducibly cultivated in axenic medium or cell cultures. Shepard's mouse footpad assay, therefore, was truly a breakthrough in leprosy research. The generation of immunosuppressed and genetically engineered mice, along with advances in molecular and cellular techniques, has since offered more tools for the study of the M. leprae–induced granuloma. While far from perfect, these new mouse models have provided insights into the immunoregulatory mechanisms responsible for the spectrum of this complex disease.
Collapse
Affiliation(s)
- Linda B Adams
- Department of Health and Human Services, Health Resources and Services Administration, Healthcare Systems Bureau, National Hansen's Disease Programs Laboratory Research Branch, Baton Rouge, LA, USA
| |
Collapse
|
12
|
Lenz SM, Collins JH, Ray NA, Hagge DA, Lahiri R, Adams LB. Post-exposure prophylaxis (PEP) efficacy of rifampin, rifapentine, moxifloxacin, minocycline, and clarithromycin in a susceptible-subclinical model of leprosy. PLoS Negl Trop Dis 2020; 14:e0008583. [PMID: 32936818 PMCID: PMC7494095 DOI: 10.1371/journal.pntd.0008583] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/09/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Subclinical infection with Mycobacterium leprae is one potential source of leprosy transmission, and post-exposure prophylaxis (PEP) regimens have been proposed to control this source. Because PEP trials require considerable investment, we applied a sensitive variation of the kinetic mouse footpad (MFP) screening assay to aid in the choice of drugs and regimens for clinical trials. METHODOLOGY/PRINCIPAL FINDINGS Athymic nude mice were inoculated in the footpad (FP) with 6 x 103 viable M. leprae and treated by gastric gavage with a single dose of Rifampin (SDR), Rifampin + Ofloxacin + Minocycline (SD-ROM), or Rifapentine + Minocycline + Moxifloxacin (SD-PMM) or with the proposed PEP++ regimen of three once-monthly doses of Rifampin + Moxifloxacin (RM), Rifampin + Clarithromycin (RC), Rifapentine + Moxifloxacin (PM), or Rifapentine + Clarithromycin (PC). At various times post-treatment, DNA was purified from the FP, and M. leprae were enumerated by RLEP quantitative PCR. A regression analysis was calculated to determine the expected RLEP value if 99.9% of the bacilli were killed after the administration of each regimen. SDR and SD-ROM induced little growth delay in this highly susceptible murine model of subclinical infection. In contrast, SD-PMM delayed measurable M. leprae growth above the inoculum by 8 months. The four multi-dose regimens delayed bacterial growth for >9months post-treatment cessation. CONCLUSIONS/SIGNIFICANCE The delay in discernable M. leprae growth post-treatment was an excellent indicator of drug efficacy for both early (3-4 months) and late (8-9 months) drug efficacy. Our data indicates that multi-dose PEP may be required to control infection in highly susceptible individuals with subclinical leprosy to prevent disease and decrease transmission.
Collapse
Affiliation(s)
| | - Jaymes H. Collins
- Department of Health and Human Services, Health Resources and Services Administration, Healthcare Systems Bureau, National Hansen’s Disease Programs–Laboratory Research Branch, Baton Rouge, Louisiana, United States of America
| | - Nashone A. Ray
- Department of Health and Human Services, Health Resources and Services Administration, Healthcare Systems Bureau, National Hansen’s Disease Programs–Laboratory Research Branch, Baton Rouge, Louisiana, United States of America
| | - Deanna A. Hagge
- Mycobacterial Research Laboratories, Anandaban Hospital, The Leprosy Mission Nepal, Kathmandu, Nepal
| | - Ramanuj Lahiri
- Department of Health and Human Services, Health Resources and Services Administration, Healthcare Systems Bureau, National Hansen’s Disease Programs–Laboratory Research Branch, Baton Rouge, Louisiana, United States of America
| | - Linda B. Adams
- Department of Health and Human Services, Health Resources and Services Administration, Healthcare Systems Bureau, National Hansen’s Disease Programs–Laboratory Research Branch, Baton Rouge, Louisiana, United States of America
| |
Collapse
|
13
|
Thomas SE, Whitehouse AJ, Brown K, Burbaud S, Belardinelli J, Sangen J, Lahiri R, Libardo M, Gupta P, Malhotra S, Boshoff HIM, Jackson M, Abell C, Coyne A, Blundell TL, Floto RA, Mendes V. Fragment-based discovery of a new class of inhibitors targeting mycobacterial tRNA modification. Nucleic Acids Res 2020; 48:8099-8112. [PMID: 32602532 PMCID: PMC7641325 DOI: 10.1093/nar/gkaa539] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/10/2020] [Accepted: 06/15/2020] [Indexed: 12/13/2022] Open
Abstract
Translational frameshift errors are often deleterious to the synthesis of functional proteins and could therefore be promoted therapeutically to kill bacteria. TrmD (tRNA-(N(1)G37) methyltransferase) is an essential tRNA modification enzyme in bacteria that prevents +1 errors in the reading frame during protein translation and represents an attractive potential target for the development of new antibiotics. Here, we describe the application of a structure-guided fragment-based drug discovery approach to the design of a new class of inhibitors against TrmD in Mycobacterium abscessus. Fragment library screening, followed by structure-guided chemical elaboration of hits, led to the rapid development of drug-like molecules with potent in vitro TrmD inhibitory activity. Several of these compounds exhibit activity against planktonic M. abscessus and M. tuberculosis as well as against intracellular M. abscessus and M. leprae, indicating their potential as the basis for a novel class of broad-spectrum mycobacterial drugs.
Collapse
Affiliation(s)
- Sherine E Thomas
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Andrew J Whitehouse
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Karen Brown
- University of Cambridge Molecular Immunity Unit, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
- Cambridge Centre for Lung Infection, Royal Papworth Hospital, Cambridge CB2 0AY, UK
| | - Sophie Burbaud
- University of Cambridge Molecular Immunity Unit, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Juan M Belardinelli
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Jasper Sangen
- University of Cambridge Molecular Immunity Unit, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Ramanuj Lahiri
- National Hansen's Disease Program, Healthcare Systems Bureau, Health Resources and Services Administration, Department of Health and Human Services, Baton Rouge, LA, USA
| | - Mark Daben J Libardo
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Pooja Gupta
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Sony Malhotra
- Birkbeck College, University of London, Malet Street WC1E7HX, UK
| | - Helena I M Boshoff
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Chris Abell
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Anthony G Coyne
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Tom L Blundell
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Rodrigo Andres Floto
- University of Cambridge Molecular Immunity Unit, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
- Cambridge Centre for Lung Infection, Royal Papworth Hospital, Cambridge CB2 0AY, UK
| | - Vítor Mendes
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| |
Collapse
|
14
|
Borah K, Kearney JL, Banerjee R, Vats P, Wu H, Dahale S, Manjari Kasibhatla S, Joshi R, Bonde B, Ojo O, Lahiri R, Williams DL, McFadden J. GSMN-ML- a genome scale metabolic network reconstruction of the obligate human pathogen Mycobacterium leprae. PLoS Negl Trop Dis 2020; 14:e0007871. [PMID: 32628669 PMCID: PMC7365477 DOI: 10.1371/journal.pntd.0007871] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 07/16/2020] [Accepted: 06/02/2020] [Indexed: 11/19/2022] Open
Abstract
Leprosy, caused by Mycobacterium leprae, has plagued humanity for thousands of years and continues to cause morbidity, disability and stigmatization in two to three million people today. Although effective treatment is available, the disease incidence has remained approximately constant for decades so new approaches, such as vaccine or new drugs, are urgently needed for control. Research is however hampered by the pathogen's obligate intracellular lifestyle and the fact that it has never been grown in vitro. Consequently, despite the availability of its complete genome sequence, fundamental questions regarding the biology of the pathogen, such as its metabolism, remain largely unexplored. In order to explore the metabolism of the leprosy bacillus with a long-term aim of developing a medium to grow the pathogen in vitro, we reconstructed an in silico genome scale metabolic model of the bacillus, GSMN-ML. The model was used to explore the growth and biomass production capabilities of the pathogen with a range of nutrient sources, such as amino acids, glucose, glycerol and metabolic intermediates. We also used the model to analyze RNA-seq data from M. leprae grown in mouse foot pads, and performed Differential Producibility Analysis to identify metabolic pathways that appear to be active during intracellular growth of the pathogen, which included pathways for central carbon metabolism, co-factor, lipids, amino acids, nucleotides and cell wall synthesis. The GSMN-ML model is thereby a useful in silico tool that can be used to explore the metabolism of the leprosy bacillus, analyze functional genomic experimental data, generate predictions of nutrients required for growth of the bacillus in vitro and identify novel drug targets.
Collapse
Affiliation(s)
- Khushboo Borah
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Jacque-Lucca Kearney
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Ruma Banerjee
- HPC-Medical and Bioinformatics Applications Group, Centre for Development of Advanced Computing, C-DAC Innovation Park, Panchavati, Pashan, India
| | - Pankaj Vats
- HPC-Medical and Bioinformatics Applications Group, Centre for Development of Advanced Computing, C-DAC Innovation Park, Panchavati, Pashan, India
| | - Huihai Wu
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Sonal Dahale
- HPC-Medical and Bioinformatics Applications Group, Centre for Development of Advanced Computing, C-DAC Innovation Park, Panchavati, Pashan, India
| | - Sunitha Manjari Kasibhatla
- HPC-Medical and Bioinformatics Applications Group, Centre for Development of Advanced Computing, C-DAC Innovation Park, Panchavati, Pashan, India
| | - Rajendra Joshi
- HPC-Medical and Bioinformatics Applications Group, Centre for Development of Advanced Computing, C-DAC Innovation Park, Panchavati, Pashan, India
| | - Bhushan Bonde
- Head of Innovation Development, IT-Early Solutions, UCB Pharma, Slough, United Kingdom
| | - Olabisi Ojo
- United States Department of Health and Human Services, Health Resources and Services Administration, Healthcare Systems Bureau, National Hansen’s Disease Program, Baton Rouge, Louisiana, United States of America
| | - Ramanuj Lahiri
- United States Department of Health and Human Services, Health Resources and Services Administration, Healthcare Systems Bureau, National Hansen’s Disease Program, Baton Rouge, Louisiana, United States of America
| | - Diana L. Williams
- United States Department of Health and Human Services, Health Resources and Services Administration, Healthcare Systems Bureau, National Hansen’s Disease Program, Baton Rouge, Louisiana, United States of America
| | - Johnjoe McFadden
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| |
Collapse
|
15
|
Inhibitory activity of traditional plants against Mycobacterium smegmatis and their action on Filamenting temperature sensitive mutant Z (FtsZ)-A cell division protein. PLoS One 2020; 15:e0232482. [PMID: 32357366 PMCID: PMC7195194 DOI: 10.1371/journal.pone.0232482] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 04/15/2020] [Indexed: 11/19/2022] Open
Abstract
The study was designed to assess whether plant extracts / phytochemical (D-Pinitol) synergistically combine with antituberculosis drugs and act on Mycobacterium smegmatis (M. smegmatis) as well as assess their mode of action on Mycobacterium tuberculosis (M.tb) Filamenting temperature sensitive mutant Z (FtsZ) protein. Resazurin microtitre plate assay (Checker board) was performed to analyze the activity of plant extracts against M. smegmatis. Synergistic behaviour of plant extracts / D-Pinitol with Isoniazid (INH) and Rifampicin (RIF) were determined by time–kill and checker board assays. Elongation of M. smegmatis cells due to this treatment was determined by light microscopy. The effect of Hexane methanol extract (HXM) plant extracts on cell viability was determined using PI/SYTO9 dual dye reporter Live/Dead assay. Action of HXM plant extracts / D-Pinitol on inhibition of FtsZ protein was done using Guanosine triphosphatase (GTPase) light scattering assay and quantitative Polymerase Chain Reaction (qPCR). The Hexane-methanolic plant extract of Acacia nilotica, Aegle marmelos and Glycyrrhiza glabra showed antimycobacterial activity at 1.56 ± 0.03, 1.32 ± 0.02 and 1.25 ± 0.03 mg/mL respectively and that of INH and RIF were 4.00 ± 0.06 μg/mL and 2.00 ± 0.04 μg/mL respectively. These plant extracts and major phytochemical exudate D-Pinitol was found to act synergistically with antimycobacterial drugs INH and RIF with an FIC index ~ 0.20. Time-Kill kinetics studies indicate that, these plant extracts were bacteriostatic in nature. D-Pinitol in conjunction with INH and RIF exhibited a 2 Log reduction in the growth of viable cells compared to untreated. Attempt to elucidate their mode of action through phenotypic analysis indicated that these plant extracts and D-Pinitol was found to interfere in cell division there by leading to an abnormal elongated cellular morphology. HXM extracts and D-Pinitol synergistically combined with the first line tuberculosis drugs, INH and RIF, to act on M. smegmatis. The increase in the length of M. smegmatis cells on treatment with D-Pinitol and HXM extract of the plants indicated that they hinder the cell division mechanism thereby leading to a filamentous phenotype, and finally leading to cell death. In addition, the integrity of the bacterial cell membrane is also altered causing cell death. Further gene expression analysis showed that these plant extracts and D-Pinitol hampers with function of FtsZ protein which was confirmed through in vitro inhibition of FtsZ–GTPase enzymatic activity.
Collapse
|
16
|
R. Andrade P, Mehta M, Lu J, M. B. Teles R, Montoya D, O. Scumpia P, Nunes Sarno E, Ochoa MT, Ma F, Pellegrini M, Modlin RL. The cell fate regulator NUPR1 is induced by Mycobacterium leprae via type I interferon in human leprosy. PLoS Negl Trop Dis 2019; 13:e0007589. [PMID: 31344041 PMCID: PMC6684084 DOI: 10.1371/journal.pntd.0007589] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 08/06/2019] [Accepted: 06/30/2019] [Indexed: 11/18/2022] Open
Abstract
The initial interaction between a microbial pathogen and the host immune response influences the outcome of the battle between the host and the foreign invader. Leprosy, caused by the obligate intracellular pathogen Mycobacterium leprae, provides a model to study relevant human immune responses. Previous studies have adopted a targeted approach to investigate host response to M. leprae infection, focusing on the induction of specific molecules and pathways. By measuring the host transcriptome triggered by M. leprae infection of human macrophages, we were able to detect a host gene signature 24-48 hours after infection characterized by specific innate immune pathways involving the cell fate mechanisms autophagy and apoptosis. The top upstream regulator in the M. leprae-induced gene signature was NUPR1, which is found in the M. leprae-induced cell fate pathways. The induction of NUPR1 by M. leprae was dependent on the production of the type I interferon (IFN), IFN-β. Furthermore, NUPR1 mRNA and protein were upregulated in the skin lesions from patients with the multibacillary form of leprosy. Together, these data indicate that M. leprae induces a cell fate program which includes NUPR1 as part of the host response in the progressive form of leprosy.
Collapse
Affiliation(s)
- Priscila R. Andrade
- Division of Dermatology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Manali Mehta
- Division of Dermatology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Jing Lu
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Rosane M. B. Teles
- Division of Dermatology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Dennis Montoya
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Phillip O. Scumpia
- Division of Dermatology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America
| | | | - Maria Teresa Ochoa
- Department of Dermatology, University of Southern California School of Medicine, Los Angeles, California, United States of America
| | - Feiyang Ma
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Matteo Pellegrini
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Robert L. Modlin
- Division of Dermatology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
17
|
Vilani-Moreno FR, Barbosa ASAA, Sartori BGC, Diório SM, Silva SMUR, Rosa PS, de Faria Fernandes Belone A, Soares CT, Lauris JRP, Pedrini SCB. Murine experimental leprosy: Evaluation of immune response by analysis of peritoneal lavage cells and footpad histopathology. Int J Exp Pathol 2019; 100:161-174. [PMID: 31124597 DOI: 10.1111/iep.12319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 03/16/2019] [Accepted: 04/02/2019] [Indexed: 11/28/2022] Open
Abstract
This study evaluated the immune response of nude and BALB/c mice inoculated in the footpads (FP) with Mycobacterium leprae after 3, 5 and 8 months. At each timepoint peritoneal cells, peripheral blood, FP and popliteal lymph nodes (PLN) were collected. Peritoneal cell cultures were performed to measure the H2 O2 , O2 - , NO, IL-2, IL-4, IL-10, IL-12, IFN-γ and TNF levels. Serum levels of anti-PGL-I antibodies were also quantified. The results showed that the infection was progressive in nude mice with bacterial multiplication, development of macroscopic lesions in the FP and presence of bacilli in the PLN at 8 months. In BALB/c mice, the infection reached a plateau of bacillary multiplication at 5 months and regressed at 8 months. Histopathological analysis of FP revealed a mononuclear inflammatory infiltrate with a large number of neutrophils at 5 months, with a higher number in nude mice. At 8 months, the number of neutrophils decreased and the infiltrate was predominantly mononuclear in both mouse strains. There was no H2 O2, O2 - , IL-2, IL-4, IL-10 and IFN-γ production in the course of infection in nude mice; however, in BALB/c, O2 - and IL-12 production was higher at 5 months and NO, IFN-γ and TNF production was higher at 8 months when there was a decrease in the number of bacilli. The level of anti-PGL-I antibodies was higher in BALB/c mice. Thus, nude and BALB/c mice can be used as experimental models for the study of various aspects of leprosy.
Collapse
|
18
|
Balin SJ, Pellegrini M, Klechevsky E, Won ST, Weiss DI, Choi AW, Hakimian J, Lu J, Ochoa MT, Bloom BR, Lanier LL, Stenger S, Modlin RL. Human antimicrobial cytotoxic T lymphocytes, defined by NK receptors and antimicrobial proteins, kill intracellular bacteria. Sci Immunol 2019; 3:3/26/eaat7668. [PMID: 30171080 DOI: 10.1126/sciimmunol.aat7668] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 07/03/2018] [Indexed: 12/15/2022]
Abstract
Human CD8+ cytotoxic T lymphocytes (CTLs) contribute to antimicrobial defense against intracellular pathogens through secretion of cytotoxic granule proteins granzyme B, perforin, and granulysin. However, CTLs are heterogeneous in the expression of these proteins, and the subset(s) responsible for antimicrobial activity is unclear. Studying human leprosy, we found that the subset of CTLs coexpressing all three cytotoxic molecules is increased in the resistant form of the disease, can be expanded by interleukin-15 (IL-15), and is differentiated from naïve CD8+ T cells by Langerhans cells. RNA sequencing analysis identified that these CTLs express a gene signature that includes an array of surface receptors typically expressed by natural killer (NK) cells. We determined that CD8+ CTLs expressing granzyme B, perforin, and granulysin, as well as the activating NK receptor NKG2C, represent a population of "antimicrobial CTLs" (amCTLs) capable of T cell receptor (TCR)-dependent and TCR-independent release of cytotoxic granule proteins that mediate antimicrobial activity.
Collapse
Affiliation(s)
- Samuel J Balin
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA.,Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Matteo Pellegrini
- Molecular Cell and Developmental Biology at UCLA, Los Angeles, CA 90095, USA
| | - Eynav Klechevsky
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Sohui T Won
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - David I Weiss
- Molecular Biology Interdepartmental Graduate Program, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Aaron W Choi
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Joshua Hakimian
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Jing Lu
- Molecular Cell and Developmental Biology at UCLA, Los Angeles, CA 90095, USA
| | - Maria Teresa Ochoa
- Department of Dermatology, University of Southern California School of Medicine, Los Angeles, CA 90033, USA
| | - Barry R Bloom
- Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Lewis L Lanier
- Department of Microbiology and Immunology and the Parker Institute for Cancer Immunotherapy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Steffen Stenger
- Institute for Medical Microbiology and Hygiene, University Hospital Ulm, Ulm, Germany
| | - Robert L Modlin
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA. .,Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
19
|
Dang AT, Teles RM, Liu PT, Choi A, Legaspi A, Sarno EN, Ochoa MT, Parvatiyar K, Cheng G, Gilliet M, Bloom BR, Modlin RL. Autophagy links antimicrobial activity with antigen presentation in Langerhans cells. JCI Insight 2019; 4:126955. [PMID: 30996142 PMCID: PMC6538337 DOI: 10.1172/jci.insight.126955] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/07/2019] [Indexed: 12/13/2022] Open
Abstract
DC, through the uptake, processing, and presentation of antigen, are responsible for activation of T cell responses to defend the host against infection, yet it is not known if they can directly kill invading bacteria. Here, we studied in human leprosy, how Langerhans cells (LC), specialized DC, contribute to host defense against bacterial infection. IFN-γ treatment of LC isolated from human epidermis and infected with Mycobacterium leprae (M. leprae) activated an antimicrobial activity, which was dependent on the upregulation of the antimicrobial peptide cathelicidin and induction of autophagy. IFN-γ induction of autophagy promoted fusion of phagosomes containing M. leprae with lysosomes and the delivery of cathelicidin to the intracellular compartment containing the pathogen. Autophagy enhanced the ability of M. leprae-infected LC to present antigen to CD1a-restricted T cells. The frequency of IFN-γ labeling and LC containing both cathelicidin and autophagic vesicles was greater in the self-healing lesions vs. progressive lesions, thus correlating with the effectiveness of host defense against the pathogen. These data indicate that autophagy links the ability of DC to kill and degrade an invading pathogen, ensuring cell survival from the infection while facilitating presentation of microbial antigens to resident T cells.
Collapse
Affiliation(s)
- Angeline Tilly Dang
- Division of Dermatology, Department of Medicine, and
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at University of California, UCLA, Los Angeles, California, USA
| | | | - Phillip T. Liu
- Division of Dermatology, Department of Medicine, and
- UCLA and Orthopaedic Hospital, Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, Los Angeles, California, USA
| | - Aaron Choi
- Division of Dermatology, Department of Medicine, and
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at University of California, UCLA, Los Angeles, California, USA
| | | | - Euzenir N. Sarno
- Leprosy Laboratory, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Maria T. Ochoa
- Department of Dermatology, University of Southern California School of Medicine, Los Angeles, California, USA
| | - Kislay Parvatiyar
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at University of California, UCLA, Los Angeles, California, USA
| | - Genhong Cheng
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at University of California, UCLA, Los Angeles, California, USA
| | - Michel Gilliet
- Department of Medicine, Dermatology Service, Lausanne University Hospital of Lausanne, Lausanne, Switzerland
| | - Barry R. Bloom
- Harvard School of Public Health, Boston, Massachusetts, USA
| | - Robert L. Modlin
- Division of Dermatology, Department of Medicine, and
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at University of California, UCLA, Los Angeles, California, USA
| |
Collapse
|
20
|
Dang AT, Teles RM, Weiss DI, Parvatiyar K, Sarno EN, Ochoa MT, Cheng G, Gilliet M, Bloom BR, Modlin RL. IL-26 contributes to host defense against intracellular bacteria. J Clin Invest 2019; 129:1926-1939. [PMID: 30939123 DOI: 10.1172/jci99550] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 02/19/2019] [Indexed: 12/18/2022] Open
Abstract
IL-26 is an antimicrobial protein secreted by Th17 cells that has the ability to directly kill extracellular bacteria. To ascertain whether IL-26 contributes to host defense against intracellular bacteria, we studied leprosy, caused by the obligate intracellular pathogen Mycobacterium leprae, as a model. Analysis of leprosy skin lesions by gene expression profiling and immunohistology revealed that IL-26 was more strongly expressed in lesions from the self-limited tuberculoid compared with expression in progressive lepromatous patients. IL-26 directly bound to M. leprae in axenic culture and reduced bacteria viability. Furthermore, IL-26, when added to human monocyte-derived macrophages infected with M. leprae, entered the infected cell, colocalized with the bacterium, and reduced bacteria viability. In addition, IL-26 induced autophagy via the cytoplasmic DNA receptor stimulator of IFN genes (STING), as well as fusion of phagosomes containing bacilli with lysosomal compartments. Altogether, our data suggest that the Th17 cytokine IL-26 contributes to host defense against intracellular bacteria.
Collapse
Affiliation(s)
- Angeline Tilly Dang
- Division of Dermatology, Department of Medicine.,Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | | | - David I Weiss
- Division of Dermatology, Department of Medicine.,Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Kislay Parvatiyar
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Euzenir N Sarno
- Leprosy Laboratory, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Maria T Ochoa
- Department of Dermatology, University of Southern California School of Medicine, Los Angeles, California, USA
| | - Genhong Cheng
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Michel Gilliet
- Department of Medicine, Dermatology Service, Lausanne University Hospital of Lausanne, Lausanne, Switzerland
| | - Barry R Bloom
- Harvard School of Public Health, Boston, Massachusetts, USA
| | - Robert L Modlin
- Division of Dermatology, Department of Medicine.,Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| |
Collapse
|
21
|
Montoya DJ, Andrade P, Silva BJA, Teles RMB, Ma F, Bryson B, Sadanand S, Noel T, Lu J, Sarno E, Arnvig KB, Young D, Lahiri R, Williams DL, Fortune S, Bloom BR, Pellegrini M, Modlin RL. Dual RNA-Seq of Human Leprosy Lesions Identifies Bacterial Determinants Linked to Host Immune Response. Cell Rep 2019; 26:3574-3585.e3. [PMID: 30917313 PMCID: PMC6508871 DOI: 10.1016/j.celrep.2019.02.109] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 10/05/2018] [Accepted: 02/27/2019] [Indexed: 01/20/2023] Open
Abstract
To understand how the interaction between an intracellular bacterium and the host immune system contributes to outcome at the site of infection, we studied leprosy, a disease that forms a clinical spectrum, in which progressive infection by the intracellular bacterium Mycobacterium leprae is characterized by the production of type I IFNs and antibody production. Dual RNA-seq on patient lesions identifies two independent molecular measures of M. leprae, each of which correlates with distinct aspects of the host immune response. The fraction of bacterial transcripts, reflecting bacterial burden, correlates with a host type I IFN gene signature, known to inhibit antimicrobial responses. Second, the bacterial mRNA:rRNA ratio, reflecting bacterial viability, links bacterial heat shock proteins with the BAFF-BCMA host antibody response pathway. Our findings provide a platform for the interrogation of host and pathogen transcriptomes at the site of infection, allowing insight into mechanisms of inflammation in human disease.
Collapse
Affiliation(s)
- Dennis J Montoya
- Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Priscila Andrade
- Division of Dermatology, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Bruno J A Silva
- Division of Dermatology, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Rosane M B Teles
- Division of Dermatology, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Feiyang Ma
- Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Bryan Bryson
- Harvard T.H. Chan School of Public Health, Department of Immunology and Infectious Diseases, Boston, MA, USA
| | | | - Teia Noel
- Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Jing Lu
- Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Euzenir Sarno
- Department of Mycobacteriosis, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Kristine B Arnvig
- Institute for Structural and Molecular Biology, University College London, London WC1E 6BT, UK
| | - Douglas Young
- National Institute for Medical Research, Mycobacterial Research Division, London NW7 1AA, UK; The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Ramanuj Lahiri
- Health Resources and Services Administration (HRSA), National Hansen's Disease Program (NHDP), Baton Rouge, LA, USA
| | - Diana L Williams
- Health Resources and Services Administration (HRSA), National Hansen's Disease Program (NHDP), Baton Rouge, LA, USA; Department of Pathobiological Sciences, Louisiana State University (LSU), Baton Rouge, LA, USA
| | - Sarah Fortune
- Harvard T.H. Chan School of Public Health, Department of Immunology and Infectious Diseases, Boston, MA, USA
| | - Barry R Bloom
- Harvard T.H. Chan School of Public Health, Department of Immunology and Infectious Diseases, Boston, MA, USA
| | - Matteo Pellegrini
- Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Robert L Modlin
- Division of Dermatology, David Geffen School of Medicine, Los Angeles, CA, USA.
| |
Collapse
|
22
|
Ferreira JDS, Souza Oliveira DA, Santos JP, Ribeiro CCDU, Baêta BA, Teixeira RC, Neumann ADS, Rosa PS, Pessolani MCV, Moraes MO, Bechara GH, de Oliveira PL, Sorgine MHF, Suffys PN, Fontes ANB, Bell-Sakyi L, Fonseca AH, Lara FA. Ticks as potential vectors of Mycobacterium leprae: Use of tick cell lines to culture the bacilli and generate transgenic strains. PLoS Negl Trop Dis 2018; 12:e0007001. [PMID: 30566440 PMCID: PMC6326517 DOI: 10.1371/journal.pntd.0007001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 01/09/2019] [Accepted: 11/14/2018] [Indexed: 01/28/2023] Open
Abstract
Leprosy is an infectious disease caused by Mycobacterium leprae and frequently resulting in irreversible deformities and disabilities. Ticks play an important role in infectious disease transmission due to their low host specificity, worldwide distribution, and the biological ability to support transovarial transmission of a wide spectrum of pathogens, including viruses, bacteria and protozoa. To investigate a possible role for ticks as vectors of leprosy, we assessed transovarial transmission of M. leprae in artificially-fed adult female Amblyomma sculptum ticks, and infection and growth of M. leprae in tick cell lines. Our results revealed M. leprae RNA and antigens persisting in the midgut and present in the ovaries of adult female A. sculptum at least 2 days after oral infection, and present in their progeny (eggs and larvae), which demonstrates the occurrence of transovarial transmission of this pathogen. Infected tick larvae were able to inoculate viable bacilli during blood-feeding on a rabbit. Moreover, following inoculation with M. leprae, the Ixodes scapularis embryo-derived tick cell line IDE8 supported a detectable increase in the number of bacilli for at least 20 days, presenting a doubling time of approximately 12 days. As far as we know, this is the first in vitro cellular system able to promote growth of M. leprae. Finally, we successfully transformed a clinical M. leprae isolate by inserting the reporter plasmid pCHERRY3; transformed bacteria infected and grew in IDE8 cells over a 2-month period. Taken together, our data not only support the hypothesis that ticks may have the potential to act as a reservoir and/or vector of leprosy, but also suggest the feasibility of technological development of tick cell lines as a tool for large-scale production of M. leprae bacteria, as well as describing for the first time a method for their transformation. Leprosy is a slow-progressing and extremely debilitating disease; the armadillo is the only animal model able to mimic the symptoms observed in humans. In addition, the causative agent, Mycobacterium leprae, is not cultivable in vitro. Due to these constraints the chain of transmission is still not yet completely understood. We know, however, that at least two animals, armadillos in the Americas and red squirrels in the UK, are natural reservoirs of the bacillus, although their role in disease epidemiology is unclear. This information raised the following question: Can ticks carry leprosy from wild animals to humans? In the present study we demonstrated that artificially-infected female cayenne ticks are able to transmit the bacillus to their offspring, which were then able to transmit it to rabbits during bloodfeeding. We were able to grow M. leprae in vitro in a tick cell line for the first time. We also generated the first transgenic M. leprae strain, making the pathogen fluorescent in order to monitor its viability in real time. We believe that this new methodology will boost the screening of new drugs useful for control of leprosy, as well as improving understanding of how M. leprae causes disease.
Collapse
Affiliation(s)
- Jéssica da Silva Ferreira
- Lab. de Microbiologia Celular, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de janeiro, Brazil
| | | | - João Pedro Santos
- Lab. de Microbiologia Celular, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de janeiro, Brazil
| | - Carla Carolina Dias Uzedo Ribeiro
- Department of Animal Parasitology, Institute of Veterinary Medicine, Federal Rural University of Rio de Janeiro, Rio de janeiro, Brazil
| | - Bruna A. Baêta
- Department of Animal Parasitology, Institute of Veterinary Medicine, Federal Rural University of Rio de Janeiro, Rio de janeiro, Brazil
| | - Rafaella Câmara Teixeira
- Department of Animal Parasitology, Institute of Veterinary Medicine, Federal Rural University of Rio de Janeiro, Rio de janeiro, Brazil
| | - Arthur da Silva Neumann
- Lab. de Microbiologia Celular, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de janeiro, Brazil
| | | | | | - Milton Ozório Moraes
- Lab. de Hanseníase, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de janeiro, Brazil
| | - Gervásio Henrique Bechara
- School of Agricultural Sciences and Veterinary Medicine, Pontifical Catholic University of Parana, Curitiba, Brazil
| | - Pedro L. de Oliveira
- Lab. de Bioquímica de Artrópodes Hematófagos, Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcos Henrique Ferreira Sorgine
- Lab. de Bioquímica de Artrópodes Hematófagos, Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Philip Noel Suffys
- Lab. de Biologia Molecular Aplicada a Micobactérias, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Amanda Nogueira Brum Fontes
- Lab. de Biologia Molecular Aplicada a Micobactérias, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Lesley Bell-Sakyi
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Adivaldo H. Fonseca
- Department of Animal Parasitology, Institute of Veterinary Medicine, Federal Rural University of Rio de Janeiro, Rio de janeiro, Brazil
| | - Flavio Alves Lara
- Lab. de Microbiologia Celular, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de janeiro, Brazil
- * E-mail:
| |
Collapse
|
23
|
Sharma R, Singh P, Pena M, Subramanian R, Chouljenko V, Kim J, Kim N, Caskey J, Baudena MA, Adams LB, Truman RW. Differential growth of Mycobacterium leprae strains (SNP genotypes) in armadillos. INFECTION GENETICS AND EVOLUTION 2018; 62:20-26. [DOI: 10.1016/j.meegid.2018.04.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/06/2018] [Accepted: 04/12/2018] [Indexed: 10/17/2022]
|
24
|
Abstract
Nitazoxanide (NTZ) is an anti-parasitic drug that also has activity against bacteria, including Mycobacterium tuberculosis. Our data using both radiorespirometry and live-dead staining in vitro demonstrate that NTZ similarly has bactericidal against M. leprae. Further, gavage of M. leprae-infected mice with NTZ at 25mg/kg provided anti-mycobacterial activity equivalent to rifampicin (RIF) at 10 mg/kg. This suggests that NTZ could be considered for leprosy treatment.
Collapse
|
25
|
Vijay S, Nair RR, Sharan D, Jakkala K, Mukkayyan N, Swaminath S, Pradhan A, Joshi NV, Ajitkumar P. Mycobacterial Cultures Contain Cell Size and Density Specific Sub-populations of Cells with Significant Differential Susceptibility to Antibiotics, Oxidative and Nitrite Stress. Front Microbiol 2017; 8:463. [PMID: 28377757 PMCID: PMC5359288 DOI: 10.3389/fmicb.2017.00463] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 03/06/2017] [Indexed: 11/13/2022] Open
Abstract
The present study shows the existence of two specific sub-populations of Mycobacterium smegmatis and Mycobacterium tuberculosis cells differing in size and density, in the mid-log phase (MLP) cultures, with significant differential susceptibility to antibiotic, oxidative, and nitrite stress. One of these sub-populations (~10% of the total population), contained short-sized cells (SCs) generated through highly-deviated asymmetric cell division (ACD) of normal/long-sized mother cells and symmetric cell divisions (SCD) of short-sized mother cells. The other sub-population (~90% of the total population) contained normal/long-sized cells (NCs). The SCs were acid-fast stainable and heat-susceptible, and contained high density of membrane vesicles (MVs, known to be lipid-rich) on their surface, while the NCs possessed negligible density of MVs on the surface, as revealed by scanning and transmission electron microscopy. Percoll density gradient fractionation of MLP cultures showed the SCs-enriched fraction (SCF) at lower density (probably indicating lipid-richness) and the NCs-enriched fraction (NCF) at higher density of percoll fractions. While live cell imaging showed that the SCs and the NCs could grow and divide to form colony on agarose pads, the SCF, and NCF cells could independently regenerate MLP populations in liquid and solid media, indicating their full genomic content and population regeneration potential. CFU based assays showed the SCF cells to be significantly more susceptible than NCF cells to a range of concentrations of rifampicin and isoniazid (antibiotic stress), H2O2 (oxidative stress),and acidified NaNO2 (nitrite stress). Live cell imaging showed significantly higher susceptibility of the SCs of SC-NC sister daughter cell pairs, formed from highly-deviated ACD of normal/long-sized mother cells, to rifampicin and H2O2, as compared to the sister daughter NCs, irrespective of their comparable growth rates. The SC-SC sister daughter cell pairs, formed from the SCDs of short-sized mother cells and having comparable growth rates, always showed comparable stress-susceptibility. These observations and the presence of M. tuberculosis SCs and NCs in pulmonary tuberculosis patients' sputum earlier reported by us imply a physiological role for the SCs and the NCs under the stress conditions. The plausible reasons for the higher stress susceptibility of SCs and lower stress susceptibility of NCs are discussed.
Collapse
Affiliation(s)
- Srinivasan Vijay
- Department of Microbiology and Cell Biology, Indian Institute of ScienceBangalore, India
| | - Rashmi Ravindran Nair
- Department of Microbiology and Cell Biology, Indian Institute of ScienceBangalore, India
| | - Deepti Sharan
- Department of Microbiology and Cell Biology, Indian Institute of ScienceBangalore, India
| | - Kishor Jakkala
- Department of Microbiology and Cell Biology, Indian Institute of ScienceBangalore, India
| | - Nagaraja Mukkayyan
- Department of Microbiology and Cell Biology, Indian Institute of ScienceBangalore, India
| | - Sharmada Swaminath
- Department of Microbiology and Cell Biology, Indian Institute of ScienceBangalore, India
| | - Atul Pradhan
- Department of Microbiology and Cell Biology, Indian Institute of ScienceBangalore, India
| | - Niranjan V. Joshi
- Centre for Ecological Sciences, Indian Institute of ScienceBangalore, India
| | | |
Collapse
|
26
|
Human NOD2 Recognizes Structurally Unique Muramyl Dipeptides from Mycobacterium leprae. Infect Immun 2016; 84:2429-38. [PMID: 27297389 PMCID: PMC4995902 DOI: 10.1128/iai.00334-16] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 06/07/2016] [Indexed: 11/20/2022] Open
Abstract
The innate immune system recognizes microbial pathogens via pattern recognition receptors. One such receptor, NOD2, via recognition of muramyl dipeptide (MDP), triggers a distinct network of innate immune responses, including the production of interleukin-32 (IL-32), which leads to the differentiation of monocytes into dendritic cells (DC). NOD2 has been implicated in the pathogenesis of human leprosy, yet it is not clear whether Mycobacterium leprae, which has a distinct MDP structure, can activate this pathway. We investigated the effect of MDP structure on the innate immune response, finding that infection of monocytes with M. leprae induces IL-32 and DC differentiation in a NOD2-dependent manner. The presence of the proximal l-Ala instead of Gly in the common configuration of the peptide side chain of M. leprae did not affect recognition by NOD2 or cytokine production. Furthermore, amidation of the d-Glu residue did not alter NOD2 activation. These data provide experimental evidence that NOD2 recognizes naturally occurring structural variants of MDP.
Collapse
|
27
|
Neumann ADS, Dias FDA, Ferreira JDS, Fontes ANB, Rosa PS, Macedo RE, Oliveira JH, Teixeira RLDF, Pessolani MCV, Moraes MO, Suffys PN, Oliveira PL, Sorgine MHF, Lara FA. Experimental Infection of Rhodnius prolixus (Hemiptera, Triatominae) with Mycobacterium leprae Indicates Potential for Leprosy Transmission. PLoS One 2016; 11:e0156037. [PMID: 27203082 PMCID: PMC4874629 DOI: 10.1371/journal.pone.0156037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 05/09/2016] [Indexed: 11/16/2022] Open
Abstract
Leprosy is a chronic dermato-neurological disease caused by infection with Mycobacterium leprae. In 2013 almost 200,000 new cases of leprosy were detected around the world. Since the first symptoms take from years to decades to appear, the total number of asymptomatic patients is impossible to predict. Although leprosy is one of the oldest records of human disease, the mechanisms involved with its transmission and epidemiology are still not completely understood. In the present work, we experimentally investigated the hypothesis that the mosquitoes Aedes aegypti and Culex quinquefasciatus and the hemiptera Rhodnius prolixus act as leprosy vectors. By means of real-time PCR quantification of M. leprae 16SrRNA, we found that M. leprae remained viable inside the digestive tract of Rhodnius prolixus for 20 days after oral infection. In contrast, in the gut of both mosquito species tested, we were not able to detect M. leprae RNA after a similar period of time. Inside the kissing bug Rhodnius prolixus digestive tract, M. leprae was initially restricted to the anterior midgut, but gradually moved towards the hindgut, in a time course reminiscent of the life cycle of Trypanosoma cruzi, a well-known pathogen transmitted by this insect. The maintenance of M. leprae infectivity inside the digestive tract of this kissing bug is further supported by successful mice footpad inoculation with feces collected 20 days after infection. We conclude that Rhodnius prolixus defecate infective M. leprae, justifying the evaluation of the presence of M. leprae among sylvatic and domestic kissing bugs in countries endemic for leprosy.
Collapse
Affiliation(s)
- Arthur da Silva Neumann
- Laboratório de Microbiologia Celular, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Felipe de Almeida Dias
- Laboratório de Bioquímica de Artrópodes Hematófagos, Federal University of Rio de Janeiro, Rio de Janiero, Brazil
| | - Jéssica da Silva Ferreira
- Laboratório de Microbiologia Celular, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Amanda Nogueira Brum Fontes
- Laboratório de Biologia Molecular Aplicada a Micobactérias, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | | - Rafael Enrique Macedo
- Laboratório de Microbiologia Celular, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - José Henrique Oliveira
- Laboratório de Bioquímica de Artrópodes Hematófagos, Federal University of Rio de Janeiro, Rio de Janiero, Brazil
| | | | | | - Milton Ozório Moraes
- Laboratório de Hanseníase, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Philip Noel Suffys
- Laboratório de Biologia Molecular Aplicada a Micobactérias, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Pedro L. Oliveira
- Laboratório de Bioquímica de Artrópodes Hematófagos, Federal University of Rio de Janeiro, Rio de Janiero, Brazil
| | | | - Flavio Alves Lara
- Laboratório de Microbiologia Celular, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
28
|
Fallows D, Peixoto B, Kaplan G, Manca C. Mycobacterium leprae alters classical activation of human monocytes in vitro. JOURNAL OF INFLAMMATION-LONDON 2016; 13:8. [PMID: 26973434 PMCID: PMC4788835 DOI: 10.1186/s12950-016-0117-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 03/08/2016] [Indexed: 11/10/2022]
Abstract
Background Macrophages play a central role in the pathogenesis of leprosy, caused by Mycobacterium leprae. The polarized clinical presentations in leprosy are associated with differential immune activation. In tuberculoid leprosy, macrophages show a classical activation phenotype (M1), while macrophages in lepromatous disease display characteristics of alternative activation (M2). Bacille Calmette-Guérin (BCG) vaccination, which protects against leprosy, can promote sustained changes in monocyte response to unrelated pathogens and may preferentially direct monocytes towards an M1 protective phenotype. We previously reported that M. leprae can dampen the response of naïve human monocytes to a strong inducer of pro-inflammatory cytokines, such as BCG. Here, we investigated the ability of the pathogen to alter the direction of macrophage polarization and the impact of BCG vaccination on the monocyte response to M. leprae. Findings We show that in vitro exposure of monocytes from healthy donors to M. leprae interferes with subsequent M1 polarization, indicated by lower levels of M1-associated cytokine/chemokines released and reduced expression of M1 cell surface markers. Exposure to M. leprae phenolic glycolipid (PGL) 1, instead of whole bacteria, demonstrated a similar effect on M1 cytokine/chemokine release. In addition, we found that monocytes from 10-week old BCG-vaccinated infants released higher levels of the pro-inflammatory cytokines TNF-α and IL-1β in response to M. leprae compared to those from unvaccinated infants. Conclusion Exposure to M. leprae has an inhibitory effect on M1 macrophage polarization, likely mediated through PGL-1. By directing monocyte/macrophages preferentially towards M1 activation, BCG vaccination may render the cells more refractory to the inhibitory effects of subsequent M. leprae infection.
Collapse
Affiliation(s)
- Dorothy Fallows
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ USA
| | - Blas Peixoto
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ USA
| | - Gilla Kaplan
- The Bill & Melinda Gates Foundation, Seattle, WA USA
| | - Claudia Manca
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ USA
| |
Collapse
|
29
|
Fiołka MJ, Grzywnowicz K, Mendyk E, Zagaja M, Szewczyk R, Rawski M, Keller R, Rzymowska J, Wydrych J. Antimycobacterial action of a new glycolipid-peptide complex obtained from extracellular metabolites of Raoultella ornithinolytica. APMIS 2015; 123:1069-80. [PMID: 26547373 DOI: 10.1111/apm.12466] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 09/23/2015] [Indexed: 11/28/2022]
Abstract
In this paper, an antimycobacterial component of extracellular metabolites of a gut bacterium Raoultella ornithinolytica from D. veneta earthworms was isolated and its antimycobacterial action was tested using Mycobacterium smegmatis. After incubation with the complex obtained, formation of pores and furrows in cell walls was observed using microscopic techniques. The cells lost their shape, stuck together and formed clusters. Surface-enhanced Raman spectroscopy analysis showed that, after incubation, the complex was attached to the cell walls of the Mycobacterium. Analyses of the component performed with Fourier transform infrared spectroscopy demonstrated high similarity to a bacteriocin nisin, but energy dispersive X-ray spectroscopy analysis revealed differences in the elemental composition of this antimicrobial peptide. The component with antimycobacterial activity was identified using mass spectrometry techniques as a glycolipid-peptide complex. As it exhibits no cytotoxicity on normal human fibroblasts, the glycolipid-peptide complex appears to be a promising compound for investigations of its activity against pathogenic mycobacteria.
Collapse
Affiliation(s)
- Marta J Fiołka
- Department of Immunobiology, Institute of Biology and Biochemistry, Maria Curie-Skłodowska University, Lublin, Poland
| | - Krzysztof Grzywnowicz
- Department of Biochemistry, Institute of Biology and Biochemistry, Maria Curie-Skłodowska University, Lublin, Poland
| | - Ewaryst Mendyk
- Analytical Laboratory, Faculty of Chemistry, Maria Curie-Skłodowska University, Lublin, Poland
| | - Mirosław Zagaja
- Isobolographic Analysis Laboratory, Institute of Rural Health, Lublin, Poland
| | - Rafał Szewczyk
- Department of Industrial Microbiology and Biotechnology, Institute of Microbiology, Biotechnology and Immunology, University of Łódź, Łódź
| | - Michał Rawski
- Analytical Laboratory, Faculty of Chemistry, Maria Curie-Skłodowska University, Lublin, Poland
| | - Radosław Keller
- Analytical Laboratory, Faculty of Chemistry, Maria Curie-Skłodowska University, Lublin, Poland
| | - Jolanta Rzymowska
- Department of Biology and Genetics, Medical University of Lublin, Lublin, Poland
| | - Jerzy Wydrych
- Department of Comparative Anatomy and Anthropology, Institute of Biology and Biochemistry, Maria Curie-Skłodowska University, Lublin, Poland
| |
Collapse
|
30
|
Teles RMB, Kelly-Scumpia KM, Sarno EN, Rea TH, Ochoa MT, Cheng G, Modlin RL. IL-27 Suppresses Antimicrobial Activity in Human Leprosy. J Invest Dermatol 2015; 135:2410-2417. [PMID: 26030183 PMCID: PMC4567935 DOI: 10.1038/jid.2015.195] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 04/21/2015] [Accepted: 05/04/2015] [Indexed: 01/10/2023]
Abstract
The mechanisms by which intracellular pathogens trigger immunosuppressive pathways are critical for understanding the pathogenesis of microbial infection. One pathway that inhibits host defense responses involves the induction of type I interferons and subsequently IL-10, yet the mechanism by which type I IFN induces IL-10 remains unclear. Our studies of gene expression profiles derived from leprosy skin lesions suggested a link between IL-27 and the IFN-β induced IL-10 pathway. Here, we demonstrate that the IL-27p28 subunit is upregulated following treatment of monocytes with IFN-β and Mycobacterium leprae, the intracellular bacterium that causes leprosy. The ability of IFN-β and M. leprae to induce IL-10 was diminished by IL-27 knockdown. Additionally, treatment of monocytes with recombinant IL-27 was sufficient to induce the production of IL-10. Functionally, IL-27 inhibited the ability of IFN-γ to trigger antimicrobial activity against M. leprae in infected monocytes. At the site of disease, IL-27 was more strongly expressed in skin lesions of patients with progressive lepromatous leprosy, correlating and colocalizing with IFN-β and IL-10 in macrophages. Together, these data provide evidence that in the human cutaneous immune responses to microbial infection, IL-27 contributes to the suppression of host antimicrobial responses.
Collapse
Affiliation(s)
- Rosane M B Teles
- Department of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Kindra M Kelly-Scumpia
- Department of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Euzenir N Sarno
- Leprosy Laboratory, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Thomas H Rea
- Department of Dermatology, University of Southern California School of Medicine, Los Angeles, California, USA
| | - Maria T Ochoa
- Department of Dermatology, University of Southern California School of Medicine, Los Angeles, California, USA
| | - Genhong Cheng
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, California, USA
| | - Robert L Modlin
- Department of Medicine, University of California Los Angeles, Los Angeles, California, USA; Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, California, USA.
| |
Collapse
|
31
|
Mycobacterium leprae upregulates IRGM expression in monocytes and monocyte-derived macrophages. Inflammation 2015; 37:1028-34. [PMID: 24469081 DOI: 10.1007/s10753-014-9825-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Leprosy is caused by the infection of Mycobacterium leprae, which evokes a strong inflammatory response and leads to nerve damage. Immunity-related GTPase family M protein (IRGM) plays critical roles in controlling inflammation. The objective of the study was to investigate whether IRGM is involved in the infection of M. leprae. Levels of IRGM were assessed in M. leprae-infected CD4(+) T cells, monocytes, and monocyte-derived macrophages. Data revealed that both protein and mRNA levels of IRGM were increased in monocytes after M. leprae infection. Interestingly, monocyte-derived macrophages showed more prominent IRGM expression with M. leprae infection, whereas the bacteria did not affect IRGM in CD4(+) T cells. Furthermore, we assessed levels of IRGM in CD4(+) T cells and monocytes from 78 leprosy patients and 40 healthy controls, and observed upregulated protein level of IRGM in the monocytes from leprosy patients. Also, IRGM expression was inversely correlated with the severity of the disease. These findings suggested a close involvement of IRGM in M. leprae infection and indicated a potential mechanism of defending M. leprae infection.
Collapse
|
32
|
Barbosa T, Barral-Netto M. Challenges in the research and development of new human vaccines. Braz J Med Biol Res 2015; 46:103-8. [PMID: 23558931 PMCID: PMC3854358 DOI: 10.1590/1414-431x20131873] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 01/16/2013] [Indexed: 12/22/2022] Open
Abstract
The field of vaccinology was born from the observations by the fathers of vaccination, Edward Jenner and Louis Pasteur, that a permanent, positive change in the way our bodies respond to life-threatening infectious diseases can be obtained by specific challenge with the inactivated infectious agent performed in a controlled manner, avoiding the development of clinical disease upon exposure to the virulent pathogen. Many of the vaccines still in use today were developed on an empirical basis, essentially following the paradigm established by Pasteur, "isolate, inactivate, and inject" the disease-causing microorganism, and are capable of eliciting uniform, long-term immune memory responses that constitute the key to their proven efficacy. However, vaccines for pathogens considered as priority targets of public health concern are still lacking. The literature tends to focus more often on vaccine research problems associated with specific pathogens, but it is increasingly clear that there are common bottlenecks in vaccine research, which need to be solved in order to advance the development of the field as a whole. As part of a group of articles, the objective of the present report is to pinpoint these bottlenecks, exploring the literature for common problems and solutions in vaccine research applied to different situations. Our goal is to stimulate brainstorming among specialists of different fields related to vaccine research and development. Here, we briefly summarize the topics we intend to deal with in this discussion.
Collapse
Affiliation(s)
- T Barbosa
- Fundação Oswaldo Cruz, Centro de Pesquisas Gonçalo Moniz, Salvador, BA, Brasil.
| | | |
Collapse
|
33
|
Wheat WH, Casali AL, Thomas V, Spencer JS, Lahiri R, Williams DL, McDonnell GE, Gonzalez-Juarrero M, Brennan PJ, Jackson M. Long-term survival and virulence of Mycobacterium leprae in amoebal cysts. PLoS Negl Trop Dis 2014; 8:e3405. [PMID: 25521850 PMCID: PMC4270725 DOI: 10.1371/journal.pntd.0003405] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 11/07/2014] [Indexed: 11/18/2022] Open
Abstract
Leprosy is a curable neglected disease of humans caused by Mycobacterium leprae that affects the skin and peripheral nerves and manifests clinically in various forms ranging from self-resolving, tuberculoid leprosy to lepromatous leprosy having significant pathology with ensuing disfiguration disability and social stigma. Despite the global success of multi-drug therapy (MDT), incidences of clinical leprosy have been observed in individuals with no apparent exposure to other cases, suggestive of possible non-human sources of the bacteria. In this study we show that common free-living amoebae (FLA) can phagocytose M. leprae, and allow the bacillus to remain viable for up to 8 months within amoebic cysts. Viable bacilli were extracted from separate encysted cocultures comprising three common Acanthamoeba spp.: A. lenticulata, A. castellanii, and A. polyphaga and two strains of Hartmannella vermiformis. Trophozoites of these common FLA take up M. leprae by phagocytosis. M. leprae from infected trophozoites induced to encyst for long-term storage of the bacilli emerged viable by assessment of membrane integrity. The majority (80%) of mice that were injected with bacilli extracted from 35 day cocultures of encysted/excysted A. castellanii and A. polyphaga showed lesion development that was similar to mice challenged with fresh M. leprae from passage mice albeit at a slower initial rate. Mice challenged with coculture-extracted bacilli showed evidence of acid-fast bacteria and positive PCR signal for M. leprae. These data support the conclusion that M. leprae can remain viable long-term in environmentally ubiquitous FLA and retain virulence as assessed in the nu/nu mouse model. Additionally, this work supports the idea that M. leprae might be sustained in the environment between hosts in FLA and such residence in FLA may provide a macrophage-like niche contributing to the higher-than-expected rate of leprosy transmission despite a significant decrease in human reservoirs due to MDT.
Collapse
Affiliation(s)
- William H. Wheat
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Amy L. Casali
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | | | - John S. Spencer
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Ramanuj Lahiri
- Department of Health & Human Services, HRSA, HSB, National Hansen's Disease Programs, Laboratory Research Branch, Baton Rouge, Louisiana, United States of America
- School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Diana L. Williams
- Department of Health & Human Services, HRSA, HSB, National Hansen's Disease Programs, Laboratory Research Branch, Baton Rouge, Louisiana, United States of America
- School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Gerald E. McDonnell
- Department of Research and Development, STERIS Corporation, Mentor, Ohio, United States of America
| | - Mercedes Gonzalez-Juarrero
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Patrick J. Brennan
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| |
Collapse
|
34
|
Lastória JC, Abreu MAMMD. Leprosy: a review of laboratory and therapeutic aspects--part 2. An Bras Dermatol 2014; 89:389-401. [PMID: 24937811 PMCID: PMC4056695 DOI: 10.1590/abd1806-4841.20142460] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Accepted: 04/15/2013] [Indexed: 11/29/2022] Open
Abstract
Leprosy is a chronic infectious condition caused by Mycobacterium
leprae(M. leprae). It is endemic in many regions of the world and a
public health problem in Brazil. Additionally, it presents a wide spectrum of
clinical manifestations, which are dependent on the interaction between M.
leprae and host, and are related to the degree of immunity to the bacillus. The
diagnosis of this disease is a clinical one. However, in some situations
laboratory exams are necessary to confirm the diagnosis of leprosy or classify
its clinical form. This article aims to update dermatologists on leprosy,
through a review of complementary laboratory techniques that can be employed for
the diagnosis of leprosy, including Mitsuda intradermal reaction, skin smear
microscopy, histopathology, serology, immunohistochemistry, polymerase chain
reaction, imaging tests, electromyography, and blood tests. It also aims to
explain standard multidrug therapy regimens, the treatment of reactions and
resistant cases, immunotherapy with bacillus Calmette-Guérin (BCG) vaccine and
chemoprophylaxis.
Collapse
Affiliation(s)
- Joel Carlos Lastória
- Faculdade de Medicina de Botucatu, Universidade Estadual Paulista Júlio de Mesquita Filho, Botucatu, SP, Brazil
| | | |
Collapse
|
35
|
Yang D, Chen J, Shi C, Jing Z, Song N. Autophagy gene polymorphism is associated with susceptibility to leprosy by affecting inflammatory cytokines. Inflammation 2014; 37:593-8. [PMID: 24264476 DOI: 10.1007/s10753-013-9773-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Autophagy and inflammation closely interact with each other, and together, they play critical roles in bacterial infection. Leprosy is caused by the infection of Mycobacterium leprae (M. leprae). The objective of the study was to investigate the association between polymorphisms in IRGM, an autophagy gene, and susceptibility to leprosy, and identify possible functions of the polymorphism in the infection of M. leprae. Two polymorphisms in IRGM, rs4958842 and rs13361189, were tested in 412 leprosy cases and 432 healthy controls. Levels of inflammatory cytokines including interleukin 1 beta, IL-4, IL-6, and interferon gamma (INF-γ) were measured after the infection of M. leprae in the peripheral blood mononuclear cell (PBMC) of subjects with different genotypes of rs13361189. Data showed that prevalence of rs13361189TC and CC genotypes were significantly higher in leprosy patients than in healthy controls (odds ratio (OR) = 1.49, 95 % confidence interval (CI) 1.09-2.04, P = 0.012; OR = 2.58, 95 % CI 1.65-4.05, P < 0.001; respectively). Furthermore, the frequency of rs13361189CC genotype was increased in patients with complications than those without complications (P = 0.011). When analyzing the effect of rs13361189 polymorphism on M. leprae infection, we identified that M. leprae-infected PBMC with rs13361189CC genotype expressed significantly elevated levels of INF-γ and IL-4 than those with TT genotype. Our results suggested autophagy gene polymorphism was associated with the increased risk of leprosy by affecting inflammatory cytokines.
Collapse
Affiliation(s)
- Degang Yang
- Shanghai Dermatology Hospital, 1278 Bao De Road, Shanghai, 200443, People's Republic of China
| | | | | | | | | |
Collapse
|
36
|
IL-10 and NOS2 modulate antigen-specific reactivity and nerve infiltration by T cells in experimental leprosy. PLoS Negl Trop Dis 2014; 8:e3149. [PMID: 25210773 PMCID: PMC4161319 DOI: 10.1371/journal.pntd.0003149] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 07/28/2014] [Indexed: 12/18/2022] Open
Abstract
Background Although immunopathology dictates clinical outcome in leprosy, the dynamics of early and chronic infection are poorly defined. In the tuberculoid region of the spectrum, Mycobacterium leprae growth is restricted yet a severe granulomatous lesion can occur. The evolution and maintenance of chronic inflammatory processes like those observed in the leprosy granuloma involve an ongoing network of communications via cytokines. IL-10 has immunosuppressive properties and IL-10 genetic variants have been associated with leprosy development and reactions. Methodology/Principal Findings The role of IL-10 in resistance and inflammation in leprosy was investigated using Mycobacterium leprae infection of mice deficient in IL-10 (IL-10−/−), as well as mice deficient in both inducible nitric oxide synthase (NOS2−/−) and IL-10 (10NOS2−/−). Although a lack of IL-10 did not affect M. leprae multiplication in the footpads (FP), inflammation increased from C57Bl/6 (B6)<IL-10−/−<NOS2−/−<10NOS2−/−. While IL-10−/− mice exhibited modest FP induration compared to B6, NOS2−/− and 10NOS2−/− mice developed markedly enlarged FP marking distinct phases: early (1 month), peak (3–4 months), and chronic (8 months). IFN-γ-producing CD4+CD44+ cells responding to M. leprae cell wall, membrane, and cytosol antigens and ML2028 (Ag85B) were significantly increased in the evolved granuloma in NOS2−/− FP compared to B6 and IL-10−/− during early and peak phases. In 10NOS2−/− FP, CD4+CD44+ and especially CD8+CD44+ responses were augmented even further to these antigens as well as to ML0380 (GroES), ML2038 (bacterioferritin), and ML1877 (EF-Tu). Moreover, fragmented nerves containing CD4+ cells were present in 10NOS2−/− FP. Conclusions/Significance The 10NOS2−/− strain offers insight on the regulation of granuloma formation and maintenance by immune modulators in the resistant forms of leprosy and presents a new model for investigating the pathogenesis of neurological involvement. Despite effective antimicrobial therapy, 30–50% of leprosy patients develop immunological complications called leprosy reactions before, during or even years after being cured. Leprosy reactions are a major risk for neuritis that leads to peripheral nerve damage, disfigurement and disability. Unfortunately, why and how leprosy reactions occur is not well understood. Based on the latest human genetic leprosy susceptibility research and mouse infection models, we generated a double knockout mouse strain (10NOS2−/−) which has deficiencies in two key immune factors, interleukin-10 (IL-10) and inducible nitric oxide synthase (NOS2). We investigated the dynamics of the immune response to Mycobacterium leprae infection and chronicled the types of immune cells recruited to the site of infection. 10NOS2−/− mice developed a substantial induration in response to infection, as well as an increased interferon-gamma response to components of the leprosy bacillus. Interestingly, these animals also exhibited CD4+ T cell infiltration into the nerves, a phenomenon which has not been previously reported in leprosy mouse models. This new model provides insight into potential mechanisms whereby immune modulators may regulate leprosy reactions and neuritis and could aid the development of tests for monitoring and treatment of leprosy patients.
Collapse
|
37
|
Cezar-de-Mello PFT, Toledo-Pinto TG, Marques CS, Arnez LEA, Cardoso CC, Guerreiro LTA, Antunes SLG, Jardim MM, Covas CDJF, Illaramendi X, Dias-Baptista IM, Rosa PS, Durães SMB, Pacheco AG, Ribeiro-Alves M, Sarno EN, Moraes MO. Pre-miR-146a (rs2910164 G>C) single nucleotide polymorphism is genetically and functionally associated with leprosy. PLoS Negl Trop Dis 2014; 8:e3099. [PMID: 25187983 PMCID: PMC4154665 DOI: 10.1371/journal.pntd.0003099] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 07/05/2014] [Indexed: 12/22/2022] Open
Abstract
Mycobacterium leprae infects macrophages and Schwann cells inducing a gene expression program to facilitate its replication and progression to disease. MicroRNAs (miRNAs) are key regulators of gene expression and could be involved during the infection. To address the genetic influence of miRNAs in leprosy, we enrolled 1,098 individuals and conducted a case-control analysis in order to study four miRNAs genes containing single nucleotide polymorphism (miRSNP). We tested miRSNP-125a (rs12975333 G>T), miRSNP-223 (rs34952329 *>T), miRSNP-196a-2 (rs11614913 C>T) and miRSNP-146a (rs2910164 G>C). Amongst them, miRSNP-146a was the unique gene associated with risk to leprosy per se (GC OR = 1.44, p = 0.04; CC OR = 2.18, p = 0.0091). We replicated this finding showing that the C-allele was over-transmitted (p = 0.003) using a transmission-disequilibrium test. A functional analysis revealed that live M. leprae (MOI 100∶1) was able to induce miR-146a expression in THP-1 (p<0.05). Furthermore, pure neural leprosy biopsies expressed augmented levels of that miRNA as compared to biopsy samples from neuropathies not related with leprosy (p = 0.001). Interestingly, carriers of the risk variant (C-allele) produce higher levels of mature miR-146a in nerves (p = 0.04). From skin biopsies, although we observed augmented levels of miR-146a, we were not able to correlate it with a particular clinical form or neither host genotype. MiR-146a is known to modulate TNF levels, thus we assessed TNF expression (nerve biopsies) and released by peripheral blood mononuclear cells infected with BCG Moreau. In both cases lower TNF levels correlates with subjects carrying the risk C-allele, (p = 0.0453 and p = 0.0352; respectively), which is consistent with an immunomodulatory role of this miRNA in leprosy. In spite of the successful drug therapy, leprosy is still affecting people worldwide. It is well known that host genetic background influences leprosy development and that genetic variants have been associated with the disease. Therefore we conducted a study to evaluate the role of microRNAs (miRNAs) polymorphisms in leprosy. We observed that a polymorphism in miR-146a is associated with the risk to develop leprosy in Brazilians. Based on the analysis of clinical specimens, we found that the genetic variant was correlated with elevated levels of miR-146a and it is also a negative regulator of tumor necrosis factor (TNF), an important inflammatory mediator in the leprosy context. These findings provide tenable evidences that miR-146a is important in the control of gene expression during M. leprae infection and also may contribute with leprosy development by controlling TNF levels.
Collapse
Affiliation(s)
- Paula F. T. Cezar-de-Mello
- Laboratório de Hanseníase, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brasil
| | - Thiago G. Toledo-Pinto
- Laboratório de Hanseníase, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brasil
| | - Carolinne S. Marques
- Laboratório de Hanseníase, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brasil
| | - Lucia E. A. Arnez
- Laboratório de Hanseníase, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brasil
| | - Cynthia C. Cardoso
- Laboratório de Hanseníase, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brasil
| | - Luana T. A. Guerreiro
- Laboratório de Hanseníase, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brasil
| | - Sérgio L. G. Antunes
- Laboratório de Hanseníase, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brasil
| | - Márcia M. Jardim
- Laboratório de Hanseníase, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brasil
| | - Claudia de J. F. Covas
- Laboratório de Hanseníase, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brasil
| | - Ximena Illaramendi
- Laboratório de Hanseníase, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brasil
| | | | | | - Sandra M. B. Durães
- Centro de Ciências Médicas, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brasil
| | - Antonio G. Pacheco
- Programa de Computação Científica, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brasil
| | - Marcelo Ribeiro-Alves
- Laboratório de Hanseníase, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brasil
| | - Euzenir N. Sarno
- Laboratório de Hanseníase, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brasil
| | - Milton O. Moraes
- Laboratório de Hanseníase, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brasil
- * E-mail:
| |
Collapse
|
38
|
Williams DL, Adams LB, Lahiri R. Semi-automated protocol for purification of Mycobacterium leprae from tissues using the gentleMACS™ Octo Dissociator. J Microbiol Methods 2014; 105:80-1. [PMID: 25019518 PMCID: PMC4169666 DOI: 10.1016/j.mimet.2014.06.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 06/25/2014] [Accepted: 06/26/2014] [Indexed: 11/30/2022]
Abstract
Mycobacterium leprae, etiologic agent of leprosy, is propagated in athymic nude mouse footpads (FPs). The current purification protocol is tedious and physically demanding. A simpler, semi-automated protocol was developed using gentleMACS™ Octo Dissociator. The gentleMACS protocol provided a very effective means for purification of highly viable M. leprae from tissue. A gentleMACs protocol was developed for purification of Mycobacterium leprae. The current hand-held homogenization technique is tedious and physically demanding. Both protocols were compared using infected mouse footpad tissues. Both protocols produced highly viable, metabolically active M. leprae from host tissue. The gentleMACS protocol was less tedious, physically demanding and time-consuming.
Collapse
Affiliation(s)
- Diana L Williams
- Department of Health and Human Services, Health Resource Services Administration, Health Systems Bureau, National Hansen's Disease Programs, Laboratory Research Branch, SVM-LSU, RM 3517W, Skip Bertman Dr., Baton Rouge, LA 70803, USA.
| | - Linda B Adams
- Department of Health and Human Services, Health Resource Services Administration, Health Systems Bureau, National Hansen's Disease Programs, Laboratory Research Branch, SVM-LSU, RM 3517W, Skip Bertman Dr., Baton Rouge, LA 70803, USA
| | - Ramanuj Lahiri
- Department of Health and Human Services, Health Resource Services Administration, Health Systems Bureau, National Hansen's Disease Programs, Laboratory Research Branch, SVM-LSU, RM 3517W, Skip Bertman Dr., Baton Rouge, LA 70803, USA
| |
Collapse
|
39
|
Trombone APF, Pedrini SCB, Diório SM, Belone ADFF, Fachin LRV, do Nascimento DC, Rosa PS. Optimized protocols for Mycobacterium leprae strain management: frozen stock preservation and maintenance in athymic nude mice. J Vis Exp 2014. [PMID: 24686247 PMCID: PMC4155980 DOI: 10.3791/50620] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Leprosy, caused by Mycobacterium leprae, is an important infectious disease that is still endemic in many countries around the world, including Brazil. There are currently no known methods for growing M. lepraein vitro, presenting a major obstacle in the study of this pathogen in the laboratory. Therefore, the maintenance and growth of M. leprae strains are preferably performed in athymic nude mice (NU-Foxn1nu). The laboratory conditions for using mice are readily available, easy to perform, and allow standardization and development of protocols for achieving reproducible results. In the present report, we describe a simple protocol for purification of bacilli from nude mouse footpads using trypsin, which yields a suspension with minimum cell debris and with high bacterial viability index, as determined by fluorescent microscopy. A modification to the standard method for bacillary counting by Ziehl-Neelsen staining and light microscopy is also demonstrated. Additionally, we describe a protocol for freezing and thawing bacillary stocks as an alternative protocol for maintenance and storage of M. leprae strains.
Collapse
|
40
|
Molecular assays for determining Mycobacterium leprae viability in tissues of experimentally infected mice. PLoS Negl Trop Dis 2013; 7:e2404. [PMID: 24179562 PMCID: PMC3750008 DOI: 10.1371/journal.pntd.0002404] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 07/23/2013] [Indexed: 11/25/2022] Open
Abstract
Background The inability of Mycobacterium leprae to grow on axenic media has necessitated specialized techniques in order to determine viability of this organism. The purpose of this study was to develop a simple and sensitive molecular assay for determining M. leprae viability directly from infected tissues. Methodology/Principle Findings Two M. leprae-specific quantitative reverse transcription PCR (qRT-PCR) assays based on the expression levels of esxA, encoding the ESAT-6 protein, and hsp18, encoding the heat shock 18 kDa protein, were developed and tested using infected footpad (FP) tissues of both immunocompetent and immunocompromised (athymic nu/nu) mice. In addition, the ability of these assays to detect the effects of anti-leprosy drug treatment on M. leprae viability was determined using rifampin and rifapentine, each at 10 mg/kg for 1, 5, or 20 daily doses, in the athymic nu/nu FP model. Molecular enumeration (RLEP PCR) and viability determinations (qRT-PCR) were performed via Taqman methodology on DNA and RNA, respectively, purified from ethanol-fixed FP tissue and compared with conventional enumeration (microscopic counting of acid fast bacilli) and viability assays (radiorespirometry, viability staining) which utilized bacilli freshly harvested from the contralateral FP. Both molecular and conventional assays demonstrated growth and high viability of M. leprae in nu/nu FPs over a 4 month infection period. In contrast, viability was markedly decreased by 8 weeks in immunocompetent mice. Rifapentine significantly reduced bacterial viability after 5 treatments, whereas rifampin required up to 20 treatments for the same efficacy. Neither drug was effective after a single treatment. In addition, host gene expression was monitored with the same RNA preparations. Conclusions hsp18 and esxA qRT-PCR are sensitive molecular indicators, reliably detecting viability of M. leprae in tissues without the need for bacterial isolation or immediate processing, making these assays applicable for in vivo drug screening and promising for clinical and field applications. M. leprae, the causative agent of leprosy, cannot be grown on laboratory culture media. This characteristic, along with its extremely long generation time of 12–14 days, makes the study of the pathogenicity of this organism and the experimental testing of new drugs for the treatment of leprosy extremely difficult. We developed two M. leprae-specific quantitative reverse transcription PCR assays and tested their utility as biological markers of M. leprae viability in tissue specimens. These assays could detect high viability of bacilli growing in immunosuppressed mice as well as the inhibitory effects of anti-leprosy drug treatment, or of the host immune system in immunocompetent mice. The RNA preparations were also successfully used for detection of host gene expression. The application of these assays to various experimental models would benefit characterization of the infection or novel drug screening. Furthermore, because these assays utilize fixed tissues, their potential application to clinical and field settings could enable monitoring of M. leprae viability in conjunction with the host immune response during treatment.
Collapse
|
41
|
Guerreiro LTA, Robottom-Ferreira AB, Ribeiro-Alves M, Toledo-Pinto TG, Rosa Brito T, Rosa PS, Sandoval FG, Jardim MR, Antunes SG, Shannon EJ, Sarno EN, Pessolani MCV, Williams DL, Moraes MO. Gene expression profiling specifies chemokine, mitochondrial and lipid metabolism signatures in leprosy. PLoS One 2013; 8:e64748. [PMID: 23798993 PMCID: PMC3683049 DOI: 10.1371/journal.pone.0064748] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 04/16/2013] [Indexed: 11/18/2022] Open
Abstract
Herein, we performed microarray experiments in Schwann cells infected with live M. leprae and identified novel differentially expressed genes (DEG) in M. leprae infected cells. Also, we selected candidate genes associated or implicated with leprosy in genetic studies and biological experiments. Forty-seven genes were selected for validation in two independent types of samples by multiplex qPCR. First, an in vitro model using THP-1 cells was infected with live Mycobacterium leprae and M. bovis bacillus Calmette-Guérin (BCG). In a second situation, mRNA obtained from nerve biopsies from patients with leprosy or other peripheral neuropathies was tested. We detected DEGs that discriminate M. bovis BCG from M. leprae infection. Specific signatures of susceptible responses after M. leprae infection when compared to BCG lead to repression of genes, including CCL2, CCL3, IL8 and SOD2. The same 47-gene set was screened in nerve biopsies, which corroborated the down-regulation of CCL2 and CCL3 in leprosy, but also evidenced the down-regulation of genes involved in mitochondrial metabolism, and the up-regulation of genes involved in lipid metabolism and ubiquitination. Finally, a gene expression signature from DEG was identified in patients confirmed of having leprosy. A classification tree was able to ascertain 80% of the cases as leprosy or non-leprous peripheral neuropathy based on the expression of only LDLR and CCL4. A general immune and mitochondrial hypo-responsive state occurs in response to M. leprae infection. Also, the most important genes and pathways have been highlighted providing new tools for early diagnosis and treatment of leprosy.
Collapse
Affiliation(s)
| | | | - Marcelo Ribeiro-Alves
- Laboratório de Hanseníase, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, FIOCRUZ-RJ, Rio de Janeiro, Brazil
- Laboratório de Pesquisa em Farmacogenética, Instituto de Pesquisa Clínica Evandro Chagas (IPEC), FIOCRUZ-RJ, Rio de Janeiro, Brazil
| | - Thiago Gomes Toledo-Pinto
- Laboratório de Hanseníase, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, FIOCRUZ-RJ, Rio de Janeiro, Brazil
| | - Tiana Rosa Brito
- Laboratório de Hanseníase, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, FIOCRUZ-RJ, Rio de Janeiro, Brazil
| | | | - Felipe Galvan Sandoval
- Health Resources and Services Administration (HRSA), Bureau of Primary Health Care (BPHC), Division of National Hansen's Disease Programs, Laboratory Research Branch at the School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Márcia Rodrigues Jardim
- Laboratório de Hanseníase, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, FIOCRUZ-RJ, Rio de Janeiro, Brazil
| | - Sérgio Gomes Antunes
- Laboratório de Hanseníase, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, FIOCRUZ-RJ, Rio de Janeiro, Brazil
| | - Edward J. Shannon
- Health Resources and Services Administration (HRSA), Bureau of Primary Health Care (BPHC), Division of National Hansen's Disease Programs, Laboratory Research Branch at the School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Euzenir Nunes Sarno
- Laboratório de Hanseníase, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, FIOCRUZ-RJ, Rio de Janeiro, Brazil
| | | | - Diana Lynn Williams
- Health Resources and Services Administration (HRSA), Bureau of Primary Health Care (BPHC), Division of National Hansen's Disease Programs, Laboratory Research Branch at the School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Milton Ozório Moraes
- Laboratório de Hanseníase, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, FIOCRUZ-RJ, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
42
|
Interaction of Mycobacterium leprae with human airway epithelial cells: adherence, entry, survival, and identification of potential adhesins by surface proteome analysis. Infect Immun 2013; 81:2645-59. [PMID: 23670556 DOI: 10.1128/iai.00147-13] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
This study examined the in vitro interaction between Mycobacterium leprae, the causative agent of leprosy, and human alveolar and nasal epithelial cells, demonstrating that M. leprae can enter both cell types and that both are capable of sustaining bacterial survival. Moreover, delivery of M. leprae to the nasal septum of mice resulted in macrophage and epithelial cell infection in the lung tissue, sustaining the idea that the airways constitute an important M. leprae entry route into the human body. Since critical aspects in understanding the mechanisms of infection are the identification and characterization of the adhesins involved in pathogen-host cell interaction, the nude mouse-derived M. leprae cell surface-exposed proteome was studied to uncover potentially relevant adhesin candidates. A total of 279 cell surface-exposed proteins were identified based on selective biotinylation, streptavidin-affinity purification, and shotgun mass spectrometry; 11 of those proteins have been previously described as potential adhesins. In vitro assays with the recombinant forms of the histone-like protein (Hlp) and the heparin-binding hemagglutinin (HBHA), considered to be major mycobacterial adhesins, confirmed their capacity to promote bacterial attachment to epithelial cells. Taking our data together, they suggest that the airway epithelium may act as a reservoir and/or portal of entry for M. leprae in humans. Moreover, our report sheds light on the potentially critical adhesins involved in M. leprae-epithelial cell interaction that may be useful in designing more effective tools for leprosy control.
Collapse
|
43
|
Teles RMB, Graeber TG, Krutzik SR, Montoya D, Schenk M, Lee DJ, Komisopoulou E, Kelly-Scumpia K, Chun R, Iyer SS, Sarno EN, Rea TH, Hewison M, Adams JS, Popper SJ, Relman DA, Stenger S, Bloom BR, Cheng G, Modlin RL. Type I interferon suppresses type II interferon-triggered human anti-mycobacterial responses. Science 2013; 339:1448-53. [PMID: 23449998 PMCID: PMC3653587 DOI: 10.1126/science.1233665] [Citation(s) in RCA: 300] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Type I interferons (IFN-α and IFN-β) are important for protection against many viral infections, whereas type II interferon (IFN-γ) is essential for host defense against some bacterial and parasitic pathogens. Study of IFN responses in human leprosy revealed an inverse correlation between IFN-β and IFN-γ gene expression programs. IFN-γ and its downstream vitamin D-dependent antimicrobial genes were preferentially expressed in self-healing tuberculoid lesions and mediated antimicrobial activity against the pathogen Mycobacterium leprae in vitro. In contrast, IFN-β and its downstream genes, including interleukin-10 (IL-10), were induced in monocytes by M. leprae in vitro and preferentially expressed in disseminated and progressive lepromatous lesions. The IFN-γ-induced macrophage vitamin D-dependent antimicrobial peptide response was inhibited by IFN-β and by IL-10, suggesting that the differential production of IFNs contributes to protection versus pathogenesis in some human bacterial infections.
Collapse
MESH Headings
- 25-Hydroxyvitamin D3 1-alpha-Hydroxylase/genetics
- 25-Hydroxyvitamin D3 1-alpha-Hydroxylase/metabolism
- Antimicrobial Cationic Peptides/genetics
- Antimicrobial Cationic Peptides/metabolism
- Humans
- Interferon-beta/genetics
- Interferon-beta/immunology
- Interferon-beta/metabolism
- Interferon-gamma/genetics
- Interferon-gamma/immunology
- Interferon-gamma/metabolism
- Interleukin-10/genetics
- Interleukin-10/metabolism
- Leprosy, Lepromatous/genetics
- Leprosy, Lepromatous/immunology
- Leprosy, Lepromatous/metabolism
- Leprosy, Tuberculoid/genetics
- Leprosy, Tuberculoid/immunology
- Leprosy, Tuberculoid/metabolism
- Microbial Viability
- Monocytes/immunology
- Monocytes/metabolism
- Mycobacterium leprae/immunology
- Mycobacterium leprae/physiology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Calcitriol/genetics
- Receptors, Calcitriol/metabolism
- Transcriptome
- Tuberculosis/genetics
- Tuberculosis/immunology
- Up-Regulation
- beta-Defensins/genetics
- beta-Defensins/metabolism
- Cathelicidins
Collapse
Affiliation(s)
- Rosane M. B. Teles
- Division of Dermatology, David Geffen School of Medicine at University of California, Los Angeles, CA 90095, USA
| | - Thomas G. Graeber
- Crump Institute for Molecular Imaging, Institute for Molecular Medicine, Johnson Comprehensive Cancer Center, California NanoSystems Institute, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095, USA
| | - Stephan R. Krutzik
- Division of Dermatology, David Geffen School of Medicine at University of California, Los Angeles, CA 90095, USA
| | - Dennis Montoya
- Division of Dermatology, David Geffen School of Medicine at University of California, Los Angeles, CA 90095, USA
| | - Mirjam Schenk
- Division of Dermatology, David Geffen School of Medicine at University of California, Los Angeles, CA 90095, USA
| | - Delphine J. Lee
- Department of Translational Immunology, John Wayne Cancer Institute, Santa Monica, CA, USA
| | - Evangelia Komisopoulou
- Crump Institute for Molecular Imaging, Institute for Molecular Medicine, Johnson Comprehensive Cancer Center, California NanoSystems Institute, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095, USA
| | - Kindra Kelly-Scumpia
- Division of Dermatology, David Geffen School of Medicine at University of California, Los Angeles, CA 90095, USA
| | - Rene Chun
- UCLA/Orthopedic Hospital Department of Orthopedic Surgery, David Geffen School of Medicine at University of California, Los Angeles, CA 90095, USA
| | - Shankar S. Iyer
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at University of California, Los Angeles, CA 90095, USA
| | - Euzenir N. Sarno
- Department of Mycobacteriosis, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Thomas H. Rea
- Department of Dermatology, University of Southern California School of Medicine, Los Angeles, CA 90033, USA
| | - Martin Hewison
- UCLA/Orthopedic Hospital Department of Orthopedic Surgery, David Geffen School of Medicine at University of California, Los Angeles, CA 90095, USA
| | - John S. Adams
- UCLA/Orthopedic Hospital Department of Orthopedic Surgery, David Geffen School of Medicine at University of California, Los Angeles, CA 90095, USA
| | - Stephen J. Popper
- Department of Microbiology and Immunology and Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - David A. Relman
- Department of Microbiology and Immunology and Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Steffen Stenger
- Institute for Medical Microbiology and Hygiene, University Hospital of Ulm, Germany
| | | | - Genhong Cheng
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at University of California, Los Angeles, CA 90095, USA
| | - Robert L. Modlin
- Division of Dermatology, David Geffen School of Medicine at University of California, Los Angeles, CA 90095, USA
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
44
|
PARK2 mediates interleukin 6 and monocyte chemoattractant protein 1 production by human macrophages. PLoS Negl Trop Dis 2013; 7:e2015. [PMID: 23350010 PMCID: PMC3547867 DOI: 10.1371/journal.pntd.0002015] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 12/03/2012] [Indexed: 01/02/2023] Open
Abstract
Leprosy is a persistent infectious disease caused by Mycobacterium leprae that still affects over 200,000 new patients annually. The host genetic background is an important risk factor for leprosy susceptibility and the PARK2 gene is a replicated leprosy susceptibility candidate gene. The protein product of PARK2, Parkin, is an E3 ubiquitin ligase that is involved in the development of various forms of Parkinsonism. The human macrophage is both a natural host cell of M. leprae as well as a primary mediator of natural immune defenses, in part by secreting important pro-inflammatory cytokines and chemokines. Here, we report that down-regulation of Parkin in THP-1 macrophages, human monocyte-derived macrophages and human Schwann cells resulted in a consistent and specific decrease in interleukin-6 (IL-6) and monocyte chemoattractant protein 1 (MCP-1/CCL2) production in response to mycobacteria or LPS. Interestingly, production of IL-6 at 6 hours by THP-1 cells stimulated with live M. leprae and M. bovis BCG was dependent on pretreatment with 1,25-dihydroxyvitamin D3 (VD). Parkin knockdown in VD-treated cells blocked IL-6 induction by mycobacteria. However, IκB-α phosphorylation and levels of IκB-ξ, a nuclear protein required for IL-6 expression, were not affected by Parkin silencing. Phosphorylation of MAPK ERK1/2 and p38 was unaffected by Parkin silencing while JNK activation was promoted but did not explain the altered cytokine production. In a final set of experiments we found that genetic risk factors of leprosy located in the PARK2 promoter region were significantly correlated with M. leprae sonicate triggered CCL2 and IL6 transcript levels in whole blood assays. These results associated genetically controlled changes in the production of MCP-1/CCL2 and IL-6 with known leprosy susceptibility factors. Leprosy is an infectious disease with a strong host genetic component. The identification of host genetic lesions predisposing to disease is a powerful approach for mapping key junctions in the host pathogen interplay. Genetic variants located in the promoter region of the PARK2 gene are replicated leprosy susceptibility factors. To better understand a possible contribution of PARK2 to host effector mechanisms in leprosy patients, we developed a cellular model to test the contribution of the PARK2 encoded parkin protein to host responses to mycobacterial antigens. We observed that parkin was a mediator of IL-6 production in response to mycobacterial antigen in both THP-1 macrophages and human Schwann cells while human monocyte-derived macrophages needed to be pre-activated with VitD to show the same impact. Parkin also impacted on the constitutive production of MCP-1. The regulatory activity of parkin on cytokine production was found to be independent of the canonical TLR-NFκB signalling pathway. We also tested association of IL6 and CCL2 gene expression levels in whole blood assays with PARK2 polymorphisms. For both cytokines, we found significant associations with those PARK2 variants that were established leprosy susceptibility factors. Hence, our results show that genetic PARK2 variants that are correlated with leprosy susceptibility are also correlated with production of these cytokines following stimulation with M. leprae sonicate.
Collapse
|
45
|
Duthie MS, Sampaio LH, Oliveira RM, Raman VS, O'Donnell J, Bailor HR, Ireton GC, Sousa ALM, Stefani MMA, Reed SG. Development and pre-clinical assessment of a 73 kD chimeric fusion protein as a defined sub-unit vaccine for leprosy. Vaccine 2012; 31:813-9. [PMID: 23228811 DOI: 10.1016/j.vaccine.2012.11.073] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 11/21/2012] [Accepted: 11/24/2012] [Indexed: 12/01/2022]
Abstract
Despite the advances toward the elimination of leprosy through widespread provision of multi-drug therapy to registered patients over the last 2 decades, new case detection rates have stabilized and leprosy remains endemic in a number of localized regions. A vaccine could overcome the inherent limitations of the drug treatment program by providing protection in individuals who are not already harboring the Mycobacterium leprae bacilli at the time of administration and effectively interrupt the transmission cycle over a wider timespan. In this report we present data validating the production of 73f, a chimeric fusion protein incorporating the M. leprae antigens ML2028, ML2346 and ML2044. The 73f protein was recognized by IgG in multibacillary (MB) leprosy patient sera and stimulated IFNγ production within whole blood assays of paucibacillary (PB) leprosy patient and healthy household contacts of MB patients (HHC). When formulated with a TLR4L-containing adjuvant (GLA-SE), 73f stimulated a strong and pluripotent Th1 response that inhibited M. leprae-induced inflammation in mice. We are using these data to develop new vaccine initiatives for the continued and long-term control of leprosy.
Collapse
|
46
|
Fiołka MJ, Zagaja MP, Piersiak TD, Wróbel M, Pawelec J. Gut bacterium of Dendrobaena veneta (Annelida: Oligochaeta) possesses antimycobacterial activity. J Invertebr Pathol 2010; 105:63-73. [DOI: 10.1016/j.jip.2010.05.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Revised: 04/30/2010] [Accepted: 05/03/2010] [Indexed: 10/19/2022]
|
47
|
Sträuber H, Müller S. Viability states of bacteria-Specific mechanisms of selected probes. Cytometry A 2010; 77:623-34. [DOI: 10.1002/cyto.a.20920] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
48
|
Real-time microsensor measurement of local metabolic activities in ex vivo dental biofilms exposed to sucrose and treated with chlorhexidine. Appl Environ Microbiol 2010; 76:2326-34. [PMID: 20118374 DOI: 10.1128/aem.02090-09] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dental biofilms are characterized by structural and functional heterogeneity. Due to bacterial metabolism, gradients develop and diverse ecological microniches exist. The aims of this study were (i) to determine the metabolic activity of microorganisms in naturally grown dental biofilms ex vivo by measuring dissolved oxygen (DO) and pH profiles with microelectrodes with high spatial resolution and (ii) to analyze the impact of an antimicrobial chlorhexidine (CHX) treatment on microbial physiology during stimulation by sucrose in real time. Biofilms were cultivated on standardized human enamel surfaces in vivo. DO and pH profiles were measured in a flow cell system in sterile human saliva, after sucrose addition (10%), again after alternative treatment of the sucrose exposed biofilms with CHX (0.2%) for 1 or 10 min or after being killed with paraformaldehyde (4%). Biofilm structure was visualized by vitality staining with confocal microscopy. With saliva as the sole nutrient source oxygen consumption was high within the superficial biofilm layers rendering deeper layers (>220 mum) anoxic. Sucrose addition induced the thickness of the anaerobic zone to increase with a concurrent decrease in pH (7.1 to 4.4). CHX exposure reduced metabolic activity and microbial viability at the biofilm surface and drove metabolic activity deeper into the biofilm. CHX treatment led to a reduced viability at the biofilm surface with minor influence on overall biofilm physiology after 1 min; even after 10 min there was measurable respiration and fermentation inside the biofilm. However, the local microenvironment was more aerated, less acidogenic, and presumably less pathogenic.
Collapse
|
49
|
Vaccination with the ML0276 antigen reduces local inflammation but not bacterial burden during experimental Mycobacterium leprae infection. Infect Immun 2009; 77:5623-30. [PMID: 19786561 DOI: 10.1128/iai.00508-09] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Leprosy elimination has been a goal of the WHO for the past 15 years. Widespread BCG vaccination and multidrug therapy have dramatically reduced worldwide leprosy prevalence, but new case detection rates have remained relatively constant. These data suggest that additional control strategies, such as a subunit vaccine, are required to block transmission and to improve leprosy control. We recently identified several Mycobacterium leprae antigens that stimulate gamma interferon (IFN-gamma) secretion upon incubation with blood from paucibacillary leprosy patients, a group who limit M. leprae growth and dissemination. In this study, we demonstrate that M. leprae-specific mouse T-cell lines recognize several of these antigens, with the ML0276 protein stimulating the most IFN-gamma secretion. We then examined if the ML0276 protein could be used in a subunit vaccine to provide protection against experimental M. leprae infection. Our data demonstrate that combining ML0276 with either a Toll-like receptor 4 (TLR4) (EM005), TLR7 (imiquimod), or TLR9 (CpG DNA) agonist during immunization induces Th1 responses that limit local inflammation upon experimental M. leprae infection. Our data indicate that only the ML0276/EM005 regimen is able to elicit a response that is transferable to recipient mice. Despite the potent Th1 response induced by this regimen, it could not provide protection in terms of limiting bacterial growth. We conclude that EM005 is the most potent adjuvant for stimulating a Th1 response and indicate that while a subunit vaccine containing the ML0276 protein may be useful for the prevention of immune pathology during leprosy, it will not control bacterial burden and is therefore unlikely to interrupt disease transmission.
Collapse
|
50
|
Bochud PY, Sinsimer D, Aderem A, Siddiqui MR, Saunderson P, Britton S, Abraham I, Tadesse Argaw A, Janer M, Hawn TR, Kaplan G. Polymorphisms in Toll-like receptor 4 (TLR4) are associated with protection against leprosy. Eur J Clin Microbiol Infect Dis 2009; 28:1055-65. [PMID: 19430824 PMCID: PMC3016895 DOI: 10.1007/s10096-009-0746-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Accepted: 03/31/2009] [Indexed: 11/29/2022]
Abstract
Accumulating evidence suggests that polymorphisms in Toll-like receptors (TLRs) influence the pathogenesis of mycobacterial infections, including leprosy, a disease whose manifestations depend on host immune responses. Polymorphisms in TLR2 are associated with an increased risk of reversal reaction, but not susceptibility to leprosy itself. We examined whether polymorphisms in TLR4 are associated with susceptibility to leprosy in a cohort of 441 Ethiopian leprosy patients and 197 healthy controls. We found that two single nucleotide polymorphisms (SNPs) in TLR4 (896G>A [D299G] and 1196C>T [T399I]) were associated with a protective effect against the disease. The 896GG, GA and AA genotypes were found in 91.7, 7.8 and 0.5% of leprosy cases versus 79.9, 19.1 and 1.0% of controls, respectively (odds ratio [OR] = 0.34, 95% confidence interval [CI] 0.20-0.57, P < 0.001, additive model). Similarly, the 1196CC, CT and TT genotypes were found in 98.1, 1.9 and 0% of leprosy cases versus 91.8, 7.7 and 0.5% of controls, respectively (OR = 0.16, 95% CI 0.06--.40, P < 0.001, dominant model). We found that Mycobacterium leprae stimulation of monocytes partially inhibited their subsequent response to lipopolysaccharide (LPS) stimulation. Our data suggest that TLR4 polymorphisms are associated with susceptibility to leprosy and that this effect may be mediated at the cellular level by the modulation of TLR4 signalling by M. leprae.
Collapse
Affiliation(s)
- P-Y Bochud
- Institute for Systems Biology, Seattle, WA, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|