1
|
O'Brien B, Yushchenko A, Suh J, Jung D, Cai Z, Nguyen NS, Semret M, Dufour S, Fanning S, Ronholm J. Subtle genomic differences in Klebsiella pneumoniae sensu stricto isolates indicate host adaptation. One Health 2025; 20:100970. [PMID: 39898312 PMCID: PMC11787494 DOI: 10.1016/j.onehlt.2025.100970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 11/15/2024] [Accepted: 01/07/2025] [Indexed: 02/04/2025] Open
Abstract
Klebsiella pneumoniae sensu stricto (KpI) is an opportunistic pathogen capable of residing as a commensal in both human and bovine intestinal tracts and can cause serious systemic infections in humans and severe clinical mastitis in dairy cattle. It is unclear what role zoonotic and anthroponotic transmission play in the dissemination of KpI. In this study, we use a comparative genomic approach to identify differences between KpI associated with disease in humans and cattle and aimed to identify any potential genetic barriers limiting transmission of KpI between these two hosts. A total of 128 KpI strains (bovine n = 65; human n = 63) were whole genome sequenced and human and bovine strains were compared based on phylogenomics, the pangenome, mobile genetic elements, and differential gene abundance. No obvious phylogenomic differentiation was observed between isolates from these hosts. However, subtle genetic differences exist between bovine and human KpI which likely reflect environmental adaptation to different host niches, including a higher representation of gene clusters encoding ferric citrate uptake transporters, as well as histidine, arginine, and lactose utilization pathways in bovine isolates. These gene clusters may be positively selected due to the unique metabolic environment of the mammary gland, where lactose, citrate-bound iron, and amino acids like histidine and arginine provide growth advantages for KpI during mastitis. Overall, our study identified no obvious genetic barriers to zoonotic transmission of KpI within the dairy environment and provides insight into the development of host-specific therapeutic options for KpI infections in humans and bovine.
Collapse
Affiliation(s)
- Bridget O'Brien
- Faculty of Agricultural and Environmental Sciences, Macdonald Campus, McGill University, Montreal, Quebec, Canada
| | - Alla Yushchenko
- Faculty of Agricultural and Environmental Sciences, Macdonald Campus, McGill University, Montreal, Quebec, Canada
| | - Jinha Suh
- Faculty of Agricultural and Environmental Sciences, Macdonald Campus, McGill University, Montreal, Quebec, Canada
| | - Dongyun Jung
- Faculty of Agricultural and Environmental Sciences, Macdonald Campus, McGill University, Montreal, Quebec, Canada
- Mastitis Network, Saint-Hyacinthe, Quebec, Canada
- Regroupement FRQNT Op+Lait, Saint-Hyacinthe, Quebec, Canada
| | - Zhangbin Cai
- Faculty of Agricultural and Environmental Sciences, Macdonald Campus, McGill University, Montreal, Quebec, Canada
| | - Ngoc Sang Nguyen
- Faculty of Agricultural and Environmental Sciences, Macdonald Campus, McGill University, Montreal, Quebec, Canada
| | - Makeda Semret
- McGill University Health Centre (Infectious Diseases and Medical Microbiology), Montreal, Quebec, Canada
| | - Simon Dufour
- Mastitis Network, Saint-Hyacinthe, Quebec, Canada
- Regroupement FRQNT Op+Lait, Saint-Hyacinthe, Quebec, Canada
- Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
| | - Séamus Fanning
- UCD-Centre for Food Safety, Science Centre South, University College Dublin, Dublin, Ireland
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, Ireland
| | - Jennifer Ronholm
- Faculty of Agricultural and Environmental Sciences, Macdonald Campus, McGill University, Montreal, Quebec, Canada
- Mastitis Network, Saint-Hyacinthe, Quebec, Canada
- Regroupement FRQNT Op+Lait, Saint-Hyacinthe, Quebec, Canada
| |
Collapse
|
2
|
Mu C, Wang S, Wang A, Li W. Genomic analysis elucidates characteristics and possible origins of high-risk antimicrobial resistance genes in Enterococcus faecium from a global perspective. One Health 2025; 20:101054. [PMID: 40417283 PMCID: PMC12098168 DOI: 10.1016/j.onehlt.2025.101054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/22/2025] [Accepted: 04/27/2025] [Indexed: 05/27/2025] Open
Abstract
Under the One Health framework, it is crucial to undertake a comprehensive analysis of antimicrobial resistance (AMR) across various countries and regions. High-risk ARGs pose a severe threat to human health, yet systematic research on them is scarce. This study developed a high-risk ARGs database using the existing risk assessment system and explored a genome-based investigation workflow for high-risk ARGs. We investigated Enterococcus faecium, a common clinical pathogen, to understand the epidemiological characteristics of high-risk ARGs, including their primary sources and destinations. Results revealed that high-risk ARGs are widespread in E. faecium, with tet(M) being the most abundant and ermB the most widely distributed. The combination of vancomycin_ARGs (vanA, vanYA, vanYB, vanYM) -tet(M)-ermB is the most prevalent. ST1579 harbors the most high-risk ARGs, and the top five STs carrying high-risk ARGs are all from the hospital-specific CC17 clone lineage (cladeA1). Similarly, tet(M)-, ermB-, and vancomycin_ARGs-positive strains also belong to the nosocomial infection-related lineage cladeA1. Oxazolidinones_ARGs (optrA, cfr(D), cfrA)-positive strains are mainly from the cladeA2 lineage associated with animals. OptrA, a last-resort antibiotics ARG with potential outbreak risk, requires particular attention. Additionally, plasmids, transposons (Tn), Insertion sequence (IS), and integrative conjugative elements (ICE) show varying preferences for encoding high-risk ARGs, with tet(M), ermB, APH (3 ')-IIIa, vanA, vanYA, and vanYB being more readily carried by these MGEs. The USA, China, and Belgium are key origin regions for high-risk ARGs in E. faecium, while Australia, France and Netherlands are significant introduction regions. This study provides essential data for tackling the global AMR crisis.
Collapse
Affiliation(s)
- Chunge Mu
- School of Hydraulic and Civil Engineering, Ludong University, Yantai, Shandong, China
| | - Shimeng Wang
- School of Life Sciences, Ludong University, Yantai, Shandong, China
| | - Ailan Wang
- School of Life Sciences, Ludong University, Yantai, Shandong, China
| | - Weiwei Li
- School of Life Sciences, Ludong University, Yantai, Shandong, China
| |
Collapse
|
3
|
Reid CJ, Cummins ML, Djordjevic SP. Major F plasmid clusters are linked with ColV and pUTI89-like marker genes in bloodstream isolates of Escherichia coli. BMC Genomics 2025; 26:57. [PMID: 39838323 PMCID: PMC11748317 DOI: 10.1186/s12864-025-11226-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 01/08/2025] [Indexed: 01/23/2025] Open
Abstract
BACKGROUND F plasmids are abundant in E. coli, carrying a variety of genetic cargo involved in fitness, pathogenicity, and antimicrobial resistance. ColV and pUTI89-like plasmids have drawn attention for their potential roles in various forms of extra-intestinal pathogenicity. However, the rates of their carriage and the overall diversity of F plasmids in E. coli bloodstream infections (BSI E. coli) remain unknown. METHODS We performed a t-SNE-based cluster analysis of predicted F plasmids from a collection of 4711 BSI E. coli draft genomes to describe their diversity and abundance. We also screened them for markers of ColV and pUTI89-like plasmids, F plasmid replicon sequence types (RST) and E. coli sequence types (ST) to understand how genetic features were related to plasmid clusters. RESULTS Predicted F plasmids in BSI E. coli draft genomes were embedded within five major clusters based on a model of complete F plasmid sequences. Nearly half of the clustered sequences belonged to two major clusters, which were associated with ColV and pUTI89-like marker genes, respectively. Genomes from the ColV cluster featured F2:A-:B1 and F24:A-B1 RSTs in association with ST95, ST58 and ST88, whilst the pUTI89-like cluster was mostly F29:A-:B10 linked to ST73, ST69, ST95 and ST131. Plasmids associated with different lineages of ST131 formed additional major clusters, whilst F51:A-:B10 plasmids in ST73 were also common. CONCLUSIONS ColV and pUTI89-like plasmid markers are predominant in BSI E. coli that carry F plasmids. These markers are associated with distinct clusters of plasmids across diverse sequence types of E. coli. We hypothesise that their abundance in BSI E. coli is partially driven by carriage of backbone genes previously shown to contribute to virulence in models of bloodstream infection. Their carriage by pandemic E. coli STs suggests clonal expansion also plays a role in their success in BSI. Ecological pathways via which these plasmids evolve, and spread are likely to be distinct as other studies show ColV is strongly associated with poultry and food animal production, whereas pUTI89-like plasmids appear to be mostly human-restricted.
Collapse
Affiliation(s)
- Cameron J Reid
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Environment Research Unit, Urrbrae, SA, Australia
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, NSW, Australia
| | - Max L Cummins
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, NSW, Australia
| | - Steven P Djordjevic
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, NSW, Australia.
| |
Collapse
|
4
|
Tsoumtsa Meda L, Lagarde J, Guillier L, Roussel S, Douarre PE. Using GWAS and Machine Learning to Identify and Predict Genetic Variants Associated with Foodborne Bacteria Phenotypic Traits. Methods Mol Biol 2025; 2852:223-253. [PMID: 39235748 DOI: 10.1007/978-1-0716-4100-2_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
One of the main challenges in food microbiology is to prevent the risk of outbreaks by avoiding the distribution of food contaminated by bacteria. This requires constant monitoring of the circulating strains throughout the food production chain. Bacterial genomes contain signatures of natural evolution and adaptive markers that can be exploited to better understand the behavior of pathogen in the food industry. The monitoring of foodborne strains can therefore be facilitated by the use of these genomic markers capable of rapidly providing essential information on isolated strains, such as the source of contamination, risk of illness, potential for biofilm formation, and tolerance or resistance to biocides. The increasing availability of large genome datasets is enhancing the understanding of the genetic basis of complex traits such as host adaptation, virulence, and persistence. Genome-wide association studies have shown very promising results in the discovery of genomic markers that can be integrated into rapid detection tools. In addition, machine learning has successfully predicted phenotypes and classified important traits. Genome-wide association and machine learning tools have therefore the potential to support decision-making circuits intending at reducing the burden of foodborne diseases. The aim of this chapter review is to provide knowledge on the use of these two methods in food microbiology and to recommend their use in the field.
Collapse
Affiliation(s)
- Landry Tsoumtsa Meda
- ACTALIA, La Roche-sur-Foron, France
- ANSES, Salmonella and Listeria Unit (USEL), University of Paris-Est, Maisons-Alfort Laboratory for Food Safety, Maisons-Alfort, France
| | - Jean Lagarde
- ANSES, Salmonella and Listeria Unit (USEL), University of Paris-Est, Maisons-Alfort Laboratory for Food Safety, Maisons-Alfort, France
- INRAE, Unit of Process Optimisation in Food, Agriculture and the Environment (UR OPAALE), Rennes, France
| | | | - Sophie Roussel
- ANSES, Salmonella and Listeria Unit (USEL), University of Paris-Est, Maisons-Alfort Laboratory for Food Safety, Maisons-Alfort, France
| | - Pierre-Emmanuel Douarre
- ANSES, Salmonella and Listeria Unit (USEL), University of Paris-Est, Maisons-Alfort Laboratory for Food Safety, Maisons-Alfort, France.
| |
Collapse
|
5
|
Mane A, Sanderson H, White AP, Zaheer R, Beiko R, Chauve C. Plaseval: a framework for comparing and evaluating plasmid detection tools. BMC Bioinformatics 2024; 25:365. [PMID: 39592962 PMCID: PMC11590284 DOI: 10.1186/s12859-024-05941-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 09/19/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Plasmids play a major role in the transfer of antimicrobial resistance (AMR) genes among bacteria via horizontal gene transfer. The identification of plasmids in short-read assemblies is a challenging problem and a very active research area. Plasmid binning aims at detecting, in a draft genome assembly, groups (bins) of contigs likely to originate from the same plasmid. Several methods for plasmid binning have been developed recently, such as PlasBin-flow, HyAsP, gplas, MOB-suite, and plasmidSPAdes. This motivates the problem of evaluating the performances of plasmid binning methods, either against a given ground truth or between them. RESULTS We describe PlasEval, a novel method aimed at comparing the results of plasmid binning tools. PlasEval computes a dissimilarity measure between two sets of plasmid bins, that can originate either from two plasmid binning tools, or from a plasmid binning tool and a ground truth set of plasmid bins. The PlasEval dissimilarity accounts for the contig content of plasmid bins, the length of contigs and is repeat-aware. Moreover, the dissimilarity score computed by PlasEval is broken down into several parts, that allows to understand qualitative differences between the compared sets of plasmid bins. We illustrate the use of PlasEval by benchmarking four recently developed plasmid binning tools-PlasBin-flow, HyAsP, gplas, and MOB-recon-on a data set of 53 E. coli bacterial genomes. CONCLUSION Analysis of the results of plasmid binning methods using PlasEval shows that their behaviour varies significantly. PlasEval can be used to decide which specific plasmid binning method should be used for a specific dataset. The disagreement between different methods also suggests that the problem of plasmid binning on short-read contigs requires further research. We believe that PlasEval can prove to be an effective tool in this regard. PlasEval is publicly available at https://github.com/acme92/PlasEval.
Collapse
Affiliation(s)
- Aniket Mane
- Department of Mathematics, Simon Fraser University, Burnaby, British Columbia, Canada.
| | - Haley Sanderson
- Agriculture and Agri-Food Canada, Saskatoon, Saskatchewan, Canada
| | - Aaron P White
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Rahat Zaheer
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, Alberta, Canada
| | - Robert Beiko
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Institute for Comparative Genomics, Halifax, Nova Scotia, Canada
| | - Cédric Chauve
- Department of Mathematics, Simon Fraser University, Burnaby, British Columbia, Canada.
| |
Collapse
|
6
|
Long J, Chen J, Yuan Y, Yang S, Xie X, Wu X, Liu Y, Guo J, Chen Y, Wang C, Liu X. First Report of Carbapenem-Resistant Klebsiella michiganensis Co-Harboring bla KPC-2 and TmexCD2-ToprJ2 Isolated from Wastewater at a Tertiary Hospital in Beijing. Infect Drug Resist 2024; 17:5117-5128. [PMID: 39600323 PMCID: PMC11589776 DOI: 10.2147/idr.s448256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/31/2024] [Indexed: 11/29/2024] Open
Abstract
Background Klebsiella michiganensis is an emerging human pathogen that causes nosocomial infections. Its prevalence and spread in the environment should not be ignored. This study identified and characterized Klebsiella michiganensis co-harboring bla KPC-2 and TmexCD2-ToprJ2 in hospital wastewater samples. Methods Twelve K. michiganensis strains were isolated from wastewater samples collected at a tertiary hospital in Beijing, China. The genomic characteristics of K. michiganensis strains were analyzed using whole-genome sequences, providing information on the comparison between the genome of K. michiganensis strains and the reference genome, antibiotic resistance genes (ARGs), virulence genes, secretion systems, and mobile genetic elements (plasmids, insertion sequences [ISs], and prophages). Results Genome analysis showed that the twelve multi-drug resistant (MDR) strains carried a variety of ARGs and virulence genes, as well as four macromolecular secretion systems (T1SS, T2SS, T5aSS, T5bSS, and T4aP). The genetic environments of both the TmexCD2-ToprJ2 gene cluster and bla KPC-2 gene contained ISs. The plasmids carrying TmexCD2-ToprJ2 gene cluster of nine strains in clade 1 and two strains in clade 2 were annotated as IncR plasmid and rep_cluster_1254 type, respectively. The plasmids carrying bla KPC-2 in 10 strains in clade 1 were identified as IncU, and the plasmids carrying bla KPC-2 in the k11 and k12 strains in clade 2 were IncU and IncX6. The phylogenetic tree and heatmap revealed that the secretion system of type VI (T6SSi) existed in 10 strains in clade 1, and Type IV (T4SS) only existed in the k11 strain in clade 2. In addition, K. michiganensis strains carried 13 plasmids, 14 ISs, and 138 prophages. Conclusion In this study, the whole genome sequencing demonstrated the diversity of K. michiganensis genome despite 12 K. michiganensis strains from a hospital wastewater, which lays the foundation for further genetic research and drug resistance gene transmission.
Collapse
Affiliation(s)
- Jiamin Long
- School of Public Health, China Medical University, Shenyang, 110122, People’s Republic of China
- Chinese PLA Center for Disease Control and Prevention, Beijing, 100071, People’s Republic of China
| | - Jiali Chen
- School of Medicine, NanKai University, Tianjin, 300071, People’s Republic of China
| | - Yue Yuan
- Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, People’s Republic of China
| | - Shaozhen Yang
- School of Basic Medical Sciences, Army Medical University (Third Military Medical University), Chongqing, 400038, People’s Republic of China
| | - Xinya Xie
- School of Public Health, China Medical University, Shenyang, 110122, People’s Republic of China
- Chinese PLA Center for Disease Control and Prevention, Beijing, 100071, People’s Republic of China
| | - Xuelian Wu
- School of Public Health, China Medical University, Shenyang, 110122, People’s Republic of China
- Chinese PLA Center for Disease Control and Prevention, Beijing, 100071, People’s Republic of China
| | - Yuan Liu
- School of Public Health, China Medical University, Shenyang, 110122, People’s Republic of China
- Chinese PLA Center for Disease Control and Prevention, Beijing, 100071, People’s Republic of China
| | - Jinpeng Guo
- Chinese PLA Center for Disease Control and Prevention, Beijing, 100071, People’s Republic of China
| | - Yong Chen
- School of Public Health, China Medical University, Shenyang, 110122, People’s Republic of China
- Chinese PLA Center for Disease Control and Prevention, Beijing, 100071, People’s Republic of China
| | - Changjun Wang
- School of Public Health, China Medical University, Shenyang, 110122, People’s Republic of China
- Chinese PLA Center for Disease Control and Prevention, Beijing, 100071, People’s Republic of China
| | - Xiong Liu
- Chinese PLA Center for Disease Control and Prevention, Beijing, 100071, People’s Republic of China
| |
Collapse
|
7
|
Irimaso E, Keinprecht H, Szostak MP, Rosel AC, Stessl B, Desvars-Larrive A, Ntakirutimana C, Fischer OW, Wittek T, Müller E, Feßler AT, Braun SD, Schwarz S, Monecke S, Ehricht R, Spergser J, Ruppitsch W, Loncaric I. Survey in ruminants from Rwanda revealed high diversity and prevalence of extended-spectrum cephalosporin-resistant Enterobacterales. BMC Vet Res 2024; 20:523. [PMID: 39563382 PMCID: PMC11575003 DOI: 10.1186/s12917-024-04359-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/24/2024] [Indexed: 11/21/2024] Open
Abstract
BACKGROUND Antimicrobial resistance (AMR) in Enterobacterales constitutes a significant threat to the health of both humans and animals and a socioeconomic problem. Enterobacterales, mainly Escherichia coli, carrying β-lactamases has become one of the main indicators to estimate the burden of AMR in animals within "One Health" approach. OBJECTIVES To assess the presence of extended-spectrum cephalosporin-resistant Enterobacterales associated with ruminants (cattle, sheep, goats) habituated in all five provinces of Rwanda and to perform in depth characterization of isolates. METHODS We screened 454 rectal swabs from 203 cows, 170 goats, and 81 sheep and selective isolation of extended-spectrum cephalosporin-resistant Enterobacterales was conducted. Isolates were identified as a members of the order Enterobacterales by MALDI-TOF MS and further characterized by susceptibility testing and by whole-genome sequencing. RESULTS Out of the 454 samples, 64 extended-spectrum cephalosporin-resistant Enterobacterales were isolated from 58 animals. Isolates belonged to seven bacterial species and were identified as Escherichia coli (n = 54), Enterobacter bugandensis (n = 4), Enterobacter mori (n = 2), Klebsiella pneumoniae (n = 2), Enterobacter dykesii (n = 1), and Citrobacter freundii (n = 1). All isolates displayed an Extended-spectrum β-lactamases (ESBL) phenotype, with exception of Citrobacter freundii isolate displayed both an ESBL and AmpC phenotype. In addition, all Enterobacter isolates were identified as stably de-repressed AmpC-producers. ESBLs genes, blaCTX-M-15 was predominant. Resistance to tetracycline and tet(A) was most frequently observed among non-β-lactam resistance. Forty-eight isolates displayed multidrug-resistance phenotypes. A shiga toxin-producing E. coli and an enterotoxigenic E. coli isolate were observed. Genome comparisons revealed thirty-five E. coli sequence types (ST) (ST10, ST307 being predominate). CONCLUSIONS Considering the high proximity between ruminants and humans in Rwanda, the dissemination of antimicrobial drug resistance highlights the public health threats and requires the joint and multisectoral action of human and veterinary medicine, at human-animal-environment interfaces. Therefore, it is important to establish national and global "One Health" surveillance programs of AMR to tackle the antibiotic-resistant crisis in human and veterinary medicine.
Collapse
Affiliation(s)
- Emmanuel Irimaso
- School of Veterinary Medicine- CAVM, University of Rwanda, Nyagatare, Rwanda
| | - Helga Keinprecht
- Institute of Microbiology, University of Veterinary Medicine Vienna, Vienna, Austria
- New Vision Veterinary Hospital (NVVH) Northern Province, Musanze District, Rwaza Sector, Musanze, Rwanda
| | - Michael P Szostak
- Institute of Microbiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Adriana Cabal Rosel
- Austrian Agency for Health and Food Safety (AGES), Institute of Medical Microbiology and Hygiene, Vienna, Austria
| | - Beatrix Stessl
- Unit of Food Microbiology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Amelie Desvars-Larrive
- Unit of Veterinary Public Health and Epidemiology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
- Complexity Science Hub Vienna, Vienna, Austria
| | - Christophe Ntakirutimana
- New Vision Veterinary Hospital (NVVH) Northern Province, Musanze District, Rwaza Sector, Musanze, Rwanda
| | - Otto W Fischer
- New Vision Veterinary Hospital (NVVH) Northern Province, Musanze District, Rwaza Sector, Musanze, Rwanda
| | - Thomas Wittek
- Clinical Unit of Ruminant Medicine, University of Veterinary Medicine, Vienna, Austria
| | - Elke Müller
- Leibniz Institute of Photonic Technology (IPHT), Jena, Germany
- InfectoGnostics Research Campus, Jena, Germany
| | - Andrea T Feßler
- Institute of Microbiology and Epizootics, Centre of Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- Department of Veterinary Medicine, Veterinary Centre for Resistance Research (TZR), Freie Universität Berlin, Berlin, Germany
| | - Sascha D Braun
- Clinical Unit of Ruminant Medicine, University of Veterinary Medicine, Vienna, Austria
- Leibniz Institute of Photonic Technology (IPHT), Jena, Germany
| | - Stefan Schwarz
- Institute of Microbiology and Epizootics, Centre of Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- Department of Veterinary Medicine, Veterinary Centre for Resistance Research (TZR), Freie Universität Berlin, Berlin, Germany
| | - Stefan Monecke
- Leibniz Institute of Photonic Technology (IPHT), Jena, Germany
- InfectoGnostics Research Campus, Jena, Germany
- Institut für Medizinische Mikrobiologie und Hygiene, Universitätsklinik Dresden, Dresden, Germany
| | - Ralf Ehricht
- Leibniz Institute of Photonic Technology (IPHT), Jena, Germany
- InfectoGnostics Research Campus, Jena, Germany
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Jena, Germany
| | - Joachim Spergser
- Institute of Microbiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Werner Ruppitsch
- Austrian Agency for Health and Food Safety (AGES), Institute of Medical Microbiology and Hygiene, Vienna, Austria
| | - Igor Loncaric
- Institute of Microbiology, University of Veterinary Medicine Vienna, Vienna, Austria.
| |
Collapse
|
8
|
Miura T, Miyakawa T, Kusuya Y, Kamino K. Complete genome sequencing of four marine bacteria, Gilvimarinus japonicus NBRC 111987 T, Halioxenophilus aromaticivorans JCM 19134 T, Maricurvus nonylphenolicus JCM 17778 T, and Simiduia litorea JCM 19759 T belonging to the family Cellvibrionaceae. Microbiol Resour Announc 2024; 13:e0087324. [PMID: 39400139 PMCID: PMC11555993 DOI: 10.1128/mra.00873-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 09/20/2024] [Indexed: 10/15/2024] Open
Abstract
We report on the complete genomes of Gilvimarinus japonicus NBRC 111987T, Halioxenophilus aromaticivorans JCM 19134T, Maricurvus nonylphenolicus JCM 17778T, and Simiduia litorea JCM 19759T, isolated from the sea. Strains JCM 19134T, JCM 17778T, and JCM 19759T contain genes predicted to be polyhydroxyalkanoate-degrading enzymes.
Collapse
Affiliation(s)
- Takamasa Miura
- Biological Resource Center, National Institute of Technology and Evaluation (NBRC), Chiba, Japan
| | - Tomoyo Miyakawa
- Biological Resource Center, National Institute of Technology and Evaluation (NBRC), Chiba, Japan
| | - Yoko Kusuya
- Biological Resource Center, National Institute of Technology and Evaluation (NBRC), Chiba, Japan
| | - Kei Kamino
- Biological Resource Center, National Institute of Technology and Evaluation (NBRC), Chiba, Japan
| |
Collapse
|
9
|
Li H, Liu X, Li S, Rong J, Xie S, Gao Y, Zhong L, Jiang Q, Jiang G, Ren Y, Sun W, Hong Y, Zhou Z. KleTy: integrated typing scheme for core genome and plasmids reveals repeated emergence of multi-drug resistant epidemic lineages in Klebsiella worldwide. Genome Med 2024; 16:130. [PMID: 39529172 PMCID: PMC11556198 DOI: 10.1186/s13073-024-01399-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Clinically important lineages in Klebsiella, especially those expressing multi-drug resistance (MDR), pose severe threats to public health worldwide. They arose from the co-evolution of the vertically inherited core genome and horizontal gene transfers by plasmids, which has not been systematically explored. METHODS We designed KleTy, which consists of dedicated typing schemes for both the core genome and plasmids in Klebsiella. We compared the performance of KleTy with many state-of-the-art pipelines using both simulated and real data. RESULTS Employing KleTy, we genotyped 33,272 Klebsiella genomes, categorizing them into 1773 distinct populations and predicting the presence of 87,410 plasmids from 837 clusters (PCs). Notably, Klebsiella is the center of the plasmid-exchange network within Enterobacteriaceae. Our results associated the international emergence of prevalent Klebsiella populations with only four carbapenem-resistance (CR) PCs, two hypervirulent PCs, and two hvCR-PCs encoding both carbapenemase and hypervirulence. Furthermore, we observed the ongoing international emergence of blaNDM, accompanied by the replacement of the previously dominant population, blaKPC-encoding HC1360_8 (CC258), during 2003-2018, with the emerging blaNDM-encoding HC1360_3 (CC147) thereafter. Additionally, expansions of hypervirulent carbapenem-resistant Klebsiella pneumoniae (hvCRKP) were evidenced in both populations, driven by plasmids of MDR-hypervirulence convergences. CONCLUSIONS The study illuminates how the global genetic landscape of Klebsiella has been shaped by the co-evolution of both the core genome and the plasmids, underscoring the importance of surveillance and control of the dissemination of plasmids for curtailing the emergence of hvCRKPs.
Collapse
Affiliation(s)
- Heng Li
- Key Laboratory of Alkene-Carbon Fibres-Based Technology & Application for Detection of Major Infectious Diseases, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Cancer Institute, Suzhou Medical College, Soochow University, Suzhou, 215123, China
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-Infective Medicine, Institute of Molecular Enzymology, School of Biology and Basic Medical Science, Suzhou Medical College, Soochow University, Suzhou, 215123, China
| | - Xiao Liu
- Key Laboratory of Alkene-Carbon Fibres-Based Technology & Application for Detection of Major Infectious Diseases, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Cancer Institute, Suzhou Medical College, Soochow University, Suzhou, 215123, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China
| | - Shengkai Li
- Key Laboratory of Alkene-Carbon Fibres-Based Technology & Application for Detection of Major Infectious Diseases, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Cancer Institute, Suzhou Medical College, Soochow University, Suzhou, 215123, China
| | - Jie Rong
- Key Laboratory of Alkene-Carbon Fibres-Based Technology & Application for Detection of Major Infectious Diseases, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Cancer Institute, Suzhou Medical College, Soochow University, Suzhou, 215123, China
| | - Shichang Xie
- Key Laboratory of Alkene-Carbon Fibres-Based Technology & Application for Detection of Major Infectious Diseases, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Cancer Institute, Suzhou Medical College, Soochow University, Suzhou, 215123, China
- Iotabiome Biotechnology Inc, Suzhou, 215000, China
| | - Yuan Gao
- Key Laboratory of Alkene-Carbon Fibres-Based Technology & Application for Detection of Major Infectious Diseases, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Cancer Institute, Suzhou Medical College, Soochow University, Suzhou, 215123, China
| | - Ling Zhong
- Key Laboratory of Alkene-Carbon Fibres-Based Technology & Application for Detection of Major Infectious Diseases, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Cancer Institute, Suzhou Medical College, Soochow University, Suzhou, 215123, China
| | - Quangui Jiang
- Key Laboratory of Alkene-Carbon Fibres-Based Technology & Application for Detection of Major Infectious Diseases, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Cancer Institute, Suzhou Medical College, Soochow University, Suzhou, 215123, China
| | - Guilai Jiang
- Key Laboratory of Alkene-Carbon Fibres-Based Technology & Application for Detection of Major Infectious Diseases, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Cancer Institute, Suzhou Medical College, Soochow University, Suzhou, 215123, China
| | - Yi Ren
- Iotabiome Biotechnology Inc, Suzhou, 215000, China
| | - Wanping Sun
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China.
| | - Yuzhi Hong
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-Infective Medicine, Institute of Molecular Enzymology, School of Biology and Basic Medical Science, Suzhou Medical College, Soochow University, Suzhou, 215123, China.
| | - Zhemin Zhou
- Key Laboratory of Alkene-Carbon Fibres-Based Technology & Application for Detection of Major Infectious Diseases, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Cancer Institute, Suzhou Medical College, Soochow University, Suzhou, 215123, China.
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-Infective Medicine, Institute of Molecular Enzymology, School of Biology and Basic Medical Science, Suzhou Medical College, Soochow University, Suzhou, 215123, China.
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China.
| |
Collapse
|
10
|
Abdelsalam NA, ElBanna SA, Mouftah SF, Cobo-Díaz JF, Shata AH, Shawky SM, Atteya R, Elhadidy M. Genomic dynamics of high-risk carbapenem-resistant klebsiella pneumoniae clones carrying hypervirulence determinants in Egyptian clinical settings. BMC Infect Dis 2024; 24:1193. [PMID: 39438795 PMCID: PMC11515790 DOI: 10.1186/s12879-024-10056-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 10/03/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Ongoing studies have revealed the global prevalence of severe infections caused by the hypervirulent strains of Klebsiella pneumoniae (K. pneumoniae). Meanwhile, the World Health Organization and the Centers for Disease Control declared carbapenem-resistant K. pneumoniae as an urgent public health threat, requiring swift and effective action to mitigate its spread. Low- and middle-income countries are severely impacted by such devastating infectious diseases owing to the ill implementation of antimicrobial practices and infection control policies. Having both hypervirulence and carbapenemase gene determinants, the emergence of convergent hypervirulent carbapenem-resistant K. pneumoniae is now being reported worldwide. METHODS In this study, we sequenced 19 carbapenemase-producing K. pneumoniae strains recovered from various clinical specimens. Additionally, we evaluated the phenotypic antimicrobial susceptibility to multiple antimicrobial classes using the VITEK2 automated system. Utilizing the sequencing data, we characterized the sequence types, serotypes, pangenome, resistance profiles, virulence profiles, and mobile genetic elements of the examined isolates. We highlighted the emergence of high-risk clones carrying hypervirulence genetic determinants among the screened isolates. RESULTS Our findings revealed that all carbapenem-resistant isolates exhibited either extensive- or pan-drug resistance and harbored multiple variants of resistance genes spanning nearly all the antimicrobial classes. The most prevalent carbapenemase genes detected within the isolates were blaNDM-5 and blaOXA-48. We identified high-risk clones, such as ST383-K30, ST147-K64, ST11-K15, and ST14-K2, which may have evolved into putative convergent strains by acquiring the full set of hypervirulence-associated genetic determinants (iucABCD, rmpA and/ or rmpA2, putative transporter peg-344). Additionally, this study identified ST709-K9 as a high-risk clone for the first time and uncovered that capsule types K15 and K9 carried hypervirulence genetic determinants. The most frequent Inc types found in these isolates were Col440I, IncHI1B, and Inc FII(K). CONCLUSION This study highlights the emergence of high-risk, extensively carbapenem-resistant K. pneumoniae strains co-carrying hypervirulence determinants in Egyptian clinical settings. This poses an imminent threat not only to Egypt but also to the global community, underscoring the urgent need for enhanced surveillance and control strategies to combat this pathogen.
Collapse
Affiliation(s)
- Nehal Adel Abdelsalam
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Shahira A ElBanna
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Shaimaa F Mouftah
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
| | - José F Cobo-Díaz
- Department of Food Hygiene and Technology, Institute of Food Science and Technology, Universidad de León, León, Spain
| | - Ahmed H Shata
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Sherine M Shawky
- Department of Microbiology, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Reham Atteya
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
| | - Mohamed Elhadidy
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt.
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt.
- Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt.
| |
Collapse
|
11
|
Olatunji I, Bardaji DKR, Miranda RR, Savka MA, Hudson AO. Artificial intelligence tools for the identification of antibiotic resistance genes. Front Microbiol 2024; 15:1437602. [PMID: 39070267 PMCID: PMC11272472 DOI: 10.3389/fmicb.2024.1437602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 06/28/2024] [Indexed: 07/30/2024] Open
Abstract
The fight against bacterial antibiotic resistance must be given critical attention to avert the current and emerging crisis of treating bacterial infections due to the inefficacy of clinically relevant antibiotics. Intrinsic genetic mutations and transferrable antibiotic resistance genes (ARGs) are at the core of the development of antibiotic resistance. However, traditional alignment methods for detecting ARGs have limitations. Artificial intelligence (AI) methods and approaches can potentially augment the detection of ARGs and identify antibiotic targets and antagonistic bactericidal and bacteriostatic molecules that are or can be developed as antibiotics. This review delves into the literature regarding the various AI methods and approaches for identifying and annotating ARGs, highlighting their potential and limitations. Specifically, we discuss methods for (1) direct identification and classification of ARGs from genome DNA sequences, (2) direct identification and classification from plasmid sequences, and (3) identification of putative ARGs from feature selection.
Collapse
Affiliation(s)
- Isaac Olatunji
- Thomas H. Gosnell School of Life Sciences, College of Science, Rochester Institute of Technology, Rochester, NY, United States
| | - Danae Kala Rodriguez Bardaji
- Thomas H. Gosnell School of Life Sciences, College of Science, Rochester Institute of Technology, Rochester, NY, United States
| | - Renata Rezende Miranda
- School of Chemistry and Materials Science, College of Science, Rochester Institute of Technology, Rochester, NY, United States
| | - Michael A. Savka
- Thomas H. Gosnell School of Life Sciences, College of Science, Rochester Institute of Technology, Rochester, NY, United States
| | - André O. Hudson
- Thomas H. Gosnell School of Life Sciences, College of Science, Rochester Institute of Technology, Rochester, NY, United States
| |
Collapse
|
12
|
Mogoi NN, Sifuna AW, Okoth PK, Reva O, Malaba R, Negesa R, Nyongesa KP, Osoro KE, Welch M. Staphylococcus aureus associated with surgical site infections in Western Kenya reveals genomic hotspots for pathogen evolution. Access Microbiol 2024; 6:000734.v4. [PMID: 39045253 PMCID: PMC11261728 DOI: 10.1099/acmi.0.000734.v4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 06/03/2024] [Indexed: 07/25/2024] Open
Abstract
Objectives. Staphylococcus aureus is one of the most common pathogens attributed to hospital infections. Although S. aureus infections have been well studied in developed countries, far less is known about the biology of the pathogen in sub-Saharan Africa. Methods. Here, we report on the isolation, antibiotic resistance profiling, whole genome sequencing, and genome comparison of six multi-drug resistant isolates of S. aureus obtained from a referral hospital in Kakamega, Western Kenya. Results. Five of the six isolates contained a 20.7 kb circular plasmid carrying blaZ (associated with resistance to β-lactam antibiotics). These five strains all belonged to the same sequence type, ST152. Despite the similarity of the plasmid in these isolates, whole genome sequencing revealed that the strains differed, depending on whether they were associated with hospital-acquired or community-acquired infections. Conclusion. The intriguing finding is that the hospital-acquired and the community-acquired isolates of S. aureus belonging to the same genotype, ST152, formed two separate sub-clusters in the phylogenetic tree and differed by the repertoire of accessory virulence genes. These data suggest ongoing adaptive evolution and significant genomic plasticity.
Collapse
Affiliation(s)
- Nyabera Nicholas Mogoi
- Department of Biological sciences, Masinde Muliro University of Science and Technology, Kakamega, Kenya
| | - Anthony Wawire Sifuna
- Department of Medical Biochemistry, Masinde Muliro University of Science and Technology, Kakamega, Kenya
| | - Patrick Kirsteen Okoth
- Department of Biological sciences, Masinde Muliro University of Science and Technology, Kakamega, Kenya
| | - Oleg Reva
- Department of Biochemistry, Genetics and Microbiology, Centre For Bioinformatics And Computational Biology, University of Pretoria, Pretoria, South Africa
| | - Rose Malaba
- Kakamega County General Teaching and Referral Hospital, Kakamega, Kenya
| | - Ruth Negesa
- Kakamega County General Teaching and Referral Hospital, Kakamega, Kenya
| | - Kuloba Peter Nyongesa
- Department of Medical Microbiology and Parasitology, Masinde Muliro University of Science and Technology, Kakamega, Kenya
| | - Kombo Ezra Osoro
- Department of Medical Biochemistry, Masinde Muliro University of Science and Technology, Kakamega, Kenya
| | - Martin Welch
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| |
Collapse
|
13
|
Timková I, Maliničová L, Nosáľová L, Kolesárová M, Lorková Z, Petrová N, Pristaš P, Kisková J. Genomic insights into the adaptation of Acinetobacter johnsonii RB2-047 to the heavy metal-contaminated subsurface mine environment. Biometals 2024; 37:371-387. [PMID: 37973678 PMCID: PMC11006771 DOI: 10.1007/s10534-023-00555-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 10/21/2023] [Indexed: 11/19/2023]
Abstract
The subsurface mine environments characterized by high levels of toxic metals and low nutrient availability represent an extreme threat to bacterial persistence. In recent study, the genomic analysis of the Acinetobacter johnsonii strain RB2-047 isolated from the Rozália Gold Mine in Slovakia was performed. As expected, the studied isolate showed a high level of heavy metal tolerance (minimum inhibitory concentrations were 500 mg/L for copper and nickel, 1,500 mg/L for lead, and 250 mg/L for zinc). The RB2-047 strain also showed noticeable resistance to several antibiotics (ampicillin, kanamycin, chloramphenicol, tetracycline and ciprofloxacin). The genomic composition analysis demonstrated a low number of antibiotic and metal resistance coding genes, but a high occurrence of efflux transporter genes located on the bacterial chromosome. The experimental inhibition of efflux pumps resulted in decreased tolerance to Zn and Ni (but not to Cu and Pb) and to all antibiotics tested. In addition, the H33342 dye-accumulation assay confirmed the high efflux activity in the RB2-047 isolate. These findings showed the important role of efflux pumps in the adaptation of Acinetobacter johsonii strain RB2-047 to metal polluted mine environment as well as in development of multi-antibiotic resistance.
Collapse
Affiliation(s)
- Ivana Timková
- Department of Microbiology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 04154, Košice, Slovakia
| | - Lenka Maliničová
- Department of Microbiology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 04154, Košice, Slovakia
| | - Lea Nosáľová
- Department of Microbiology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 04154, Košice, Slovakia
| | - Mariana Kolesárová
- Department of Microbiology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 04154, Košice, Slovakia
| | - Zuzana Lorková
- Department of Microbiology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 04154, Košice, Slovakia
| | - Nikola Petrová
- Department of Microbiology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 04154, Košice, Slovakia
| | - Peter Pristaš
- Department of Microbiology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 04154, Košice, Slovakia
- Centre of Biosciences, Institute of Animal Physiology, Slovak Academy of Sciences, Šoltésovej 4-6, 04001, Košice, Slovakia
| | - Jana Kisková
- Department of Microbiology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 04154, Košice, Slovakia.
| |
Collapse
|
14
|
Walas N, Müller NF, Parker E, Henderson A, Capone D, Brown J, Barker T, Graham JP. Application of phylodynamics to identify spread of antimicrobial-resistant Escherichia coli between humans and canines in an urban environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170139. [PMID: 38242459 DOI: 10.1016/j.scitotenv.2024.170139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/21/2024]
Abstract
The transmission of antimicrobial resistant bacteria in the urban environment is poorly understood. We utilized genomic sequencing and phylogenetics to characterize the transmission dynamics of antimicrobial resistant Escherichia coli (AMR-Ec) cultured from putative canine (caninep) and human feces present on urban sidewalks in San Francisco, California. We isolated a total of fifty-six AMR-Ec isolates from human (n = 20) and caninep (n = 36) fecal samples from the Tenderloin and South of Market (SoMa) neighborhoods of San Francisco. We then analyzed phenotypic and genotypic antimicrobial resistance (AMR) of the isolates, as well as clonal relationships based on cgMLST and single nucleotide polymorphisms (SNPs) of the core genomes. Using Bayesian inference, we reconstructed the transmission dynamics between humans and caninesp from multiple local outbreak clusters using the marginal structured coalescent approximation (MASCOT). Our results provide evidence for multiple sharing events of AMR-Ec between humans and caninesp. In particular, we found one instance of likely transmission from caninesp to humans as well as an additional local outbreak cluster consisting of one caninep and one human sample. Based on this analysis, it appears that non-human feces act as an important reservoir of clinically relevant AMR-Ec within the urban environment for this study population. This work showcases the utility of genomic epidemiology to reconstruct potential pathways by which antimicrobial resistance spreads.
Collapse
Affiliation(s)
| | | | | | | | - Drew Capone
- The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Joe Brown
- The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Troy Barker
- The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | |
Collapse
|
15
|
Lipworth S, Matlock W, Shaw L, Vihta KD, Rodger G, Chau K, Barker L, George S, Kavanagh J, Davies T, Vaughan A, Andersson M, Jeffery K, Oakley S, Morgan M, Hopkins S, Peto T, Crook D, Walker AS, Stoesser N. The plasmidome associated with Gram-negative bloodstream infections: A large-scale observational study using complete plasmid assemblies. Nat Commun 2024; 15:1612. [PMID: 38383544 PMCID: PMC10881496 DOI: 10.1038/s41467-024-45761-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 02/01/2024] [Indexed: 02/23/2024] Open
Abstract
Plasmids carry genes conferring antimicrobial resistance and other clinically important traits, and contribute to the rapid dissemination of such genes. Previous studies using complete plasmid assemblies, which are essential for reliable inference, have been small and/or limited to plasmids carrying antimicrobial resistance genes (ARGs). In this study, we sequenced 1,880 complete plasmids from 738 isolates from bloodstream infections in Oxfordshire, UK. The bacteria had been originally isolated in 2009 (194 isolates) and 2018 (368 isolates), plus a stratified selection from intervening years (176 isolates). We demonstrate that plasmids are largely, but not entirely, constrained to a single host species, although there is substantial overlap between species of plasmid gene-repertoire. Most ARGs are carried by a relatively small number of plasmid groups with biological features that are predictable. Plasmids carrying ARGs (including those encoding carbapenemases) share a putative 'backbone' of core genes with those carrying no such genes. These findings suggest that future surveillance should, in addition to tracking plasmids currently associated with clinically important genes, focus on identifying and monitoring the dissemination of high-risk plasmid groups with the potential to rapidly acquire and disseminate these genes.
Collapse
Affiliation(s)
- Samuel Lipworth
- Nuffield Department of Medicine, University of Oxford, Oxford, UK.
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK.
| | - William Matlock
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Liam Shaw
- Department of Zoology, University of Oxford, South Parks Road, Oxford, UK
| | | | - Gillian Rodger
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Kevin Chau
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Leanne Barker
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Sophie George
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - James Kavanagh
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Timothy Davies
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Department of Zoology, University of Oxford, South Parks Road, Oxford, UK
| | - Alison Vaughan
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - Katie Jeffery
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Sarah Oakley
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Marcus Morgan
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Susan Hopkins
- National Infection Service, United Kingdom Health Security Agency, Colindale, London, UK
| | - Timothy Peto
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK
| | - Derrick Crook
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK
| | - A Sarah Walker
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK
| | - Nicole Stoesser
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK
| |
Collapse
|
16
|
Hamed SM, Mohamed HO, Ashour HM, Fahmy LI. Comparative genomic analysis of strong biofilm-forming Klebsiella pneumoniae isolates uncovers novel IS Ecp1-mediated chromosomal integration of a full plasmid-like sequence. Infect Dis (Lond) 2024; 56:91-109. [PMID: 37897710 DOI: 10.1080/23744235.2023.2272624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 10/12/2023] [Indexed: 10/30/2023] Open
Abstract
BACKGROUND The goal of the current study was to elucidate the genomic background of biofilm formation in Klebsiella pneumoniae. METHODS Clinical isolates were screened for biofilm formation using the crystal violet assay. Antimicrobial resistance (AMR) profiles were assessed by disk diffusion and broth microdilution tests. Biofilm formation was correlated to virulence and resistance genes screened by PCR. Draft genomes of three isolates that form strong biofilm were generated by Illumina sequencing. RESULTS Only the siderophore-coding gene iutA was significantly associated with more pronounced biofilm formation. ST1399-KL43-O1/O2v1 and ST11-KL15-O4 were assigned to the multidrug-resistant strain K21 and the extensively drug-resistant strain K237, respectively. ST1999-KL38-O12 was assigned to K57. Correlated with CRISPR/Cas distribution, more plasmid replicons and prophage sequences were identified in K21 and K237 compared to K57. The acquired AMR genes (blaOXA-48, rmtF, aac(6')-Ib and qnrB) and (blaNDM-1, blaCTX-M, aph(3')-VI, qnrS, and aac(6')-Ib-cr) were found in K237 and K21, respectively. The latter showed a novel ISEcp1-mediated chromosomal integration of replicon type IncM1 plasmid-like structure harboring blaCTX-M-14 and aph(3')-VI that uniquely interrupted rcsC. The plasmid-mediated heavy metal resistance genes merACDEPRT and arsABCDR were spotted in K21, which also exclusively carried the acquired virulence genes mrkABCDF and the hypervirulence-associated genes iucABCD-iutA, and rmpA/A2. Pangenome analysis revealed NTUH-K2044 accessory genes most frequently shared with K21. CONCLUSIONS While less virulent to Galleria mellonella than ST1999 (K57), the strong biofilm former, multidrug-resistant, NDM-producer K. pneumoniae K21 (ST1399-KL43-O1/O2v1) carries a novel chromosomally integrated plasmid-like structure and hypervirulence-associated genes and represents a serious threat to countries in the area.
Collapse
Affiliation(s)
- Samira M Hamed
- Department of Microbiology and Immunology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | - Hend O Mohamed
- Department of Biological Control Research, Plant Protection Research Institute, Agricultural Research Center, Giza, Egypt
| | - Hossam M Ashour
- Department of Integrative Biology, College of Arts and Sciences, University of South Florida, St. Petersburg, FL, USA
| | - Lamiaa I Fahmy
- Department of Microbiology and Immunology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| |
Collapse
|
17
|
Paganini JA, Kerkvliet JJ, Vader L, Plantinga NL, Meneses R, Corander J, Willems RJL, Arredondo-Alonso S, Schürch AC. PlasmidEC and gplas2: an optimized short-read approach to predict and reconstruct antibiotic resistance plasmids in Escherichia coli. Microb Genom 2024; 10:001193. [PMID: 38376388 PMCID: PMC10926690 DOI: 10.1099/mgen.0.001193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 01/22/2024] [Indexed: 02/21/2024] Open
Abstract
Accurate reconstruction of Escherichia coli antibiotic resistance gene (ARG) plasmids from Illumina sequencing data has proven to be a challenge with current bioinformatic tools. In this work, we present an improved method to reconstruct E. coli plasmids using short reads. We developed plasmidEC, an ensemble classifier that identifies plasmid-derived contigs by combining the output of three different binary classification tools. We showed that plasmidEC is especially suited to classify contigs derived from ARG plasmids with a high recall of 0.941. Additionally, we optimized gplas, a graph-based tool that bins plasmid-predicted contigs into distinct plasmid predictions. Gplas2 is more effective at recovering plasmids with large sequencing coverage variations and can be combined with the output of any binary classifier. The combination of plasmidEC with gplas2 showed a high completeness (median=0.818) and F1-Score (median=0.812) when reconstructing ARG plasmids and exceeded the binning capacity of the reference-based method MOB-suite. In the absence of long-read data, our method offers an excellent alternative to reconstruct ARG plasmids in E. coli.
Collapse
Affiliation(s)
- Julian A. Paganini
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jesse J. Kerkvliet
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Lisa Vader
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Nienke L. Plantinga
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Rodrigo Meneses
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jukka Corander
- Department of Biostatistics, Faculty of Medicine, University of Oslo, Oslo, Norway
- Parasites and Microbes, Wellcome Sanger Institute, Cambridge, UK
- Helsinki Institute of Information Technology, Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland
| | - Rob J. L. Willems
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Sergio Arredondo-Alonso
- Department of Biostatistics, Faculty of Medicine, University of Oslo, Oslo, Norway
- Parasites and Microbes, Wellcome Sanger Institute, Cambridge, UK
| | - Anita C. Schürch
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
18
|
Dinda V, Kimang’a AN, Kariuki D, Sifuna AW, O’Brien TJ, Welch M, Reva ON. Whole genome sequencing and genotyping Klebsiella pneumoniae multi-drug resistant hospital isolates from Western Kenya. Access Microbiol 2024; 6:000667.v4. [PMID: 38361654 PMCID: PMC10866029 DOI: 10.1099/acmi.0.000667.v4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 01/08/2024] [Indexed: 02/17/2024] Open
Abstract
Objectives Klebsiella pneumoniae are a frequent cause of nosocomial infections worldwide. Sequence type 147 (ST147) has been reported as a major circulating high-risk lineage in many countries, and appears to be a formidable platform for the dissemination of antimicrobial resistance (AMR) determinants. However, the distribution of this pathogen in Western African hospitals has been scarcely studied. The main objective of this work was to perform whole genome sequencing of K. pneumoniae isolates from a referral hospital in Kakamega (Kenya) for genotyping and identification of AMR and virulence determinants. Methods In total, 15 K. pneumoniae isolates showing a broad spectrum antimicrobial resistance were selected for whole genome sequencing by Illumina HiSeq 2500 platform. Results ST147 was the dominant lineage among the highly-resistant K. pneumoniae isolates that we sequenced. ST147 was associated with both community- and the hospital-acquired infections, and with different infection sites, whereas other STs were predominantly uropathogens. Multiple antibiotic resistance and virulence determinants were detected in the genomes including extended-spectrum β-lactamases (ESBL) and carbapenemases. Many of these genes were plasmid-borne. Conclusions Our data suggest that the evolutionary success of ST147 may be linked with the acquisition of broad host-range plasmids, and their propensity to accrue AMR and virulence determinants. Although ST147 is a dominant lineage in many countries worldwide, it has not been previously reported as prevalent in Africa. Our data suggest an influx of new nosocomial pathogens with new virulence genes into African hospitals from other continents.
Collapse
Affiliation(s)
- Victor Dinda
- Department of Medical Laboratory Science, Masinde Muliro University of Science and Technology, Kakamega, Kenya
| | - Andrew Nyerere Kimang’a
- Department of Medical Microbiology, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Daniel Kariuki
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Anthony Wawire Sifuna
- Department of Medical Biochemistry, Masinde Muliro University of Science and Technology, Kakamega, Kenya
| | - Thomas James O’Brien
- Department of Biochemistry, University of Cambridge, Hopkins Building, Cambridge, UK
| | - Martin Welch
- Department of Biochemistry, University of Cambridge, Hopkins Building, Cambridge, UK
| | - Oleg N. Reva
- Centre for Bioinformatics and Computational Biology, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
19
|
McInnes RS, Snaith AE, Dunn SJ, Papangeli M, Hardy KJ, Hussain A, van Schaik W. Integration of vanHAX downstream of a ribosomal RNA operon restores vancomycin resistance in a susceptible Enterococcus faecium strain. NPJ ANTIMICROBIALS AND RESISTANCE 2024; 2:2. [PMID: 39843953 PMCID: PMC11702846 DOI: 10.1038/s44259-023-00017-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/27/2023] [Indexed: 01/24/2025]
Abstract
During the genomic characterisation of Enterococcus faecium strains (n = 39) collected in a haematology ward, we identified an isolate (OI25), which contained vanA-type vancomycin resistance genes but was phenotypically susceptible to vancomycin. OI25 could revert to resistance when cultured in the presence of vancomycin and was thus considered to be vancomycin-variable. Long-read sequencing was used to identify structural variations within the vancomycin resistance region of OI25 and to uncover its resistance reversion mechanism. We found that OI25 has a reduced ability to positively regulate expression of the vanHAX genes in the presence of vancomycin, which was associated with the insertion of an IS6-family element within the promoter region and the first 50 bp of the vanR gene. The vancomycin-resistant revertant isolates constitutively expressed vanHAX genes at levels up to 36,000-fold greater than OI25 via co-transcription with a ribosomal RNA operon. The vancomycin-resistant revertants did not exhibit a significant growth defect. During VRE outbreaks, attention should be paid to contemporaneous vancomycin-susceptible strains as these may carry silent vancomycin resistance genes that can be activated through genomic rearrangements.
Collapse
Affiliation(s)
- Ross S McInnes
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, B15 2TT, UK
| | - Ann E Snaith
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, B15 2TT, UK
| | - Steven J Dunn
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, B15 2TT, UK
| | - Maria Papangeli
- Biodiscovery Institute, National Biofilms Innovation Centre and School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Katherine J Hardy
- Birmingham Public Health Laboratory, UK Health Security Agency, Birmingham, B9 5SS, UK
| | - Abid Hussain
- Birmingham Public Health Laboratory, UK Health Security Agency, Birmingham, B9 5SS, UK
| | - Willem van Schaik
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
20
|
Furlan JPR, da Silva Rosa R, Ramos MS, Dos Santos LDR, Savazzi EA, Stehling EG. Genomic features of an extensively drug-resistant and NDM-1-positive Klebsiella pneumoniae ST340 isolated from river water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:114678-114684. [PMID: 37845596 DOI: 10.1007/s11356-023-30374-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/06/2023] [Indexed: 10/18/2023]
Abstract
The environmental contamination plays a significant role in the emergence of antimicrobial resistance. In this study, we report a genomic analysis of an extensively drug-resistant and blaNDM-1-producing Klebsiella pneumoniae (EW807) strain recovered from a surface water sample. Strain EW807 belonged to sequence type (ST) 340 and serotype O4:KL15, a high-risk clone of the clonal group 258. This strain carried a broad resistome, including blaNDM-1 and blaCTX-M-15. The core genome multilocus sequence typing phylogenetic analysis revealed that the EW807 strain was most related to strains from Brazil and the USA. An IncX3 plasmid was identified harboring the blaNDM-1 gene, while an IncFIB(K) plasmid was detected carrying the blaCTX-M-15 in addition to multidrug resistance and multimetal tolerance regions. IncX3 and IncFIB(K) plasmids shared high similarity with plasmids from a human in China and a dog in Brazil, respectively. The regions harboring the blaNDM-1 and blaCTX-M-15 genes contained sequences from the Tn3 family. These findings suggest that IncX3 plasmid could play a role in the spread of NDM-1 in a post-pandemic scenario. To the best of our knowledge, this is the first report of blaNDM-1-producing K. pneumoniae ST340 O4:KL15 strain in the environment. Therefore, the presence of high-risk clones of K. pneumoniae carrying carbapenemases in the environment requires strict surveillance.
Collapse
Affiliation(s)
- João Pedro Rueda Furlan
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. Do Café, S/N, Monte Alegre, Ribeirão Preto, São Paulo, 14040-903, Brazil
| | - Rafael da Silva Rosa
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. Do Café, S/N, Monte Alegre, Ribeirão Preto, São Paulo, 14040-903, Brazil
| | - Micaela Santana Ramos
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. Do Café, S/N, Monte Alegre, Ribeirão Preto, São Paulo, 14040-903, Brazil
| | - Lucas David Rodrigues Dos Santos
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. Do Café, S/N, Monte Alegre, Ribeirão Preto, São Paulo, 14040-903, Brazil
| | | | - Eliana Guedes Stehling
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. Do Café, S/N, Monte Alegre, Ribeirão Preto, São Paulo, 14040-903, Brazil.
| |
Collapse
|
21
|
Sielemann J, Sielemann K, Brejová B, Vinař T, Chauve C. plASgraph2: using graph neural networks to detect plasmid contigs from an assembly graph. Front Microbiol 2023; 14:1267695. [PMID: 37869681 PMCID: PMC10587606 DOI: 10.3389/fmicb.2023.1267695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/08/2023] [Indexed: 10/24/2023] Open
Abstract
Identification of plasmids from sequencing data is an important and challenging problem related to antimicrobial resistance spread and other One-Health issues. We provide a new architecture for identifying plasmid contigs in fragmented genome assemblies built from short-read data. We employ graph neural networks (GNNs) and the assembly graph to propagate the information from nearby nodes, which leads to more accurate classification, especially for short contigs that are difficult to classify based on sequence features or database searches alone. We trained plASgraph2 on a data set of samples from the ESKAPEE group of pathogens. plASgraph2 either outperforms or performs on par with a wide range of state-of-the-art methods on testing sets of independent ESKAPEE samples and samples from related pathogens. On one hand, our study provides a new accurate and easy to use tool for contig classification in bacterial isolates; on the other hand, it serves as a proof-of-concept for the use of GNNs in genomics. Our software is available at https://github.com/cchauve/plasgraph2 and the training and testing data sets are available at https://github.com/fmfi-compbio/plasgraph2-datasets.
Collapse
Affiliation(s)
- Janik Sielemann
- Computational Biology, Faculty of Biology, Center for Biotechnology & Graduate School Digital Infrastructures for the Life Sciences (DILS), Bielefeld Institute for Bioinformatics Infrastructure, Bielefeld University, Bielefeld, Germany
| | - Katharina Sielemann
- Genetics and Genomics of Plants, Faculty of Biology, Center for Biotechnology & Graduate School Digital Infrastructures for the Life Sciences (DILS), Bielefeld Institute for Bioinformatics Infrastructure, Bielefeld University, Bielefeld, Germany
| | - Broňa Brejová
- Department of Computer Science, Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, Bratislava, Slovakia
| | - Tomáš Vinař
- Department of Applied Informatics, Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, Bratislava, Slovakia
| | - Cedric Chauve
- Department of Mathematics, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
22
|
Lopes R, Furlan JPR, Ramos MS, Santos LDRD, Rosa RDS, Stehling EG. Klebsiella quasipneumoniae subsp. similipneumoniae ST1859 O5:KL35 from Soil: First Report of qnrE1 in the Environment. Microb Drug Resist 2023; 29:492-496. [PMID: 37428613 DOI: 10.1089/mdr.2023.0075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023] Open
Abstract
A Klebsiella quasipneumoniae subsp. similipneumoniae strain, named S915, belonging to the ST1859 O5:KL35, and harboring the plasmid-mediated quinolone resistance qnrE1 gene, was isolated from a soil sample cultivated with lettuce in Brazil. The core genome multilocus sequence typing analysis revealed that S915 strain was most related to a clinical strain of Brazil. Comparative genomic analysis showed that ST1859 O5:KL35 strains have been circulating in clinical settings and are closely related to multidrug resistance and multimetal tolerance. Strain S915 presented a plasmid contig co-harboring the qnrE1 gene and tellurite tolerance operon. The region harboring the qnrE1 gene (ISEcp1-qnrE1-araJ-ahp) shared high similarity with others from infected humans, ready-to-eat dish, and food-producing animals in Brazil. This is the first report of the plasmid-mediated qnrE1 gene in the environment. Our findings evidence the initial dissemination of the qnrE1 gene in the environment by the introduction of a clinical strain, which may be spread to different sectors, representing a One Health challenge.
Collapse
Affiliation(s)
- Ralf Lopes
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - João Pedro Rueda Furlan
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Micaela Santana Ramos
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Lucas David Rodrigues Dos Santos
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Rafael da Silva Rosa
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Eliana Guedes Stehling
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
23
|
Jati AP, Sola-Campoy PJ, Bosch T, Schouls LM, Hendrickx APA, Bautista V, Lara N, Raangs E, Aracil B, Rossen JWA, Friedrich AW, Navarro Riaza AM, Cañada-García JE, Ramírez de Arellano E, Oteo-Iglesias J, Pérez-Vázquez M, García-Cobos S, The Dutch and Spanish Collaborative Working Groups on Surveillance on Carbapenemase-Producing Enterobacterales. Widespread Detection of Yersiniabactin Gene Cluster and Its Encoding Integrative Conjugative Elements (ICE Kp) among Nonoutbreak OXA-48-Producing Klebsiella pneumoniae Clinical Isolates from Spain and the Netherlands. Microbiol Spectr 2023; 11:e0471622. [PMID: 37310221 PMCID: PMC10434048 DOI: 10.1128/spectrum.04716-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 05/22/2023] [Indexed: 06/14/2023] Open
Abstract
In this study, we determined the presence of virulence factors in nonoutbreak, high-risk clones and other isolates belonging to less common sequence types associated with the spread of OXA-48-producing Klebsiella pneumoniae clinical isolates from The Netherlands (n = 61) and Spain (n = 53). Most isolates shared a chromosomally encoded core of virulence factors, including the enterobactin gene cluster, fimbrial fim and mrk gene clusters, and urea metabolism genes (ureAD). We observed a high diversity of K-Locus and K/O loci combinations, KL17 and KL24 (both 16%), and the O1/O2v1 locus (51%) being the most prevalent in our study. The most prevalent accessory virulence factor was the yersiniabactin gene cluster (66.7%). We found seven yersiniabactin lineages-ybt 9, ybt 10, ybt 13, ybt 14, ybt 16, ybt 17, and ybt 27-which were chromosomally embedded in seven integrative conjugative elements (ICEKp): ICEKp3, ICEKp4, ICEKp2, ICEKp5, ICEKp12, ICEKp10, and ICEKp22, respectively. Multidrug-resistant lineages-ST11, ST101, and ST405-were associated with ybt 10/ICEKp4, ybt 9/ICEKp3, and ybt 27/ICEKp22, respectively. The fimbrial adhesin kpi operon (kpiABCDEFG) was predominant among ST14, ST15, and ST405 isolates, as well as the ferric uptake system kfuABC, which was also predominant among ST101 isolates. No convergence of hypervirulence and resistance was observed in this collection of OXA-48-producing K. pneumoniae clinical isolates. Nevertheless, two isolates, ST133 and ST792, were positive for the genotoxin colibactin gene cluster (ICEKp10). In this study, the integrative conjugative element, ICEKp, was the major vehicle for yersiniabactin and colibactin gene clusters spreading. IMPORTANCE Convergence of multidrug resistance and hypervirulence in Klebsiella pneumoniae isolates has been reported mostly related to sporadic cases or small outbreaks. Nevertheless, little is known about the real prevalence of carbapenem-resistant hypervirulent K. pneumoniae since these two phenomena are often separately studied. In this study, we gathered information on the virulent content of nonoutbreak, high-risk clones (i.e., ST11, ST15, and ST405) and other less common STs associated with the spread of OXA-48-producing K. pneumoniae clinical isolates. The study of virulence content in nonoutbreak isolates can help us to expand information on the genomic landscape of virulence factors in K. pneumoniae population by identifying virulence markers and their mechanisms of spread. Surveillance should focus not only on antimicrobial resistance but also on virulence characteristics to avoid the spread of multidrug and (hyper)virulent K. pneumoniae that may cause untreatable and more severe infections.
Collapse
Affiliation(s)
- Afif P. Jati
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, Groningen, The Netherlands
- Indonesian Society of Bioinformatics and Biodiversity, Indonesia
| | - Pedro J. Sola-Campoy
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones Relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Thijs Bosch
- Infectious Diseases Research, Diagnostics and Laboratory Surveillance, Centre for Infectious Disease Control Netherlands, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Leo M. Schouls
- Infectious Diseases Research, Diagnostics and Laboratory Surveillance, Centre for Infectious Disease Control Netherlands, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Antoni P. A. Hendrickx
- Infectious Diseases Research, Diagnostics and Laboratory Surveillance, Centre for Infectious Disease Control Netherlands, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Verónica Bautista
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones Relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Noelia Lara
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones Relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Erwin Raangs
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, Groningen, The Netherlands
| | - Belén Aracil
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones Relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- CIBER de Enfermedades Infecciosas, Spanish Network for Research in Infectious Diseases, Instituto de Salud Carlos III, Madrid, Spain
| | - John W. A. Rossen
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, Groningen, The Netherlands
- Laboratory of Medical Microbiology and Infectious Diseases, Isala Hospital, Zwolle, The Netherlands
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Alex W. Friedrich
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, Groningen, The Netherlands
- University Hospital Münster, Institute of European Prevention Networks in Infection Control, Münster, Germany
| | - Ana M. Navarro Riaza
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones Relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Javier E. Cañada-García
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones Relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Eva Ramírez de Arellano
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones Relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- CIBER de Enfermedades Infecciosas, Spanish Network for Research in Infectious Diseases, Instituto de Salud Carlos III, Madrid, Spain
| | - Jesús Oteo-Iglesias
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones Relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- CIBER de Enfermedades Infecciosas, Spanish Network for Research in Infectious Diseases, Instituto de Salud Carlos III, Madrid, Spain
| | - María Pérez-Vázquez
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones Relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- CIBER de Enfermedades Infecciosas, Spanish Network for Research in Infectious Diseases, Instituto de Salud Carlos III, Madrid, Spain
| | - Silvia García-Cobos
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, Groningen, The Netherlands
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones Relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - The Dutch and Spanish Collaborative Working Groups on Surveillance on Carbapenemase-Producing Enterobacterales
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, Groningen, The Netherlands
- Indonesian Society of Bioinformatics and Biodiversity, Indonesia
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones Relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- Infectious Diseases Research, Diagnostics and Laboratory Surveillance, Centre for Infectious Disease Control Netherlands, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
- CIBER de Enfermedades Infecciosas, Spanish Network for Research in Infectious Diseases, Instituto de Salud Carlos III, Madrid, Spain
- Laboratory of Medical Microbiology and Infectious Diseases, Isala Hospital, Zwolle, The Netherlands
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, USA
- University Hospital Münster, Institute of European Prevention Networks in Infection Control, Münster, Germany
| |
Collapse
|
24
|
Mane A, Faizrahnemoon M, Vinař T, Brejová B, Chauve C. PlasBin-flow: a flow-based MILP algorithm for plasmid contigs binning. Bioinformatics 2023; 39:i288-i296. [PMID: 37387134 DOI: 10.1093/bioinformatics/btad250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023] Open
Abstract
MOTIVATION The analysis of bacterial isolates to detect plasmids is important due to their role in the propagation of antimicrobial resistance. In short-read sequence assemblies, both plasmids and bacterial chromosomes are typically split into several contigs of various lengths, making identification of plasmids a challenging problem. In plasmid contig binning, the goal is to distinguish short-read assembly contigs based on their origin into plasmid and chromosomal contigs and subsequently sort plasmid contigs into bins, each bin corresponding to a single plasmid. Previous works on this problem consist of de novo approaches and reference-based approaches. De novo methods rely on contig features such as length, circularity, read coverage, or GC content. Reference-based approaches compare contigs to databases of known plasmids or plasmid markers from finished bacterial genomes. RESULTS Recent developments suggest that leveraging information contained in the assembly graph improves the accuracy of plasmid binning. We present PlasBin-flow, a hybrid method that defines contig bins as subgraphs of the assembly graph. PlasBin-flow identifies such plasmid subgraphs through a mixed integer linear programming model that relies on the concept of network flow to account for sequencing coverage, while also accounting for the presence of plasmid genes and the GC content that often distinguishes plasmids from chromosomes. We demonstrate the performance of PlasBin-flow on a real dataset of bacterial samples. AVAILABILITY AND IMPLEMENTATION https://github.com/cchauve/PlasBin-flow.
Collapse
Affiliation(s)
- Aniket Mane
- Department of Mathematics, Simon Fraser University, Burnaby V5A 1S6, Canada
| | | | - Tomáš Vinař
- Department of Applied Informatics, Comenius University, Bratislava 84248, Slovakia
| | - Broňa Brejová
- Department of Computer Science, Comenius University, Bratislava 84248, Slovakia
| | - Cedric Chauve
- Department of Mathematics, Simon Fraser University, Burnaby V5A 1S6, Canada
| |
Collapse
|
25
|
Zhu Q, Gao S, Xiao B, He Z, Hu S. Plasmer: an Accurate and Sensitive Bacterial Plasmid Prediction Tool Based on Machine Learning of Shared k-mers and Genomic Features. Microbiol Spectr 2023; 11:e0464522. [PMID: 37191574 PMCID: PMC10269668 DOI: 10.1128/spectrum.04645-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 04/26/2023] [Indexed: 05/17/2023] Open
Abstract
Identification of plasmids in bacterial genomes is critical for many factors, including horizontal gene transfer, antibiotic resistance genes, host-microbe interactions, cloning vectors, and industrial production. There are several in silico methods to predict plasmid sequences in assembled genomes. However, existing methods have evident shortcomings, such as unbalance in sensitivity and specificity, dependency on species-specific models, and performance reduction in sequences shorter than 10 kb, which has limited their scope of applicability. In this work, we proposed Plasmer, a novel plasmid predictor based on machine-learning of shared k-mers and genomic features. Unlike existing k-mer or genomic-feature based methods, Plasmer employs the random forest algorithm to make predictions using the percent of shared k-mers with plasmid and chromosome databases combined with other genomic features, including alignment E value and replicon distribution scores (RDS). Plasmer can predict on multiple species and has achieved an average the area under the curve (AUC) of 0.996 with accuracy of 98.4%. Compared to existing methods, tests of both sliding sequences and simulated and de novo assemblies have consistently shown that Plasmer has outperforming accuracy and stable performance across long and short contigs above 500 bp, demonstrating its applicability for fragmented assemblies. Plasmer also has excellent and balanced performance on both sensitivity and specificity (both >0.95 above 500 bp) with the highest F1-score, which has eliminated the bias on sensitivity or specificity that was common in existing methods. Plasmer also provides taxonomy classification to help identify the origin of plasmids. IMPORTANCE In this study, we proposed a novel plasmid prediction tool named Plasmer. Technically, unlike existing k-mer or genomic features-based methods, Plasmer is the first tool to combine the advantages of the percent of shared k-mers and the alignment score of genomic features. This has given Plasmer (i) evident improvement in performance compared to other methods, with the best F1-score and accuracy on sliding sequences, simulated contigs, and de novo assemblies; (ii) applicability for contigs above 500 bp with highest accuracy, enabling plasmid prediction in fragmented short-read assemblies; (iii) excellent and balanced performance between sensitivity and specificity (both >0.95 above 500 bp) with the highest F1-score, which eliminated the bias on sensitivity or specificity that commonly existed in other methods; and (iv) no dependency of species-specific training models. We believe that Plasmer provides a more reliable alternative for plasmid prediction in bacterial genome assemblies.
Collapse
Affiliation(s)
- Qianhui Zhu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shenghan Gao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Binghan Xiao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China
| | - Zilong He
- School of Engineering Medicine, Beihang University, Beijing, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Interdisciplinary Innovation Institute of Medicine and Engineering, Beihang University, Beijing, China
| | - Songnian Hu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
26
|
Walas N, Müller NF, Parker E, Henderson A, Capone D, Brown J, Barker T, Graham JP. Phylodynamics Uncovers the Transmission of Antibiotic-Resistant Escherichia coli between Canines and Humans in an Urban Environment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.01.543064. [PMID: 37398411 PMCID: PMC10312604 DOI: 10.1101/2023.06.01.543064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
The role of canines in transmitting antibiotic resistant bacteria to humans in the urban environment is poorly understood. To elucidate this role, we utilized genomic sequencing and phylogenetics to characterize the burden and transmission dynamics of antibiotic resistant Escherichia coli (ABR-Ec) cultured from canine and human feces present on urban sidewalks in San Francisco, California. We collected a total of fifty-nine ABR-Ec from human (n=12) and canine (n=47) fecal samples from the Tenderloin and South of Market (SoMa) neighborhoods of San Francisco. We then analyzed phenotypic and genotypic antibiotic resistance (ABR) of the isolates, as well as clonal relationships based on cgMLST and single nucleotide polymorphisms (SNPs) of the core genomes. Using Bayesian inference, we reconstructed the transmission dynamics between humans and canines from multiple local outbreak clusters using the marginal structured coalescent approximation (MASCOT). Overall, we found human and canine samples to carry similar amounts and profiles of ABR genes. Our results provide evidence for multiple transmission events of ABR-Ec between humans and canines. In particular, we found one instance of likely transmission from canines to humans as well as an additional local outbreak cluster consisting of one canine and one human sample. Based on this analysis, it appears that canine feces act as an important reservoir of clinically relevant ABR-Ec within the urban environment. Our findings support that public health measures should continue to emphasize proper canine feces disposal practices, access to public toilets and sidewalk and street cleaning. Importance: Antibiotic resistance in E. coli is a growing public health concern with global attributable deaths projected to reach millions annually. Current research has focused heavily on clinical routes of antibiotic resistance transmission to design interventions while the role of alternative reservoirs such as domesticated animals remain less well understood. Our results suggest canines are part of the transmission network that disseminates high-risk multidrug resistance in E. coli within the urban San Francisco community. As such, this study highlights the need to consider canines, and potentially domesticated animals more broadly, when designing interventions to reduce the prevalence of antibiotic resistance in the community. Additionally, it showcases the utility of genomic epidemiology to reconstruct the pathways by which antimicrobial resistance spreads.
Collapse
Affiliation(s)
| | - Nicola F. Müller
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Emily Parker
- University of California, Berkeley, California, USA
| | | | - Drew Capone
- Indiana University, Bloomington, Indiana, USA
| | - Joe Brown
- The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Troy Barker
- The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | |
Collapse
|
27
|
Walas N, Slown S, Amato HK, Lloyd T, Bender M, Varghese V, Pandori M, Graham JP. The role of plasmids in carbapenem resistant E. coli in Alameda County, California. BMC Microbiol 2023; 23:147. [PMID: 37217873 DOI: 10.1186/s12866-023-02900-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/17/2023] [Indexed: 05/24/2023] Open
Abstract
BACKGROUND Antimicrobial resistant infections continue to be a leading global public health crisis. Mobile genetic elements, such as plasmids, have been shown to play a major role in the dissemination of antimicrobial resistance (AMR) genes. Despite its ongoing threat to human health, surveillance of AMR in the United States is often limited to phenotypic resistance. Genomic analyses are important to better understand the underlying resistance mechanisms, assess risk, and implement appropriate prevention strategies. This study aimed to investigate the extent of plasmid mediated antimicrobial resistance that can be inferred from short read sequences of carbapenem resistant E. coli (CR-Ec) in Alameda County, California. E. coli isolates from healthcare locations in Alameda County were sequenced using an Illumina MiSeq and assembled with Unicycler. Genomes were categorized according to predefined multilocus sequence typing (MLST) and core genome multilocus sequence typing (cgMLST) schemes. Resistance genes were identified and corresponding contigs were predicted to be plasmid-borne or chromosome-borne using two bioinformatic tools (MOB-suite and mlplasmids). RESULTS Among 82 of CR-Ec identified between 2017 and 2019, twenty-five sequence types (STs) were detected. ST131 was the most prominent (n = 17) followed closely by ST405 (n = 12). blaCTX-M were the most common ESBL genes and just over half (18/30) of these genes were predicted to be plasmid-borne by both MOB-suite and mlplasmids. Three genetically related groups of E. coli isolates were identified with cgMLST. One of the groups contained an isolate with a chromosome-borne blaCTX-M-15 gene and an isolate with a plasmid-borne blaCTX-M-15 gene. CONCLUSIONS This study provides insights into the dominant clonal groups driving carbapenem resistant E. coli infections in Alameda County, CA, USA clinical sites and highlights the relevance of whole-genome sequencing in routine local genomic surveillance. The finding of multi-drug resistant plasmids harboring high-risk resistance genes is of concern as it indicates a risk of dissemination to previously susceptible clonal groups, potentially complicating clinical and public health intervention.
Collapse
Affiliation(s)
- Nikolina Walas
- School of Public Health, University of California, Berkeley, CA, USA.
| | - Samuel Slown
- School of Public Health, University of California, Berkeley, CA, USA
| | - Heather K Amato
- School of Public Health, University of California, Berkeley, CA, USA
| | - Tyler Lloyd
- Alameda County Public Health Laboratory, Oakland, CA, USA
| | - Monica Bender
- Alameda County Public Health Laboratory, Oakland, CA, USA
| | - Vici Varghese
- Alameda County Public Health Laboratory, Oakland, CA, USA
| | - Mark Pandori
- Alameda County Public Health Laboratory, Oakland, CA, USA
- Nevada State Public Health Laboratory, Reno, NV, USA
| | - Jay P Graham
- School of Public Health, University of California, Berkeley, CA, USA
| |
Collapse
|
28
|
Sartori L, Sellera FP, Fuga B, Sano E, Monte DFM, Cardoso B, Côrtes LDA, Lincopan N. Phylogenomic Analysis of CTX-M-15-Positive Escherichia coli from Companion Animal Reveals Intercontinental Dissemination of ST90 Within a One Health Framework. Microb Drug Resist 2023. [PMID: 37155698 DOI: 10.1089/mdr.2022.0249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
The global dissemination of extended-spectrum-β-lactamase (ESBL)-producing Escherichia coli has been considered a critical issue within a One Health framework. The aim of this study was to perform a genomic investigation of an ESBL-producing E. coli strain belonging to the globally spread sequence type/clonal complex ST90/CC23, isolated from gastrointestinal tract of a dog, in Brazil. Besides CTX-M-15 ESBL, this E. coli isolate carried mutations conferring resistance to human and veterinary fluoroquinolones (GyrA [Ser83Leu, Asp87Asn], ParC [Ser80Ile] and ParE [Ser458Ala]), and resistance determinants to disinfectants and pesticides. Noteworthy, phylogenomic analysis revealed that this multidrug E. coli strain clustered with ST90 lineages isolated from human, dog, and livestock in Brazil. The phylogenetic tree also revealed that this E. coli strain shares a common ancestor with isolates from the United States, Russia, Germany, and China, highlighting the potential global spreading of this clone. In summary, we report genomic data of CTX-M-15-positive E.coli ST90 colonizing a pet. Colonization of companion animals by critical resistant pathogens highlights the need for close monitoring to better understand the epidemiology and genetic factors contributing for successful adaptation of global clones at the human-animal interface.
Collapse
Affiliation(s)
- Luciana Sartori
- Department of Clinical Analysis, School of Pharmacy, University of São Paulo, São Paulo, Brazil
| | - Fábio P Sellera
- Department of Internal Medicine, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
- One Health Brazilian Resistance Project (OneBR), Brazil
| | - Bruna Fuga
- Department of Clinical Analysis, School of Pharmacy, University of São Paulo, São Paulo, Brazil
- One Health Brazilian Resistance Project (OneBR), Brazil
- Department of Microbiology, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Elder Sano
- One Health Brazilian Resistance Project (OneBR), Brazil
- Department of Microbiology, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Daniel F M Monte
- One Health Brazilian Resistance Project (OneBR), Brazil
- Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, Food Research Center, University of São Paulo, São Paulo, Brazil
| | - Brenda Cardoso
- One Health Brazilian Resistance Project (OneBR), Brazil
- Department of Microbiology, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | | | - Nilton Lincopan
- Department of Clinical Analysis, School of Pharmacy, University of São Paulo, São Paulo, Brazil
- One Health Brazilian Resistance Project (OneBR), Brazil
- Department of Microbiology, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
29
|
Sun Z, Yang F, Ji J, Cao W, Liu C, Ding B, Xu X. Dissecting the genotypic features of a fluoroquinolone-resistant Pseudomonas aeruginosa ST316 sublineage causing ear infections in Shanghai, China. Microb Genom 2023; 9:mgen000989. [PMID: 37079456 PMCID: PMC10210959 DOI: 10.1099/mgen.0.000989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 02/20/2023] [Indexed: 04/21/2023] Open
Abstract
Limited information is available regarding the genomic characteristics of P. aeruginosa causing ear infections. Our aim is to characterize the genotypic features of an emerging ST316 sublineage causing aural infections in Shanghai. A total of 199 ear swab isolates were subjected to whole genome sequencing (WGS). Complete genomes for two isolates were resolved. We showed this recently emerged sublineage exhibited high-level resistance to fluoroquinolones (FQs) primarily by accumulation of known mutations in quinolone resistance determining regions (QRDRs). Loss-of-function mutations in mexR and mexCD were frequently detected. Mutations in fusA1 (P166S) and parE (S492F) were resident in this sublinage about 2 years after its emergence. Recombination events might be a key driver of genomic diversity in this sublineage. Convergent evolution events on Multidrug-resistant (MDR) determinants were also observed. We generated predictive machine models and identified biomarkers of resistance to gentamicin, fosfomycin, and cefoperazone-sulbactam in this sublineage. This sublineage tended to be less virulent by loss of a series virulence genes represented by ppkA, rhlI, and iron uptake- and antimicrobial activity-related genes. Specific mutations were detected in pilU and lpxB genes that related to surface structures. Moreover, this sublineage differed from non-ST316 isolates in several ways, including virulence genes related to cell surface structure. Our analysis suggested acquisition of a roughly 390 kbp MDR plasmid carrying qnrVC1 might play an important role in the success of this sublinage. Clonal expansion of this sublineage exhibiting enhanced adaptation to cause ear infections is concerning, which requires urgent control measures to be implemented.
Collapse
Affiliation(s)
- Zhewei Sun
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, PR China
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, PR China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, PR China
| | - Feifei Yang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, PR China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, PR China
| | - Jian Ji
- Department of Clinical Laboratory, Eye and ENT Hospital, Fudan University, Shanghai, PR China
| | - Wenjun Cao
- Department of Clinical Laboratory, Eye and ENT Hospital, Fudan University, Shanghai, PR China
| | - Chunhong Liu
- Department of Clinical Laboratory, Eye and ENT Hospital, Fudan University, Shanghai, PR China
| | - Baixing Ding
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, PR China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, PR China
| | - Xiaogang Xu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, PR China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, PR China
| |
Collapse
|
30
|
Berbers B, Vanneste K, Roosens NHCJ, Marchal K, Ceyssens PJ, De Keersmaecker SCJ. Using a combination of short- and long-read sequencing to investigate the diversity in plasmid- and chromosomally encoded extended-spectrum beta-lactamases (ESBLs) in clinical Shigella and Salmonella isolates in Belgium. Microb Genom 2023; 9:mgen000925. [PMID: 36748573 PMCID: PMC9973847 DOI: 10.1099/mgen.0.000925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 11/03/2022] [Indexed: 01/25/2023] Open
Abstract
For antimicrobial resistance (AMR) surveillance, it is important not only to detect AMR genes, but also to determine their plasmidic or chromosomal location, as this will impact their spread differently. Whole-genome sequencing (WGS) is increasingly used for AMR surveillance. However, determining the genetic context of AMR genes using only short-read sequencing is complicated. The combination with long-read sequencing offers a potential solution, as it allows hybrid assemblies. Nevertheless, its use in surveillance has so far been limited. This study aimed to demonstrate its added value for AMR surveillance based on a case study of extended-spectrum beta-lactamases (ESBLs). ESBL genes have been reported to occur also on plasmids. To gain insight into the diversity and genetic context of ESBL genes detected in clinical isolates received by the Belgian National Reference Center between 2013 and 2018, 100 ESBL-producing Shigella and 31 ESBL-producing Salmonella were sequenced with MiSeq and a representative selection of 20 Shigella and six Salmonella isolates additionally with MinION technology, allowing hybrid assembly. The bla CTX-M-15 gene was found to be responsible for a rapid rise in the ESBL Shigella phenotype from 2017. This gene was mostly detected on multi-resistance-carrying IncFII plasmids. Based on clustering, these plasmids were determined to be distinct from the circulating plasmids before 2017. They were spread to different Shigella species and within Shigella sonnei between multiple genotypes. Another similar IncFII plasmid was detected after 2017 containing bla CTX-M-27 for which only clonal expansion occurred. Matches of up to 99 % to plasmids of various bacterial hosts from all over the world were found, but global alignments indicated that direct or recent ESBL-plasmid transfers did not occur. It is most likely that travellers introduced these in Belgium and subsequently spread them domestically. However, a clear link to a specific country could not be made. Moreover, integration of bla CTX-M in the chromosome of two Shigella isolates was determined for the first time, and shown to be related to ISEcp1. In contrast, in Salmonella, ESBL genes were only found on plasmids, of which bla CTX-M-55 and IncHI2 were the most prevalent, respectively. No matching ESBL plasmids or cassettes were detected between clinical Shigella and Salmonella isolates. The hybrid assembly data allowed us to check the accuracy of plasmid prediction tools. MOB-suite showed the highest accuracy. However, these tools cannot replace the accuracy of long-read and hybrid assemblies. This study illustrates the added value of hybrid assemblies for AMR surveillance and shows that a strategy where even just representative isolates of a collection used for hybrid assemblies could improve international AMR surveillance as it allows plasmid tracking.
Collapse
Affiliation(s)
- Bas Berbers
- Transversal Activities in Applied Genomics, Sciensano, 1050 Brussels, Belgium
- Department of Information Technology, IDLab, Ghent University, IMEC, 9052 Ghent, Belgium
| | - Kevin Vanneste
- Transversal Activities in Applied Genomics, Sciensano, 1050 Brussels, Belgium
| | | | - Kathleen Marchal
- Department of Information Technology, IDLab, Ghent University, IMEC, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | | | | |
Collapse
|
31
|
Zou X, Nguyen M, Overbeek J, Cao B, Davis JJ. Classification of bacterial plasmid and chromosome derived sequences using machine learning. PLoS One 2022; 17:e0279280. [PMID: 36525447 PMCID: PMC9757591 DOI: 10.1371/journal.pone.0279280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
Plasmids are important genetic elements that facilitate horizonal gene transfer between bacteria and contribute to the spread of virulence and antimicrobial resistance. Most bacterial genome sequences in the public archives exist in draft form with many contigs, making it difficult to determine if a contig is of chromosomal or plasmid origin. Using a training set of contigs comprising 10,584 chromosomes and 10,654 plasmids from the PATRIC database, we evaluated several machine learning models including random forest, logistic regression, XGBoost, and a neural network for their ability to classify chromosomal and plasmid sequences using nucleotide k-mers as features. Based on the methods tested, a neural network model that used nucleotide 6-mers as features that was trained on randomly selected chromosomal and plasmid subsequences 5kb in length achieved the best performance, outperforming existing out-of-the-box methods, with an average accuracy of 89.38% ± 2.16% over a 10-fold cross validation. The model accuracy can be improved to 92.08% by using a voting strategy when classifying holdout sequences. In both plasmids and chromosomes, subsequences encoding functions involved in horizontal gene transfer-including hypothetical proteins, transporters, phage, mobile elements, and CRISPR elements-were most likely to be misclassified by the model. This study provides a straightforward approach for identifying plasmid-encoding sequences in short read assemblies without the need for sequence alignment-based tools.
Collapse
Affiliation(s)
- Xiaohui Zou
- Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, Center for Respiratory Diseases, China-Japan Friendship Hospital, National Clinical Research Centre for Respiratory Disease, Beijing, China
| | - Marcus Nguyen
- Data Science and Learning Division, Computing Environment and Life Sciences Directorate, Argonne National Laboratory, Lemont, IL, United States of America
- Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL, United States of America
| | - Jamie Overbeek
- Data Science and Learning Division, Computing Environment and Life Sciences Directorate, Argonne National Laboratory, Lemont, IL, United States of America
- Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL, United States of America
| | - Bin Cao
- Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, Center for Respiratory Diseases, China-Japan Friendship Hospital, National Clinical Research Centre for Respiratory Disease, Beijing, China
- * E-mail: (JJD); (BC)
| | - James J. Davis
- Data Science and Learning Division, Computing Environment and Life Sciences Directorate, Argonne National Laboratory, Lemont, IL, United States of America
- Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL, United States of America
- * E-mail: (JJD); (BC)
| |
Collapse
|
32
|
Zamudio R, Boerlin P, Beyrouthy R, Madec JY, Schwarz S, Mulvey MR, Zhanel GG, Cormier A, Chalmers G, Bonnet R, Haenni M, Eichhorn I, Kaspar H, Garcia-Fierro R, Wood JLN, Mather AE. Dynamics of extended-spectrum cephalosporin resistance genes in Escherichia coli from Europe and North America. Nat Commun 2022; 13:7490. [PMID: 36509735 PMCID: PMC9744880 DOI: 10.1038/s41467-022-34970-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 11/11/2022] [Indexed: 12/14/2022] Open
Abstract
Extended-spectrum cephalosporins (ESCs) are critically important antimicrobial agents for human and veterinary medicine. ESC resistance (ESC-R) genes have spread worldwide through plasmids and clonal expansion, yet the distribution and dynamics of ESC-R genes in different ecological compartments are poorly understood. Here we use whole genome sequence data of Enterobacterales isolates of human and animal origin from Europe and North America and identify contrasting temporal dynamics. AmpC β-lactamases were initially more dominant in North America in humans and farm animals, only later emerging in Europe. In contrast, specific extended-spectrum β-lactamases (ESBLs) were initially common in animals from Europe and later emerged in North America. This study identifies differences in the relative importance of plasmids and clonal expansion across different compartments for the spread of different ESC-R genes. Understanding the mechanisms of transmission will be critical in the design of interventions to reduce the spread of antimicrobial resistance.
Collapse
Affiliation(s)
- Roxana Zamudio
- Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
| | - Patrick Boerlin
- Department of Pathobiology, University of Guelph, Guelph, N1G 2W1, Canada
| | - Racha Beyrouthy
- Microbes Intestin Inflammation et Susceptibilité de l'Hôte (M2ISH), Faculté de Médecine, Université Clermont Auvergne, Clermont-Ferrand, 63001, France.,Centre National de Référence de la résistance aux antibiotiques, Centre Hospitalier Universitaire de Clermont-Ferrand, Clermont-Ferrand, 63000, France
| | - Jean-Yves Madec
- Unité Antibiorésistance et Virulence Bactériennes, Anses Laboratoire de Lyon, Université de Lyon, Lyon, 69007, France
| | - Stefan Schwarz
- Institute of Microbiology and Epizootics, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, 14163, Germany.,Veterinary Centre for Resistance Research (TZR), Department of Veterinary Medicine, Freie Universität Berlin, Berlin, 14163, Germany
| | - Michael R Mulvey
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, R3E 3R2, Canada
| | - George G Zhanel
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, R3E 0J9, Canada
| | - Ashley Cormier
- Department of Pathobiology, University of Guelph, Guelph, N1G 2W1, Canada
| | - Gabhan Chalmers
- Department of Pathobiology, University of Guelph, Guelph, N1G 2W1, Canada
| | - Richard Bonnet
- Microbes Intestin Inflammation et Susceptibilité de l'Hôte (M2ISH), Faculté de Médecine, Université Clermont Auvergne, Clermont-Ferrand, 63001, France.,Centre National de Référence de la résistance aux antibiotiques, Centre Hospitalier Universitaire de Clermont-Ferrand, Clermont-Ferrand, 63000, France
| | - Marisa Haenni
- Unité Antibiorésistance et Virulence Bactériennes, Anses Laboratoire de Lyon, Université de Lyon, Lyon, 69007, France
| | - Inga Eichhorn
- Institute of Microbiology and Epizootics, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, 14163, Germany.,Veterinary Centre for Resistance Research (TZR), Department of Veterinary Medicine, Freie Universität Berlin, Berlin, 14163, Germany
| | - Heike Kaspar
- Department Method Standardisation, Resistance to Antibiotics Unit Monitoring of Resistance to Antibiotics, Federal Office of Consumer Protection and Food Safety, Berlin, 12277, Germany
| | - Raquel Garcia-Fierro
- Unité Antibiorésistance et Virulence Bactériennes, Anses Laboratoire de Lyon, Université de Lyon, Lyon, 69007, France
| | - James L N Wood
- Department of Veterinary Medicine, University of Cambridge, Cambridge, CB3 0ES, UK
| | - Alison E Mather
- Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK. .,University of East Anglia, Norwich, NR4 7TJ, UK.
| |
Collapse
|
33
|
Ewers C, Göpel L, Prenger-Berninghoff E, Semmler T, Kerner K, Bauerfeind R. Occurrence of mcr-1 and mcr-2 colistin resistance genes in porcine Escherichia coli isolates (2010-2020) and genomic characterization of mcr-2-positive E. coli. Front Microbiol 2022; 13:1076315. [PMID: 36569100 PMCID: PMC9780603 DOI: 10.3389/fmicb.2022.1076315] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 11/22/2022] [Indexed: 12/13/2022] Open
Abstract
Introduction The global emergence of plasmid-mediated colistin resistance is threatening the efficacy of colistin as one of the last treatment options against multi-drug resistant Gram-negative bacteria. To date, ten mcr-genes (mcr-1 to mcr-10) were reported. While mcr-1 has disseminated globally, the occurrence of mcr-2 was reported scarcely. Methods and results We determined the occurrence of mcr-1 and mcr-2 genes among Escherichia coli isolates from swine and performed detailed genomic characterization of mcr-2-positive strains. In the years 2010-2017, 7,614 porcine E. coli isolates were obtained from fecal swine samples in Europe and isolates carrying at least one of the virulence associated genes predicting Shiga toxin producing E. coli (STEC), enterotoxigenic E. coli (ETEC) or enteropathogenic E. coli (EPEC) were stored. 793 (10.4%) of these isolates carried the mcr-1 gene. Of 1,477 additional E. coli isolates obtained from sheep blood agar containing 4 mg/L colistin between 2018 and 2020, 36 (2.4%) isolates were mcr-1-positive. In contrast to mcr-1, the mcr-2 gene occurred at a very low frequency (0.13%) among the overall 9,091 isolates. Most mcr-2-positive isolates originated from Belgium (n = 9), one from Spain and two from Germany. They were obtained from six different farms and revealed multilocus sequence types ST10, ST29, ST93, ST100, ST3057 and ST5786. While the originally described mcr-2.1 was predominant, we also detected a new mcr-2 variant in two isolates from Belgium, which was termed mcr-2.8. MCR-2 isolates were mostly classified as ETEC or ETEC-like, while one isolate from Spain represented an atypical enteropathogenic E. coli (aEPEC; eae+). The ST29-aEPEC isolate carried mcr-2 on the chromosome. Another eight isolates carried their mcr-2 gene on IncX4 plasmids that resembled the pKP37-BE MCR-2 plasmid originally described in Belgium in 2015. Three ST100 E. coli isolates from a single farm in Belgium carried the mcr-2.1 gene on a 47-kb self-transmissible IncP type plasmid of a new IncP-1 clade. Discussion This is the first report of mcr-2 genes in E. coli isolates from Germany. The detection of a new mcr-2 allele and a novel plasmid backbone suggests the presence of so far undetected mcr-2 variants and mobilizable vehicles.
Collapse
Affiliation(s)
- Christa Ewers
- Faculty of Veterinary Medicine, Institute of Hygiene and Infectious Diseases of Animals, Justus Liebig University Giessen, Giessen, Germany,*Correspondence: Christa Ewers,
| | - Lisa Göpel
- Faculty of Veterinary Medicine, Institute of Hygiene and Infectious Diseases of Animals, Justus Liebig University Giessen, Giessen, Germany
| | - Ellen Prenger-Berninghoff
- Faculty of Veterinary Medicine, Institute of Hygiene and Infectious Diseases of Animals, Justus Liebig University Giessen, Giessen, Germany
| | - Torsten Semmler
- NG1 Microbial Genomics, Robert Koch Institute, Berlin, Germany
| | - Katharina Kerner
- Faculty of Veterinary Medicine, Institute of Hygiene and Infectious Diseases of Animals, Justus Liebig University Giessen, Giessen, Germany
| | - Rolf Bauerfeind
- Faculty of Veterinary Medicine, Institute of Hygiene and Infectious Diseases of Animals, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
34
|
Li Z, Pang B, Lu X, Kan B, Kan B, School of Public Health, Shandong University, Jinan City, China. The Establishment and Application of a Kraken Classifier for Salmonella Plasmid Sequence Prediction. China CDC Wkly 2022; 4:1110-1116. [PMID: 36751662 PMCID: PMC9889229 DOI: 10.46234/ccdcw2022.225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Introduction Salmonella is a key intestinal pathogen of foodborne disease, and the plasmids in Salmonella are related to many biological characteristics, including virulence and drug resistance. A large number of plasmid contigs have been sequenced in bacterial draft genomes, however, these are often difficult to distinguish from chromosomal contigs. Methods In this study, three different customized Kraken databases were used to build three different Kraken classifiers. Complete genome benchmark datasets and simulated draft genome benchmark datasets were constructed. Five-fold cross-validation was used to evaluate the performance of the three different Kraken classifiers by two benchmark datasets. Results The predictive performance of the classifier based on all National Center for Biotechnology Information plasmids and Salmonella complete genomes was optimal. This optimal Kraken classifier was performed with Salmonella isolated in China. The plasmid carrying rate of Salmonella in China is 91.01%, and it was found that the Kraken classifier could find more plasmid contigs and antibiotic resistance genes (ARGs) than results derived from a plasmid replicon-based method (PlasmidFinder). Moreover, it was found that in the strains carrying ARGs, plasmids carried more ARGs [three, 95% confidence interval (CI): 1-14] than chromosomes (one, 95% CI: 1-7). Discussion We found building a high-quality customized database as a Kraken classifier to be ideal for the prediction of Salmonella plasmid sequences from bacterial draft genomes. In the future, the Kraken classifier established in this study will play a significant role in ARG monitoring.
Collapse
Affiliation(s)
- Zhenpeng Li
- State Key Laboratory of Infectious Disease Prevention and Control; National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing Municipality, China
| | - Bo Pang
- State Key Laboratory of Infectious Disease Prevention and Control; National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing Municipality, China
| | - Xin Lu
- State Key Laboratory of Infectious Disease Prevention and Control; National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing Municipality, China,Xin Lu,
| | - Biao Kan
- State Key Laboratory of Infectious Disease Prevention and Control; National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing Municipality, China,School of Public Health, Shandong University, Jinan City, China,Biao Kan,
| | | | | |
Collapse
|
35
|
Lobato A, Souza CO, Martins WMBS, Barata RR, Camargo DS, Dutra LMG, Carneiro ICRS, Costa CJS, Brasiliense DM. Genomic characterization of BKC-1-producing Klebsiella pneumoniae strain belonging to high-risk clone sequence type 11 isolated from a river in Brazil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 850:157917. [PMID: 35952879 DOI: 10.1016/j.scitotenv.2022.157917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/04/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
Carbapenem-resistant Klebsiella pneumoniae is a common cause of healthcare-related infections, and it is widespread in hospitals and diverse environments with potentially serious public health implications. Herein, we have reported the isolation and characterization of an environmental Brazilian Klebsiella carbapenemase (BKC-1)-producing K. pneumoniae strain (IEC1205) isolated in 2018 from a river in the Amazon region, Brazil. Antimicrobial susceptibility of this strain was evaluated by broth microdilution and demonstrated resistance to several antibiotics including β-lactams, aminoglycosides, fluoroquinolones, and polymyxins. It has an extensively drug-resistant phenotype. Genomic analysis revealed that IEC1205 belonged to sequence type 11, clonal complex 258 and the presence of blaBKC-1 and two other β-lactamase-encoding genes (blaCTX-M-15 and blaSHV-11). The predicted virulence was associated with biofilm formation-related genes, a type VI secretion system, siderophore production, and type I and II fimbriae formation. We have identified an IncQ1 plasmid, named pIEC1205, harboring blaBKC-1 with high similarity to previously described plasmids carrying blaBKC-1 and blaBKC-2 genes. To our knowledge, this is the first report of an environmental BKC-1-producing K. pneumoniae strain.
Collapse
Affiliation(s)
- Amalia Lobato
- Laboratório de Biologia Molecular, Seção de Bacteriologia e Micologia, Instituto Evandro Chagas, Ananindeua, PA, Brazil
| | - Cintya O Souza
- Laboratório de Biologia Molecular, Seção de Bacteriologia e Micologia, Instituto Evandro Chagas, Ananindeua, PA, Brazil
| | - Willames M B S Martins
- Universidade Federal de São Paulo (UNIFESP), Laboratório Alerta, Disciplina de Infectologia, Departamento de Medicina, Escola Paulista de Medicina (EPM), São Paulo, SP, Brazil
| | - Rafael R Barata
- Laboratório de Biologia Molecular, Seção de Bacteriologia e Micologia, Instituto Evandro Chagas, Ananindeua, PA, Brazil
| | - Daniel S Camargo
- Universidade Federal do Pará, Núcleo de Medicina Tropical, Programa de Pós-graduação em Doenças Tropicais, Belém, PA, Brazil
| | - Lívia M G Dutra
- Laboratório de Biologia Molecular, Seção de Bacteriologia e Micologia, Instituto Evandro Chagas, Ananindeua, PA, Brazil
| | - Irna C R S Carneiro
- Universidade Federal do Pará, Núcleo de Medicina Tropical, Programa de Pós-graduação em Doenças Tropicais, Belém, PA, Brazil
| | - Clevia J S Costa
- Laboratório de Biologia Molecular, Seção de Bacteriologia e Micologia, Instituto Evandro Chagas, Ananindeua, PA, Brazil
| | - Danielle M Brasiliense
- Laboratório de Biologia Molecular, Seção de Bacteriologia e Micologia, Instituto Evandro Chagas, Ananindeua, PA, Brazil.
| |
Collapse
|
36
|
Afolayan AO, Aboderin AO, Oaikhena AO, Odih EE, Ogunleye VO, Adeyemo AT, Adeyemo AT, Bejide OS, Underwood A, Argimón S, Abrudan M, Egwuenu A, Ihekweazu C, Aanensen DM, Okeke IN. An ST131 clade and a phylogroup A clade bearing an O101-like O-antigen cluster predominate among bloodstream Escherichia coli isolates from South-West Nigeria hospitals. Microb Genom 2022; 8:mgen000863. [PMID: 36748556 PMCID: PMC9837563 DOI: 10.1099/mgen.0.000863] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 06/15/2022] [Indexed: 12/23/2022] Open
Abstract
Escherichia coli bloodstream infections are typically attributed to a limited number of lineages that carry virulence factors associated with invasiveness. In Nigeria, the identity of circulating clones is largely unknown and surveillance of their antimicrobial resistance has been limited. We verified and whole-genome sequenced 68 2016-2018 bloodstream E. coli isolates from three sentinel sites in South-Western Nigeria and susceptibility tested 67 of them. Resistance to antimicrobials commonly used in Nigeria was high, with 67 (100 %), 62 (92.5 %), 53 (79.1 %) and 37 (55.2 %) showing resistance to trimethoprim, ampicillin, ciprofloxacin and aminoglycosides, respectively. Thirty-five (51 %) isolates carried extended-spectrum β-lactamase genes and 32 (91 %) of these were multidrug resistant. All the isolates were susceptible to carbapenems and colistin. The strain set included globally disseminated high-risk clones from sequence type (ST)12 (2), ST131 (12) and ST648 (4). Twenty-three (33.8 %) of the isolates clustered within two clades. The first of these consisted of ST131 strains, comprising O16:H5 and O25:H4 sub-lineages. The second was an ST10-ST167 complex clade comprising strains carrying O-antigen and capsular genes of likely Klebsiella origin, identical to those of avian pathogenic E. coli Sanji, and serotyped in silico as O89, O101 or ONovel32, depending on the tool used. Four temporally associated ST90 strains from one sentinel were closely related enough to suggest that at least some of them represented a retrospectively detected outbreak cluster. Our data implicate a broad repertoire of E. coli isolates associated with bloodstream infections in South-West Nigeria. Continued genomic surveillance is valuable for tracking clones of importance and for outbreak identification.
Collapse
Affiliation(s)
- Ayorinde O. Afolayan
- Global Health Research Unit for the Genomic Surveillance of Antimicrobial Resistance, Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Ibadan, Oyo State, Nigeria
| | - A. Oladipo Aboderin
- Department of Medical Microbiology and Parasitology, Obafemi Awolowo University Teaching Hospitals Complex, Ile-Ife, Osun State, Nigeria
| | - Anderson O. Oaikhena
- Global Health Research Unit for the Genomic Surveillance of Antimicrobial Resistance, Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Ibadan, Oyo State, Nigeria
| | - Erkison Ewomazino Odih
- Global Health Research Unit for the Genomic Surveillance of Antimicrobial Resistance, Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Ibadan, Oyo State, Nigeria
| | - Veronica O. Ogunleye
- Department of Medical Microbiology and Parasitology, University College Hospital, Ibadan, Oyo State, Nigeria
| | - Adeyemi T. Adeyemo
- Department of Medical Microbiology and Parasitology, Obafemi Awolowo University Teaching Hospitals Complex, Ile-Ife, Osun State, Nigeria
| | - Abolaji T. Adeyemo
- Department of Medical Microbiology and Parasitology, University of Osun Teaching Hospital, Osogbo, Osun State, Nigeria
| | - Oyeniyi S. Bejide
- Global Health Research Unit for the Genomic Surveillance of Antimicrobial Resistance, Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Ibadan, Oyo State, Nigeria
| | - Anthony Underwood
- Centre for Genomic Pathogen Surveillance, Big Data Institute, University of Oxford, Old Road Campus, Oxford, UK
- Wellcome Genome Campus, Hinxton, UK
| | - Silvia Argimón
- Centre for Genomic Pathogen Surveillance, Big Data Institute, University of Oxford, Old Road Campus, Oxford, UK
- Wellcome Genome Campus, Hinxton, UK
| | - Monica Abrudan
- Centre for Genomic Pathogen Surveillance, Big Data Institute, University of Oxford, Old Road Campus, Oxford, UK
- Wellcome Genome Campus, Hinxton, UK
| | | | | | - David M. Aanensen
- Centre for Genomic Pathogen Surveillance, Big Data Institute, University of Oxford, Old Road Campus, Oxford, UK
- Wellcome Genome Campus, Hinxton, UK
| | - Iruka N. Okeke
- Global Health Research Unit for the Genomic Surveillance of Antimicrobial Resistance, Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Ibadan, Oyo State, Nigeria
| |
Collapse
|
37
|
Levent G, Schlochtermeier A, Vinasco J, Jennings J, Richeson J, Ives SE, Norman KN, Lawhon SD, Loneragan GH, Scott HM. Long-Term Effects of Single-Dose Cephalosporin or Macrolide Use on the Prevalence of AmpC and Extended-Spectrum β-Lactamase Producing Escherichia coli in the Feces of Beef Cattle. Microorganisms 2022; 10:microorganisms10102071. [PMID: 36296347 PMCID: PMC9610231 DOI: 10.3390/microorganisms10102071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/16/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022] Open
Abstract
Extended-spectrum-β-lactamase (ESBL) and AmpC-lactamase-producing Enterobacteriaceae are serious public health threats. Due to an increasing number of reports of ESBL and AmpC producing Escherichia coli in agricultural settings, it is critical to understand the relationship between the use of two of the highest priority critically important human antibiotics (e.g., third generation cephalosporins [3GC] and macrolides) in food animals and their potential contribution to the selection of ESBL/AmpC E. coli. The objective of our randomized controlled feedlot trial was to measure the effects of ceftiofur crystalline-free acid and tulathromycin on 3GC resistant fecal E. coli populations in cattle before and at various time points after treatment up to and including at slaughter. Multi-level mixed-effects linear regression showed no effect of ceftiofur and tulathromycin on 3GC E. coli CFU counts at slaughter (Day 99); however, a significant (p < 0.05) population shift was observed from susceptible to 3GC resistant E. coli immediately after ceftiofur administration (Day 7). Among 799 fecal samples screened using selective media, 17.7% were ESBL/AmpC E. coli positive, which were further tested for phenotypic antibiotic susceptibility. The majority of the isolates from these plates were multidrug-resistant (94.3%) and expressed either AmpC (78.1%) or ESBL (28.1%) phenotype. A subset of isolates was whole-genome sequenced (n = 20) and identified to harbor chromosomal and/or plasmidal bla genes such as CMY-2, CTX-M, and TEM. Our findings show a time-dependent selection of antibiotics on 3GC-resistant E. coli. High prevalence of multidrug-resistant ESBL/AmpC E. coli found in cattle feces highlights the importance of prudent use of antibiotics in livestock.
Collapse
Affiliation(s)
- Gizem Levent
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77845, USA
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX 79106, USA
| | | | - Javier Vinasco
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77845, USA
| | - Jenny Jennings
- Department of Agricultural Sciences, West Texas A&M University, Canyon, TX 79016, USA
| | - John Richeson
- Department of Agricultural Sciences, West Texas A&M University, Canyon, TX 79016, USA
| | - Samuel E. Ives
- Department of Agricultural Sciences, West Texas A&M University, Canyon, TX 79016, USA
| | - Keri N. Norman
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77845, USA
| | - Sara D. Lawhon
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77845, USA
| | - Guy H. Loneragan
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX 79106, USA
| | - H. Morgan Scott
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77845, USA
- Correspondence:
| |
Collapse
|
38
|
Raethong N, Santivarangkna C, Visessanguan W, Santiyanont P, Mhuantong W, Chokesajjawatee N. Whole-genome sequence analysis for evaluating the safety and probiotic potential of Lactiplantibacillus pentosus 9D3, a gamma-aminobutyric acid (GABA)-producing strain isolated from Thai pickled weed. Front Microbiol 2022; 13:969548. [PMID: 36212812 PMCID: PMC9539741 DOI: 10.3389/fmicb.2022.969548] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/06/2022] [Indexed: 11/25/2022] Open
Abstract
Lactiplantibacillus pentosus 9D3, a prominent gamma-aminobutyric acid (GABA)-producing bacteria isolated from Thai pickled weed was characterized for its safety and probiotic properties via whole-genome analysis and in vitro testing. The whole-genome sequence of L. pentosus 9D3 was determined using a hybrid-sequencing approach, combining PacBio and Illumina technologies. A 3.81-Mbp genome of L. pentosus 9D3 consisting of one 3.65-Mbp chromosome and six plasmids (1.9–71.9 Kbp) was identified with an estimated GC content of 46.09% and 3,456 predicted genes. The strain was confirmed to be Lactiplantibacillus pentosus according to the high average nucleotide identity value of >95% and digital DNA–DNA hybridization scores of >70% to the L. pentosus type strain. Comparative genome analysis with other L. pentosus strains showed that the GABA-producing capability was specific to the strain 9D3. Genes related to GABA biosynthesis and transport were identified on a plasmid, pLPE-70K, indicating the acquired nature of this property. The safety of L. pentosus 9D3 was demonstrated through the lack of genes related to the production of toxins, biogenic amines, and antimicrobial drugs. Although the strain exhibited resistance to ampicillin and chloramphenicol, none of the antimicrobial resistance (AMR) genes were associated with mobile elements, i.e., plasmids and prophages. Therefore, the strain is considered to have low risk of transferring the AMR genes to other, potentially pathogenic bacteria. In addition, L. pentosus 9D3 showed good survivability in the gastrointestinal tract environment and was able to adhere to the intestinal cell in vitro. Therefore, L. pentosus 9D3 is concluded to be safe, with the potential to be used as a probiotic, exerting its health benefit through GABA production in the food system. The GABA-producing capability of the strain in vivo is the subject of further investigation.
Collapse
Affiliation(s)
- Nachon Raethong
- Institute of Nutrition, Mahidol University, Nakhon Pathom, Thailand
- *Correspondence: Nachon Raethong, ; Nipa Chokesajjawatee,
| | | | - Wonnop Visessanguan
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Pathum Thani, Thailand
| | - Pannita Santiyanont
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Pathum Thani, Thailand
| | - Wuttichai Mhuantong
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Pathum Thani, Thailand
| | - Nipa Chokesajjawatee
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Pathum Thani, Thailand
- *Correspondence: Nachon Raethong, ; Nipa Chokesajjawatee,
| |
Collapse
|
39
|
Huang Y, Yu Z, Liu L, Che Y, Zhang T. Acesulfame Anoxic Biodegradation Coupled to Nitrate Reduction by Enriched Consortia and Isolated Shinella spp. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:13096-13106. [PMID: 36040144 DOI: 10.1021/acs.est.2c03656] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Acesulfame (ACE) is considered to be an emerging pollutant associated with growing concerns. Although aerobic biodegradation of ACE has been observed in wastewater treatment plants worldwide and verified in pure cultures, limited information is available on ACE biodegradation under anoxic conditions, which are ubiquitous in natural environments. Here, we found that ACE could be mineralized completely via a process coupled with nitrate reduction by enriched consortia, with the highest degradation rate of 9.95 mg ACE/g VSS·h-1. Meanwhile, three novel ACE-degrading strains affiliated with Shinella were isolated, examined, and sequenced, revealing that the isolates could utilize ACE as the sole carbon source under both aerobic and anoxic conditions, with maximum degradation rates of 30.3 mg ACE/g VSS·h-1 and 8.92 mg ACE/g VSS·h-1, respectively. Additionally, the biodegradation of ACE was suspected to be a plasmid-mediated process based on comparative genomic analysis. In ACE-degrading consortia, 83 near-complete metagenome-assembled genomes (MAGs) were obtained via Illumina and Nanopore sequencing, showing that Proteobacteria and Bacteroidetes were the dominant phyla. Moreover, nine MAGs affiliated with Hyphomicrobiales were proposed to be the major ACE degraders in the enrichments. This study demonstrated that ACE could be degraded under anoxic conditions, providing novel insights into ACE biodegradation in the environment.
Collapse
Affiliation(s)
- Yue Huang
- Environmental Microbiome Engineering and Biotechnology Lab, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR 999077, China
| | - Zhong Yu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Lei Liu
- Environmental Microbiome Engineering and Biotechnology Lab, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR 999077, China
| | - You Che
- Environmental Microbiome Engineering and Biotechnology Lab, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR 999077, China
| | - Tong Zhang
- Environmental Microbiome Engineering and Biotechnology Lab, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR 999077, China
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518055, China
| |
Collapse
|
40
|
Al Mana H, Johar AA, Kassem II, Eltai NO. Transmissibility and Persistence of the Plasmid-Borne Mobile Colistin Resistance Gene, mcr-1, Harbored in Poultry-Associated E. coli. Antibiotics (Basel) 2022; 11:774. [PMID: 35740180 PMCID: PMC9220209 DOI: 10.3390/antibiotics11060774] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 11/16/2022] Open
Abstract
Colistin, a last-resort antibiotic, is used to treat infections caused by multi-drug-resistant Gram-negative bacteria. Colistin resistance can emerge by acquiring the mobile colistin gene, mcr-1, usually plasmid borne. Studies on mcr-1 and its transmissibility are limited in the Middle East and North Africa (MENA) region. Here, we investigated the occurrence of mcr-1 in 18 previously collected Escherichia coli isolates collected from chicken samples in Qatar; whole-genome sequencing was performed to determine the location (plasmid-borne and chromosomal) of mcr-1 in the isolates. Additionally, we assessed the transmissibility of plasmid-borne mcr-1 and its cost on fitness in E. coli biofilms. Our results showed that the E. coli isolates belonged to different sequence types, indicating that mcr-1 was occurring in strains with diverse genetic backgrounds. In silico analysis and transformation assays showed that all the isolates carried mcr-1 on plasmids that were mainly IncI2 types. All the mcr-1 plasmids were found to be transmissible by conjugation. In biofilms, a significant reduction in the number of CFU (≈0.055 logs CFU/mL) and colistin resistance (≈2.19 log CFU/mL) was observed; however, the reduction in resistance was significantly larger, indicating that the plasmids incur a high fitness cost. To our knowledge, this is the first study that investigates mcr-1 transmissibility and persistence in Qatar. Our findings highlight that mcr has the potential to spread colistin resistance to potentially disparate strains and niches in Qatar, posing a risk that requires intervention.
Collapse
Affiliation(s)
- Hassan Al Mana
- Biomedical Research Centre, Microbiology Department, Qatar University, Doha 2713, Qatar;
| | - Alreem A. Johar
- Research and Development Department, Barzan Holdings, Doha 7178, Qatar;
| | - Issmat I. Kassem
- GA Centre for Food Safety, Department of Food Science and Technology, University of Georgia, Griffin, GA 30609, USA;
| | - Nahla O. Eltai
- Biomedical Research Centre, Microbiology Department, Qatar University, Doha 2713, Qatar;
| |
Collapse
|
41
|
Complete Genome Sequence of a Listeria monocytogenes Strain Isolated from Sprouts and Carrying an Antimicrobial Resistance Gene. Microbiol Resour Announc 2022; 11:e0020022. [PMID: 35658560 PMCID: PMC9302147 DOI: 10.1128/mra.00200-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Listeria monocytogenes, a Gram-positive, rod-shaped, non-spore-forming bacterium, is an important foodborne bacterial pathogen for humans worldwide, with a high mortality rate. Here, we report the complete genome sequence of a Listeria monocytogenes strain with an antimicrobial resistance (AMR) gene, isolated from sprouts in Canada.
Collapse
|
42
|
Complete Genome Sequence of a Listeria monocytogenes Strain with Antimicrobial Resistance Genes Isolated from Lettuce in Canada. Microbiol Resour Announc 2022; 11:e0029822. [PMID: 35658536 PMCID: PMC9302076 DOI: 10.1128/mra.00298-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Listeria monocytogenes, a Gram-positive, rod-shaped, non-spore-forming bacterium, is an important foodborne bacterial pathogen for humans worldwide. Here, we report the complete genome sequence of a Canadian Listeria monocytogenes strain with an antimicrobial resistance (AMR) gene that was isolated from lettuce.
Collapse
|
43
|
Gaeta NC, de Carvalho DU, Fontana H, Sano E, Moura Q, Fuga B, Munoz PM, Gregory L, Lincopan N. Genomic features of a multidrug-resistant and mercury-tolerant environmental Escherichia coli recovered after a mining dam disaster in South America. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 823:153590. [PMID: 35122850 PMCID: PMC8994849 DOI: 10.1016/j.scitotenv.2022.153590] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/21/2022] [Accepted: 01/28/2022] [Indexed: 05/03/2023]
Abstract
Mining dam disasters contribute to the contamination of aquatic environments, impacting associated ecosystems and wildlife. A multidrug-resistant Escherichia coli strain (B2C) was isolated from a river water sample in Brazil after the Mariana mining dam disaster. The genome was sequenced using the Illumina MiSeq platform, and de novo assembled using Unicycler. Resistome, virulome, and plasmidome were predicted using bioinformatics tools. Data analysis revealed that E. coli B2C belonged to sequence type ST219 and phylogroup E. Strikingly, a broad resistome (antibiotics, hazardous heavy metals, and biocides) was predicted, including the presence of the clinically relevant blaCTX-M-2 extended-spectrum β-lactamase (ESBL) gene, qacE∆1 efflux pump gene, and the mer (mercury resistance) operon. SNP-based analysis revealed that environmental E. coli B2C was clustered along to ESBL-negative E. coli strains of ST219 isolated between 1980 and 2021 from livestock in the United States of America. Acquisition of clinically relevant genes by ST219 seems to be a recent genetic event related to anthropogenic activities, where polluted water environments may contribute to its dissemination at the human-animal-environment interface. In addition, the presence of genes conferring resistance to heavy metals could be related to environmental pollution from mining activities. Antimicrobial resistance genes could be essential biomarkers of environmental exposure to human and mining pollution.
Collapse
Affiliation(s)
- Natália C Gaeta
- Department of Internal Medicine, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil; Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil.
| | - Daniel U de Carvalho
- Department of Internal Medicine, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Herrison Fontana
- Department of Clinical Analysis, School of Pharmacy, University of São Paulo, São Paulo, Brazil; One Health Brazilian Resistance Project (OneBR), Brazil
| | - Elder Sano
- One Health Brazilian Resistance Project (OneBR), Brazil; Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Quézia Moura
- Federal Institute of Education, Science and Technology of Espírito Santo, Vila Velha, Brazil
| | - Bruna Fuga
- Department of Clinical Analysis, School of Pharmacy, University of São Paulo, São Paulo, Brazil; One Health Brazilian Resistance Project (OneBR), Brazil; Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Lilian Gregory
- Department of Internal Medicine, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Nilton Lincopan
- Department of Clinical Analysis, School of Pharmacy, University of São Paulo, São Paulo, Brazil; One Health Brazilian Resistance Project (OneBR), Brazil; Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
44
|
Cufaoglu G, Cengiz G, Onaran Acar B, Yesilkaya B, Ayaz ND, Levent G, Goncuoglu M. Antibiotic, heavy metal, and disinfectant resistance in chicken, cattle, and sheep origin
E. coli
and whole‐genome sequencing analysis of a multidrug‐resistant
E. coli
O100:H25 strain. J Food Saf 2022. [DOI: 10.1111/jfs.12995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Gizem Cufaoglu
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine Kirikkale University Kirikkale Turkey
| | - Gorkem Cengiz
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine Ankara University Ankara Turkey
| | - Bahar Onaran Acar
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine Ankara University Ankara Turkey
| | - Busra Yesilkaya
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine Ankara University Ankara Turkey
| | - Naim Deniz Ayaz
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine Kirikkale University Kirikkale Turkey
| | - Gizem Levent
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences Texas A&M University College Station Texas USA
- School of Veterinary Medicine Texas Tech University Amarillo Texas USA
| | - Muammer Goncuoglu
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine Ankara University Ankara Turkey
| |
Collapse
|
45
|
Bacterial Community and Genomic Analysis of Carbapenem-Resistant Acinetobacter baumannii Isolates from the Environment of a Health Care Facility in the Western Region of Saudi Arabia. Pharmaceuticals (Basel) 2022; 15:ph15050611. [PMID: 35631436 PMCID: PMC9145440 DOI: 10.3390/ph15050611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 11/17/2022] Open
Abstract
The escalating transmission of hospital-acquired infections, especially those due to antimicrobial-resistant bacteria, is a major health challenge worldwide. In this study, a culturomic analysis of bacterial community in a tertiary care hospital in the western region of Saudi Arabia is performed using environmental samples. The genome sequencing of four Acinetobacter baumannii was performed on isolates recovered from an intensive care unit (ICU) environment and clinical samples. A total of 361 bacterial isolates from surface and air samples were identified by MALDI-TOF technique or 16S rRNA gene sequencing. The isolates were classified into 70 distinct species, including ESKAPE pathogens. Resistance in Gram-positive isolates was mainly found to be against benzylpenicillin, azithromycin, ampicillin, and trimethoprim/sulfamethoxazole. Carbapenem- and multidrug-resistant isolates of A. baumannii and Klebsiella pneumonia were found on the ICU surfaces. Genome sequencing revealed that the carbapenem-resistant A. baumannii isolate from ICU environment was linked with those of clinical origin. The isolate Ab133-HEnv was classified as a novel sequence type (ST2528) based on a new allele of Oxf_gdhB-286. Three beta-lactam-antibiotic-resistance genes, blaADC-25, blaOXA-23, and blaOXA-66, were found in most of the analyzed genomes. Collectively, the results of this study highlight the spread of antimicrobial-resistant nosocomial pathogens in a health care facility in Saudi Arabia.
Collapse
|
46
|
Bloomfield S, Duong VT, Tuyen HT, Campbell JI, Thomson NR, Parkhill J, Le Phuc H, Chau TTH, Maskell DJ, Perron GG, Ngoc NM, Vi LL, Adriaenssens EM, Baker S, Mather AE. Mobility of antimicrobial resistance across serovars and disease presentations in non-typhoidal Salmonella from animals and humans in Vietnam. Microb Genom 2022; 8. [PMID: 35511231 PMCID: PMC9465066 DOI: 10.1099/mgen.0.000798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Non-typhoidal Salmonella (NTS) is a major cause of bacterial enterocolitis globally but also causes invasive bloodstream infections. Antimicrobial resistance (AMR) hampers the treatment of these infections and understanding how AMR spreads between NTS may help in developing effective strategies. We investigated NTS isolates associated with invasive disease, diarrhoeal disease and asymptomatic carriage in animals and humans from Vietnam. Isolates included multiple serovars and both common and rare phenotypic AMR profiles; long- and short-read sequencing was used to investigate the genetic mechanisms and genomic backgrounds associated with phenotypic AMR profiles. We demonstrate concordance between most AMR genotypes and phenotypes but identified large genotypic diversity in clinically relevant phenotypes and the high mobility potential of AMR genes (ARGs) in this setting. We found that 84 % of ARGs identified were located on plasmids, most commonly those containing IncHI1A_1 and IncHI1B(R27)_1_R27 replicons (33%), and those containing IncHI2_1 and IncHI2A_1 replicons (31%). The vast majority (95%) of ARGS were found within 10 kbp of IS6/IS26 elements, which provide plasmids with a mechanism to exchange ARGs between plasmids and other parts of the genome. Whole genome sequencing with targeted long-read sequencing applied in a One Health context identified a comparatively limited number of insertion sequences and plasmid replicons associated with AMR. Therefore, in the context of NTS from Vietnam and likely for other settings as well, the mechanisms by which ARGs move contribute to a more successful AMR profile than the specific ARGs, facilitating the adaptation of bacteria to different environments or selection pressures.
Collapse
Affiliation(s)
| | | | - Ha Thanh Tuyen
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - James I Campbell
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | | | - Julian Parkhill
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | | | - Tran Thi Hong Chau
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | | | - Gabriel G Perron
- Department of Biology, Bard College, Annandale-on-Hudson, New York, USA
| | | | - Lu Lan Vi
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | | | - Stephen Baker
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, UK
| | - Alison E Mather
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK.,University of East Anglia, Norwich, UK
| |
Collapse
|
47
|
Darrington M, Leftwich PT, Holmes NA, Friend LA, Clarke NVE, Worsley SF, Margaritopolous JT, Hogenhout SA, Hutchings MI, Chapman T. Characterisation of the symbionts in the Mediterranean fruit fly gut. Microb Genom 2022; 8. [PMID: 35446250 PMCID: PMC9453069 DOI: 10.1099/mgen.0.000801] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Symbioses between bacteria and their insect hosts can range from loose associations through to obligate interdependence. While fundamental evolutionary insights have been gained from the in-depth study of obligate mutualisms, there is increasing interest in the evolutionary potential of flexible symbiotic associations between hosts and their gut microbiomes. Understanding relationships between microbes and hosts also offers the potential for exploitation for insect control. Here, we investigate the gut microbiome of a global agricultural pest, the Mediterranean fruit fly (Ceratitis capitata). We used 16S rRNA profiling to compare the gut microbiomes of laboratory and wild strains raised on different diets and from flies collected from various natural plant hosts. The results showed that medfly guts harbour a simple microbiome that is primarily determined by the larval diet. However, regardless of the laboratory diet or natural plant host on which flies were raised, Klebsiella spp. dominated medfly microbiomes and were resistant to removal by antibiotic treatment. We sequenced the genome of the dominant putative Klebsiella spp. (‘Medkleb’) isolated from the gut of the Toliman wild-type strain. Genome-wide ANI analysis placed Medkleb within the K. oxytoca / michiganensis group. Species level taxonomy for Medkleb was resolved using a mutli-locus phylogenetic approach - and molecular, sequence and phenotypic analyses all supported its identity as K. michiganensis. Medkleb has a genome size (5825435 bp) which is 1.6 standard deviations smaller than the mean genome size of free-living Klebsiella spp. Medkleb also lacks some genes involved in environmental sensing. Moreover, the Medkleb genome contains at least two recently acquired unique genomic islands as well as genes that encode pectinolytic enzymes capable of degrading plant cell walls. This may be advantageous given that the medfly diet includes unripe fruits containing high proportions of pectin. The results suggest that the medfly harbours a commensal gut bacterium that may have developed a mutualistic association with its host and provide nutritional benefits.
Collapse
Affiliation(s)
- Mike Darrington
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Philip T Leftwich
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Neil A Holmes
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.,Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Lucy A Friend
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Naomi V E Clarke
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Sarah F Worsley
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - John T Margaritopolous
- Department of Plant Protection, Institute of Industrial and Fodder Crops, Hellenic Agricultural Organization-DEMETER, Volos, Greece
| | - Saskia A Hogenhout
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, NR4 7UH, Norwich, UK
| | - Matthew I Hutchings
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.,Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Tracey Chapman
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| |
Collapse
|
48
|
Jozefíková A, Valček A, Šoltys K, Nováková E, Bujdáková H. Persistence and multi-ward dissemination of vancomycin resistant Enterococcus faecium ST17 clone in hospital settings in Slovakia from 2017 to 2020. Int J Antimicrob Agents 2022; 59:106561. [PMID: 35271995 DOI: 10.1016/j.ijantimicag.2022.106561] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 02/19/2022] [Accepted: 02/27/2022] [Indexed: 11/16/2022]
Abstract
Hospital vancomycin-resistant Enterococcus faecium (VREfm) were evaluated in term of resistance and phylogenetic relatedness to estimate the location and possible route of transmission of resistance determinants. Hospital VREfm (n=49) were collected in the northern part of Slovakia during the years 2017 to 2020. The collection was analyzed for the presence of the van operon and 10 representatives were subjected to whole-genome sequencing using Illumina MiSeq platform. Obtained sequences were de novo assembled and the draft genome assemblies were analyzed with respect to sequence type (ST), plasmid content, resistance and virulence genes, and the phylogenetic relatedness in single nucleotide polymorphisms (SNP). All strains possessed the vanA operon. Ten selected evaluated isolates belonged to the clinically relevant clonal complex (CC) 17 and carried the vanHAX gene cluster conferring vancomycin resistance on mobile genetic elements, except for the isolate M17773 carrying the vanHAX gene cluster chromosomally. All isolates encoded resistance to quinolones (gyrA and parC mutations) and aminoglycosides [aac(6')-aph(2'')]. Four isolates from different wards and patients belonging to ST17 were closely related (6 - 50 SNP), suggesting a long-term persistence of VREfm ST17 in the hospital settings. VREfm proved to harbor many genetic determinants of antimicrobial resistance. The plasmids carrying the vanA genes belonged to the conjugative broad-host families Inc18 and RepA_N posing a threat to human health, especially in hospital settings. Moreover, 4 clinical isolates were phylogenetically related pointing towards a stable circulation of ST17 VREfm clone in the hospital setting underlining the necessity of continuous surveillance of glycopeptide-resistant pathogens.
Collapse
Affiliation(s)
- Anna Jozefíková
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Slovakia
| | - Adam Valček
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Slovakia; Microbial Resistance and Drug Discovery, VIB-VUB Center for Structural Biology, VIB, Flanders Institute for Biotechnology, Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Katarína Šoltys
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Slovakia
| | - Elena Nováková
- Institute of Microbiology and Immunology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Slovakia
| | - Helena Bujdáková
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Slovakia.
| |
Collapse
|
49
|
Yang L, Shen Y, Jiang J, Wang X, Shao D, Lam MMC, Holt KE, Shao B, Wu C, Shen J, Walsh TR, Schwarz S, Wang Y, Shen Z. Distinct increase in antimicrobial resistance genes among Escherichia coli during 50 years of antimicrobial use in livestock production in China. NATURE FOOD 2022; 3:197-205. [PMID: 37117646 DOI: 10.1038/s43016-022-00470-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 02/03/2022] [Indexed: 04/30/2023]
Abstract
Antimicrobial use in livestock production is linked to the emergence and spread of antimicrobial resistance (AMR), but large-scale studies on AMR changes in livestock isolates remain scarce. Here we applied whole-genome sequence analysis to 982 animal-derived Escherichia coli samples collected in China from the 1970s to 2019, finding that the number of AMR genes (ARGs) per isolate doubled-including those conferring resistance to critically important agents for both veterinary (florfenicol and norfloxacin) and human medicine (colistin, cephalosporins and meropenem). Plasmids of incompatibility groups IncC, IncHI2, IncK, IncI and IncX increased distinctly in the past 50 years, acting as highly effective vehicles for ARG spread. Using antimicrobials of the same class, or even unrelated classes, may co-select for mobile genetic elements carrying multiple co-existing ARGs. Prohibiting or strictly curtailing antimicrobial use in livestock is therefore urgently needed to reduce the growing threat from AMR.
Collapse
Affiliation(s)
- Lu Yang
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Beijing Municipal Centre for Disease Control and Prevention, Beijing, China
| | - Yingbo Shen
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Junyao Jiang
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xueyang Wang
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Dongyan Shao
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Margaret M C Lam
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Kathryn E Holt
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, UK
| | - Bing Shao
- Beijing Municipal Centre for Disease Control and Prevention, Beijing, China
| | - Congming Wu
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jianzhong Shen
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Timothy R Walsh
- Ineos-Oxford Institute of Antimicrobial Research, Department of Zoology, University of Oxford, Oxford, UK
| | - Stefan Schwarz
- Institute of Microbiology and Epizootics, Centre of Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), Freie Universität Berlin, Berlin, Germany
| | - Yang Wang
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China.
| | - Zhangqi Shen
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China.
| |
Collapse
|
50
|
Zhang H, Xiang Y, Huang Y, Liang B, Xu X, Xie J, Du X, Yang C, Liu H, Liu H, Wang H, Yang M, Wang L, Hu X, Jin L, Li J, Jiang Y, Qiu S, Song H. Genetic Characterization of mcr-1-Positive Multidrug-Resistant Salmonella enterica Serotype Typhimurium Isolated From Intestinal Infection in Children and Pork Offal in China. Front Microbiol 2022; 12:774797. [PMID: 35082765 PMCID: PMC8784875 DOI: 10.3389/fmicb.2021.774797] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/16/2021] [Indexed: 11/13/2022] Open
Abstract
With the rapid emergence of plasmid-mediated colistin resistance gene mcr-1, the increased resistance of Salmonella has attracted extensive attention. This study reports on 11 multidrug-resistant Salmonella enterica serovar Typhimurium strains harboring mcr-1 in China. They all presented resistance to colistin, and additionally, one that was isolated from a child’s stool sample was also resistant to ceftriaxone and azithromycin. We screened 1454 strains of Salmonella for mcr-1 gene through PCR, and these strains are all preserved in our laboratory. Antimicrobial sensitivity analysis was carried out for the screened mcr-1 positive strains. Genetic polymorphism analysis of S. Typhimurium was performed by using the Pulsed-Field Gel Electrophoresis (PFGE). The plasmids harboring mcr-1 were identified by S1-PFGE and southern blotting. Plasmid conjugation assays were used to analyze the transferability of colistin resistance. The plasmids harboring mcr-1 were characterized by sequencing and bioinformatic analysis. Eleven S. Typhimurium strains harboring mcr-1 with colistin resistance (MICs 4μg/ml) were detected, which were isolated from children and pig offal in China. All of them were multidrug-resistant strains. PFGE results revealed that the strains isolated from different samples or locations have identical genotypes. S1-PFGE and southern blotting experiments showed that three plasmids of different sizes (33, 60, and 250 kb) all carried the mcr-1 gene. The plasmid conjugation assays revealed that Salmonella acquired mcr-1 harboring plasmids by horizontal transfer. Sequencing and plasmid type analysis revealed that these plasmids were types IncX4, IncI2, and IncHI2. Among them, IncX4 and IncI2 plasmids had extremely similar backbones and contained one resistant gene mcr-1. IncHI2 plasmid contained multiple resistant genes including blaCTX–M, oqxB, sul, aph, aadA, and blaTEM. We identified 11 mcr-1 harboring S. Typhimurium strains in China and described their characteristics. Our findings indicate that the mcr-1 gene can effectively spread among intestinal bacteria by horizontal transfer of three types of plasmids. Moreover, the IncHI2 plasmid can also mediate the transfer of other drug resistance genes. These results reveal that constant surveillance of mcr-1 harboring S Typhimurium is imperative to prevent the spread of colistin resistance.
Collapse
Affiliation(s)
- Haoran Zhang
- Academy of Military Medical Sciences, Beijing, China.,Center for Disease Control and Prevention of PLA, Beijing, China
| | - Ying Xiang
- Center for Disease Control and Prevention of PLA, Beijing, China
| | - Yong Huang
- Academy of Military Medical Sciences, Beijing, China.,School of Life Sciences, Tsinghua University, Beijing, China
| | - Beibei Liang
- Center for Disease Control and Prevention of PLA, Beijing, China
| | - Xuebin Xu
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Jing Xie
- Center for Disease Control and Prevention of PLA, Beijing, China
| | - Xinying Du
- Center for Disease Control and Prevention of PLA, Beijing, China
| | - Chaojie Yang
- Center for Disease Control and Prevention of PLA, Beijing, China
| | - Hongbo Liu
- Center for Disease Control and Prevention of PLA, Beijing, China
| | - Hongbo Liu
- Center for Disease Control and Prevention of PLA, Beijing, China
| | - Hui Wang
- Center for Disease Control and Prevention of PLA, Beijing, China
| | - Mingjuan Yang
- Center for Disease Control and Prevention of PLA, Beijing, China
| | - Ligui Wang
- Center for Disease Control and Prevention of PLA, Beijing, China
| | - Xiaofeng Hu
- Center for Disease Control and Prevention of PLA, Beijing, China
| | - Lianqun Jin
- Center for Disease Control and Prevention of PLA, Beijing, China
| | - Jinsong Li
- Academy of Military Medical Sciences, Beijing, China
| | | | - Shaofu Qiu
- Center for Disease Control and Prevention of PLA, Beijing, China
| | - Hongbin Song
- Center for Disease Control and Prevention of PLA, Beijing, China
| |
Collapse
|