1
|
De Martinis ECP, Alves VF, Pereira MG, Andrade LN, Abichabki N, Abramova A, Dannborg M, Bengtsson-Palme J. Applying 3D cultures and high-throughput technologies to study host-pathogen interactions. Front Immunol 2025; 16:1488699. [PMID: 40051624 PMCID: PMC11882522 DOI: 10.3389/fimmu.2025.1488699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 02/04/2025] [Indexed: 03/09/2025] Open
Abstract
Recent advances in cell culturing and DNA sequencing have dramatically altered the field of human microbiome research. Three-dimensional (3D) cell culture is an important tool in cell biology, in cancer research, and for studying host-microbe interactions, as it mimics the in vivo characteristics of the host environment in an in vitro system, providing reliable and reproducible models. This work provides an overview of the main 3D culture techniques applied to study interactions between host cells and pathogenic microorganisms, how these systems can be integrated with high-throughput molecular methods, and how multi-species model systems may pave the way forward to pinpoint interactions among host, beneficial microbes and pathogens.
Collapse
Affiliation(s)
| | | | - Marita Gimenez Pereira
- Ribeirão Preto School of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Leonardo Neves Andrade
- Ribeirão Preto School of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Nathália Abichabki
- Ribeirão Preto School of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- Division of Systems and Synthetic Biology, Department of Life Sciences, SciLifeLab, Chalmers University of Technology, Gothenburg, Sweden
| | - Anna Abramova
- Division of Systems and Synthetic Biology, Department of Life Sciences, SciLifeLab, Chalmers University of Technology, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe), Gothenburg, Sweden
| | - Mirjam Dannborg
- Division of Systems and Synthetic Biology, Department of Life Sciences, SciLifeLab, Chalmers University of Technology, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe), Gothenburg, Sweden
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Johan Bengtsson-Palme
- Division of Systems and Synthetic Biology, Department of Life Sciences, SciLifeLab, Chalmers University of Technology, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe), Gothenburg, Sweden
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
2
|
Akter S, Rahman MA, Ashrafudoulla M, Mahamud AGMSU, Chowdhury MAH, Ha SD. Mechanistic and bibliometric insights into RpoS-mediated biofilm regulation and its strategic role in food safety applications. Crit Rev Food Sci Nutr 2025:1-15. [PMID: 39879107 DOI: 10.1080/10408398.2025.2458755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Biofilm, complex structures formed by microorganisms within an extracellular polymeric matrix, pose significant challenges in the sector by harboring dangerous pathogens and complicating decontamination, thereby increasing the risk of foodborne illnesses. This article provides a comprehensive review of the sigma factor, rpoS's role in biofilm development, specifically in gram-negative bacteria, and how the genetic, environmental, and regulatory elements influence rpoS activity with its critical role in bacterial stress responses. Our findings reveal that rpoS is a pivotal regulator of biofilm formation, enhancing bacterial survival in adverse conditions. Key factors affecting rpoS activity include oxidative and osmotic stress and nutrient availability. Understanding rpoS-mediated regulatory pathways is essential for developing targeted biofilm management strategies to improve food quality and safety. Furthermore, a bibliometric analysis highlights significant research trends and gaps in the literature, guiding future research directions. Future research should focus on detailed mechanistic studies of rpoS-mediated biofilm regulation, the development of specific rpoS inhibitors, and innovative approaches like biofilm-resistant surface coatings. This knowledge can lead to more effective contamination prevention and overall food safety enhancements.
Collapse
Affiliation(s)
- Shirin Akter
- Food Safety and Regulatory Science, Chung-Ang University, Anseong-Si, Republic of Korea
- GreenTech-Based Food Safety Research Group, Chung-Ang University, Anseong, Republic of Korea
- Department of Fisheries and Marine Bioscience, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Md Ashikur Rahman
- Food Safety and Regulatory Science, Chung-Ang University, Anseong-Si, Republic of Korea
- GreenTech-Based Food Safety Research Group, Chung-Ang University, Anseong, Republic of Korea
- Bangladesh Fisheries Research Institute, Mymensingh, Bangladesh
| | - Md Ashrafudoulla
- Food Safety and Regulatory Science, Chung-Ang University, Anseong-Si, Republic of Korea
- National Institutes of Health, Bethesda, MD, USA
- Department of Food Science, Center for Food Safety, University of Arkansas System Division of Agriculture, Fayetteville, AR, USA
| | | | - Md Anamul Hasan Chowdhury
- Food Safety and Regulatory Science, Chung-Ang University, Anseong-Si, Republic of Korea
- GreenTech-Based Food Safety Research Group, Chung-Ang University, Anseong, Republic of Korea
| | - Sang-Do Ha
- Food Safety and Regulatory Science, Chung-Ang University, Anseong-Si, Republic of Korea
- GreenTech-Based Food Safety Research Group, Chung-Ang University, Anseong, Republic of Korea
| |
Collapse
|
3
|
Al-Madboly LA, Aboulmagd A, El-Salam MA, Kushkevych I, El-Morsi RM. Microbial enzymes as powerful natural anti-biofilm candidates. Microb Cell Fact 2024; 23:343. [PMID: 39710670 DOI: 10.1186/s12934-024-02610-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 12/01/2024] [Indexed: 12/24/2024] Open
Abstract
Bacterial biofilms pose significant challenges, from healthcare-associated infections to biofouling in industrial systems, resulting in significant health impacts and financial losses globally. Classic antimicrobial methods often fail to eradicate sessile microbial communities within biofilms, requiring innovative approaches. This review explores the structure, formation, and role of biofilms, highlighting the critical importance of exopolysaccharides in biofilm stability and resistance mechanisms. We emphasize the potential of microbial enzymatic approaches, particularly focusing on glycosidases, proteases, and deoxyribonucleases, which can disrupt biofilm matrices effectively. We also delve into the importance of enzymes such as cellobiose dehydrogenase, which disrupts biofilms by degrading polysaccharides. This enzyme is mainly sourced from Aspergillus niger and Sclerotium rolfsii, with optimized production strategies enhancing its efficacy. Additionally, we explore levan hydrolase, alginate lyase, α-amylase, protease, and lysostaphin as potent antibiofilm agents, discussing their microbial origins and production optimization strategies. These enzymes offer promising avenues for combating biofilm-related challenges in healthcare, environmental, and industrial settings. Ultimately, enzymatic strategies present environmentally friendly solutions with high potential for biofilm management and infection control.
Collapse
Affiliation(s)
- Lamiaa A Al-Madboly
- Department of Microbiology and Immunology, Faculty of Pharmacy, Tanta University, Tanta, Egypt.
| | - Asmaa Aboulmagd
- Department of Microbiology and Immunology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Mohamed Abd El-Salam
- Department of Pharmacognosy, Faculty of Pharmacy, Delta University for Science and Technology, International Coastal Road, Gamasa, 11152, Egypt
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, D02 VN51, Ireland
| | - Ivan Kushkevych
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, 62500, Czech Republic
| | - Rasha M El-Morsi
- Department of Microbiology and Immunology, Faculty of Pharmacy, Delta University for Science and Technology, International Coastal Road, Gamasa, 11152, Egypt
| |
Collapse
|
4
|
Zhang S, Wang J, Yu R, Liu H, Liu S, Luo K, Lei J, Han B, Chen Y, Han S, Yang E, Xun M, Han L. The role of universal stress protein Usp1413 in meropenem adaptive resistance and environmental stress responses in Acinetobacter baumannii. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 8:100332. [PMID: 39758053 PMCID: PMC11699434 DOI: 10.1016/j.crmicr.2024.100332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025] Open
Abstract
Although various mechanisms of carbapenem-resistance have been identified in the nosocomial pathogen Acinetobacter baumannii, the critical process of resistance evolution and the factors involved in are not well understood. Herein, we identified a universal stress protein Usp1413 which played an important role in adaptive resistance of A. baumannii to meropenem (MEM). Based on RNA-Seq and genome sequencing, Usp1413 was not only one of the most downregulated USPs, but also the bare one having mutation of tyrosine and glycine inserted at the site of 229-230 (YG229-230) under the stimulation of MEM. Deletion of Usp1413 resulted in increased MEM resistance. In addition, Usp1413 affected the bacterial abilities of biofilm formation and swarm motility, as well as helped A. baumannii response to various environmental stresses. These effects of Usp1413 were achieved by regulating its interaction proteins, within the functions of YigZ family protein, acetyltransferase, and SulP family inorganic anion transporter. The insertion mutation of YG229-230 influenced both the expression of interaction proteins and the phenotypes of bacteria. Finally, the promotor region of Usp1413 was convinced by point mutations. Overall, our findings identified the universal stress protein Usp1413 as a contributor involved in MEM adaptive resistance and responded to numerous environmental stresses. This study provides novel insights into the mechanism of universal stress proteins in participating antibiotic resistance, and affords a potential target for controlling drug resistance development in A. baumannii.
Collapse
Affiliation(s)
- Sirui Zhang
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Jingdan Wang
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Rong Yu
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Haiping Liu
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
- Xi'an Daxing Hospital, Xi'an, China
| | - Shuyan Liu
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Kai Luo
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Jin'e Lei
- Department of Laboratory Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Bei Han
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Yanjiong Chen
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Shaoshan Han
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - E Yang
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Meng Xun
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Lei Han
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| |
Collapse
|
5
|
Guo J, Van De Ven WT, Skirycz A, Thirumalaikumar VP, Zeng L, Zhang Q, Balcke GU, Tissier A, Dehesh K. An evolutionarily conserved metabolite inhibits biofilm formation in Escherichia coli K-12. Nat Commun 2024; 15:10079. [PMID: 39572562 PMCID: PMC11582573 DOI: 10.1038/s41467-024-54501-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 11/12/2024] [Indexed: 11/24/2024] Open
Abstract
Methylerythritol cyclodiphosphate (MEcPP) is an intermediate in the biosynthesis of isoprenoids in plant plastids and in bacteria, and acts as a stress signal in plants. Here, we show that MEcPP regulates biofilm formation in Escherichia coli K-12 MG1655. Increased MEcPP levels, triggered by genetic manipulation or oxidative stress, inhibit biofilm development and production of fimbriae. Deletion of fimE, encoding a protein known to downregulate production of adhesive fimbriae, restores biofilm formation in cells with elevated MEcPP levels. Limited proteolysis-coupled mass spectrometry (LiP-MS) reveals that MEcPP interacts with the global regulatory protein H-NS, which is known to repress transcription of fimE. MEcPP prevents the binding of H-NS to the fimE promoter. Therefore, our results indicate that MEcPP can regulate biofilm formation by modulating H-NS activity and thus reducing fimbriae production. Further research is needed to test whether MEcPP plays similar regulatory roles in other bacteria.
Collapse
Affiliation(s)
- Jingzhe Guo
- Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, USA
| | - Wilhelmina T Van De Ven
- Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, USA
| | - Aleksandra Skirycz
- Boyce Thompson Institute, Ithaca, NY, USA
- Cornell University, Ithaca, NY, USA
- Michigan State University, East Lansing, MI, USA
| | - Venkatesh P Thirumalaikumar
- Boyce Thompson Institute, Ithaca, NY, USA
- Bindley Bioscience Center, Purdue University; West Lafayette, Indiana, USA
| | - Liping Zeng
- Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, USA
| | - Quanqing Zhang
- Institute for Integrative Genome Biology, Proteomics Core, University of California, Riverside, Riverside, CA, USA
| | - Gerd Ulrich Balcke
- Leibniz Institute of Plant Biochemistry, Department of Cell and Metabolic Biology; Weinberg 3, Halle (Saale), Germany
| | - Alain Tissier
- Leibniz Institute of Plant Biochemistry, Department of Cell and Metabolic Biology; Weinberg 3, Halle (Saale), Germany
| | - Katayoon Dehesh
- Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, USA.
| |
Collapse
|
6
|
Laekas-Hameder M, Daigle F. Only time will tell: lipopolysaccharide glycoform and biofilm-formation kinetics in Salmonella species and Escherichia coli. J Bacteriol 2024; 206:e0031824. [PMID: 39315775 PMCID: PMC11500611 DOI: 10.1128/jb.00318-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024] Open
Abstract
In Gram-negative bacteria, LPS (lipopolysaccharide) has been thoroughly characterized and has been shown to play a major role in pathogenesis and bacterial defense. In Salmonella and Escherichia coli, LPS also influences biofilm development. However, the overall role of LPS glycoform in biofilm formation has not been conclusively settled, as there is a lack of consensus on the topic. Some studies show that LPS mutants produce less biofilm biomass than the wild-type strains, while others show that they produce more. This review summarizes current knowledge of LPS biosynthesis and explores the impact of defective steps on biofilm-related characteristics, such as motility, adhesion, auto-aggregation, and biomass production in Salmonella and E. coli. Overall, motility tends to decrease, while adhesion and auto-aggregation phenotypes tend to increase in most LPS-mutant strains. Interestingly, biofilm biomass of various LPS mutants revealed a clear pattern dependent on biofilm maturation time. Incubation times of less than 24 h resulted in a biofilm-defective phenotype compared to the wild-type, while incubation exceeding 24 h led to significantly higher levels of biofilm production. This explains conflicting results found in reports describing the same LPS mutations. It is therefore critical to consider the effect of biofilm maturation time to ascertain the effects of LPS glycoform on biofilm phenotype. Underlying reasons for such changes in biofilm kinetics may include changes in signalling systems affecting biofilm maturation and composition, and dynamic LPS modifications. A better understanding of the role of LPS in the evolution and modification of biofilms is crucial for developing strategies to disperse biofilms.
Collapse
Affiliation(s)
- Magdalena Laekas-Hameder
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, Québec, Canada
| | - France Daigle
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
7
|
Desai SK, Zhou Y, Dilawari R, Routh AL, Popov V, Kenney LJ. RpoS activates formation of Salmonella Typhi biofilms and drives persistence in the gall bladder. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.26.564249. [PMID: 37961640 PMCID: PMC10634867 DOI: 10.1101/2023.10.26.564249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The development of strategies for targeting the asymptomatic carriage of Salmonella Typhi in chronic typhoid patients has suffered owing to our basic lack of understanding of the molecular mechanisms that enable the formation of S. Typhi biofilms. Traditionally, studies have relied on cholesterol-attached biofilms formed by a closely related serovar, Typhimurium, to mimic multicellular Typhi communities formed on human gallstones. In long-term infections, S. Typhi adopts the biofilm lifestyle to persist in vivo and survive in the carrier state, ultimately leading to the spread of infections via the fecal-oral route of transmission. In the present work, we studied S. Typhi biofilms directly, applied targeted as well as genome-wide genetic approaches to uncover unique biofilm components that do not conform to the CsgD-dependent pathway established in S. Typhimurium. We undertook a genome-wide Tn5 mutation screen in H58, a clinically relevant multidrug resistance strain of S. Typhi, in gallstone-mimicking conditions. We generated New Generation Sequencing libraries based on the ClickSeq technology to identify the key regulators, IraP and RpoS, and the matrix components Sth fimbriae, Vi capsule and lipopolysaccharide. We discovered that the starvation sigma factor, RpoS, was required for the transcriptional activation of matrix-encoding genes in vitro, and for S. Typhi colonization in persistent infections in vivo, using a heterologous fish larval model. An rpoS null mutant failed to colonize the gall bladder in chronic zebrafish infections. Overall, our work uncovered a novel RpoS-driven, CsgD-independent paradigm for the formation of cholesterol-attached Typhi biofilms, and emphasized the role(s) of stress signaling pathways for adaptation in chronic infections. Our identification of the biofilm regulators in S. Typhi paves the way for the development of drugs against typhoid carriage, which will ultimately control the increased incidence of gall bladder cancer in typhoid carriers.
Collapse
Affiliation(s)
- Stuti K. Desai
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555
| | - Yiyang Zhou
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555
| | - Rahul Dilawari
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555
| | - Andrew L. Routh
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555
- Department of Immunology and Microbiology, Scripps Research, 10550 N. Torrey Pines Rd., La Jolla, CA 92037, USA
| | - Vsevolod Popov
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555
| | - Linda J. Kenney
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555
| |
Collapse
|
8
|
Holden ER, Abi Assaf J, Al-Khanaq H, Vimont N, Webber MA, Trampari E. Identification of pathways required for Salmonella to colonize alfalfa using TraDIS- Xpress. Appl Environ Microbiol 2024; 90:e0013924. [PMID: 38904400 PMCID: PMC11267905 DOI: 10.1128/aem.00139-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/23/2024] [Indexed: 06/22/2024] Open
Abstract
Enteropathogenic bacteria, such as Salmonella, have been linked to numerous fresh produce outbreaks, posing a significant public health threat. The ability of Salmonella to persist on fresh produce for extended periods is partly attributed to its capacity to form biofilms, which pose a challenge to food decontamination and can increase pathogenic bacterial load in the food chain. Preventing Salmonella colonization of food products and food processing environments is crucial for reducing the incidence of foodborne outbreaks. Understanding the mechanisms of establishment on fresh produce will inform the development of decontamination approaches. We used Transposon-Directed Insertion site Sequencing (TraDIS-Xpress) to investigate the mechanisms used by Salmonella enterica serovar Typhimurium to colonize and establish on fresh produce over time. We established an alfalfa colonization model and compared the findings to those obtained from glass surfaces. Our research identified distinct mechanisms required for Salmonella establishment on alfalfa compared with glass surfaces over time. These include the type III secretion system (sirC), Fe-S cluster assembly (iscA), curcumin degradation (curA), and copper tolerance (cueR). Shared pathways across surfaces included NADH hydrogenase synthesis (nuoA and nuoB), fimbrial regulation (fimA and fimZ), stress response (rpoS), LPS O-antigen synthesis (rfbJ), iron acquisition (ybaN), and ethanolamine utilization (eutT and eutQ). Notably, flagellum biosynthesis differentially impacted the colonization of biotic and abiotic environments over time. Understanding the genetic underpinnings of Salmonella establishment on both biotic and abiotic surfaces over time offers valuable insights that can inform the development of targeted antibacterial therapeutics, ultimately enhancing food safety throughout the food processing chain. IMPORTANCE Salmonella is the second most costly foodborne illness in the United Kingdom, accounting for £0.2 billion annually, with numerous outbreaks linked to fresh produce, such as leafy greens, cucumbers, tomatoes, and alfalfa sprouts. The ability of Salmonella to colonize and establish itself in fresh produce poses a significant challenge, hindering decontamination efforts and increasing the risk of illness. Understanding the key mechanisms of Salmonella to colonize plants over time is key to finding new ways to prevent and control contamination of fresh produce. This study identified genes and pathways important for Salmonella colonization of alfalfa and compared those with colonization of glass using a genome-wide screen. Genes with roles in flagellum biosynthesis, lipopolysaccharide production, and stringent response regulation varied in their significance between plants and glass. This work deepens our understanding of the requirements for plant colonization by Salmonella, revealing how gene essentiality changes over time and in different environments. This knowledge is key to developing effective strategies to reduce the risk of foodborne disease.
Collapse
Affiliation(s)
- Emma R. Holden
- Quadram Institute Bioscience, Norwich Research Park, Norwich, United Kingdom
| | - Justin Abi Assaf
- Quadram Institute Bioscience, Norwich Research Park, Norwich, United Kingdom
| | - Haider Al-Khanaq
- Quadram Institute Bioscience, Norwich Research Park, Norwich, United Kingdom
| | - Noemie Vimont
- Quadram Institute Bioscience, Norwich Research Park, Norwich, United Kingdom
| | - Mark A. Webber
- Quadram Institute Bioscience, Norwich Research Park, Norwich, United Kingdom
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Eleftheria Trampari
- Quadram Institute Bioscience, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
9
|
Holden ER, Yasir M, Turner AK, Wain J, Charles IG, Webber MA. Genome-wide analysis of genes involved in efflux function and regulation within Escherichia coli and Salmonella enterica serovar Typhimurium. MICROBIOLOGY (READING, ENGLAND) 2023; 169. [PMID: 36745554 DOI: 10.1099/mic.0.001296] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The incidence of multidrug-resistant bacteria is increasing globally, with efflux pumps being a fundamental platform limiting drug access and synergizing with other mechanisms of resistance. Increased expression of efflux pumps is a key feature of most cells that are resistant to multiple antibiotics. Whilst expression of efflux genes can confer benefits, production of complex efflux systems is energetically costly and the expression of efflux is highly regulated, with cells balancing benefits against costs. This study used TraDIS-Xpress, a genome-wide transposon mutagenesis technology, to identify genes in Escherichia coli and Salmonella Typhimurium involved in drug efflux and its regulation. We exposed mutant libraries to the canonical efflux substrate acriflavine in the presence and absence of the efflux inhibitor phenylalanine-arginine β-naphthylamide. Comparisons between conditions identified efflux-specific and drug-specific responses. Known efflux-associated genes were easily identified, including acrAB, tolC, marRA, ramRA and soxRS, confirming the specificity of the response. Further genes encoding cell envelope maintenance enzymes and products involved with stringent response activation, DNA housekeeping, respiration and glutathione biosynthesis were also identified as affecting efflux activity in both species. This demonstrates the deep relationship between efflux regulation and other cellular regulatory networks. We identified a conserved set of pathways crucial for efflux activity in these experimental conditions, which expands the list of genes known to impact on efflux efficacy. Responses in both species were similar and we propose that these common results represent a core set of genes likely to be relevant to efflux control across the Enterobacteriaceae.
Collapse
Affiliation(s)
- Emma R Holden
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk, NR4 7UQ, UK
| | - Muhammad Yasir
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk, NR4 7UQ, UK
| | - A Keith Turner
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk, NR4 7UQ, UK
| | - John Wain
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk, NR4 7UQ, UK.,Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, Norfolk, NR4 7TJ, UK
| | - Ian G Charles
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk, NR4 7UQ, UK.,Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, Norfolk, NR4 7TJ, UK
| | - Mark A Webber
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk, NR4 7UQ, UK.,Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, Norfolk, NR4 7TJ, UK
| |
Collapse
|
10
|
Holden ER, Yasir M, Turner AK, Charles IG, Webber MA. Comparison of the genetic basis of biofilm formation between Salmonella Typhimurium and Escherichia coli. Microb Genom 2022; 8:mgen000885. [PMID: 36326671 PMCID: PMC9836088 DOI: 10.1099/mgen.0.000885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Most bacteria can form biofilms, which typically have a life cycle from cells initially attaching to a surface before aggregation and growth produces biomass and an extracellular matrix before finally cells disperse. To maximize fitness at each stage of this life cycle and given the different events taking place within a biofilm, temporal regulation of gene expression is essential. We recently described the genes required for optimal fitness over time during biofilm formation in Escherichia coli using a massively parallel transposon mutagenesis approach called TraDIS-Xpress. We have now repeated this study in Salmonella enterica serovar Typhimurium to determine the similarities and differences in biofilm formation through time between these species. A core set of pathways involved in biofilm formation in both species included matrix production, nucleotide biosynthesis, flagella assembly and LPS biosynthesis. We also identified several differences between the species, including a divergent impact of the antitoxin TomB on biofilm formation in each species. We observed deletion of tomB to be detrimental throughout the development of the E. coli biofilms but increased biofilm biomass in S. Typhimurium. We also found a more pronounced role for genes involved in respiration, specifically the electron transport chain, on the fitness of mature biofilms in S. Typhimurium than in E. coli and this was linked to matrix production. This work deepens understanding of the core requirements for biofilm formation in the Enterobacteriaceae whilst also identifying some genes with specialised roles in biofilm formation in each species.
Collapse
Affiliation(s)
- Emma R. Holden
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk, NR4 7UQ, UK
| | - Muhammad Yasir
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk, NR4 7UQ, UK
| | - A. Keith Turner
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk, NR4 7UQ, UK
| | - Ian G. Charles
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk, NR4 7UQ, UK,Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, Norfolk, NR4 7TJ, UK
| | - Mark A. Webber
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk, NR4 7UQ, UK,Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, Norfolk, NR4 7TJ, UK,*Correspondence: Mark A. Webber,
| |
Collapse
|
11
|
Intimin (eae) and virulence membrane protein pagC genes are associated with biofilm formation and multidrug resistance in Escherichia coli and Salmonella enterica isolates from calves with diarrhea. BMC Res Notes 2022; 15:321. [PMID: 36221149 PMCID: PMC9552474 DOI: 10.1186/s13104-022-06218-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/13/2022] [Accepted: 09/20/2022] [Indexed: 11/11/2022] Open
Abstract
Objectives This study aimed to evaluate the association of the intimin (eae) and pagC genes with biofilm formation and multidrug resistance (MDR) phenotype in Escherichia coli and Salmonella enterica collected from calves with diarrhea. Results Fecal samples (n: 150) were collected from calves with diarrhea. Of 150 fecal samples, 122 (81.3%) were culture positive and 115/122 (94.2%) were Gram-negative bacteria. Among them, E. coli (n = 64/115, 55.6%) was the most common isolate followed by S. enterica (n = 41/115, 35.6%). Also, 10 (8.6%) isolates were other Enterobacteriaceae bacteria including Klebsiella and Proteus species. Eighty-nine isolates (77.4%) from calf diarrhea, including 52 (81.3%) E. coli and 37 (90.2%) S. enterica were MDR. The eae and pagC genes were detected in 33 (51.5%) E. coli and 28 (68.3%) S. enterica isolates, respectively. There was a strong association between these genes and biofilm formation and MDR phenotype (P-value = 0.000). All E. coli isolates carrying the eae gene were biofilm producers and MDR. Also, all pagC-positive S. enterica isolates were MDR and 25 (89.3%) isolates of them produced biofilm. Supplementary Information The online version contains supplementary material available at 10.1186/s13104-022-06218-6.
Collapse
|
12
|
Genomic, morphological, and biochemical analyses of a multi-metal resistant but multi-drug susceptible strain of Bordetella petrii from hospital soil. Sci Rep 2022; 12:8439. [PMID: 35589928 PMCID: PMC9120033 DOI: 10.1038/s41598-022-12435-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/04/2022] [Indexed: 01/08/2023] Open
Abstract
Contamination of soil by antibiotics and heavy metals originating from hospital facilities has emerged as a major cause for the development of resistant microbes. We collected soil samples surrounding a hospital effluent and measured the resistance of bacterial isolates against multiple antibiotics and heavy metals. One strain BMCSI 3 was found to be sensitive to all tested antibiotics. However, it was resistant to many heavy metals and metalloids like cadmium, chromium, copper, mercury, arsenic, and others. This strain was motile and potentially spore-forming. Whole-genome shotgun assembly of BMCSI 3 produced 4.95 Mb genome with 4,638 protein-coding genes. The taxonomic and phylogenetic analysis revealed it, to be a Bordetella petrii strain. Multiple genomic islands carrying mobile genetic elements; coding for heavy metal resistant genes, response regulators or transcription factors, transporters, and multi-drug efflux pumps were identified from the genome. A comparative genomic analysis of BMCSI 3 with annotated genomes of other free-living B. petrii revealed the presence of multiple transposable elements and several genes involved in stress response and metabolism. This study provides insights into how genomic reorganization and plasticity results in evolution of heavy metals resistance by acquiring genes from its natural environment.
Collapse
|
13
|
Li H, Xie R, Xu X, Liao X, Guo J, Fang Y, Fang Z, Huang J. Static Magnetic Field Inhibits Growth of Escherichia coli Colonies via Restriction of Carbon Source Utilization. Cells 2022; 11:cells11050827. [PMID: 35269449 PMCID: PMC8909705 DOI: 10.3390/cells11050827] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/21/2022] [Accepted: 02/21/2022] [Indexed: 02/01/2023] Open
Abstract
Magnetobiological effects on growth and virulence have been widely reported in Escherichia coli (E. coli). However, published results are quite varied and sometimes conflicting because the underlying mechanism remains unknown. Here, we reported that the application of 250 mT static magnetic field (SMF) significantly reduces the diameter of E. coli colony-forming units (CFUs) but has no impact on the number of CFUs. Transcriptomic analysis revealed that the inhibitory effect of SMF is attributed to differentially expressed genes (DEGs) primarily involved in carbon source utilization. Consistently, the addition of glycolate or glyoxylate to the culture media successfully restores the bacterial phenotype in SMF, and knockout mutants lacking glycolate oxidase are no longer sensitive to SMF. These results suggest that SMF treatment results in a decrease in glycolate oxidase activity. In addition, metabolomic assay showed that long-chain fatty acids (LCFA) accumulate while phosphatidylglycerol and middle-chain fatty acids decrease in the SMF-treated bacteria, suggesting that SMF inhibits LCFA degradation. Based on the published evidence together with ours derived from this study, we propose a model showing that free radicals generated by LCFA degradation are the primary target of SMF action, which triggers the bacterial oxidative stress response and ultimately leads to growth inhibition.
Collapse
Affiliation(s)
- Haodong Li
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China; (H.L.); (R.X.); (X.X.); (X.L.); (J.G.)
| | - Runnan Xie
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China; (H.L.); (R.X.); (X.X.); (X.L.); (J.G.)
| | - Xiang Xu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China; (H.L.); (R.X.); (X.X.); (X.L.); (J.G.)
| | - Xingru Liao
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China; (H.L.); (R.X.); (X.X.); (X.L.); (J.G.)
| | - Jiaxin Guo
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China; (H.L.); (R.X.); (X.X.); (X.L.); (J.G.)
| | - Yanwen Fang
- Heye Health Industrial Research Institute, Zhejiang Heye Health Technology, Anji, Huzhou 313300, China; (Y.F.); (Z.F.)
| | - Zhicai Fang
- Heye Health Industrial Research Institute, Zhejiang Heye Health Technology, Anji, Huzhou 313300, China; (Y.F.); (Z.F.)
| | - Jirong Huang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China; (H.L.); (R.X.); (X.X.); (X.L.); (J.G.)
- Correspondence:
| |
Collapse
|