1
|
Qiao K, Zhao T, Wang L, Zhang W, Meng W, Liu F, Gao X, Zhu J. Screening and identification of functional bacterial attachment genes in aerobic granular sludge. J Environ Sci (China) 2024; 141:205-214. [PMID: 38408821 DOI: 10.1016/j.jes.2023.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 02/28/2024]
Abstract
The screening and identification of attachment genes is important to exploring the formation mechanism of biofilms at the gene level. It is helpful to the development of key culture technologies for aerobic granular sludge (AGS). In this study, genome-wide sequencing and gene editing were employed for the first time to investigate the effects and functions of attachment genes in AGS. With the help of whole-genome analysis, ten attachment genes were screened from thirteen genes, and the efficiency of gene screening was greatly improved. Then, two attachment genes were selected as examples to further confirm the gene functions by constructing gene-knockout recombinant mutants of Stenotrophomonas maltophilia; when the two attachment genes were knocked out, the attachment potential was reduced by 50.67% and 43.93%, respectively. The results provide a new theoretical principle and efficient method for the development of AGS from the perspective of attachment genes.
Collapse
Affiliation(s)
- Kai Qiao
- School of Environment, Beijing Normal University, Beijing 100875, China; State Key Laboratory of Water Simulation, Beijing 100875, China
| | - Tingting Zhao
- School of Environment, Beijing Normal University, Beijing 100875, China; R & D Centre of Aerobic Granule Technology, Beijing 100875, China
| | - Lei Wang
- School of Environment, Beijing Normal University, Beijing 100875, China; R & D Centre of Aerobic Granule Technology, Beijing 100875, China
| | - Wei Zhang
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Wei Meng
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Fan Liu
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Xu Gao
- School of Environment, Beijing Normal University, Beijing 100875, China; State Key Laboratory of Water Simulation, Beijing 100875, China
| | - Jianrong Zhu
- School of Environment, Beijing Normal University, Beijing 100875, China; R & D Centre of Aerobic Granule Technology, Beijing 100875, China.
| |
Collapse
|
2
|
Guo XP, Yan HQ, Yang W, Yin Z, Vadyvaloo V, Zhou D, Sun YC. A frameshift in Yersinia pestis rcsD alters canonical Rcs signalling to preserve flea-mammal plague transmission cycles. eLife 2023; 12:e83946. [PMID: 37010269 PMCID: PMC10191623 DOI: 10.7554/elife.83946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 04/02/2023] [Indexed: 04/04/2023] Open
Abstract
Multiple genetic changes in the enteric pathogen Yersinia pseudotuberculosis have driven the emergence of Yesinia pestis, the arthropod-borne, etiological agent of plague. These include developing the capacity for biofilm-dependent blockage of the flea foregut to enable transmission by flea bite. Previously, we showed that pseudogenization of rcsA, encoding a component of the Rcs signalling pathway, is an important evolutionary step facilitating Y. pestis flea-borne transmission. Additionally, rcsD, another important gene in the Rcs system, harbours a frameshift mutation. Here, we demonstrated that this rcsD mutation resulted in production of a small protein composing the C-terminal RcsD histidine-phosphotransferase domain (designated RcsD-Hpt) and full-length RcsD. Genetic analysis revealed that the rcsD frameshift mutation followed the emergence of rcsA pseudogenization. It further altered the canonical Rcs phosphorylation signal cascade, fine-tuning biofilm production to be conducive with retention of the pgm locus in modern lineages of Y. pestis. Taken together, our findings suggest that a frameshift mutation in rcsD is an important evolutionary step that fine-tuned biofilm production to ensure perpetuation of flea-mammal plague transmission cycles.
Collapse
Affiliation(s)
- Xiao-Peng Guo
- NHC key laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Hai-Qin Yan
- Department of Basic Medical Sciences, Anhui Key Laboratory of Infection and Immunity, Bengbu Medical CollegeBengbuChina
- Paul G. Allen School for Global Health, Washington State UniversityPullmanUnited States
| | - Wenhui Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and EpidemiologyBeijingChina
| | - Zhe Yin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and EpidemiologyBeijingChina
| | - Viveka Vadyvaloo
- Paul G. Allen School for Global Health, Washington State UniversityPullmanUnited States
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and EpidemiologyBeijingChina
| | - Yi-Cheng Sun
- NHC key laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
3
|
Yang R, Atkinson S, Chen Z, Cui Y, Du Z, Han Y, Sebbane F, Slavin P, Song Y, Yan Y, Wu Y, Xu L, Zhang C, Zhang Y, Hinnebusch BJ, Stenseth NC, Motin VL. Yersinia pestis and Plague: some knowns and unknowns. ZOONOSES (BURLINGTON, MASS.) 2023; 3:5. [PMID: 37602146 PMCID: PMC10438918 DOI: 10.15212/zoonoses-2022-0040] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Since its first identification in 1894 during the third pandemic in Hong Kong, there has been significant progress of understanding the lifestyle of Yersinia pestis, the pathogen that is responsible for plague. Although we now have some understanding of the pathogen's physiology, genetics, genomics, evolution, gene regulation, pathogenesis and immunity, there are many unknown aspects of the pathogen and its disease development. Here, we focus on some of the knowns and unknowns relating to Y. pestis and plague. We notably focus on some key Y. pestis physiological and virulence traits that are important for its mammal-flea-mammal life cycle but also its emergence from the enteropathogen Yersinia pseudotuberculosis. Some aspects of the genetic diversity of Y. pestis, the distribution and ecology of plague as well as the medical countermeasures to protect our population are also provided. Lastly, we present some biosafety and biosecurity information related to Y. pestis and plague.
Collapse
Affiliation(s)
- Ruifu Yang
- Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Steve Atkinson
- School of Life Sciences, Centre for Biomolecular Science, University of Nottingham, Nottingham, United Kingdom
| | - Ziqi Chen
- Vanke School of Public Health, Tsinghua University, Beijing 100084, China
| | - Yujun Cui
- Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Zongmin Du
- Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Yanping Han
- Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Florent Sebbane
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Philip Slavin
- Division of History and Politics, University of Stirling, Stirling FK9 4LJ, UK
| | - Yajun Song
- Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Yanfeng Yan
- Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Yarong Wu
- Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Lei Xu
- Vanke School of Public Health, Tsinghua University, Beijing 100084, China
| | - Chutian Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Yun Zhang
- Vanke School of Public Health, Tsinghua University, Beijing 100084, China
| | - B. Joseph Hinnebusch
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, Montana, USA
| | - Nils Chr. Stenseth
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, N-0316 Oslo, Norway
| | - Vladimir L. Motin
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
4
|
The TPR domain of PgaA is a multifunctional scaffold that binds PNAG and modulates PgaB-dependent polymer processing. PLoS Pathog 2022; 18:e1010750. [PMID: 35930610 PMCID: PMC9384988 DOI: 10.1371/journal.ppat.1010750] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 08/17/2022] [Accepted: 07/19/2022] [Indexed: 11/30/2022] Open
Abstract
The synthesis of exopolysaccharides as biofilm matrix components by pathogens is a crucial factor for chronic infections and antibiotic resistance. Many periplasmic proteins involved in polymer processing and secretion in Gram-negative synthase dependent exopolysaccharide biosynthetic systems have been individually characterized. The operons responsible for the production of PNAG, alginate, cellulose and the Pel polysaccharide each contain a gene that encodes an outer membrane associated tetratricopeptide repeat (TPR) domain containing protein. While the TPR domain has been shown to bind other periplasmic proteins, the functional consequences of these interactions for the polymer remain poorly understood. Herein, we show that the C-terminal TPR region of PgaA interacts with the de-N-acetylase domain of PgaB, and increases its deacetylase activity. Additionally, we found that when the two proteins form a complex, the glycoside hydrolase activity of PgaB is also increased. To better understand structure-function relationships we determined the crystal structure of a stable TPR module, which has a conserved groove formed by three repeat motifs. Tryptophan quenching, mass spectrometry analysis and molecular dynamics simulation studies suggest that the crystallized TPR module can bind PNAG/dPNAG via its electronegative groove on the concave surface, and potentially guide the polymer through the periplasm towards the porin for export. Our results suggest a scaffolding role for the TPR domain that combines PNAG/dPNAG translocation with the modulation of its chemical structure by PgaB. Exopolysaccharides are an important component of the extracellular matrix of bacterial and fungal biofilms and provide protection against the host immune response and antibiotics. In Gram-negative bacteria, these polymers are synthesized in the inner membrane and translocated across the periplasm before being secreted across the outer membrane. The periplasm presents both a challenge as an additional environment to cross and an opportunity to chemically alter the polymer prior to secretion to render it more effective. This study focuses on a periplasmic alpha-helical repeat domain whose wide-spread homologues are involved in the export of many chemically distinct exopolysaccharides. We found that in E. coli this superhelical TPR domain acts as a scaffold that can bind the polymer PNAG and alter the enzymatic activity of PgaB, thus providing a means to affect the deacetylation level and chain length of the secreted polymer. Scaffold proteins are known as binding hubs within cellular pathways that often have a central regulatory function and facilitate evolution due to their repetitive modular building blocks. Our study sheds light on the principles of polysaccharide modification and export, which we hope will promote the development of applications against bacterial infections.
Collapse
|
5
|
Nlp enhances biofilm formation by Yersinia pestis biovar microtus. Microb Pathog 2022; 169:105659. [PMID: 35760284 DOI: 10.1016/j.micpath.2022.105659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 11/22/2022]
Abstract
Biofilms formed by Yersinia pestis are able to attach to and block flea's proventriculus, which stimulates the transmission of this pathogen from fleas to mammals. In this study, we found that Nlp (YP1143) enhanced biofilm formation by Y. pestis and had regulatory effects on biofilm-associated genes at the transcriptional level. Phenotypic assays, including colony morphology assay, crystal violet staining, and Caenorhabditis elegans biofilm assay, disclosed that Nlp strongly promoted biofilm formation by Y. pestis. Further gene regulation assays showed that Nlp stimulated the expression of hmsHFRS, hmsCDE and hmsB, while had no regulatory effect on the expression of hmsT and hmsP at the transcriptional level. These findings promoted us to gain more understanding of the complex regulatory circuits controlling biofilm formation by Y. pestis.
Collapse
|
6
|
Gahlot DK, Wai SN, Erickson DL, Francis MS. Cpx-signalling facilitates Hms-dependent biofilm formation by Yersinia pseudotuberculosis. NPJ Biofilms Microbiomes 2022; 8:13. [PMID: 35351893 PMCID: PMC8964730 DOI: 10.1038/s41522-022-00281-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 02/18/2022] [Indexed: 11/30/2022] Open
Abstract
Bacteria often reside in sessile communities called biofilms, where they adhere to a variety of surfaces and exist as aggregates in a viscous polymeric matrix. Biofilms are resistant to antimicrobial treatments, and are a major contributor to the persistence and chronicity of many bacterial infections. Herein, we determined that the CpxA-CpxR two-component system influenced the ability of enteropathogenic Yersinia pseudotuberculosis to develop biofilms. Mutant bacteria that accumulated the active CpxR~P isoform failed to form biofilms on plastic or on the surface of the Caenorhabditis elegans nematode. A failure to form biofilms on the worm surface prompted their survival when grown on the lawns of Y. pseudotuberculosis. Exopolysaccharide production by the hms loci is the major driver of biofilms formed by Yersinia. We used a number of molecular genetic approaches to demonstrate that active CpxR~P binds directly to the promoter regulatory elements of the hms loci to activate the repressors of hms expression and to repress the activators of hms expression. Consequently, active Cpx-signalling culminated in a loss of exopolysaccharide production. Hence, the development of Y. pseudotuberculosis biofilms on multiple surfaces is controlled by the Cpx-signalling, and at least in part this occurs through repressive effects on the Hms-dependent exopolysaccharide production.
Collapse
|
7
|
Fonseca NP, Patané JSL, Varani AM, Felestrino ÉB, Caneschi WL, Sanchez AB, Cordeiro IF, Lemes CGDC, Assis RDAB, Garcia CCM, Belasque J, Martins J, Facincani AP, Ferreira RM, Jaciani FJ, de Almeida NF, Ferro JA, Moreira LM, Setubal JC. Analyses of Seven New Genomes of Xanthomonas citri pv. aurantifolii Strains, Causative Agents of Citrus Canker B and C, Show a Reduced Repertoire of Pathogenicity-Related Genes. Front Microbiol 2019; 10:2361. [PMID: 31681223 PMCID: PMC6797930 DOI: 10.3389/fmicb.2019.02361] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 09/27/2019] [Indexed: 11/21/2022] Open
Abstract
Xanthomonas citri pv. aurantifolii pathotype B (XauB) and pathotype C (XauC) are the causative agents respectively of citrus canker B and C, diseases of citrus plants related to the better-known citrus canker A, caused by Xanthomonas citri pv. citri. The study of the genomes of strains of these related bacterial species has the potential to bring new understanding to the molecular basis of citrus canker as well as their evolutionary history. Up to now only one genome sequence of XauB and only one genome sequence of XauC have been available, both in draft status. Here we present two new genome sequences of XauB (both complete) and five new genome sequences of XauC (two complete). A phylogenomic analysis of these seven genome sequences along with 24 other related Xanthomonas genomes showed that there are two distinct and well-supported major clades, the XauB and XauC clade and the Xanthomonas citri pv. citri clade. An analysis of 62 Type III Secretion System effector genes showed that there are 42 effectors with variable presence/absence or pseudogene status among the 31 genomes analyzed. A comparative analysis of secretion-system and surface-structure genes showed that the XauB and XauC genomes lack several key genes in pathogenicity-related subsystems. These subsystems, the Types I and IV Secretion Systems, and the Type IV pilus, therefore emerge as important ones in helping explain the aggressiveness of the A type of citrus canker and the apparent dominance in the field of the corresponding strain over the B and C strains.
Collapse
Affiliation(s)
- Natasha Peixoto Fonseca
- Programa de Pós-graduação em Biotecnologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - José S L Patané
- Laboratório Especial de Ciclo Celular, Instituto Butantan, São Paulo, Brazil
| | - Alessandro M Varani
- Departamento de Tecnologia, Universidade Estadual Paulista, UNESP, Campus de Jaboticabal, Jaboticabal, Brazil
| | - Érica Barbosa Felestrino
- Programa de Pós-graduação em Biotecnologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Washington Luiz Caneschi
- Programa de Pós-graduação em Biotecnologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Angélica Bianchini Sanchez
- Programa de Pós-graduação em Biotecnologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Isabella Ferreira Cordeiro
- Programa de Pós-graduação em Biotecnologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Camila Gracyelle de Carvalho Lemes
- Programa de Pós-graduação em Biotecnologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Renata de Almeida Barbosa Assis
- Programa de Pós-graduação em Biotecnologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Camila Carrião Machado Garcia
- Programa de Pós-graduação em Biotecnologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - José Belasque
- Departamento de Fitopatologia e Nematologia, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, Brazil
| | - Joaquim Martins
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Agda Paula Facincani
- Departamento de Tecnologia, Universidade Estadual Paulista, UNESP, Campus de Jaboticabal, Jaboticabal, Brazil
| | - Rafael Marini Ferreira
- Departamento de Tecnologia, Universidade Estadual Paulista, UNESP, Campus de Jaboticabal, Jaboticabal, Brazil
| | | | | | - Jesus Aparecido Ferro
- Departamento de Tecnologia, Universidade Estadual Paulista, UNESP, Campus de Jaboticabal, Jaboticabal, Brazil
| | - Leandro Marcio Moreira
- Programa de Pós-graduação em Biotecnologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil.,Departamento de Ciências Biológicas, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - João C Setubal
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
8
|
Liu L, Zheng S. Transcriptional regulation of Yersinia pestis biofilm formation. Microb Pathog 2019; 131:212-217. [PMID: 30980880 DOI: 10.1016/j.micpath.2019.04.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 04/08/2019] [Indexed: 01/27/2023]
Abstract
Yersinia pestis, the causative agent of plague, is transmitted primarily by infected fleas in nature. Y. pestis can produce biofilms that block flea's proventriculus and promote flea-borne transmission. Transcriptional regulation of Y. pestis biofilm formation plays an important role in the response to complex changes in environments, including temperature, pH, oxidative stress, and restrictive nutrition conditions, and contributes to Y. pestis growth, reproduction, transmission, and pathogenesis. A set of transcriptional regulators involved in Y. pestis biofilm production simultaneously controls a variety of biological functions and physiological pathways. Interactions between these regulators contribute to the development of Y. pestis gene regulatory networks, which are helpful for a quick response to complex environmental changes and better survival. The roles of crucial factors and regulators involved in response to complex environmental signals and Y. pestis biofilm formation as well as the precise gene regulatory networks are discussed in this review, which will give a better understanding of the complicated mechanisms of transcriptional regulation in Y. pestis biofilm formation.
Collapse
Affiliation(s)
- Lei Liu
- Department of Transfusion, General Hospital of Central Theater Command, Wuhan, 430070, Hubei, China; State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Shangen Zheng
- Department of Transfusion, General Hospital of Central Theater Command, Wuhan, 430070, Hubei, China.
| |
Collapse
|
9
|
Little DJ, Pfoh R, Le Mauff F, Bamford NC, Notte C, Baker P, Guragain M, Robinson H, Pier GB, Nitz M, Deora R, Sheppard DC, Howell PL. PgaB orthologues contain a glycoside hydrolase domain that cleaves deacetylated poly-β(1,6)-N-acetylglucosamine and can disrupt bacterial biofilms. PLoS Pathog 2018; 14:e1006998. [PMID: 29684093 PMCID: PMC5933820 DOI: 10.1371/journal.ppat.1006998] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 05/03/2018] [Accepted: 03/29/2018] [Indexed: 11/24/2022] Open
Abstract
Poly-β(1,6)-N-acetyl-D-glucosamine (PNAG) is a major biofilm component of many pathogenic bacteria. The production, modification, and export of PNAG in Escherichia coli and Bordetella species require the protein products encoded by the pgaABCD operon. PgaB is a two-domain periplasmic protein that contains an N-terminal deacetylase domain and a C-terminal PNAG binding domain that is critical for export. However, the exact function of the PgaB C-terminal domain remains unclear. Herein, we show that the C-terminal domains of Bordetella bronchiseptica PgaB (PgaBBb) and E. coli PgaB (PgaBEc) function as glycoside hydrolases. These enzymes hydrolyze purified deacetylated PNAG (dPNAG) from Staphylococcus aureus, disrupt PNAG-dependent biofilms formed by Bordetella pertussis, Staphylococcus carnosus, Staphylococcus epidermidis, and E. coli, and potentiate bacterial killing by gentamicin. Furthermore, we found that PgaBBb was only able to hydrolyze PNAG produced in situ by the E. coli PgaCD synthase complex when an active deacetylase domain was present. Mass spectrometry analysis of the PgaB-hydrolyzed dPNAG substrate showed a GlcN-GlcNAc-GlcNAc motif at the new reducing end of detected fragments. Our 1.76 Å structure of the C-terminal domain of PgaBBb reveals a central cavity within an elongated surface groove that appears ideally suited to recognize the GlcN-GlcNAc-GlcNAc motif. The structure, in conjunction with molecular modeling and site directed mutagenesis led to the identification of the dPNAG binding subsites and D474 as the probable catalytic acid. This work expands the role of PgaB within the PNAG biosynthesis machinery, defines a new glycoside hydrolase family GH153, and identifies PgaB as a possible therapeutic agent for treating PNAG-dependent biofilm infections. From plaque on teeth to infections in the lungs of cystic fibrosis patients, biofilms are a serious health concern and difficult to eradicate. One of the key building blocks involved in biofilm formation are polymeric sugar compounds that are secreted by the bacteria. Our work focuses on the biopolymer poly-β(1,6)-N-acetyl-D-glucosamine (PNAG), which is produced by numerous pathogenic organisms. Deacetylation of PNAG by the N-terminal domain of PgaB is a critical step in polymer maturation and is required for the formation of robust biofilms. Herein, we show that the C-terminal domain of PgaB is a glycoside hydrolase active on partially deacetylated PNAG, and that the enzyme disrupts PNAG-dependent biofilms and potentiates killing by antibiotics. Only deacetylated PNAG could be cleaved, suggesting that PgaB deacetylates and hydrolyses the polymer in sequential order. Analyzing the chemical structure of the cleaved dPNAG fragments revealed a distinct motif of sugar units. Structural and functional studies identify key amino acids positioned in an elongated polymer-binding groove that potentially recognize the sugar motif during cleavage. Our study provides further insight into the mechanism of periplasmic PNAG modification, and suggests PgaB could be utilized as a therapeutic agent to eliminate biofilms.
Collapse
Affiliation(s)
- Dustin J Little
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Roland Pfoh
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - François Le Mauff
- Departments of Medicine and of Microbiology and Immunology, McGill University, Montréal, QC, Canada.,Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Natalie C Bamford
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Christina Notte
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Perrin Baker
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Manita Guragain
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, United States of America.,Department of Microbial Infection and Immunity, The Ohio State University Wexner Medical Center, Columbus, OH, United States of America
| | - Howard Robinson
- Photon Sciences Division, Brookhaven National Laboratory, Upton, NY, United States of America
| | - Gerald B Pier
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Mark Nitz
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | - Rajendar Deora
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, United States of America.,Department of Microbial Infection and Immunity, The Ohio State University Wexner Medical Center, Columbus, OH, United States of America
| | - Donald C Sheppard
- Departments of Medicine and of Microbiology and Immunology, McGill University, Montréal, QC, Canada.,Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - P Lynne Howell
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
10
|
Abu Khweek A, Amer AO. Factors Mediating Environmental Biofilm Formation by Legionella pneumophila. Front Cell Infect Microbiol 2018. [PMID: 29535972 PMCID: PMC5835138 DOI: 10.3389/fcimb.2018.00038] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Legionella pneumophila (L. pneumophila) is an opportunistic waterborne pathogen and the causative agent for Legionnaires' disease, which is transmitted to humans via inhalation of contaminated water droplets. The bacterium is able to colonize a variety of man-made water systems such as cooling towers, spas, and dental lines and is widely distributed in multiple niches, including several species of protozoa In addition to survival in planktonic phase, L. pneumophila is able to survive and persist within multi-species biofilms that cover surfaces within water systems. Biofilm formation by L. pneumophila is advantageous for the pathogen as it leads to persistence, spread, resistance to treatments and an increase in virulence of this bacterium. Furthermore, Legionellosis outbreaks have been associated with the presence of L. pneumophila in biofilms, even after the extensive chemical and physical treatments. In the microbial consortium-containing L. pneumophila among other organisms, several factors either positively or negatively regulate the presence and persistence of L. pneumophila in this bacterial community. Biofilm-forming L. pneumophila is of a major importance to public health and have impact on the medical and industrial sectors. Indeed, prevention and removal protocols of L. pneumophila as well as diagnosis and hospitalization of patients infected with this bacteria cost governments billions of dollars. Therefore, understanding the biological and environmental factors that contribute to persistence and physiological adaptation in biofilms can be detrimental to eradicate and prevent the transmission of L. pneumophila. In this review, we focus on various factors that contribute to persistence of L. pneumophila within the biofilm consortium, the advantages that the bacteria gain from surviving in biofilms, genes and gene regulation during biofilm formation and finally challenges related to biofilm resistance to biocides and anti-Legionella treatments.
Collapse
Affiliation(s)
- Arwa Abu Khweek
- Department of Biology and Biochemistry, Birzeit University, West Bank, Palestine
| | - Amal O Amer
- Department of Microbial Infection and Immunity, Center for Microbial Interface Biology, College of Medicine, Ohio State University, Columbus, OH, United States
| |
Collapse
|
11
|
Liu Z, Gao X, Wang H, Fang H, Yan Y, Liu L, Chen R, Zhou D, Yang R, Han Y. Plasmid pPCP1-derived sRNA HmsA promotes biofilm formation of Yersinia pestis. BMC Microbiol 2016; 16:176. [PMID: 27492011 PMCID: PMC4973556 DOI: 10.1186/s12866-016-0793-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 07/29/2016] [Indexed: 11/24/2022] Open
Abstract
Background The ability of Yersinia pestis to form a biofilm is an important characteristic in flea transmission of this pathogen. Y. pestis laterally acquired two plasmids (pPCP1and pMT1) and the ability to form biofilms when it evolved from Yersinia pseudotuberculosis. Small regulatory RNAs (sRNAs) are thought to play a crucial role in the processes of biofilm formation and pathogenesis. Results A pPCP1-derived sRNA HmsA (also known as sR084) was found to contribute to the enhanced biofilm formation phenotype of Y. pestis. The concentration of c-di-GMP was significantly reduced upon deletion of the hmsA gene in Y. pestis. The abundance of mRNA transcripts determining exopolysaccharide production, crucial for biofilm formation, was measured by primer extension, RT-PCR and lacZ transcriptional fusion assays in the wild-type and hmsA mutant strains. HmsA positively regulated biofilm synthesis-associated genes (hmsHFRS, hmsT and hmsCDE), but had no regulatory effect on the biofilm degradation-associated gene hmsP. Interestingly, the recently identified biofilm activator sRNA, HmsB, was rapidly degraded in the hmsA deletion mutant. Two genes (rovM and rovA) functioning as biofilm regulators were also found to be regulated by HmsA, whose regulatory effects were consistent with the HmsA-mediated biofilm phenotype. Conclusion HmsA potentially functions as an activator of biofilm formation in Y. pestis, implying that sRNAs encoded on the laterally acquired plasmids might be involved in the chromosome-based regulatory networks implicated in Y. pestis-specific physiological processes. Electronic supplementary material The online version of this article (doi:10.1186/s12866-016-0793-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zizhong Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, No. 20, Dongdajie, Fengtai, Beijing, 100071, China.,State Key Lab of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China
| | - Xiaofang Gao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, No. 20, Dongdajie, Fengtai, Beijing, 100071, China.,Anhui Medical University, Hefei, Anhui, 230032, China
| | - Hongduo Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, No. 20, Dongdajie, Fengtai, Beijing, 100071, China.,College of Life Sciences, Anhui University, Hefei, Anhui, 230601, China
| | - Haihong Fang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, No. 20, Dongdajie, Fengtai, Beijing, 100071, China
| | - Yanfeng Yan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, No. 20, Dongdajie, Fengtai, Beijing, 100071, China
| | - Lei Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, No. 20, Dongdajie, Fengtai, Beijing, 100071, China
| | - Rong Chen
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, No. 20, Dongdajie, Fengtai, Beijing, 100071, China.,The General Hospital of PLA, Beijing, 100853, China
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, No. 20, Dongdajie, Fengtai, Beijing, 100071, China
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, No. 20, Dongdajie, Fengtai, Beijing, 100071, China.
| | - Yanping Han
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, No. 20, Dongdajie, Fengtai, Beijing, 100071, China.
| |
Collapse
|
12
|
Chen S, Thompson KM, Francis MS. Environmental Regulation of Yersinia Pathophysiology. Front Cell Infect Microbiol 2016; 6:25. [PMID: 26973818 PMCID: PMC4773443 DOI: 10.3389/fcimb.2016.00025] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 02/15/2016] [Indexed: 12/26/2022] Open
Abstract
Hallmarks of Yersinia pathogenesis include the ability to form biofilms on surfaces, the ability to establish close contact with eukaryotic target cells and the ability to hijack eukaryotic cell signaling and take over control of strategic cellular processes. Many of these virulence traits are already well-described. However, of equal importance is knowledge of both confined and global regulatory networks that collaborate together to dictate spatial and temporal control of virulence gene expression. This review has the purpose to incorporate historical observations with new discoveries to provide molecular insight into how some of these regulatory mechanisms respond rapidly to environmental flux to govern tight control of virulence gene expression by pathogenic Yersinia.
Collapse
Affiliation(s)
- Shiyun Chen
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences Wuhan, China
| | - Karl M Thompson
- Department of Microbiology, College of Medicine, Howard University Washington, DC, USA
| | - Matthew S Francis
- Umeå Centre for Microbial Research, Umeå UniversityUmeå, Sweden; Department of Molecular Biology, Umeå UniversityUmeå, Sweden
| |
Collapse
|
13
|
Little DJ, Milek S, Bamford NC, Ganguly T, DiFrancesco BR, Nitz M, Deora R, Howell PL. The protein BpsB is a poly-β-1,6-N-acetyl-D-glucosamine deacetylase required for biofilm formation in Bordetella bronchiseptica. J Biol Chem 2015. [PMID: 26203190 DOI: 10.1074/jbc.m115.672469] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Bordetella pertussis and Bordetella bronchiseptica are the causative agents of whooping cough in humans and a variety of respiratory diseases in animals, respectively. Bordetella species produce an exopolysaccharide, known as the Bordetella polysaccharide (Bps), which is encoded by the bpsABCD operon. Bps is required for Bordetella biofilm formation, colonization of the respiratory tract, and confers protection from complement-mediated killing. In this report, we have investigated the role of BpsB in the biosynthesis of Bps and biofilm formation by B. bronchiseptica. BpsB is a two-domain protein that localizes to the periplasm and outer membrane. BpsB displays metal- and length-dependent deacetylation on poly-β-1,6-N-acetyl-d-glucosamine (PNAG) oligomers, supporting previous immunogenic data that suggests Bps is a PNAG polymer. BpsB can use a variety of divalent metal cations for deacetylase activity and showed highest activity in the presence of Ni(2+) and Co(2+). The structure of the BpsB deacetylase domain is similar to the PNAG deacetylases PgaB and IcaB and contains the same circularly permuted family four carbohydrate esterase motifs. Unlike PgaB from Escherichia coli, BpsB is not required for polymer export and has unique structural differences that allow the N-terminal deacetylase domain to be active when purified in isolation from the C-terminal domain. Our enzymatic characterizations highlight the importance of conserved active site residues in PNAG deacetylation and demonstrate that the C-terminal domain is required for maximal deacetylation of longer PNAG oligomers. Furthermore, we show that BpsB is critical for the formation and complex architecture of B. bronchiseptica biofilms.
Collapse
Affiliation(s)
- Dustin J Little
- From the Program in Molecular Structure and Function, Research Institute, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, the Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Sonja Milek
- the Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, and
| | - Natalie C Bamford
- From the Program in Molecular Structure and Function, Research Institute, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, the Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Tridib Ganguly
- the Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, and
| | | | - Mark Nitz
- the Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Rajendar Deora
- the Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, and
| | - P Lynne Howell
- From the Program in Molecular Structure and Function, Research Institute, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, the Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada,
| |
Collapse
|
14
|
Comparison of Models for Bubonic Plague Reveals Unique Pathogen Adaptations to the Dermis. Infect Immun 2015; 83:2855-61. [PMID: 25939507 DOI: 10.1128/iai.00140-15] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 04/21/2015] [Indexed: 12/24/2022] Open
Abstract
UNLABELLED Vector-borne pathogens are inoculated in the skin of mammals, most likely in the dermis. Despite this, subcutaneous (s.c.) models of infection are broadly used in many fields, including Yersinia pestis pathogenesis. We expand on a previous report where we implemented intradermal (i.d.) inoculations to study bacterial dissemination during bubonic plague and compare this model with an s.c. MODEL We found that i.d. inoculations result in faster kinetics of infection and that bacterial dose influenced mouse survival after i.d. but not s.c. inoculation. Moreover, a deletion mutant of rovA, previously shown to be moderately attenuated in the s.c. model, was severely attenuated in the i.d. MODEL Lastly, based on previous observations where a population bottleneck from the skin to lymph nodes was observed after i.d., but not after s.c., inoculations, we used the latter model as a strategy to identify an additional bottleneck in bacterial dissemination from lymph nodes to the bloodstream. Our data indicate that the more biologically relevant i.d. model of bubonic plague differs significantly from the s.c. model in multiple aspects of infection. These findings reveal adaptations of Y. pestis to the dermis and how these adaptations can define the progression of disease. They also emphasize the importance of using a relevant route of infection when addressing host-pathogen interactions.
Collapse
|
15
|
van Dissel D, Claessen D, Roth M, van Wezel GP. A novel locus for mycelial aggregation forms a gateway to improved Streptomyces cell factories. Microb Cell Fact 2015; 14:44. [PMID: 25889360 PMCID: PMC4391728 DOI: 10.1186/s12934-015-0224-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 03/09/2015] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Streptomycetes produce a plethora of natural products including antibiotics and anticancer drugs, as well as many industrial enzymes. Their mycelial life style is a major bottleneck for industrial exploitation and over decades strain improvement programs have selected production strains with better growth properties. Uncovering the nature of the underlying mutations should allow the ready transfer of desirable traits to other production hosts. RESULTS Here we report that the mat gene cluster, which was identified through reverse engineering of a non-pelleting mutant selected in a chemostat, is key to pellet formation of Streptomyces lividans. Deletion of matA or matB, which encode putative polysaccharide synthases, effects mycelial metamorphosis, with very small and open mycelia. Growth rate and productivity of the matAB null mutant were increased by over 60% as compared to the wild-type strain. CONCLUSION Here, we present a way to counteract pellet formation by streptomycetes, which is one of the major bottlenecks in their industrial application. The mat locus is an ideal target for rational strain design approaches aimed at improving streptomycetes as industrial production hosts.
Collapse
Affiliation(s)
- Dino van Dissel
- Molecular Biotechnology, Institute of Biology, Leiden University, PO Box 9505, 2300RA, Leiden, The Netherlands.
| | - Dennis Claessen
- Molecular Biotechnology, Institute of Biology, Leiden University, PO Box 9505, 2300RA, Leiden, The Netherlands.
| | - Martin Roth
- Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Adolf-Reichwein-Str. 23, 07745, Jena, Germany.
| | - Gilles P van Wezel
- Molecular Biotechnology, Institute of Biology, Leiden University, PO Box 9505, 2300RA, Leiden, The Netherlands.
| |
Collapse
|
16
|
Fang N, Yang H, Fang H, Liu L, Zhang Y, Wang L, Han Y, Zhou D, Yang R. RcsAB is a major repressor of Yersinia biofilm development through directly acting on hmsCDE, hmsT, and hmsHFRS. Sci Rep 2015; 5:9566. [PMID: 25828910 PMCID: PMC4381331 DOI: 10.1038/srep09566] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 03/11/2015] [Indexed: 02/04/2023] Open
Abstract
Biofilm formation in flea gut is important for flea-borne transmission of Yersinia pestis. There are enhancing factors (HmsHFRS, HmsCDE, and HmsT) and inhibiting one (HmsP) for Yersinia pestis biofilm formation. The RcsAB regulatory complex acts as a repressor of Yesinia biofilm formation, and adaptive pseudogenization of rcsA promotes Y. pestis to evolve the ability of biofilm formation in fleas. In this study, we constructed a set of isogenic strains of Y. pestis biovar Microtus, namely WT (RscB+ and RcsA-), c-rcsA (RscB+ and RcsA+), ΔrcsB (RscB- and RcsA-), and ΔrcsB/c-rcsA (RscB- and RcsA+). The phenotypic assays confirmed that RcsB alone (but not RcsA alone) had an inhibiting effect on biofilm/c-di-GMP production whereas assistance of RcsA to RcsB greatly enhanced this inhibiting effect. Further gene regulation experiments showed that RcsB in assistance of RcsA tightly bound to corresponding promoter-proximal regions to achieve transcriptional repression of hmsCDE, hmsT and hmsHFRS and, meanwhile, RcsAB positively regulated hmsP most likely in an indirect manner. Data presented here disclose that pseudogenization of rcsA leads to dramatic remodeling of RcsAB-dependent hms gene expression between Y. pestis and its progenitor Y. pseudotuberculosis, enabling potent production of Y. pestis biofilms in fleas.
Collapse
Affiliation(s)
- Nan Fang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Huiying Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Haihong Fang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Lei Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Yiquan Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Li Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Yanping Han
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| |
Collapse
|
17
|
Modification and periplasmic translocation of the biofilm exopolysaccharide poly-β-1,6-N-acetyl-D-glucosamine. Proc Natl Acad Sci U S A 2014; 111:11013-8. [PMID: 24994902 DOI: 10.1073/pnas.1406388111] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Poly-β-1,6-N-acetyl-D-glucosamine (PNAG) is an exopolysaccharide produced by a wide variety of medically important bacteria. Polyglucosamine subunit B (PgaB) is responsible for the de-N-acetylation of PNAG, a process required for polymer export and biofilm formation. PgaB is located in the periplasm and likely bridges the inner membrane synthesis and outer membrane export machinery. Here, we present structural, functional, and molecular simulation data that suggest PgaB associates with PNAG continuously during periplasmic transport. We show that the association of PgaB's N- and C-terminal domains forms a cleft required for the binding and de-N-acetylation of PNAG. Molecular dynamics (MD) simulations of PgaB show a binding preference for N-acetylglucosamine (GlcNAc) to the N-terminal domain and glucosammonium to the C-terminal domain. Continuous ligand binding density is observed that extends around PgaB from the N-terminal domain active site to an electronegative groove on the C-terminal domain that would allow for a processive mechanism. PgaB's C-terminal domain (PgaB310-672) directly binds PNAG oligomers with dissociation constants of ∼1-3 mM, and the structures of PgaB310-672 in complex with β-1,6-(GlcNAc)6, GlcNAc, and glucosamine reveal a unique binding mode suitable for interaction with de-N-acetylated PNAG (dPNAG). Furthermore, PgaB310-672 contains a β-hairpin loop (βHL) important for binding PNAG that was disordered in previous PgaB42-655 structures and is highly dynamic in the MD simulations. We propose that conformational changes in PgaB310-672 mediated by the βHL on binding of PNAG/dPNAG play an important role in the targeting of the polymer for export and its release.
Collapse
|
18
|
Bobrov AG, Kirillina O, Vadyvaloo V, Koestler BJ, Hinz AK, Mack D, Waters CM, Perry RD. The Yersinia pestis HmsCDE regulatory system is essential for blockage of the oriental rat flea (Xenopsylla cheopis), a classic plague vector. Environ Microbiol 2014; 17:947-59. [PMID: 25586342 DOI: 10.1111/1462-2920.12419] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 01/22/2014] [Accepted: 01/29/2014] [Indexed: 01/04/2023]
Abstract
The second messenger molecule cyclic diguanylate is essential for Yersinia pestis biofilm formation that is important for blockage-dependent plague transmission from fleas to mammals. Two diguanylate cyclases (DGCs) HmsT and Y3730 (HmsD) are responsible for biofilm formation in vitro and biofilm-dependent blockage in the oriental rat flea Xenopsylla cheopis respectively. Here, we have identified a tripartite signalling system encoded by the y3729-y3731 operon that is responsible for regulation of biofilm formation in different environments. We present genetic evidence that a putative inner membrane-anchored protein with a large periplasmic domain Y3729 (HmsC) inhibits HmsD DGC activity in vitro while an outer membrane Pal-like putative lipoprotein Y3731 (HmsE) counteracts HmsC to activate HmsD in the gut of X. cheopis. We propose that HmsE is a critical element in the transduction of environmental signal(s) required for HmsD-dependent biofilm formation.
Collapse
Affiliation(s)
- Alexander G Bobrov
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Yuan B, Cheng A, Wang M. Polysaccharide export outer membrane proteins in Gram-negative bacteria. Future Microbiol 2013; 8:525-35. [DOI: 10.2217/fmb.13.13] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Polysaccharide export outer membrane proteins of Gram-negative bacteria are involved in the export of polysaccharides across the outer membrane. The mechanisms of polysaccharide export across the outer membrane in Gram-negative bacteria are not yet completely clear. However, the mechanisms of polysaccharide assembly in Escherichia coli have been intensively investigated. Here, we mainly review the current understanding of the assembly mechanisms of group 1 capsular polysaccharide, group 2 capsular polysaccharide and lipopolysaccharide of E. coli, and the current structures and interactions of some polysaccharide export outer membrane proteins with other proteins involved in polysaccharide export in Gram-negative bacteria. In addition, LptD may be targeted by peptidomimetic antibiotics in Gram-negative bacteria. We also give insights into the directions of future research regarding the mechanisms of polysaccharide export.
Collapse
Affiliation(s)
- Biao Yuan
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, China.
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, 46 Xinkang Road, Ya’an, Sichuan 625014, China
- Key Laboratory of Animal Disease & Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu city, Sichuan 611130, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, 46 Xinkang Road, Ya’an, Sichuan 625014, China
- Key Laboratory of Animal Disease & Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu city, Sichuan 611130, China
| |
Collapse
|
20
|
Insights into the assembly of the alginate biosynthesis machinery in Pseudomonas aeruginosa. Appl Environ Microbiol 2013; 79:3264-72. [PMID: 23503314 DOI: 10.1128/aem.00460-13] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen of particular significance to cystic fibrosis patients. This bacterium produces the exopolysaccharide alginate, which is an indicator of poor prognosis for these patients. The proteins required for alginate polymerization and secretion are encoded by genes organized in a single operon; however, the existence of internal promoters has been reported. It has been proposed that these proteins form a multiprotein complex which extends from the inner to outer membrane. Here, experimental evidence supporting such a multiprotein complex was obtained via mutual stability analysis, pulldown assays, and coimmunoprecipitation. The impact of the absence of single proteins or subunits on this multiprotein complex, i.e., on the stability of potentially interacting proteins, as well as on alginate production was investigated. Deletion of algK in an alginate-overproducing strain, PDO300, interfered with the polymerization of alginate, suggesting that in the absence of AlgK, the polymerase and copolymerase subunits, Alg8 and Alg44, are destabilized. Based on mutual stability analysis, interactions between AlgE (outer membrane), AlgK (periplasm), AlgX (periplasm), Alg44 (inner membrane), Alg8 (inner membrane), and AlgG (periplasm) were proposed. Coimmunoprecipitation using a FLAG-tagged variant of AlgE further demonstrated its interaction with AlgK. Pulldown assays using histidine-tagged AlgK showed that AlgK interacts with AlgX, which in turn was also copurified with histidine-tagged Alg44. Detection of AlgG and AlgE in PAO1 supported the existence of internal promoters controlling expression of the respective genes. Overall experimental evidence was provided for the existence of a multiprotein complex required for alginate polymerization and secretion.
Collapse
|
21
|
Dual roles of Pseudomonas aeruginosa AlgE in secretion of the virulence factor alginate and formation of the secretion complex. Appl Environ Microbiol 2013; 79:2002-11. [PMID: 23335756 DOI: 10.1128/aem.03960-12] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
AlgE is a monomeric 18-stranded β-barrel protein required for secretion of the extracellular polysaccharide alginate in Pseudomonas aeruginosa. To assess the molecular mechanism of alginate secretion, AlgE was subjected to site-specific and FLAG epitope insertion mutagenesis. Except for β-strands 6 and 10, epitope insertions into the transmembrane β-strands abolished localization of AlgE to the outer membrane. Interestingly, an epitope insertion into β-strand 10 produced alginate and was only detectable in outer membranes isolated from cells grown on solid media. The deletion of nine C-terminal amino acid residues destabilized AlgE. Replacement of amino acids that constitute the highly electropositive pore constriction showed that individual amino acid residues have a specific function in alginate secretion. Two of the triple mutants (K47E+R353A+R459E and R74E+R362A+R459E) severely reduced alginate production. Mutual stability analysis using the algE deletion mutant PDO300ΔalgE(miniCTX) showed the periplasmic alginate biosynthesis proteins AlgK and AlgX were completely destabilized, while the copy number of the inner membrane c-di-GMP receptor Alg44 was reduced. Chromosomal integration of algE restored AlgK, AlgX, and Alg44, providing evidence for a multiprotein complex that spans the cell envelope. Periplasmic turn 4 of AlgE was identified as an important region for maintaining the stability of the putative multiprotein complex.
Collapse
|
22
|
Little DJ, Poloczek J, Whitney JC, Robinson H, Nitz M, Howell PL. The structure- and metal-dependent activity of Escherichia coli PgaB provides insight into the partial de-N-acetylation of poly-β-1,6-N-acetyl-D-glucosamine. J Biol Chem 2012; 287:31126-37. [PMID: 22810235 DOI: 10.1074/jbc.m112.390005] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Exopolysaccharides are required for the development and integrity of biofilms produced by a wide variety of bacteria. In Escherichia coli, partial de-N-acetylation of the exopolysaccharide poly-β-1,6-N-acetyl-D-glucosamine (PNAG) by the periplasmic protein PgaB is required for polysaccharide intercellular adhesin-dependent biofilm formation. To understand the molecular basis for PNAG de-N-acetylation, the structure of PgaB in complex with Ni(2+) and Fe(3+) have been determined to 1.9 and 2.1 Å resolution, respectively, and its activity on β-1,6-GlcNAc oligomers has been characterized. The structure of PgaB reveals two (β/α)(x) barrel domains: a metal-binding de-N-acetylase that is a member of the family 4 carbohydrate esterases (CE4s) and a domain structurally similar to glycoside hydrolases. PgaB displays de-N-acetylase activity on β-1,6-GlcNAc oligomers but not on the β-1,4-(GlcNAc)(4) oligomer chitotetraose and is the first CE4 member to exhibit this substrate specificity. De-N-acetylation occurs in a length-dependent manor, and specificity is observed for the position of de-N-acetylation. A key aspartic acid involved in de-N-acetylation, normally seen in other CE4s, is missing in PgaB, suggesting that the activity of PgaB is attenuated to maintain the low levels of de-N-acetylation of PNAG observed in vivo. The metal dependence of PgaB is different from most CE4s, because PgaB shows increased rates of de-N-acetylation with Co(2+) and Ni(2+) under aerobic conditions, and Co(2+), Ni(2+) and Fe(2+) under anaerobic conditions, but decreased activity with Zn(2+). The work presented herein will guide inhibitor design to combat biofilm formation by E. coli and potentially a wide range of medically relevant bacteria producing polysaccharide intercellular adhesin-dependent biofilms.
Collapse
Affiliation(s)
- Dustin J Little
- Program in Molecular Structure & Function, Research Institute, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | | | | | | | | | | |
Collapse
|
23
|
Bacterial Biofilm and Peculiarities of Its Formation in Plague Agent and in Other Pathogenic Yersinia. PROBLEMS OF PARTICULARLY DANGEROUS INFECTIONS 2011. [DOI: 10.21055/0370-1069-2011-4(110)-5-11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
24
|
Kimbrel JA, Givan SA, Temple TN, Johnson KB, Chang JH. Genome sequencing and comparative analysis of the carrot bacterial blight pathogen, Xanthomonas hortorum pv. carotae M081, for insights into pathogenicity and applications in molecular diagnostics. MOLECULAR PLANT PATHOLOGY 2011; 12:580-94. [PMID: 21722296 PMCID: PMC6640479 DOI: 10.1111/j.1364-3703.2010.00694.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Xanthomonas hortorum pv. carotae (Xhc) is an economically important pathogen of carrots. Its ability to epiphytically colonize foliar surfaces and infect seeds can result in bacterial blight of carrots when grown in warm and humid regions. We used high-throughput sequencing to determine the genome sequence of isolate M081 of Xhc. The short reads were de novo assembled and the resulting contigs were ordered using a syntenic reference genome sequence from X. campestris pv. campestris ATCC 33913. The improved, high-quality draft genome sequence of Xhc M081 is the first for its species. Despite its distance from other sequenced xanthomonads, Xhc M081 still shared a large inventory of orthologous genes, including many clusters of virulence genes common to other foliar pathogenic species of Xanthomonas. We also mined the genome sequence and identified at least 21 candidate type III effector genes. Two were members of the avrBs2 and xopQ families that demonstrably elicit effector-triggered immunity. We showed that expression in planta of these two type III effectors from Xhc M081 was sufficient to elicit resistance gene-mediated hypersensitive responses in heterologous plants, indicating a possibility for resistance gene-mediated control of Xhc. Finally, we identified regions unique to the Xhc M081 genome sequence, and demonstrated their potential in the design of molecular diagnostics for this pathogen.
Collapse
Affiliation(s)
- Jeffrey A Kimbrel
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, USA
| | | | | | | | | |
Collapse
|
25
|
Structural basis for alginate secretion across the bacterial outer membrane. Proc Natl Acad Sci U S A 2011; 108:13083-8. [PMID: 21778407 DOI: 10.1073/pnas.1104984108] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pseudomonas aeruginosa is the predominant pathogen associated with chronic lung infection among cystic fibrosis patients. During colonization of the lung, P. aeruginosa converts to a mucoid phenotype characterized by the overproduction of the exopolysaccharide alginate. Secretion of newly synthesized alginate across the outer membrane is believed to occur through the outer membrane protein AlgE. Here we report the 2.3 Å crystal structure of AlgE, which reveals a monomeric 18-stranded β-barrel characterized by a highly electropositive pore constriction formed by an arginine-rich conduit that likely acts as a selectivity filter for the negatively charged alginate polymer. Interestingly, the pore constriction is occluded on either side by extracellular loop L2 and an unusually long periplasmic loop, T8. In halide efflux assays, deletion of loop T8 (ΔT8-AlgE) resulted in a threefold increase in anion flux compared to the wild-type or ΔL2-AlgE supporting the idea that AlgE forms a transport pathway through the membrane and suggesting that transport is regulated by T8. This model is further supported by in vivo experiments showing that complementation of an algE deletion mutant with ΔT8-AlgE impairs alginate production. Taken together, these studies support a mechanism for exopolysaccharide export across the outer membrane that is distinct from the Wza-mediated translocation observed in canonical capsular polysaccharide export systems.
Collapse
|
26
|
Zhou D, Yang R. Formation and regulation of Yersinia biofilms. Protein Cell 2011; 2:173-9. [PMID: 21380640 DOI: 10.1007/s13238-011-1024-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2011] [Accepted: 02/18/2011] [Indexed: 12/31/2022] Open
Abstract
Flea-borne transmission is a recent evolutionary adaptation that distinguishes the deadly Yersinia pestis from its progenitor Y. Pseudotuberculosis, a mild pathogen transmitted via the food-borne route. Y. Pestis synthesizes biofilms in the flea gut, which is important for fleaborne transmission. Yersinia biofilms are bacterial colonies surrounded by extracellular matrix primarily containing a homopolymer of N-acetyl-D-glucosamine that are synthesized by a set of specific enzymes. Yersinia biofilm production is tightly regulated at both transcriptional and post-transcriptional levels. All the known structural genes responsible for biofilm production are harbored in both Y. Pseudotuberculosis and Y. Pestis, but Y. Pestis has evolved changes in the regulation of biofilm development, thereby acquiring efficient arthropod-borne transmission.
Collapse
Affiliation(s)
- Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China.
| | | |
Collapse
|
27
|
Bobrov AG, Kirillina O, Ryjenkov DA, Waters CM, Price PA, Fetherston JD, Mack D, Goldman WE, Gomelsky M, Perry RD. Systematic analysis of cyclic di-GMP signalling enzymes and their role in biofilm formation and virulence in Yersinia pestis. Mol Microbiol 2011; 79:533-51. [PMID: 21219468 PMCID: PMC3058942 DOI: 10.1111/j.1365-2958.2010.07470.x] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Cyclic di-GMP (c-di-GMP) is a signalling molecule that governs the transition between planktonic and biofilm states. Previously, we showed that the diguanylate cyclase HmsT and the putative c-di-GMP phosphodiesterase HmsP inversely regulate biofilm formation through control of HmsHFRS-dependent poly-β-1,6-N-acetylglucosamine synthesis. Here, we systematically examine the functionality of the genes encoding putative c-di-GMP metabolic enzymes in Yersinia pestis. We determine that, in addition to hmsT and hmsP, only the gene y3730 encodes a functional enzyme capable of synthesizing c-di-GMP. The seven remaining genes are pseudogenes or encode proteins that do not function catalytically or are not expressed. Furthermore, we show that HmsP has c-di-GMP-specific phosphodiesterase activity. We report that a mutant incapable of c-di-GMP synthesis is unaffected in virulence in plague mouse models. Conversely, an hmsP mutant, unable to degrade c-di-GMP, is defective in virulence by a subcutaneous route of infection due to poly-β-1,6-N-acetylglucosamine overproduction. This suggests that c-di-GMP signalling is not only dispensable but deleterious for Y. pestis virulence. Our results show that a key event in the evolution of Y. pestis from the ancestral Yersinia pseudotuberculosis was a significant reduction in the complexity of its c-di-GMP signalling network likely resulting from the different disease cycles of these human pathogens.
Collapse
Affiliation(s)
- Alexander G Bobrov
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, KY, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Wortham BW, Oliveira MA, Fetherston JD, Perry RD. Polyamines are required for the expression of key Hms proteins important for Yersinia pestis biofilm formation. Environ Microbiol 2010; 12:2034-47. [PMID: 20406298 PMCID: PMC3039482 DOI: 10.1111/j.1462-2920.2010.02219.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We previously showed that mutations in the genes encoding the two main biosynthetic enzymes responsible for polyamine production, arginine decarboxylase (SpeA) and ornithine decarboxylase (SpeC) cause a loss of biofilm formation in Yersinia pestis. In Y. pestis the development of a biofilm is dependent on 6 Hms (hemin storage) proteins (HmsH, F, R, S, T and P) grouped into 3 operons; hmsHFRS, hmsT and hmsP. In this article we show that polyamines are necessary to maintain the levels of key Hms proteins. In the absence of polyamines there is an approximately 93%, approximately 43% and approximately 90% reduction in protein levels of HmsR, HmsS and HmsT respectively. Overexpression of hmsR and hmsT from plasmids alone can restore biofilm formation to a SpeA(-)SpeC(-) mutant. Addition of exogenous putrescine also restores normal levels of HmsR, HmsS, HmsT and biofilm production. Analyses using transcriptional reporters and quantitative RT-PCR indicate that the initiation of transcription and mRNA stability are not reduced by polyamine deficiency. Instead, translational reporters indicate that polyamines function at least in part by modulating the translation of HmsR and HmsT. Although construction of a consensus Shine-Dalgarno sequence upstream of hmsT modestly reduced the stimulation of translation by putrescine, additional mechanisms likely contribute to the polyamine-dependent expression of HmsT. Finally, we have shown that polyamines play a role in bubonic plague.
Collapse
Affiliation(s)
- Brian W. Wortham
- Dept of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
| | - Marcos A. Oliveira
- Dept of Pharmaceutical Sciences, University of The Incarnate Word, San Antonio, Texas 78209, USA
| | - Jacqueline D. Fetherston
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY 40536, USA
| | - Robert D. Perry
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
29
|
Fetherston JD, Kirillina O, Bobrov AG, Paulley JT, Perry RD. The yersiniabactin transport system is critical for the pathogenesis of bubonic and pneumonic plague. Infect Immun 2010; 78:2045-52. [PMID: 20160020 PMCID: PMC2863531 DOI: 10.1128/iai.01236-09] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 11/30/2009] [Accepted: 02/04/2010] [Indexed: 01/18/2023] Open
Abstract
Iron acquisition from the host is an important step in the pathogenic process. While Yersinia pestis has multiple iron transporters, the yersiniabactin (Ybt) siderophore-dependent system plays a major role in iron acquisition in vitro and in vivo. In this study, we determined that the Ybt system is required for the use of iron bound by transferrin and lactoferrin and examined the importance of the Ybt system for virulence in mouse models of bubonic and pneumonic plague. Y. pestis mutants unable to either transport Ybt or synthesize the siderophore were both essentially avirulent via subcutaneous injection (bubonic plague model). Surprisingly, via intranasal instillation (pneumonic plague model), we saw a difference in the virulence of Ybt biosynthetic and transport mutants. Ybt biosynthetic mutants displayed an approximately 24-fold-higher 50% lethal dose (LD(50)) than transport mutants. In contrast, under iron-restricted conditions in vitro, a Ybt transport mutant had a more severe growth defect than the Ybt biosynthetic mutant. Finally, a Delta pgm mutant had a greater loss of virulence than the Ybt biosynthetic mutant, indicating that the 102-kb pgm locus encodes a virulence factor, in addition to Ybt, that plays a role in the pathogenesis of pneumonic plague.
Collapse
Affiliation(s)
- Jacqueline D. Fetherston
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, Kentucky 40536-0298
| | - Olga Kirillina
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, Kentucky 40536-0298
| | - Alexander G. Bobrov
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, Kentucky 40536-0298
| | - James T. Paulley
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, Kentucky 40536-0298
| | - Robert D. Perry
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, Kentucky 40536-0298
| |
Collapse
|
30
|
Vetter SM, Eisen RJ, Schotthoefer AM, Montenieri JA, Holmes JL, Bobrov AG, Bearden SW, Perry RD, Gage KL. Biofilm formation is not required for early-phase transmission of Yersinia pestis. MICROBIOLOGY-SGM 2010; 156:2216-2225. [PMID: 20395271 PMCID: PMC3068684 DOI: 10.1099/mic.0.037952-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Early-phase transmission (EPT) is a recently described model of plague transmission that explains the rapid spread of disease from flea to mammal host during an epizootic. Unlike the traditional blockage-dependent model of plague transmission, EPT can occur when a flea takes its first blood meal after initially becoming infected by feeding on a bacteraemic host. Blockage of the flea gut results from biofilm formation in the proventriculus, mediated by the gene products found in the haemin storage (hms) locus of the Yersinia pestis chromosome. Although biofilms are required for blockage-dependent transmission, the role of biofilms in EPT has yet to be determined. An artificial feeding system was used to feed Xenopsylla cheopis and Oropsylla montana rat blood spiked with the parental Y. pestis strain KIM5(pCD1)+, two different biofilm-deficient mutants (ΔhmsT, ΔhmsR), or a biofilm-overproducer mutant (ΔhmsP). Infected fleas were then allowed to feed on naïve Swiss Webster mice for 1–4 days after infection, and the mice were monitored for signs of infection. We also determined the bacterial loads of each flea that fed upon naïve mice. Biofilm-defective mutants transmitted from X. cheopis and O. montana as efficiently as the parent strain, whereas the EPT efficiency of fleas fed the biofilm-overproducing strain was significantly less than that of fleas fed either the parent or a biofilm-deficient strain. Fleas infected with a biofilm-deficient strain harboured lower bacterial loads 4 days post-infection than fleas infected with the parent strain. Thus, defects in biofilm formation did not prevent flea-borne transmission of Y. pestis in our EPT model, although biofilm overproduction inhibited efficient EPT. Our results also indicate, however, that biofilms may play a role in infection persistence in the flea.
Collapse
Affiliation(s)
- Sara M Vetter
- Bacterial Diseases Branch, Division of Vector Borne Diseases, National Center for Enteric and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 3150 Rampart Rd, Fort Collins, CO 80521, USA
| | - Rebecca J Eisen
- Bacterial Diseases Branch, Division of Vector Borne Diseases, National Center for Enteric and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 3150 Rampart Rd, Fort Collins, CO 80521, USA
| | - Anna M Schotthoefer
- Bacterial Diseases Branch, Division of Vector Borne Diseases, National Center for Enteric and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 3150 Rampart Rd, Fort Collins, CO 80521, USA
| | - John A Montenieri
- Bacterial Diseases Branch, Division of Vector Borne Diseases, National Center for Enteric and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 3150 Rampart Rd, Fort Collins, CO 80521, USA
| | - Jennifer L Holmes
- Bacterial Diseases Branch, Division of Vector Borne Diseases, National Center for Enteric and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 3150 Rampart Rd, Fort Collins, CO 80521, USA
| | - Alexander G Bobrov
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, MS415 Medical Center, Lexington, KY 40536, USA
| | - Scott W Bearden
- Bacterial Diseases Branch, Division of Vector Borne Diseases, National Center for Enteric and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 3150 Rampart Rd, Fort Collins, CO 80521, USA
| | - Robert D Perry
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, MS415 Medical Center, Lexington, KY 40536, USA
| | - Kenneth L Gage
- Bacterial Diseases Branch, Division of Vector Borne Diseases, National Center for Enteric and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 3150 Rampart Rd, Fort Collins, CO 80521, USA
| |
Collapse
|