1
|
Ferrara G, Colitti B, Gabriela FR, Rosati S, Iovane G, Pagnini U, Montagnaro S. Efficiency of recombinant Ybgf in a double antigen-ELISA for the detection of Coxiella antibodies in ruminants. Vet Anim Sci 2024; 25:100366. [PMID: 38957741 PMCID: PMC11217752 DOI: 10.1016/j.vas.2024.100366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024] Open
Abstract
Q fever is a zoonosis whose main reservoirs are domestic ruminants. Surveillance in these species is carried out mainly with serological tests, which, however, have limited diagnostic performance, and their manufacturing requires laboratories equipped with high biosafety requirements for antigen production. Recombinant ELISAs do not depend on these requirements and, being based on a single antigen, can reduce potential false positivity by identifying antibodies specific to a phase of infection. The aim of this study was to apply a new technology (dual antigen test) to a recombinant protein (Ybgf), an antigen produced in recombinant form and already used in previous studies for the design of an indirect ELISA. The successfully produced recombinant antigen was used to coat 96-well plates and, at the same time, another antigen aliquot was conjugated with HRP to obtain an HRP-conjugated Ybgf. After setting the test conditions, the results obtained with the recombinant double antigen test were compared with those obtained with a commercial assay (considered as reference assay) testing a total of 514 ruminant samples (280 goats and 234 cattle). A concordance of 86.2 and a Cohen's Kappa value of 0.72 were obtained, with no significant difference between the two species tested. Notably, the test proved to be highly specific, having correctly identified 250 out of 253 animals. This research represents an additional effort to use recombinant antigens to enhance serological methods in veterinary medicine. In a "one-health scenario", improving the performance of serological tests used in veterinary practice also means improving the surveillance of this infection.
Collapse
Affiliation(s)
- Gianmarco Ferrara
- Department of Veterinary Medicine and Animal Productions, University of Naples, “Federico II”, Naples 80137, Italy
| | - Barbara Colitti
- Department of Veterinary Science, University of Turin, Grugliasco, TO 10095, Italy
| | | | - Sergio Rosati
- Department of Veterinary Science, University of Turin, Grugliasco, TO 10095, Italy
| | - Giuseppe Iovane
- Department of Veterinary Medicine and Animal Productions, University of Naples, “Federico II”, Naples 80137, Italy
| | - Ugo Pagnini
- Department of Veterinary Medicine and Animal Productions, University of Naples, “Federico II”, Naples 80137, Italy
| | - Serena Montagnaro
- Department of Veterinary Medicine and Animal Productions, University of Naples, “Federico II”, Naples 80137, Italy
| |
Collapse
|
2
|
Ferrara G, Colitti B, Flores-Ramirez G, Pagnini U, Iovane G, Rosati S, Montagnaro S. Detection of Coxiella antibodies in ruminants using a SucB recombinant antigen. J Vet Diagn Invest 2023; 35:721-726. [PMID: 37705242 PMCID: PMC10621550 DOI: 10.1177/10406387231199964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023] Open
Abstract
The detection of Coxiella burnetii in ruminants remains challenging despite the use of new technology and the accumulation of novel knowledge. Serology tools, the primary methods of infection surveillance in veterinary medicine, have limitations. We used recombinant antigen production to develop an ELISA based on the SucB protein, one of the major immunodominant antigens described in humans and laboratory animals. We produced the antigen successfully in an Escherichia coli heterologous system, confirmed by sequencing and mass spectrometry, and seen as a band of ~50 kDa in SDS-PAGE and on western blot analysis. We compared the performance of the recombinant ELISA with a commercial ELISA. We observed agreement of 83.5% and a substantial Cohen κ value of 0.67 in our pilot study.
Collapse
Affiliation(s)
- Gianmarco Ferrara
- Department of Veterinary Medicine and Animal Productions, University of Naples, “Federico II”, Naples, Italy
| | - Barbara Colitti
- Department of Veterinary Science, University of Turin, Grugliasco, TO, Italy
| | | | - Ugo Pagnini
- Department of Veterinary Medicine and Animal Productions, University of Naples, “Federico II”, Naples, Italy
| | - Giuseppe Iovane
- Department of Veterinary Medicine and Animal Productions, University of Naples, “Federico II”, Naples, Italy
| | - Sergio Rosati
- Department of Veterinary Science, University of Turin, Grugliasco, TO, Italy
| | - Serena Montagnaro
- Department of Veterinary Medicine and Animal Productions, University of Naples, “Federico II”, Naples, Italy
| |
Collapse
|
3
|
Bach E, Fitzgerald SF, Williams-MacDonald SE, Mitchell M, Golde WT, Longbottom D, Nisbet AJ, Dinkla A, Sullivan E, Pinapati RS, Tan JC, Joosten LAB, Roest HJ, Østerbye T, Koets AP, Buus S, McNeilly TN. Genome-wide epitope mapping across multiple host species reveals significant diversity in antibody responses to Coxiella burnetii vaccination and infection. Front Immunol 2023; 14:1257722. [PMID: 37954609 PMCID: PMC10637584 DOI: 10.3389/fimmu.2023.1257722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/19/2023] [Indexed: 11/14/2023] Open
Abstract
Coxiella burnetii is an important zoonotic bacterial pathogen of global importance, causing the disease Q fever in a wide range of animal hosts. Ruminant livestock, in particular sheep and goats, are considered the main reservoir of human infection. Vaccination is a key control measure, and two commercial vaccines based on formalin-inactivated C. burnetii bacterins are currently available for use in livestock and humans. However, their deployment is limited due to significant reactogenicity in individuals previously sensitized to C. burnetii antigens. Furthermore, these vaccines interfere with available serodiagnostic tests which are also based on C. burnetii bacterin antigens. Defined subunit antigen vaccines offer significant advantages, as they can be engineered to reduce reactogenicity and co-designed with serodiagnostic tests to allow discrimination between vaccinated and infected individuals. This study aimed to investigate the diversity of antibody responses to C. burnetii vaccination and/or infection in cattle, goats, humans, and sheep through genome-wide linear epitope mapping to identify candidate vaccine and diagnostic antigens within the predicted bacterial proteome. Using high-density peptide microarrays, we analyzed the seroreactivity in 156 serum samples from vaccinated and infected individuals to peptides derived from 2,092 open-reading frames in the C. burnetii genome. We found significant diversity in the antibody responses within and between species and across different types of C. burnetii exposure. Through the implementation of three different vaccine candidate selection methods, we identified 493 candidate protein antigens for protein subunit vaccine design or serodiagnostic evaluation, of which 65 have been previously described. This is the first study to investigate multi-species seroreactivity against the entire C. burnetii proteome presented as overlapping linear peptides and provides the basis for the selection of antigen targets for next-generation Q fever vaccines and diagnostic tests.
Collapse
Affiliation(s)
- Emil Bach
- Department of Immunology & Microbiology, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | | | | - Annemieke Dinkla
- Department of Bacteriology, Host-Pathogen Interaction and Diagnostic Development, Wageningen Bioveterinary Research, Lelystad, Netherlands
| | - Eric Sullivan
- Nimble Therapeutics, Inc., Madison, WI, United States
| | | | - John C. Tan
- Nimble Therapeutics, Inc., Madison, WI, United States
| | - Leo A. B. Joosten
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Hendrik-Jan Roest
- Department of Bacteriology, Host-Pathogen Interaction and Diagnostic Development, Wageningen Bioveterinary Research, Lelystad, Netherlands
- Ministry of Agriculture, Nature and Food Quality, Den Haag, Netherlands
- Department of Infection and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Thomas Østerbye
- Department of Immunology & Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Ad P. Koets
- Department of Bacteriology, Host-Pathogen Interaction and Diagnostic Development, Wageningen Bioveterinary Research, Lelystad, Netherlands
| | - Søren Buus
- Department of Immunology & Microbiology, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
4
|
Ramirez A, Felgner J, Jain A, Jan S, Albin TJ, Badten AJ, Gregory AE, Nakajima R, Jasinskas A, Felgner PL, Burkhardt AM, Davies DH, Wang SW. Engineering Protein Nanoparticles Functionalized with an Immunodominant Coxiella burnetii Antigen to Generate a Q Fever Vaccine. Bioconjug Chem 2023; 34:1653-1666. [PMID: 37682243 PMCID: PMC10515490 DOI: 10.1021/acs.bioconjchem.3c00317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/25/2023] [Indexed: 09/09/2023]
Abstract
Coxiella burnetii is the causative agent of Q fever, for which there is yet to be an FDA-approved vaccine. This bacterial pathogen has both extra- and intracellular stages in its life cycle, and therefore both a cell-mediated (i.e., T lymphocyte) and humoral (i.e., antibody) immune response are necessary for effective eradication of this pathogen. However, most proposed vaccines elicit strong responses to only one mechanism of adaptive immunity, and some can either cause reactogenicity or lack sufficient immunogenicity. In this work, we aim to apply a nanoparticle-based platform toward producing both antibody and T cell immune responses against C. burnetii. We investigated three approaches for conjugation of the immunodominant outer membrane protein antigen (CBU1910) to the E2 nanoparticle to obtain a consistent antigen orientation: direct genetic fusion, high affinity tris-NTA-Ni conjugation to polyhistidine-tagged CBU1910, and the SpyTag/SpyCatcher (ST/SC) system. Overall, we found that the ST/SC approach yielded nanoparticles loaded with the highest number of antigens while maintaining stability, enabling formulations that could simultaneously co-deliver the protein antigen (CBU1910) and adjuvant (CpG1826) on one nanoparticle (CBU1910-CpG-E2). Using protein microarray analyses, we found that after immunization, antigen-bound nanoparticle formulations elicited significantly higher antigen-specific IgG responses than soluble CBU1910 alone and produced more balanced IgG1/IgG2c ratios. Although T cell recall assays from these protein antigen formulations did not show significant increases in antigen-specific IFN-γ production compared to soluble CBU1910 alone, nanoparticles conjugated with a CD4 peptide epitope from CBU1910 generated elevated T cell responses in mice to both the CBU1910 peptide epitope and whole CBU1910 protein. These investigations highlight the feasibility of conjugating antigens to nanoparticles for tuning and improving both humoral- and cell-mediated adaptive immunity against C. burnetii.
Collapse
Affiliation(s)
- Aaron Ramirez
- Department
of Chemical and Biomolecular Engineering, Vaccine Research and Development
Center, Department of Physiology and Biophysics, Department of Chemistry, Department of Biomedical
Engineering, Chao Family Comprehensive Cancer Center, and Institute for Immunology, University of California, Irvine, California 92697, United States
| | - Jiin Felgner
- Department
of Chemical and Biomolecular Engineering, Vaccine Research and Development
Center, Department of Physiology and Biophysics, Department of Chemistry, Department of Biomedical
Engineering, Chao Family Comprehensive Cancer Center, and Institute for Immunology, University of California, Irvine, California 92697, United States
| | - Aarti Jain
- Department
of Chemical and Biomolecular Engineering, Vaccine Research and Development
Center, Department of Physiology and Biophysics, Department of Chemistry, Department of Biomedical
Engineering, Chao Family Comprehensive Cancer Center, and Institute for Immunology, University of California, Irvine, California 92697, United States
| | - Sharon Jan
- Department
of Chemical and Biomolecular Engineering, Vaccine Research and Development
Center, Department of Physiology and Biophysics, Department of Chemistry, Department of Biomedical
Engineering, Chao Family Comprehensive Cancer Center, and Institute for Immunology, University of California, Irvine, California 92697, United States
| | - Tyler J. Albin
- Department
of Chemical and Biomolecular Engineering, Vaccine Research and Development
Center, Department of Physiology and Biophysics, Department of Chemistry, Department of Biomedical
Engineering, Chao Family Comprehensive Cancer Center, and Institute for Immunology, University of California, Irvine, California 92697, United States
| | - Alexander J. Badten
- Department
of Chemical and Biomolecular Engineering, Vaccine Research and Development
Center, Department of Physiology and Biophysics, Department of Chemistry, Department of Biomedical
Engineering, Chao Family Comprehensive Cancer Center, and Institute for Immunology, University of California, Irvine, California 92697, United States
| | - Anthony E. Gregory
- Department
of Chemical and Biomolecular Engineering, Vaccine Research and Development
Center, Department of Physiology and Biophysics, Department of Chemistry, Department of Biomedical
Engineering, Chao Family Comprehensive Cancer Center, and Institute for Immunology, University of California, Irvine, California 92697, United States
| | - Rie Nakajima
- Department
of Chemical and Biomolecular Engineering, Vaccine Research and Development
Center, Department of Physiology and Biophysics, Department of Chemistry, Department of Biomedical
Engineering, Chao Family Comprehensive Cancer Center, and Institute for Immunology, University of California, Irvine, California 92697, United States
| | - Algimantas Jasinskas
- Department
of Chemical and Biomolecular Engineering, Vaccine Research and Development
Center, Department of Physiology and Biophysics, Department of Chemistry, Department of Biomedical
Engineering, Chao Family Comprehensive Cancer Center, and Institute for Immunology, University of California, Irvine, California 92697, United States
| | - Philip L. Felgner
- Department
of Chemical and Biomolecular Engineering, Vaccine Research and Development
Center, Department of Physiology and Biophysics, Department of Chemistry, Department of Biomedical
Engineering, Chao Family Comprehensive Cancer Center, and Institute for Immunology, University of California, Irvine, California 92697, United States
| | - Amanda M. Burkhardt
- Department
of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, California 90089, United States
| | - D. Huw Davies
- Department
of Chemical and Biomolecular Engineering, Vaccine Research and Development
Center, Department of Physiology and Biophysics, Department of Chemistry, Department of Biomedical
Engineering, Chao Family Comprehensive Cancer Center, and Institute for Immunology, University of California, Irvine, California 92697, United States
| | - Szu-Wen Wang
- Department
of Chemical and Biomolecular Engineering, Vaccine Research and Development
Center, Department of Physiology and Biophysics, Department of Chemistry, Department of Biomedical
Engineering, Chao Family Comprehensive Cancer Center, and Institute for Immunology, University of California, Irvine, California 92697, United States
| |
Collapse
|
5
|
Jan S, Fratzke AP, Felgner J, Hernandez-Davies JE, Liang L, Nakajima R, Jasinskas A, Supnet M, Jain A, Felgner PL, Davies DH, Gregory AE. Multivalent vaccines demonstrate immunogenicity and protect against Coxiella burnetii aerosol challenge. Front Immunol 2023; 14:1192821. [PMID: 37533862 PMCID: PMC10390735 DOI: 10.3389/fimmu.2023.1192821] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/16/2023] [Indexed: 08/04/2023] Open
Abstract
Vaccines are among the most cost-effective public health measures for controlling infectious diseases. Coxiella burnetii is the etiological agent of Q fever, a disease with a wide clinical spectrum that ranges from mild symptoms, such as fever and fatigue, to more severe disease, such as pneumonia and endocarditis. The formalin-inactivated whole-cell vaccine Q-VAX® contains hundreds of antigens and confers lifelong protection in humans, but prior sensitization from infection or vaccination can result in deleterious reactogenic responses to vaccination. Consequently, there is great interest in developing non-reactogenic alternatives based on adjuvanted recombinant proteins. In this study, we aimed to develop a multivalent vaccine that conferred protection with reduced reactogenicity. We hypothesized that a multivalent vaccine consisting of multiple antigens would be more immunogenic and protective than a monovalent vaccine owing to the large number of potential protective antigens in the C. burnetii proteome. To address this, we identified immunogenic T and B cell antigens, and selected proteins were purified to evaluate with a combination adjuvant (IVAX-1), with or without C. burnetii lipopolysaccharide (LPS) in immunogenicity studies in vivo in mice and in a Hartley guinea pig intratracheal aerosol challenge model using C. burnetii strain NMI RSA 493. The data showed that multivalent vaccines are more immunogenic than monovalent vaccines and more closely emulate the protection achieved by Q-VAX. Although six antigens were the most immunogenic, we also discovered that multiplexing beyond four antigens introduces detectable reactogenicity, indicating that there is an upper limit to the number of antigens that can be safely included in a multivalent Q-fever vaccine. C. burnetii LPS also demonstrates efficacy as a vaccine antigen in conferring protection in an otherwise monovalent vaccine formulation, suggesting that its addition in multivalent vaccines, as demonstrated by a quadrivalent formulation, would improve protective responses.
Collapse
Affiliation(s)
- Sharon Jan
- Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California, Irvine, Irvine, CA, United States
| | - Alycia P. Fratzke
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, TX, United States
- Department of Pathology, Charles River Laboratories, Reno, NV, United States
| | - Jiin Felgner
- Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California, Irvine, Irvine, CA, United States
| | - Jenny E. Hernandez-Davies
- Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California, Irvine, Irvine, CA, United States
| | - Li Liang
- Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California, Irvine, Irvine, CA, United States
| | - Rie Nakajima
- Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California, Irvine, Irvine, CA, United States
| | - Algimantas Jasinskas
- Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California, Irvine, Irvine, CA, United States
| | - Medalyn Supnet
- Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California, Irvine, Irvine, CA, United States
| | - Aarti Jain
- Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California, Irvine, Irvine, CA, United States
| | - Philip L. Felgner
- Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California, Irvine, Irvine, CA, United States
| | - D. Huw Davies
- Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California, Irvine, Irvine, CA, United States
| | - Anthony E. Gregory
- Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
6
|
Ferrara G, Colitti B, Pagnini U, Iovane G, Rosati S, Montagnaro S. Characterization of recombinant Ybgf protein for the detection of Coxiella antibodies in ruminants. J Vet Diagn Invest 2022; 34:646-653. [PMID: 35610946 DOI: 10.1177/10406387221093581] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Q fever remains a One Health problem, posing a zoonotic threat and causing significant economic losses to the livestock industry. The advancement of detection tools is critical to the effective control of infection. In humans, laboratory investigations depend largely on the immunofluorescence assay, considered the gold standard. In contrast, serologic tools routinely used for veterinary screening have several gaps, resulting in interpretations that are frequently misleading. We investigated the potential application of recombinant Ybgf antigen (r-Ybgf), a periplasmic protein described as one of the most immunodominant antigens in humans, in an indirect ELISA. Following successful expression in the prokaryotic system and the preliminary evaluation of immunoreactivity in western blot, we used r-Ybgf to develop an in-house ELISA using serum samples from sheep, goats, and cattle, which were tested in parallel with an Idexx ELISA kit. The results obtained with the 2 tests were compared, and r-Ybgf performed favorably, with 81.8% sensitivity and 90.1% specificity and substantial agreement, as revealed by receiver operating characteristic analysis. Moreover, we evaluated the serologic response against phase I (PhI) and phase II (PhII) antigens, and r-Ybgf antigen induced by vaccination, using phase-specific ELISAs. The dynamics of antibody response showed a significant increase in reactivity against PhI and PhII, but not against r-Ybgf, antigens. This property may be very useful given the absence of a protocol for the differentiation of infected from vaccinated animals.
Collapse
Affiliation(s)
- Gianmarco Ferrara
- Department of Veterinary Medicine and Animal Productions, University of Naples, "Federico II", Naples, Italy
| | - Barbara Colitti
- Department of Veterinary Science, University of Turin, Grugliasco, TO, Italy
| | - Ugo Pagnini
- Department of Veterinary Medicine and Animal Productions, University of Naples, "Federico II", Naples, Italy
| | - Giuseppe Iovane
- Department of Veterinary Medicine and Animal Productions, University of Naples, "Federico II", Naples, Italy
| | - Sergio Rosati
- Department of Veterinary Science, University of Turin, Grugliasco, TO, Italy
| | - Serena Montagnaro
- Department of Veterinary Medicine and Animal Productions, University of Naples, "Federico II", Naples, Italy
| |
Collapse
|
7
|
Gregory AE, van Schaik EJ, Fratzke AP, Russell-Lodrigue KE, Farris CM, Samuel JE. Soluble antigens derived from Coxiella burnetii elicit protective immunity in three animal models without inducing hypersensitivity. Cell Rep Med 2021; 2:100461. [PMID: 35028605 PMCID: PMC8714860 DOI: 10.1016/j.xcrm.2021.100461] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 09/27/2021] [Accepted: 11/10/2021] [Indexed: 11/25/2022]
Abstract
Q fever is caused by the intracellular bacterium Coxiella burnetii, for which there is no approved vaccine in the United States. A formalin-inactivated whole-cell vaccine (WCV) from virulent C. burnetii NMI provides single-dose long-lived protection, but concerns remain over vaccine reactogenicity. We therefore sought an alternate approach by purifying native C. burnetii antigens from the clonally derived avirulent NMII strain. A soluble bacterial extract, termed Sol II, elicits high-titer, high-avidity antibodies and induces a CD4 T cell response that confers protection in naive mice. In addition, Sol II protects against pulmonary C. burnetii challenge in three animal models without inducing hypersensitivity. An NMI-derived extract, Sol I, enhances protection further and outperforms the WCV gold standard. Collectively, these data represent a promising approach to design highly effective, non-reactogenic Q fever vaccines.
Collapse
Affiliation(s)
- Anthony E. Gregory
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University, Medical Research and Education Building, Bryan, TX 77807, USA
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, CA 92617, USA
| | - Erin J. van Schaik
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University, Medical Research and Education Building, Bryan, TX 77807, USA
| | - Alycia P. Fratzke
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University, Medical Research and Education Building, Bryan, TX 77807, USA
| | - Kasi E. Russell-Lodrigue
- Tulane University, School of Medicine, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Christina M. Farris
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University, Medical Research and Education Building, Bryan, TX 77807, USA
| | - James E. Samuel
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University, Medical Research and Education Building, Bryan, TX 77807, USA
| |
Collapse
|
8
|
Miller HK, Kersh GJ. Analysis of recombinant proteins for Q fever diagnostics. Sci Rep 2020; 10:20934. [PMID: 33262373 PMCID: PMC7708433 DOI: 10.1038/s41598-020-77343-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 11/06/2020] [Indexed: 11/20/2022] Open
Abstract
Serology is essential for Q fever diagnostics, a disease caused by the bacterial pathogen Coxiella burnetii. The gold standard test is an immunofluorescence assay utilizing whole cell antigens, which are both dangerous and laborious to produce. Complexities of the antigen coupled with the subjective nature of the assay lead to decreased uniformity of test results and underscore the need for improved methodologies. Thirty-three C. burnetii proteins, previously identified as immunoreactive, were screened for reactivity to naturally infected goat serum. Based on reactivity, 10 proteins were analyzed in a secondary screen against human serum from healthy donors. Assay sensitivity and specificity ranged from 21 to 71% and 90 to 100%, respectively. Three promising antigens were identified based on receiver operating characteristic curve analysis (CBU_1718, CBU_0307, and CBU_1398). Five multiplex assays failed to outperform the individual proteins, with sensitivities and specificities ranging from 29 to 57% and 90 to 100%, respectively. Truncating the top antigen, CBU_1718, had no effect on specificity (90%); yet sensitivity decreased dramatically (71% to 21%). Through this study, we have expanded the subset of C. burnetii immunoreactive proteins validated by enzyme-linked immunosorbent assay and demonstrate the effect of novel antigen combinations and protein truncations on assay performance.
Collapse
Affiliation(s)
- Halie K Miller
- Rickettsial Zoonoses Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | - Gilbert J Kersh
- Rickettsial Zoonoses Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| |
Collapse
|
9
|
Immunoinformatics Approach to Engineer a Potent Poly-epitope Fusion Protein Vaccine Against Coxiella burnetii. Int J Pept Res Ther 2020. [DOI: 10.1007/s10989-019-10013-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
10
|
Evaluation of the Diagnostic Potential of Recombinant Coxiella burnetii Com1 in an ELISA for the Diagnosis of Q Fever in Sheep, Goats and Cattle. Microorganisms 2020; 8:microorganisms8081235. [PMID: 32823774 PMCID: PMC7465334 DOI: 10.3390/microorganisms8081235] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/06/2020] [Accepted: 08/11/2020] [Indexed: 12/13/2022] Open
Abstract
Coxiella burnetii is the causative agent of Q fever, a zoonosis infecting domestic ruminants and humans. Currently used routine diagnostic tools offer limited sensitivity and specificity and symptomless infected animals may be missed. Therefore, diagnostic tools of higher sensitivity and specificity must be developed. For this purpose, the C. burnetii outer membrane protein Com1 was cloned and expressed in Escherichia coli. The His-tagged recombinant protein was purified and used in an indirect enzyme-linked immunosorbent assay (ELISA). Assay performance was tested with more than 400 positive and negative sera from sheep, goats and cattle from 36 locations. Calculation of sensitivity and specificity was undertaken using receiver operating characteristic (ROC) curves. The sensitivities and specificities for sheep were 85% and 68% (optical density at 450nm, OD450 cut-off value 0.32), for goats 94% and 77% (OD450 cut-off value 0.23) and for cattle 71% and 70% (OD450 cut-off value 0.18), respectively. These results correspond to excellent, outstanding and acceptable discrimination of positive and negative sera. In summary, recombinant Com1 can provide a basis for more sensitive and specific diagnostic tools in veterinary medicine.
Collapse
|
11
|
Chen C, van Schaik EJ, Gregory AE, Vigil A, Felgner PL, Hendrix LR, Faris R, Samuel JE. Chemokine Receptor 7 Is Essential for Coxiella burnetii Whole-Cell Vaccine-Induced Cellular Immunity but Dispensable for Vaccine-Mediated Protective Immunity. J Infect Dis 2019; 220:624-634. [PMID: 30938819 PMCID: PMC6639598 DOI: 10.1093/infdis/jiz146] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 03/27/2019] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Protective immunity against Coxiella burnetii infection is conferred by vaccination with virulent (PI-WCV), but not avirulent (PII-WCV) whole-cell inactivated bacterium. The only well-characterized antigenic difference between virulent and avirulent C. burnetii is they have smooth and rough lipopolysaccharide (LPS), respectively. METHODS Mice were vaccinated with PI-WCV and PII-WCV. Humoral and cellular responses were evaluated using protein chip microarrays and ELISpots, respectively. Dendritic cell (DC) maturation after stimulation with PI-WVC and PII-WVC was evaluated using flow cytometry. Vaccine-challenge studies were performed to validate the importance of the receptor CCR7. RESULTS Other than specific antibody response to PI-LPS, similar antibody profiles were observed but IgG titers were significantly higher after vaccination with PI-WCV. Furthermore, higher frequency of antigen-specific CD4+ T cells was detected in mice immunized with PI-WCV. PI-WCV-stimulated DCs displayed significantly higher levels of CCR7 and migratory ability to secondary lymphoid organs. Challenge-protection studies in wild-type and CCR7-deficient mice confirmed that CCR7 is critical for PI-WCV-induced cellular immunity. CONCLUSIONS PI-WVC stimulates protective immunity to C. burnetii in mice through stimulation of migratory behavior in DCs for protective cellular immunity. Additionally, the humoral immune response to LPS is an important component of protective immunity.
Collapse
Affiliation(s)
- Chen Chen
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, College of Medicine, Bryan
| | - Erin J van Schaik
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, College of Medicine, Bryan
| | - Anthony E Gregory
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, College of Medicine, Bryan
| | - Adam Vigil
- Department of Medicine, Division of Infectious Diseases, University of California, Irvine
| | - Phillip L Felgner
- Department of Medicine, Division of Infectious Diseases, University of California, Irvine
| | - Laura R Hendrix
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, College of Medicine, Bryan
| | - Robert Faris
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, College of Medicine, Bryan
| | - James E Samuel
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, College of Medicine, Bryan
| |
Collapse
|
12
|
Flores-Ramírez G, Danchenko M, Quevedo-Díaz M, Skultety L. Reliable tool for detection of novel Coxiella burnetii antigens, using immobilized human polyclonal antibodies. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1047:84-91. [DOI: 10.1016/j.jchromb.2016.08.044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 08/26/2016] [Accepted: 08/29/2016] [Indexed: 01/09/2023]
|
13
|
Duriez E, Armengaud J, Fenaille F, Ezan E. Mass spectrometry for the detection of bioterrorism agents: from environmental to clinical applications. JOURNAL OF MASS SPECTROMETRY : JMS 2016; 51:183-199. [PMID: 26956386 DOI: 10.1002/jms.3747] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 12/14/2015] [Accepted: 01/13/2016] [Indexed: 06/05/2023]
Abstract
In the current context of international conflicts and localized terrorist actions, there is unfortunately a permanent threat of attacks with unconventional warfare agents. Among these, biological agents such as toxins, microorganisms, and viruses deserve particular attention owing to their ease of production and dissemination. Mass spectrometry (MS)-based techniques for the detection and quantification of biological agents have a decisive role to play for countermeasures in a scenario of biological attacks. The application of MS to every field of both organic and macromolecular species has in recent years been revolutionized by the development of soft ionization techniques (MALDI and ESI), and by the continuous development of MS technologies (high resolution, accurate mass HR/AM instruments, novel analyzers, hybrid configurations). New possibilities have emerged for exquisite specific and sensitive detection of biological warfare agents. MS-based strategies for clinical application can now address a wide range of analytical questions mainly including issues related to the complexity of biological samples and their available volume. Multiplexed toxin detection, discovery of new markers through omics approaches, and identification of untargeted microbiological or of novel molecular targets are examples of applications. In this paper, we will present these technological advances along with the novel perspectives offered by omics approaches to clinical detection and follow-up.
Collapse
Affiliation(s)
| | - Jean Armengaud
- CEA, iBiTec-S, Service de Pharmacologie et d'Immunologie, 30207, Bagnols sur-Cèze, France
| | - François Fenaille
- CEA, iBiTec-S, Service de Pharmacologie et d'Immunoanalyse, Laboratoire d'Etude du Métabolisme des Médicaments, MetaboHUB-Paris, CEA Saclay, Building 136, 91191, Gif-sur-Yvette cedex, France
| | - Eric Ezan
- CEA, Programme Transversal Technologies pour la Santé, 91191, Gif sur Yvette, France
| |
Collapse
|
14
|
Rickettsia rickettsii outer membrane protein YbgF induces protective immunity in C3H/HeN mice. Hum Vaccin Immunother 2015; 11:642-9. [PMID: 25714655 DOI: 10.1080/21645515.2015.1011572] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Rickettsia rickettsii is the etiological agent of Rocky Mountain spotted fever (RMSF). YbgF and TolC are outer membrane-associated proteins of R. rickettsii that play important roles in its interaction with host cells. We investigated the immunogenicity of YbgF and TolC for protection against RMSF. We immunized C3H/HeN mice with recombinant R. rickettsii YbgF (rYbgF) or TolC (rTolC). Rickettsial burden and impairment in the lungs, spleens, and livers of rYbgF-immunized mice were significantly lower than in rTolC-immunized mice. The ratio of IgG2a to IgG1 in rYbgF-immunized mice continued to increase over the course of our experiments, while that in rTolC-immunized mice was reduced. The proliferation and cytokine secretion of CD4(+) and CD8(+) T cells isolated from R. rickettsii-infected mice were analyzed following antigen stimulation. The results indicated that proliferation and interferon (IFN)-γ secretion of CD4(+) or CD8(+) T cells in R. rickettsii-infected mice were significantly greater than in uninfected mice after stimulation with rYbgF. YbgF is a novel protective antigen of R. rickettsii. Protection conferred by YbgF is dependent upon IFN-γ-producing CD4(+) and CD8(+) T cells and IgG2a, which act in synergy to control R. rickettsii infection.
Collapse
|
15
|
Zimaro T, Thomas L, Marondedze C, Garavaglia BS, Gehring C, Ottado J, Gottig N. Insights into xanthomonas axonopodis pv. citri biofilm through proteomics. BMC Microbiol 2013; 13:186. [PMID: 23924281 PMCID: PMC3750573 DOI: 10.1186/1471-2180-13-186] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 08/02/2013] [Indexed: 11/28/2022] Open
Abstract
Background Xanthomonas axonopodis pv. citri (X. a. pv. citri) causes citrus canker that can result in defoliation and premature fruit drop with significant production losses worldwide. Biofilm formation is an important process in bacterial pathogens and several lines of evidence suggest that in X. a. pv. citri this process is a requirement to achieve maximal virulence since it has a major role in host interactions. In this study, proteomics was used to gain further insights into the functions of biofilms. Results In order to identify differentially expressed proteins, a comparative proteomic study using 2D difference gel electrophoresis was carried out on X. a. pv. citri mature biofilm and planktonic cells. The biofilm proteome showed major variations in the composition of outer membrane proteins and receptor or transport proteins. Among them, several porins and TonB-dependent receptor were differentially regulated in the biofilm compared to the planktonic cells, indicating that these proteins may serve in maintaining specific membrane-associated functions including signaling and cellular homeostasis. In biofilms, UDP-glucose dehydrogenase with a major role in exopolysaccharide production and the non-fimbrial adhesin YapH involved in adherence were over-expressed, while a polynucleotide phosphorylase that was demonstrated to negatively control biofilm formation in E. coli was down-regulated. In addition, several proteins involved in protein synthesis, folding and stabilization were up-regulated in biofilms. Interestingly, some proteins related to energy production, such as ATP-synthase were down-regulated in biofilms. Moreover, a number of enzymes of the tricarboxylic acid cycle were differentially expressed. In addition, X. a. pv. citri biofilms also showed down-regulation of several antioxidant enzymes. The respective gene expression patterns of several identified proteins in both X. a. pv. citri mature biofilm and planktonic cells were evaluated by quantitative real-time PCR and shown to consistently correlate with those deduced from the proteomic study. Conclusions Differentially expressed proteins are enriched in functional categories. Firstly, proteins that are down-regulated in X. a. pv. citri biofilms are enriched for the gene ontology (GO) terms ‘generation of precursor metabolites and energy’ and secondly, the biofilm proteome mainly changes in ‘outer membrane and receptor or transport’. We argue that the differentially expressed proteins have a critical role in maintaining a functional external structure as well as enabling appropriate flow of nutrients and signals specific to the biofilm lifestyle.
Collapse
Affiliation(s)
- Tamara Zimaro
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas (IBR-CONICET), Ocampo y Esmeralda, Rosario, Santa Fe, Argentina
| | | | | | | | | | | | | |
Collapse
|
16
|
Qi Y, Xiong X, Wang X, Duan C, Jia Y, Jiao J, Gong W, Wen B. Proteome analysis and serological characterization of surface-exposed proteins of Rickettsia heilongjiangensis. PLoS One 2013; 8:e70440. [PMID: 23894656 PMCID: PMC3720918 DOI: 10.1371/journal.pone.0070440] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 06/18/2013] [Indexed: 01/07/2023] Open
Abstract
Background Rickettsia heilongjiangensis, the agent of Far-Eastern spotted fever (FESF), is an obligate intracellular bacterium. The surface-exposed proteins (SEPs) of rickettsiae are involved in rickettsial adherence to and invasion of host cells, intracellular bacterial growth, and/or interaction with immune cells. They are also potential molecular candidates for the development of diagnostic reagents and vaccines against rickettsiosis. Methods R. heilongjiangensis SEPs were identified by biotin-streptavidin affinity purification and 2D electrophoreses coupled with ESI-MS/MS. Recombinant SEPs were probed with various sera to analyze their serological characteristics using a protein microarray and an enzyme-linked immune sorbent assay (ELISA). Results Twenty-five SEPs were identified, most of which were predicted to reside on the surface of R. heilongjiangensis cells. Bioinformatics analysis suggests that these proteins could be involved in bacterial pathogenesis. Eleven of the 25 SEPs were recognized as major seroreactive antigens by sera from R. heilongjiangensis-infected mice and FESF patients. Among the major seroreactive SEPs, microarray assays and/or ELISAs revealed that GroEL, OmpA-2, OmpB-3, PrsA, RplY, RpsB, SurA and YbgF had modest sensitivity and specificity for recognizing R. heilongjiangensis infection and/or spotted fever. Conclusions Many of the SEPs identified herein have potentially important roles in R. heilongjiangensis pathogenicity. Some of them have potential as serodiagnostic antigens or as subunit vaccine antigens against the disease.
Collapse
Affiliation(s)
- Yong Qi
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xiaolu Xiong
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xile Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Changsong Duan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yinjun Jia
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Jun Jiao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Wenping Gong
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Bohai Wen
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- * E-mail:
| |
Collapse
|
17
|
Wang X, Xiong X, Graves S, Stenos J, Wen B. Protein array of Coxiella burnetii probed with Q fever sera. SCIENCE CHINA-LIFE SCIENCES 2013; 56:453-9. [PMID: 23633077 DOI: 10.1007/s11427-013-4472-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 03/21/2013] [Indexed: 10/26/2022]
Abstract
Coxiella burnetii is the etiological agent of Q fever. To identify its major seroreactive proteins, a subgenomic protein array was developed. A total of 101 assumed virulence-associated recombinant proteins of C. burnetii were probed with sera from mice experimentally infected with C. burnetii and sera from Q fever patients. Sixteen proteins were recognized as major seroreactive antigens by the mouse sera. Seven of these 16 proteins reacted positively with at least 45% of Q fever patient sera. Notably, HspB had the highest fluorescence intensity value and positive frequency of all the proteins on the array when probed with both Q fever patient sera and mouse sera. These results suggest that these seven major seroreactive proteins, particularly HspB, are potential serodiagnostic and subunit vaccine antigens of Q fever.
Collapse
Affiliation(s)
- Xile Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | | | | | | | | |
Collapse
|
18
|
Vranakis I, Papadioti A, Tselentis Y, Psaroulaki A, Tsiotis G. The contribution of proteomics towards deciphering the enigma ofCoxiella burnetii. Proteomics Clin Appl 2013; 7:193-204. [DOI: 10.1002/prca.201200096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 11/15/2012] [Accepted: 11/20/2012] [Indexed: 11/10/2022]
Affiliation(s)
- Iosif Vranakis
- Regional Laboratory of Public Health of Crete; Heraklion; Greece
| | - Anastasia Papadioti
- Division of Biochemistry; Department of Chemistry; University of Crete; Voutes; Greece
| | - Yannis Tselentis
- Regional Laboratory of Public Health of Crete; Heraklion; Greece
| | | | - Georgios Tsiotis
- Division of Biochemistry; Department of Chemistry; University of Crete; Voutes; Greece
| |
Collapse
|
19
|
Hendrix LR, Chen C. Antigenic analysis for vaccines and diagnostics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 984:299-328. [PMID: 22711639 DOI: 10.1007/978-94-007-4315-1_16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
Coxiella burnetii infection is frequently unrecognized or misdiagnosed, as symptoms generally mimic an influenza-like illness. However, the disease (Q fever) may result in chronic infection, usually manifesting as potentially fatal endocarditis. The development of a chronic fatigue-like sequela may also occur. Infected ruminants are the major reservoir for infection in humans, primarily through exposure to birth products or aerosols that transmit the bacterium over wide regions. A vaccine against C. burnetii infection has been in use in Australia for abattoir and agricultural workers for many years. The possibility of adverse reactions in those with previous exposure to the agent has prevented its use elsewhere. Subunit vaccines, utilizing chemical extraction of components thought to cause adverse reactions, are in development, but none are yet licensed. Others have sought to combine immunogenic peptides with or without selected lipopolysaccharide components to produce a vaccine without the possibility of adverse reactions. Selected immunogenic proteins have been shown to induce both humoral and cellular immune responses. Although current diagnosis of infection relies on serological testing, the presentation of specific antibody occurs 7-15 days following the onset of symptoms, delaying treatment that may result in prolonged morbidity. PCR detection of DNA to specific C. burnetii antigens in the blood is possible early in infection, but PCR may become negative when PII IgG antibodies appear. PCR is useful for early diagnosis when Q fever is suspected, as in large epidemics, and shortens the delay in the identification of Q fever endocarditis. Others have combined PCR with ELISA or other methods to increase the ability to detect infection at any stage. The search for new diagnostic reagents and vaccines has utilized new methods for discovery of immunoreactive proteins. DNA analysis of the heterogeneity of C. burnetii isolates has led to a greater understanding of the diversity of isolates and a means to determine whether there is a correlation between strain and disease severity. 2-D SDS PAGE of immunogenic proteins reactive with human or animal infection sera and mass spectrometric analysis of specific secreted or outer membrane proteins have identified candidate antigens. Microarrays have allowed the analysis of peptide libraries of open reading frames to evaluate the immunogenicity of complete genomes.
Collapse
Affiliation(s)
- Laura R Hendrix
- Department of Microbial and Molecular Pathogenesis, College of Medicine, Texas A&M Health Science Center, 3107 Medical Research and Education Building, Bryan, TX 77807-3260, USA.
| | | |
Collapse
|
20
|
Xiong X, Wang X, Wen B, Graves S, Stenos J. Potential serodiagnostic markers for Q fever identified in Coxiella burnetii by immunoproteomic and protein microarray approaches. BMC Microbiol 2012; 12:35. [PMID: 22420424 PMCID: PMC3386016 DOI: 10.1186/1471-2180-12-35] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 03/16/2012] [Indexed: 11/29/2022] Open
Abstract
Background Coxiella burnetii is the etiological agent of Q fever. The clinical diagnosis of Q fever is mainly based on several serological tests. These tests all need Coxiella organisms which are difficult and hazardous to culture and purify. Results An immunoproteomic study of C. burnetii Xinqiao strain isolated in China was conducted with the sera from experimentally infected BALB/c mice and Q fever patients. Twenty of whole proteins of Xinqiao recognized by the infection sera were identified by mass spectrometry. Nineteen of the 20 proteins were successfully expressed in Escherichia coli and used to fabricate a microarray which was probed with Q fever patient sera. As a result, GroEL, YbgF, RplL, Mip, OmpH, Com1, and Dnak were recognized as major seroreactive antigens. The major seroreactive proteins were fabricated in a small microarray and further analyzed with the sera of patients with rickettsial spotted fever, Legionella pneumonia or streptococcal pneumonia. In this analysis, these proteins showed fewer cross-reactions with the tested sera. Conclusions Our results demonstrate that these 7 Coxiella proteins gave a modest sensitivity and specificity for recognizing of Q fever patient sera, suggesting that they are potential serodiagnostic markers for Q fever.
Collapse
Affiliation(s)
- Xiaolu Xiong
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Dong-dia-jie, Beijing 100071, China
| | | | | | | | | |
Collapse
|
21
|
Kowalczewska M, Nappez C, Vincentelli R, Scola BL, Raoult D. Protein candidates for Q fever serodiagnosis. ACTA ACUST UNITED AC 2012; 64:140-2. [DOI: 10.1111/j.1574-695x.2011.00912.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 10/21/2011] [Accepted: 11/07/2011] [Indexed: 11/30/2022]
|
22
|
Ihnatko R, Shaw E, Toman R. Proteome of Coxiella burnetii. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 984:105-30. [DOI: 10.1007/978-94-007-4315-1_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
23
|
Abstract
Q fever is a worldwide zoonosis caused by Coxiella burnetii. The disease most frequently manifests clinically as a self-limited febrile illness, as pneumonia (acute Q fever) or as a chronic illness that presents mainly as infective endocarditis. The extreme infectivity of the bacterium results in large outbreaks, and the recent outbreak in the Netherlands underlines its impact on public health. Recent studies on the bacterium have included genome sequencing, the investigation of host-bacterium interactions, the development of cellular and animal models of infection, and the comprehensive analysis of different clinical isolates by whole genome and proteomic approaches. Current approaches for diagnosing Q fever are based on serological methods and PCR techniques, but the diagnosis of early stage disease lacks specificity and sensitivity. Consequently, different platforms have been created to explore Q fever biomarkers. Several studies using a combination of proteomics and recombinant protein screening approaches have been undertaken for the development of diagnostics and vaccines. In this review, we highlight advances in the field of C. burnetii proteomics, focusing mainly on the contribution of these technologies to the development and improvement of Q fever diagnostics.
Collapse
Affiliation(s)
- Malgorzata Kowalczewska
- URMITE, CNRS UMR 6236-IRD 198, Université de la Méditerranée, Faculté de Médecine, 27 Boulevard Jean Moulin, 13005 Marseille, France.
| | | | | |
Collapse
|
24
|
Skultety L, Hajduch M, Flores-Ramirez G, Miernyk JA, Ciampor F, Toman R, Sekeyova Z. Proteomic comparison of virulent phase I and avirulent phase II of Coxiella burnetii, the causative agent of Q fever. J Proteomics 2011; 74:1974-84. [PMID: 21616182 DOI: 10.1016/j.jprot.2011.05.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Revised: 04/20/2011] [Accepted: 05/09/2011] [Indexed: 01/06/2023]
Abstract
Coxiella burnetii, a category B biological warfare agent, causes multiple outbreaks of the zoonotic disease Q fever world-wide, each year. The virulent phase I and avirulent phase II variants of the Nine Mile RSA 493 and 439 strains of C. burnetii were propagated in embryonated hen eggs and then purified by centrifugation through Renografin gradients. Total protein fractions were isolated from each phase and subjected to analysis by one-dimensional electrophoresis plus tandem mass spectrometry. A total of 235 and 215 non-redundant proteins were unambiguously identified from the phase I and II cells, respectively. Many of these proteins had not been previously reported in proteomic studies of C. burnetii. The newly identified proteins should provide additional insight into the pathogenesis of Q fever. Several of the identified proteins are involved in the biosynthesis and metabolism of components of the extracellular matrix. Forty-four of the proteins have been annotated as having distinct roles in the pathogenesis or survival of C. burnetii within the harsh phagolysosomal environment. We propose that nine enzymes specifically involved with lipopolysaccharide biosynthesis and metabolism, and that are distinctively present in phase I cells, are virulence-associated proteins.
Collapse
Affiliation(s)
- Ludovit Skultety
- Institute of Virology, Slovak Academy of Sciences, Bratislava, Slovakia.
| | | | | | | | | | | | | |
Collapse
|