1
|
Rahaman MH, Thygesen SJ, Maxwell MJ, Kim H, Mudai P, Nanson JD, Jia X, Vajjhala PR, Hedger A, Vetter I, Haselhorst T, Robertson AAB, Dymock B, Ve T, Mobli M, Stacey KJ, Kobe B. o-Vanillin binds covalently to MAL/TIRAP Lys-210 but independently inhibits TLR2. J Enzyme Inhib Med Chem 2024; 39:2313055. [PMID: 38416868 PMCID: PMC10903754 DOI: 10.1080/14756366.2024.2313055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 01/28/2024] [Indexed: 03/01/2024] Open
Abstract
Toll-like receptor (TLR) innate immunity signalling protects against pathogens, but excessive or prolonged signalling contributes to a range of inflammatory conditions. Structural information on the TLR cytoplasmic TIR (Toll/interleukin-1 receptor) domains and the downstream adaptor proteins can help us develop inhibitors targeting this pathway. The small molecule o-vanillin has previously been reported as an inhibitor of TLR2 signalling. To study its mechanism of action, we tested its binding to the TIR domain of the TLR adaptor MAL/TIRAP (MALTIR). We show that o-vanillin binds to MALTIR and inhibits its higher-order assembly in vitro. Using NMR approaches, we show that o-vanillin forms a covalent bond with lysine 210 of MAL. We confirm in mouse and human cells that o-vanillin inhibits TLR2 but not TLR4 signalling, independently of MAL, suggesting it may covalently modify TLR2 signalling complexes directly. Reactive aldehyde-containing small molecules such as o-vanillin may target multiple proteins in the cell.
Collapse
Affiliation(s)
- Md. Habibur Rahaman
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Australia
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Australia
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Sara J. Thygesen
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Australia
| | - Michael J. Maxwell
- Centre for Advanced Imaging, University of Queensland, Brisbane, Australia
| | - Hyoyoung Kim
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Australia
| | - Prerna Mudai
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Australia
| | - Jeffrey D. Nanson
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Australia
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Australia
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Xinying Jia
- Centre for Advanced Imaging, University of Queensland, Brisbane, Australia
| | - Parimala R. Vajjhala
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Australia
| | - Andrew Hedger
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Australia
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Australia
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Irina Vetter
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
- School of Pharmacy, University of Queensland, Brisbane, Australia
| | | | - Avril A. B. Robertson
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Australia
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Brian Dymock
- Queensland Emory Drug Discovery Initiative, University of Queensland, Brisbane, Australia
| | - Thomas Ve
- Institute for Glycomics, Griffith University, Southport, Australia
| | - Mehdi Mobli
- Centre for Advanced Imaging, University of Queensland, Brisbane, Australia
| | - Katryn J. Stacey
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Australia
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Australia
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Australia
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Australia
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| |
Collapse
|
2
|
Vallejo-Schmidt T, Palm C, Obiorah T, Koudjra AR, Schmidt K, Scudder AH, Guzman-Cruz E, Ingram LP, Erickson BC, Akingbehin V, Riddick T, Hamilton S, Riaz T, Alexander Z, Anderson JT, Bader C, Calkins PH, Chaudhry SS, Collins H, Conteh M, Dada TA, David J, Fallah D, De Leon R, Duff R, Eromosele IR, Jones JK, Keshmiri N, Mercanti MA, Onwezi-Nwugwo J, Ojo MA, Pascoe ER, Poteat AM, Price SE, Riedlbauer D, Rolle LTA, Shoemaker P, Stefano A, Sterling MK, Sultana S, Toneygay L, Williams AN, Nallar S, Weldon JE, Snyder GA, Snyder MLD. Characterization of the Structural Requirements for the NADase Activity of Bacterial Toll/IL-1R domains in a Course-based Undergraduate Research Experience. Immunohorizons 2024; 8:563-576. [PMID: 39172026 PMCID: PMC11374754 DOI: 10.4049/immunohorizons.2300062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 07/29/2024] [Indexed: 08/23/2024] Open
Abstract
TLRs initiate innate immune signaling pathways via Toll/IL-1R (TIR) domains on their cytoplasmic tails. Various bacterial species also express TIR domain-containing proteins that contribute to bacterial evasion of the innate immune system. Bacterial TIR domains, along with the mammalian sterile α and TIR motif-containing protein 1 and TIRs from plants, also have been found to exhibit NADase activity. Initial X-ray crystallographic studies of the bacterial TIR from Acinetobacter baumannii provided insight into bacterial TIR structure but were unsuccessful in cocrystallization with the NAD+ ligand, leading to further questions about the TIR NAD binding site. In this study, we designed a Course-Based Undergraduate Research Experience (CURE) involving 16-20 students per year to identify amino acids crucial for NADase activity of A. baumannii TIR domain protein and the TIR from Escherichia coli (TIR domain-containing protein C). Students used structural data to identify amino acids that they hypothesized would play a role in TIR NADase activity, and created plasmids to express mutated TIRs through site-directed mutagenesis. Mutant TIRs were expressed, purified, and tested for NADase activity. The results from these studies provide evidence for a conformational change upon NAD binding, as was predicted by recent cryogenic electron microscopy and hydrogen-deuterium exchange mass spectrometry studies. Along with corroborating recent characterization of TIR NADases that could contribute to drug development for diseases associated with dysregulated TIR activity, this work also highlights the value of CURE-based projects for inclusion of a diverse group of students in authentic research experiences.
Collapse
Affiliation(s)
| | - Cheyenne Palm
- Department of Biological Sciences, Towson University, Towson, MD
| | - Trinity Obiorah
- Department of Biological Sciences, Towson University, Towson, MD
| | | | - Katrina Schmidt
- Department of Biological Sciences, Towson University, Towson, MD
| | | | - Eber Guzman-Cruz
- Department of Biological Sciences, Towson University, Towson, MD
| | | | | | | | - Terra Riddick
- Department of Biological Sciences, Towson University, Towson, MD
| | - Sarah Hamilton
- Department of Biological Sciences, Towson University, Towson, MD
| | - Tahreem Riaz
- Department of Biological Sciences, Towson University, Towson, MD
| | | | | | - Charlotte Bader
- Department of Biological Sciences, Towson University, Towson, MD
| | | | | | - Haley Collins
- Department of Biological Sciences, Towson University, Towson, MD
| | - Maimunah Conteh
- Department of Biological Sciences, Towson University, Towson, MD
| | - Tope A. Dada
- Department of Biological Sciences, Towson University, Towson, MD
| | - Jaira David
- Department of Biological Sciences, Towson University, Towson, MD
| | - Daniel Fallah
- Department of Biological Sciences, Towson University, Towson, MD
| | - Raquel De Leon
- Department of Biological Sciences, Towson University, Towson, MD
| | - Rachel Duff
- Department of Biological Sciences, Towson University, Towson, MD
| | | | - Jaliyl K. Jones
- Department of Biological Sciences, Towson University, Towson, MD
| | | | - Mark A. Mercanti
- Department of Biological Sciences, Towson University, Towson, MD
| | | | - Michael A. Ojo
- Department of Biological Sciences, Towson University, Towson, MD
| | - Emily R. Pascoe
- Department of Biological Sciences, Towson University, Towson, MD
| | - Ariana M. Poteat
- Department of Biological Sciences, Towson University, Towson, MD
| | - Sarah E. Price
- Department of Biological Sciences, Towson University, Towson, MD
| | | | | | - Payton Shoemaker
- Department of Biological Sciences, Towson University, Towson, MD
| | - Alanna Stefano
- Department of Biological Sciences, Towson University, Towson, MD
| | | | - Samina Sultana
- Department of Biological Sciences, Towson University, Towson, MD
| | - Lindsey Toneygay
- Department of Biological Sciences, Towson University, Towson, MD
| | | | - Sheeram Nallar
- Division of Vaccine Research, Institute of Human Virology, Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, MD
| | - John E. Weldon
- Department of Biological Sciences, Towson University, Towson, MD
| | - Greg A. Snyder
- Division of Vaccine Research, Institute of Human Virology, Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, MD
| | | |
Collapse
|
3
|
Murugan S, Nandi BR, Mazumdar V, Joshi K, Nandini P, Namani S, Jakka P, Radhakrishnan GK. Outer membrane protein 25 of Brucella suppresses TLR-mediated expression of proinflammatory cytokines through degradation of TLRs and adaptor proteins. J Biol Chem 2023; 299:105309. [PMID: 37778729 PMCID: PMC10641269 DOI: 10.1016/j.jbc.2023.105309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 08/30/2023] [Accepted: 09/21/2023] [Indexed: 10/03/2023] Open
Abstract
Toll-like receptors (TLRs) are essential components of innate immunity that serves as the first line of defense against the invaded microorganisms. However, successful infectious pathogens subvert TLR signaling to suppress the activation of innate and adaptive responses. Brucella species are infectious intracellular bacterial pathogens causing the worldwide zoonotic disease, brucellosis, that impacts economic growth of many countries. Brucella species are considered as stealthy bacterial pathogens as they efficiently evade or suppress host innate and adaptive immune responses for their chronic persistence. However, the bacterial effectors and their host targets for modulating the immune responses remain obscure. Brucella encodes various outer membrane proteins (Omps) that facilitate their invasion, intracellular replication, and immunomodulation. Outer membrane protein 25 (Omp25) of Brucella plays an important role in the immune modulation through suppression of proinflammatory cytokines. However, the mechanism and the signaling pathways that are targeted by Omp25 to attenuate the production of proinflammatory cytokines remain obscure. Here, we report that Omp25 and its variants, viz. Omp25b, Omp25c, and Omp25d, suppress production of proinflammatory cytokines that are mediated by various TLRs. Furthermore, we demonstrate that Omp25 and its variants promote enhanced ubiquitination and degradation of TLRs and their adaptor proteins to attenuate the expression of proinflammatory cytokines. Targeting multiple TLRs and adaptor proteins enables Omp25 to effectively suppress the expression of proinflammatory cytokines that are induced by diverse pathogen-associated molecular patterns. This can contribute to the defective adaptive immune response and the chronic persistence of Brucella in the host.
Collapse
Affiliation(s)
- Subathra Murugan
- Laboratory of Immunology and Microbial Pathogenesis, National Institute of Animal Biotechnology, Hyderabad, Telangana, India; Centre for Biotechnology, Institute of Science and Technology, Jawaharlal Nehru Technological University, Hyderabad, India
| | - Binita Roy Nandi
- Laboratory of Immunology and Microbial Pathogenesis, National Institute of Animal Biotechnology, Hyderabad, Telangana, India; Regional Centre for Biotechnology (RCB), Faridabad, India
| | - Varadendra Mazumdar
- Laboratory of Immunology and Microbial Pathogenesis, National Institute of Animal Biotechnology, Hyderabad, Telangana, India; Regional Centre for Biotechnology (RCB), Faridabad, India
| | - Kiranmai Joshi
- Laboratory of Immunology and Microbial Pathogenesis, National Institute of Animal Biotechnology, Hyderabad, Telangana, India; Regional Centre for Biotechnology (RCB), Faridabad, India
| | - Prachita Nandini
- Laboratory of Immunology and Microbial Pathogenesis, National Institute of Animal Biotechnology, Hyderabad, Telangana, India; Regional Centre for Biotechnology (RCB), Faridabad, India
| | - Swapna Namani
- Laboratory of Immunology and Microbial Pathogenesis, National Institute of Animal Biotechnology, Hyderabad, Telangana, India
| | - Padmaja Jakka
- Laboratory of Immunology and Microbial Pathogenesis, National Institute of Animal Biotechnology, Hyderabad, Telangana, India
| | - Girish K Radhakrishnan
- Laboratory of Immunology and Microbial Pathogenesis, National Institute of Animal Biotechnology, Hyderabad, Telangana, India.
| |
Collapse
|
4
|
Liu T, Yang Q, Wei W, Wang K, Wang E. Toll/IL-1 receptor-containing proteins STIR-1, STIR-2 and STIR-3 synergistically assist Yersinia ruckeri SC09 immune escape. FISH & SHELLFISH IMMUNOLOGY 2020; 103:357-365. [PMID: 32461169 DOI: 10.1016/j.fsi.2020.05.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/29/2020] [Accepted: 05/03/2020] [Indexed: 06/11/2023]
Abstract
Immune escape is a common feature of bacteria, viruses, parasites and even cancer cells. Our earlier work on an integrative and conjugative element (ICEr2) of Yersinia ruckeri SC09 demonstrated contributory roles of stir-1, stir-2 and stir-3 in bacterial toxicity and ability to code for immune evasion. Here, we further examined the ability of stir-4 in ICE (r2) and its encoded STIR-4 protein to mediate immune evasion using comparative genomic analysis. Additionally, the mechanisms underlying the synergistic activities of STIR-1, STIR-2, STIR-3 and STIR-4 in immune evasion were examined. Our results showed that STIR-4 did not contribute to bacterial toxicity, either in vivo nor in vitro, or show the ability to assist in bacterial immune escape. STIR-1, STIR-2, and STIR-3 formed heterotrimers in bacteria while facilitating immune evasion, which we speculate may be essential to maintain their stability. This discovery also partially explains the previous finding that a single gene can mediate immune evasion. Our data provide further knowledge on the distribution of ICE (r2)-like elements in bacteria, validating the prevalence of large-scale gene transfer in pathogens and its potential for enhancing virulence levels. Further studies are necessary to establish the biological significance of the ICE (r2) component.
Collapse
Affiliation(s)
- Tao Liu
- Department of Basic Veterinary, Veterinary Medicine College, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Qian Yang
- Department of Basic Veterinary, Veterinary Medicine College, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Wenyan Wei
- Institute of Fisheries of Chengdu Agriculture and Forestry Academy, Chengdu, China
| | - Kaiyu Wang
- Department of Basic Veterinary, Veterinary Medicine College, Sichuan Agricultural University, Chengdu, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China.
| | - Erlong Wang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Liu T, Wang E, Wei W, Wang K, Yang Q, Ai X. TcpA, a novel Yersinia ruckeri TIR-containing virulent protein mediates immune evasion by targeting MyD88 adaptors. FISH & SHELLFISH IMMUNOLOGY 2019; 94:58-65. [PMID: 31470137 DOI: 10.1016/j.fsi.2019.08.069] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/24/2019] [Accepted: 08/26/2019] [Indexed: 06/10/2023]
Abstract
TIR domain-containing protein is an important member for some bacterial pathogens to subvert host defenses. Here we described a fish virulent Yersinia ruckeri SC09 strain that interfered directly with Toll-like receptor (TLR) function by a TIR-containing protein. Firstly, the novel TIR-containing protein was identified by bioinformatics analysis and named as TcpA. Secondly, the toxic effects of TcpA in fish was demonstrated in vivo challenge experiments through knockout mutant and complement mutant of tcpA gene. Thirdly, The study in vitro revealed that TcpA could down-regulate the expression and secretion of IL-6, IL-1β and TNF-α. Finally, we demonstrated that TcpA could inhibit the TLR signaling pathway through interaction with myeloid differentiation factor 88 (MyD88) in experiments such as NF-κB dependent luciferase reporter system, co-immunoprecipitation, GST pull-down and yeast two-hybrid. The study revealed that TcpA was essential for virulence and was able to interact with the TIR adaptor protein MyD88 and inhibit the pre-inflammatory signal of immune cells and promote the intracellular survival of pathogenic Yersinia ruckeri SC09 strain. In conclusion, our results showed that TcpA acted as a new virulence factor in Y. ruckeri could suppress innate immune response and increase virulence by inhibiting TLR and MyD88-mediated specific signaling, highlighting a novel strategy for innate immune evasion in bacteria.
Collapse
Affiliation(s)
- Tao Liu
- Department of Basic Veterinary, Veterinary Medicine College, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Erlong Wang
- Department of Basic Veterinary, Veterinary Medicine College, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Wenyan Wei
- Institute of Fisheries of Chengdu Agriculture and Forestry Academy, Chengdu, PR China
| | - Kaiyu Wang
- Department of Basic Veterinary, Veterinary Medicine College, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, PR China.
| | - Qian Yang
- Department of Basic Veterinary, Veterinary Medicine College, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Xiaohui Ai
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei, PR China
| |
Collapse
|
6
|
A Yersinia ruckeri TIR Domain-Containing Protein (STIR-2) Mediates Immune Evasion by Targeting the MyD88 Adaptor. Int J Mol Sci 2019; 20:ijms20184409. [PMID: 31500298 PMCID: PMC6769684 DOI: 10.3390/ijms20184409] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/07/2019] [Accepted: 09/04/2019] [Indexed: 02/07/2023] Open
Abstract
TIR domain-containing proteins are essential for bacterial pathogens to subvert host defenses. This study describes a fish pathogen, Yersinia ruckeri SC09 strain, with a novel TIR domain-containing protein (STIR-2) that affects Toll-like receptor (TLR) function. STIR-2 was identified in Y. ruckeri by bioinformatics analysis. The toxic effects of this gene on fish were determined by in vivo challenge experiments in knockout mutants and complement mutants of the stir-2 gene. In vitro, STIR-2 downregulated the expression and secretion of IL-6, IL-1β, and TNF-α. Furthermore, the results of NF-κB-dependent luciferase reporter system, co-immunoprecipitation, GST pull-down assays, and yeast two-hybrid assay indicated that STIR-2 inhibited the TLR signaling pathway by interacting with myeloid differentiation factor 88 (MyD88). In addition, STIR-2 promoted the intracellular survival of pathogenic Yersinia ruckeri SC09 strain by binding to the TIR adaptor protein MyD88 and inhibiting the pre-inflammatory signal of immune cells. These results showed that STIR-2 increased virulence in Y. ruckeri and suppressed the innate immune response by inhibiting TLR and MyD88-mediated signaling, serving as a novel strategy for innate immune evasion.
Collapse
|
7
|
Nanson JD, Rahaman MH, Ve T, Kobe B. Regulation of signaling by cooperative assembly formation in mammalian innate immunity signalosomes by molecular mimics. Semin Cell Dev Biol 2018; 99:96-114. [PMID: 29738879 DOI: 10.1016/j.semcdb.2018.05.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 03/18/2018] [Accepted: 05/04/2018] [Indexed: 12/16/2022]
Abstract
Innate immunity pathways constitute the first line of defense against infections and cellular damage. An emerging concept in these pathways is that signaling involves the formation of finite (e.g. rings in NLRs) or open-ended higher-order assemblies (e.g. filamentous assemblies by members of the death-fold family and TIR domains). This signaling by cooperative assembly formation (SCAF) mechanism allows rapid and strongly amplified responses to minute amounts of stimulus. While the characterization of the molecular mechanisms of SCAF has seen rapid progress, little is known about its regulation. One emerging theme involves proteins produced both in host cells and by pathogens that appear to mimic the signaling components. Recently characterized examples involve the capping of the filamentous assemblies formed by caspase-1 CARDs by the CARD-only protein INCA, and those formed by caspase-8 by the DED-containing protein MC159. By contrast, the CARD-only protein ICEBERG and the DED-containing protein cFLIP incorporate into signaling filaments and presumably interfere with proximity based activation of caspases. We review selected examples of SCAF in innate immunity pathways and focus on the current knowledge on signaling component mimics produced by mammalian and pathogen cells and what is known about their mechanisms of action.
Collapse
Affiliation(s)
- Jeffrey D Nanson
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Md Habibur Rahaman
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Thomas Ve
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, 4072, Australia; Institute for Glycomics, Griffith University, Southport, QLD, 4222, Australia
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
8
|
Imbert PR, Louche A, Luizet JB, Grandjean T, Bigot S, Wood TE, Gagné S, Blanco A, Wunderley L, Terradot L, Woodman P, Garvis S, Filloux A, Guery B, Salcedo SP. A Pseudomonas aeruginosa TIR effector mediates immune evasion by targeting UBAP1 and TLR adaptors. EMBO J 2017; 36:1869-1887. [PMID: 28483816 PMCID: PMC5494471 DOI: 10.15252/embj.201695343] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 03/29/2017] [Accepted: 04/05/2017] [Indexed: 12/11/2022] Open
Abstract
Bacterial pathogens often subvert the innate immune system to establish a successful infection. The direct inhibition of downstream components of innate immune pathways is particularly well documented but how bacteria interfere with receptor proximal events is far less well understood. Here, we describe a Toll/interleukin 1 receptor (TIR) domain‐containing protein (PumA) of the multi‐drug resistant Pseudomonas aeruginosa PA7 strain. We found that PumA is essential for virulence and inhibits NF‐κB, a property transferable to non‐PumA strain PA14, suggesting no additional factors are needed for PumA function. The TIR domain is able to interact with the Toll‐like receptor (TLR) adaptors TIRAP and MyD88, as well as the ubiquitin‐associated protein 1 (UBAP1), a component of the endosomal‐sorting complex required for transport I (ESCRT‐I). These interactions are not spatially exclusive as we show UBAP1 can associate with MyD88, enhancing its plasma membrane localization. Combined targeting of UBAP1 and TLR adaptors by PumA impedes both cytokine and TLR receptor signalling, highlighting a novel strategy for innate immune evasion.
Collapse
Affiliation(s)
- Paul Rc Imbert
- Laboratory of Molecular Microbiology and Structural Biochemistry, Centre National de la Recherche Scientifique, University of Lyon, Lyon, France
| | - Arthur Louche
- Laboratory of Molecular Microbiology and Structural Biochemistry, Centre National de la Recherche Scientifique, University of Lyon, Lyon, France
| | - Jean-Baptiste Luizet
- Laboratory of Molecular Microbiology and Structural Biochemistry, Centre National de la Recherche Scientifique, University of Lyon, Lyon, France
| | - Teddy Grandjean
- EA 7366 Recherche Translationelle Relations Hôte-Pathogènes, Faculté de Médecine Pôle Recherche, Université Lille 2, Lille, France
| | - Sarah Bigot
- Laboratory of Molecular Microbiology and Structural Biochemistry, Centre National de la Recherche Scientifique, University of Lyon, Lyon, France
| | - Thomas E Wood
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Stéphanie Gagné
- Laboratory of Molecular Microbiology and Structural Biochemistry, Centre National de la Recherche Scientifique, University of Lyon, Lyon, France
| | - Amandine Blanco
- Laboratory of Molecular Microbiology and Structural Biochemistry, Centre National de la Recherche Scientifique, University of Lyon, Lyon, France
| | - Lydia Wunderley
- School of Biological Sciences, Faculty of Biology Medicine and Health University of Manchester Manchester Academic Health Science Centre, Manchester, UK†
| | - Laurent Terradot
- Laboratory of Molecular Microbiology and Structural Biochemistry, Centre National de la Recherche Scientifique, University of Lyon, Lyon, France
| | - Philip Woodman
- School of Biological Sciences, Faculty of Biology Medicine and Health University of Manchester Manchester Academic Health Science Centre, Manchester, UK†
| | - Steve Garvis
- Laboratoire de Biologie et Modelisation, Ecole Normal Supérieur, UMR5239, Lyon, France
| | - Alain Filloux
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Benoit Guery
- EA 7366 Recherche Translationelle Relations Hôte-Pathogènes, Faculté de Médecine Pôle Recherche, Université Lille 2, Lille, France
| | - Suzana P Salcedo
- Laboratory of Molecular Microbiology and Structural Biochemistry, Centre National de la Recherche Scientifique, University of Lyon, Lyon, France
| |
Collapse
|
9
|
Carlsson E, Thwaite JE, Jenner DC, Spear AM, Flick-Smith H, Atkins HS, Byrne B, Ding JL. Bacillus anthracis TIR Domain-Containing Protein Localises to Cellular Microtubule Structures and Induces Autophagy. PLoS One 2016; 11:e0158575. [PMID: 27391310 PMCID: PMC4938393 DOI: 10.1371/journal.pone.0158575] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 06/17/2016] [Indexed: 02/06/2023] Open
Abstract
Toll-like receptors (TLRs) recognise invading pathogens and mediate downstream immune signalling via Toll/IL-1 receptor (TIR) domains. TIR domain proteins (Tdps) have been identified in multiple pathogenic bacteria and have recently been implicated as negative regulators of host innate immune activation. A Tdp has been identified in Bacillus anthracis, the causative agent of anthrax. Here we present the first study of this protein, designated BaTdp. Recombinantly expressed and purified BaTdp TIR domain interacted with several human TIR domains, including that of the key TLR adaptor MyD88, although BaTdp expression in cultured HEK293 cells had no effect on TLR4- or TLR2- mediated immune activation. During expression in mammalian cells, BaTdp localised to microtubular networks and caused an increase in lipidated cytosolic microtubule-associated protein 1A/1B-light chain 3 (LC3), indicative of autophagosome formation. In vivo intra-nasal infection experiments in mice showed that a BaTdp knockout strain colonised host tissue faster with higher bacterial load within 4 days post-infection compared to the wild type B. anthracis. Taken together, these findings indicate that BaTdp does not play an immune suppressive role, but rather, its absence increases virulence. BaTdp present in wild type B. anthracis plausibly interact with the infected host cell, which undergoes autophagy in self-defence.
Collapse
Affiliation(s)
- Emil Carlsson
- Department of Life Sciences, Imperial College London, London, United Kingdom
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore
| | - Joanne E. Thwaite
- Defence Science and Technology Laboratory, Porton Down, Salisbury, United Kingdom
| | - Dominic C. Jenner
- Defence Science and Technology Laboratory, Porton Down, Salisbury, United Kingdom
| | - Abigail M. Spear
- Defence Science and Technology Laboratory, Porton Down, Salisbury, United Kingdom
| | - Helen Flick-Smith
- Defence Science and Technology Laboratory, Porton Down, Salisbury, United Kingdom
| | - Helen S. Atkins
- Defence Science and Technology Laboratory, Porton Down, Salisbury, United Kingdom
| | - Bernadette Byrne
- Department of Life Sciences, Imperial College London, London, United Kingdom
- * E-mail: (JLD); (BB)
| | - Jeak Ling Ding
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore
- * E-mail: (JLD); (BB)
| |
Collapse
|
10
|
McGuire VA, Arthur JSC. Subverting Toll-Like Receptor Signaling by Bacterial Pathogens. Front Immunol 2015; 6:607. [PMID: 26648936 PMCID: PMC4664646 DOI: 10.3389/fimmu.2015.00607] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 11/13/2015] [Indexed: 12/26/2022] Open
Abstract
Pathogenic bacteria are detected by pattern-recognition receptors (PRRs) expressed on innate immune cells, which activate intracellular signal transduction pathways to elicit an immune response. Toll-like receptors are, perhaps, the most studied of the PRRs and can activate the mitogen-activated protein kinase (MAPK) and Nuclear Factor-κB (NF-κB) pathways. These pathways are critical for mounting an effective immune response. In order to evade detection and promote virulence, many pathogens subvert the host immune response by targeting components of these signal transduction pathways. This mini-review highlights the diverse mechanisms that bacterial pathogens have evolved to manipulate the innate immune response, with a particular focus on those that target MAPK and NF-κB signaling pathways. Understanding the elaborate strategies that pathogens employ to subvert the immune response not only highlights the importance of these proteins in mounting effective immune responses, but may also identify novel approaches for treatment or prevention of infection.
Collapse
Affiliation(s)
- Victoria A McGuire
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee , Dundee , UK
| | - J Simon C Arthur
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee , Dundee , UK
| |
Collapse
|
11
|
Carlsson E, Ding JL, Byrne B. SARM modulates MyD88-mediated TLR activation through BB-loop dependent TIR-TIR interactions. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:244-53. [PMID: 26592460 DOI: 10.1016/j.bbamcr.2015.11.021] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 11/16/2015] [Accepted: 11/20/2015] [Indexed: 12/21/2022]
Abstract
Toll-like receptors (TLRs) recognise invading pathogens and initiate an innate immune response by recruiting intracellular adaptor proteins via heterotypic Toll/interleukin-1 receptor (TIR) domain interactions. Of the five TIR domain-containing adaptor proteins identified, Sterile α- and armadillo-motif-containing protein (SARM) is functionally unique; suppressing immune signalling instead of promoting it. Here we demonstrate that the recombinantly expressed and purified SARM TIR domain interacts with both the major human TLR adaptors, MyD88 and TRIF. A single glycine residue located in the BB-loop of the SARM TIR domain, G601, was identified as essential for interaction. A short peptide derived from this motif was also found to interact with MyD88 in vitro. SARM expression in HEK293 cells was found to significantly suppress lipopolysaccharide (LPS)-mediated upregulation of inflammatory cytokines, IL-8 and TNF-α, an effect lost in the G601A mutant. The same result was observed with cytokine activation initiated by MyD88 expression and stimulation of TLR2 with lipoteichoic acid (LTA), suggesting that SARM is capable of suppressing both TRIF- and MyD88- dependent TLR signalling. Our findings indicate that SARM acts on a broader set of target proteins than previously thought, and that the BB-loop motif is functionally important, giving further insight into the endogenous mechanisms used to suppress inflammation in immune cells.
Collapse
Affiliation(s)
- Emil Carlsson
- Department of Life Sciences, Imperial College London, SW7 2AZ, UK; Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore.
| | - Jeak Ling Ding
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore.
| | - Bernadette Byrne
- Department of Life Sciences, Imperial College London, SW7 2AZ, UK.
| |
Collapse
|
12
|
Nagarjuna D, Dhanda RS, Gaind R, Yadav M. tcpC as a prospective new virulence marker in blood Escherichia coli isolates from sepsis patients admitted to the intensive care unit. New Microbes New Infect 2015; 7:28-30. [PMID: 26137310 PMCID: PMC4484543 DOI: 10.1016/j.nmni.2015.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 04/18/2015] [Accepted: 05/06/2015] [Indexed: 01/15/2023] Open
Abstract
The prevalence of the tcpC in the blood Escherichia coli isolates collected from the sepsis patients admitted to the intensive care unit was investigated for the first time. The blood and faecal samples were collected from sepsis and nonsepsis patients, respectively. The prevalence of the tcpC and phylogroups was confirmed by gene-specific PCR. The occurrence of the tcpC in the blood E. coli isolates from sepsis patients was significantly higher than the faecal isolates. The higher prevalence of blood E. coli isolates among the pathogenic groups (B2, D) compared to the commensal groups (A, B1) suggests tcpC as a prospective new virulence marker for sepsis.
Collapse
Affiliation(s)
- D Nagarjuna
- Dr. B. R. Ambedkar Centre for Biomedical Research (ACBR), University of Delhi, India
| | - R S Dhanda
- Department of Translational and Regenerative medicine, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh, India
| | - R Gaind
- Department of Microbiology, Vardhman Mahavir Medical College (VMMC) and Safdarjung Hospital, Delhi, India
| | - M Yadav
- Dr. B. R. Ambedkar Centre for Biomedical Research (ACBR), University of Delhi, India
| |
Collapse
|
13
|
Patterson NJ, Günther J, Gibson AJ, Offord V, Coffey TJ, Splitter G, Monk I, Seyfert HM, Werling D. Two TIR-like domain containing proteins in a newly emerging zoonotic Staphylococcus aureus strain sequence type 398 are potential virulence factors by impacting on the host innate immune response. Front Microbiol 2014; 5:662. [PMID: 25538689 PMCID: PMC4260764 DOI: 10.3389/fmicb.2014.00662] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 11/14/2014] [Indexed: 12/24/2022] Open
Abstract
Staphylococcus aureus, sequence type (ST) 398, is an emerging pathogen and the leading cause of livestock-associated methicillin-resistant S. aureus infections in Europe and North America. This strain is characterized by high promiscuity in terms of host-species and also lacks several traditional S. aureus virulence factors. This does not, however, explain the apparent ease with which it crosses species-barriers. Recently, TIR-domain containing proteins (Tcps) which inhibit the innate immune response were identified in some Gram-negative bacteria. Here we report the presence of two proteins, S. aureus TIR-like Protein 1 (SaTlp1) and S. aureus TIR-like Protein 2 (SaTlp2), expressed by ST398 which contain domain of unknown function 1863 (DUF1863), similar to the Toll/IL-1 receptor (TIR) domain. In contrast to the Tcps in Gram-negative bacteria, our data suggest that SaTlp1 and SaTlp2 increase activation of the transcription factor NF-κB as well as downstream pro-inflammatory cytokines and immune effectors. To assess the role of both proteins as potential virulence factors knock-out mutants were created. These showed a slightly enhanced survival rate in a murine infectious model compared to the wild-type strain at one dose. Our data suggest that both proteins may act as factors contributing to the enhanced ability of ST398 to cross species-barriers.
Collapse
Affiliation(s)
- Nicholas J Patterson
- Molecular Immunology Group, Department of Pathology and Pathogen Biology, Royal Veterinary College Hatfield, UK
| | - Juliane Günther
- Leibniz Institute for Farm Animal Biology Dummerstorf, Germany
| | - Amanda J Gibson
- Molecular Immunology Group, Department of Pathology and Pathogen Biology, Royal Veterinary College Hatfield, UK
| | - Victoria Offord
- Molecular Immunology Group, Department of Pathology and Pathogen Biology, Royal Veterinary College Hatfield, UK
| | - Tracey J Coffey
- School of Veterinary Medicine and Sciences, Faculty of Medicine and Health Sciences, University of Nottingham Sutton Bonington, UK
| | - Gary Splitter
- Department of Pathobiological Sciences, University of Wisconsin-Madison Madison, WI, USA
| | - Ian Monk
- Department of Microbiology and Immunology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne Melbourne, VIC, Australia
| | | | - Dirk Werling
- Molecular Immunology Group, Department of Pathology and Pathogen Biology, Royal Veterinary College Hatfield, UK
| |
Collapse
|
14
|
Zou J, Baghdayan AS, Payne SJ, Shankar N. A TIR domain protein from E. faecalis attenuates MyD88-mediated signaling and NF-κB activation. PLoS One 2014; 9:e112010. [PMID: 25369374 PMCID: PMC4219826 DOI: 10.1371/journal.pone.0112010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 10/12/2014] [Indexed: 12/13/2022] Open
Abstract
Toll-like receptor signaling, mediated by functional Toll/interleukin-1 receptor (TIR) domains, plays a critical role in activating the innate immune response responsible for controlling and clearing infection. Bacterial protein mimics of components of this signaling pathway have been identified and function through inhibition of interactions between Toll-like receptors (TLRs) and their adaptor proteins, mediated by TIR domains. A previously uncharacterized gene, which we have named tcpF (for TIR domain-containing protein in E. faecalis) was identified in the genome of Enterococcus faecalis V583, and predicted to encode a protein resembling mammalian and bacterial TIR proteins. We overexpressed and purified TcpF from E. coli and found that the recombinant protein could bind to phosphatidylinositol phosphates in vitro, suggesting a mechanism by which TcpF may be anchored to the plasma membrane in close proximity to TIR domains of TLRs and adaptor proteins. Purified TcpF was also found to interact specifically with the TIR adaptor protein MyD88, and this interaction was dependent on the BB loop domain in the Box 2 region of TcpF. Despite no evidence of TcpF being a secreted protein, recombinant TcpF was effectively able to enter RAW264.7 cells in vitro although the mechanism by which this occurs remains to be determined. Overexpression of TcpF in mammalian cells suppressed the NF-κB activation induced by bacterial lipoteichoic acid. A mutant lacking the tcpF gene was attenuated for survival in macrophages, with increased ability to activate NF-κB compared to the wild type strain. Complementation in trans restored growth, and inhibition of NF-κB, to that of wild type levels. No appreciable difference in bacterial persistence, dissemination or pathogenesis was observed between the wild type and mutant in a mouse peritonitis model however, which suggested either a subtle role for TcpF or functional overlap with other redundant factor(s) in this virulence model.
Collapse
Affiliation(s)
- Jun Zou
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Arto S. Baghdayan
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Sarah J. Payne
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Nathan Shankar
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- * E-mail:
| |
Collapse
|
15
|
Askarian F, van Sorge NM, Sangvik M, Beasley FC, Henriksen JR, Sollid JUE, van Strijp JAG, Nizet V, Johannessen M. A Staphylococcus aureus TIR domain protein virulence factor blocks TLR2-mediated NF-κB signaling. J Innate Immun 2014; 6:485-98. [PMID: 24481289 DOI: 10.1159/000357618] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 11/25/2013] [Indexed: 01/05/2023] Open
Abstract
Signaling through Toll-like receptors (TLRs), crucial molecules in the induction of host defense responses, requires adaptor proteins that contain a Toll/interleukin-1 receptor (TIR) domain. The pathogen Staphylococcus aureus produces several innate immune-evasion molecules that interfere with the host's innate immune response. A database search analysis suggested the presence of a gene encoding a homologue of the human TIR domain in S. aureus MSSA476 which was named staphylococcal TIR domain protein (TirS). Ectopic expression of TirS in human embryonic kidney, macrophage and keratinocyte cell lines interfered with signaling through TLR2, including MyD88 and TIRAP, NF-κB and/or mitogen-activated protein kinase pathways. Moreover, the presence of TirS reduced the levels of cytokines MCP-1 and G-CSF secreted in response to S. aureus. The effects on NF-κB pathway were confirmed using S. aureus MSSA476 wild type, an isogenic mutant MSSA476ΔtirS, and complemented MSSA476ΔtirS +pTirS in a Transwell system where bacteria and host cells were physically separated. Finally, in a systematic mouse infection model, TirS promoted bacterial accumulation in several organs 4 days postinfection. The results of this study reveal a new S. aureus virulence factor that can interfere with PAMP-induced innate immune signaling in vitro and bacterial survival in vivo.
Collapse
Affiliation(s)
- Fatemeh Askarian
- Research Group of Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT The Artic University of Norway, Tromsø, Norway
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Nörenberg D, Wieser A, Magistro G, Hoffmann C, Meyer C, Messerer M, Schubert S. Molecular analysis of a novel Toll/interleukin-1 receptor (TIR)-domain containing virulence protein of Y. pseudotuberculosis among Far East scarlet-like fever serotype I strains. Int J Med Microbiol 2013; 303:583-94. [PMID: 24018301 DOI: 10.1016/j.ijmm.2013.08.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 07/29/2013] [Accepted: 08/07/2013] [Indexed: 01/05/2023] Open
Abstract
Pathogenicity of Yersinia pseudotuberculosis is determined by an arsenal of virulence factors. Particularly, the Yersinia outer proteins (Yops) and the Type III secretion system (T3SS) encoded on the pYV virulence plasmid are required for Yersinia pathogenicity. A specific group of Y. pseudotuberculosis, responsible for the clinical syndrome described as Far East scarlet-like fever (FESLF), is known to have an altered virulence gene cluster. Far East strains cause unique clinical symptoms for which the pYV virulence plasmid plays apparently a rather secondary role. Here, we characterize a previously unknown protein of Y. pseudotuberculosis serotype I strains (TcpYI) which can be found particularly among the FESLF strain group. The TcpYI protein shares considerable sequence homology to members of the Toll/IL-1 receptor family. Bacterial TIR domain containing proteins (Tcps) interact with the innate immune system by TIR-TIR interactions and subvert host defenses via individual, multifaceted mechanisms. In terms of virulence, it appears that the TcpYI protein of Y. pseudotuberculosis displays its own virulence phenotype compared to the previously characterized bacterial Tcps. Our results clearly demonstrate that TcpYI increases the intracellular survival of the respective strains in vitro. Furthermore, we show here that the intracellular survival benefit of the wild-type strain correlates with an increase in tcpYI gene expression inside murine macrophages. In support of this, we found that TcpYI enhances the survival inside the spleens of mice in a mouse model of peritonitis. Our results may point toward involvement of the TcpYI protein in inhibition of phagocytosis, particularly in distinct Y. pseudotuberculosis strains of the FESLF strain group where the pYV virulence plasmid is absent.
Collapse
Affiliation(s)
- Dominik Nörenberg
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Marchioninistr. 17, D-81377 München, Germany
| | | | | | | | | | | | | |
Collapse
|
17
|
Johannessen M, Askarian F, Sangvik M, Sollid JE. Bacterial interference with canonical NFκB signalling. MICROBIOLOGY-SGM 2013; 159:2001-2013. [PMID: 23873783 PMCID: PMC3799228 DOI: 10.1099/mic.0.069369-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The human body is constantly challenged by a variety of commensal and pathogenic micro-organisms that trigger the immune system. Central in the first line of defence is the pattern-recognition receptor (PRR)-induced stimulation of the NFκB pathway, leading to NFκB activation. The subsequent production of pro-inflammatory cytokines and/or antimicrobial peptides results in recruitment of professional phagocytes and bacterial clearance. To overcome this, bacteria have developed mechanisms for targeted interference in every single step in the PRR–NFκB pathway to dampen host inflammatory responses. This review aims to briefly overview the PRR–NFκB pathway in relation to the immune response and give examples of the diverse bacterial evasion mechanisms including changes in the bacterial surface, decoy production and injection of effector molecules. Targeted regulation of inflammatory responses is needed and bacterial molecules developed for immune evasion could provide future anti-inflammatory agents.
Collapse
Affiliation(s)
- Mona Johannessen
- Research Group of Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway
| | - Fatemeh Askarian
- Research Group of Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway
| | - Maria Sangvik
- Research Group of Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway
| | - Johanna E Sollid
- Research Group of Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway
| |
Collapse
|
18
|
Salcedo SP, Marchesini MI, Degos C, Terwagne M, Von Bargen K, Lepidi H, Herrmann CK, Santos Lacerda TL, Imbert PRC, Pierre P, Alexopoulou L, Letesson JJ, Comerci DJ, Gorvel JP. BtpB, a novel Brucella TIR-containing effector protein with immune modulatory functions. Front Cell Infect Microbiol 2013; 3:28. [PMID: 23847770 PMCID: PMC3703528 DOI: 10.3389/fcimb.2013.00028] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 06/18/2013] [Indexed: 12/29/2022] Open
Abstract
Several bacterial pathogens have TIR domain-containing proteins that contribute to their pathogenesis. We identified a second TIR-containing protein in Brucella spp. that we have designated BtpB. We show it is a potent inhibitor of TLR signaling, probably via MyD88. BtpB is a novel Brucella effector that is translocated into host cells and interferes with activation of dendritic cells. In vivo mouse studies revealed that BtpB is contributing to virulence and control of local inflammatory responses with relevance in the establishment of chronic brucellosis. Together, our results show that BtpB is a novel Brucella effector that plays a major role in the modulation of host innate immune response during infection.
Collapse
Affiliation(s)
- Suzana P Salcedo
- Aix-Marseille Univ UM 2, Centre d'Immunologie de Marseille-Luminy Marseille, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Patterson NJ, Werling D. To con protection: TIR-domain containing proteins (Tcp) and innate immune evasion. Vet Immunol Immunopathol 2013; 155:147-54. [PMID: 23871438 DOI: 10.1016/j.vetimm.2013.06.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Revised: 06/17/2013] [Accepted: 06/26/2013] [Indexed: 01/07/2023]
Abstract
The innate immune system provides the host's first line of defence against invading pathogens. Key to the stimulation of the innate immune response is pattern-recognition receptors (PRRs), such as Toll-like receptors (TLRs), which recognize microbial-associated molecular patterns (MAMPs). Binding of MAMPs to TLRs triggers a signalling cascade resulting in the production of pro-inflammatory mediators. Central to this TLR signalling pathway are heterotypic protein-protein interactions mediated through Toll/interleukin-1 receptor (TIR) domains found in both the cytoplasmic regions of TLRs and several key adaptor proteins. Interestingly, TIR-domain containing proteins (Tcps) do not seem to be unique to the mammalian TLR system, but occurs in abundance in many biological forms. Recent evidence suggests that pathogenic bacteria have developed a range of ingenuous strategies to evade the host immune mechanisms involving Tcps. There is increasing evidence to suggest that these pathogen-encoded Tcps interfere directly with the TLR signalling pathway and thus inhibit the activation of NF-κB, with different modes of action and roles in virulence. Here, we review the current state of knowledge on the possible roles and mechanisms of action of bacterial encoded Tcp.
Collapse
Affiliation(s)
- Nicholas J Patterson
- Molecular Immunology Group, Department of Pathology and Pathogen Biology, Royal Veterinary College, Hawkshead Lane, Hatfield AL9 7TA, UK
| | | |
Collapse
|
20
|
Rana RR, Zhang M, Spear AM, Atkins HS, Byrne B. Bacterial TIR-containing proteins and host innate immune system evasion. Med Microbiol Immunol 2012; 202:1-10. [PMID: 22772799 DOI: 10.1007/s00430-012-0253-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 06/21/2012] [Indexed: 12/29/2022]
Abstract
The innate immune system provides the first line of host defence against invading pathogens. Key to upregulation of the innate immune response are Toll-like receptors (TLRs), which recognize pathogen-associated molecular patterns (PAMPs) and trigger a signaling pathway culminating in the production of inflammatory mediators. Central to this TLR signaling pathway are heterotypic protein-protein interactions mediated through Toll/interleukin-1 receptor (TIR) domains found in both the cytoplasmic regions of TLRs and adaptor proteins. Pathogenic bacteria have developed a range of ingenuous strategies to evade the host immune mechanisms. Recent work has identified a potentially novel evasion mechanism involving bacterial TIR domain proteins. Such domains have been identified in a wide range of pathogenic bacteria, and there is evidence to suggest that they interfere directly with the TLR signaling pathway and thus inhibit the activation of NF-κB. The individual TIR domains from the pathogenic bacteria Salmonella enterica serovar Enteritidis, Brucella sp, uropathogenic E. coli and Yersinia pestis have been analyzed in detail. The individual bacterial TIR domains from these pathogenic bacteria seem to differ in their modes of action and their roles in virulence. Here, we review the current state of knowledge on the possible roles and mechanisms of action of the bacterial TIR domains.
Collapse
Affiliation(s)
- Rohini R Rana
- Division of Molecular Biosciences, Imperial College London, South Kensington, London, UK
| | | | | | | | | |
Collapse
|