1
|
Panyushkina A, Matyushkina D, Pobeguts O, Muravyov M, Letarov A. Mechanisms of microbial hyper-resistance to heavy metals: Cellular metal accumulation, metabolic reorganization, and GroEL chaperonin in extremophilic bacterium Sulfobacillus thermotolerans in response to zinc. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137490. [PMID: 39919630 DOI: 10.1016/j.jhazmat.2025.137490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/28/2025] [Accepted: 02/02/2025] [Indexed: 02/09/2025]
Abstract
Mine waste disposal in dumps and stockpiles causes environmental pollution, particularly through microbe-assisted acid mine drainage (AMD) generation and groundwater contamination with hazardous heavy metal(loid)s. Metal hyper-resistance in acidophilic microorganisms remains an underexplored intriguing phenomenon. Using a multi-level approach, we provide the first data on extreme zinc resistance mechanisms in Sulfobacillus thermotolerans, recognized as one of the most metal-resistant organisms known. Under high zinc levels, Sb. thermotolerans cells exhibited efficient zinc sorption and low intracellular accumulation. Remarkably, mechanisms involved the upregulation of stress response and metabolic pathway proteins, including different GroEL chaperonin forms. Moreover, overexpression of the Sb. thermotolerans StGroEL chaperonin in Escherichia coli enhanced its growth and zinc resistance under zinc stress. 3D structure modeling and ion binding site prediction in StGroEL revealed 46 amino acid residues potentially involved in zinc docking. Thriving in natural and engineered environments, such as sulfide mines, mine waste disposal sites, and AMD, Sb. thermotolerans is a key member of acidophilic microbial communities used in commercial biotechnologies for sulfidic raw material processing. These findings, beyond their fundamental scientific relevance, have important implications for environmental protection, including AMD management, safe hazardous waste disposal, and a broader application of eco-friendly biomining technologies using metal-resistant microbial communities.
Collapse
Affiliation(s)
- Anna Panyushkina
- Winogradsky Institute of Microbiology, Research Centre «Fundamentals of Biotechnology» of the Russian Academy of Sciences, Leninsky Ave., 33, bld. 2, Moscow 119071, Russia.
| | - Daria Matyushkina
- Scientific Research Institute for Systems Biology and Medicine, Scientific Driveway, 18, Moscow 117246, Russia
| | - Olga Pobeguts
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya, 1a, Moscow 119435, Russia
| | - Maxim Muravyov
- Winogradsky Institute of Microbiology, Research Centre «Fundamentals of Biotechnology» of the Russian Academy of Sciences, Leninsky Ave., 33, bld. 2, Moscow 119071, Russia
| | - Andrey Letarov
- Winogradsky Institute of Microbiology, Research Centre «Fundamentals of Biotechnology» of the Russian Academy of Sciences, Leninsky Ave., 33, bld. 2, Moscow 119071, Russia
| |
Collapse
|
2
|
Chemla Y, Sweeney CJ, Wozniak CA, Voigt CA. Design and regulation of engineered bacteria for environmental release. Nat Microbiol 2025; 10:281-300. [PMID: 39905169 DOI: 10.1038/s41564-024-01918-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/04/2024] [Indexed: 02/06/2025]
Abstract
Emerging products of biotechnology involve the release of living genetically modified microbes (GMMs) into the environment. However, regulatory challenges limit their use. So far, GMMs have mainly been tested in agriculture and environmental cleanup, with few approved for commercial purposes. Current government regulations do not sufficiently address modern genetic engineering and limit the potential of new applications, including living therapeutics, engineered living materials, self-healing infrastructure, anticorrosion coatings and consumer products. Here, based on 47 global studies on soil-released GMMs and laboratory microcosm experiments, we discuss the environmental behaviour of released bacteria and offer engineering strategies to help improve performance, control persistence and reduce risk. Furthermore, advanced technologies that improve GMM function and control, but lead to increases in regulatory scrutiny, are reviewed. Finally, we propose a new regulatory framework informed by recent data to maximize the benefits of GMMs and address risks.
Collapse
Affiliation(s)
- Yonatan Chemla
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Connor J Sweeney
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Christopher A Voigt
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
3
|
Chen Z, Han Z, Gao B, Zhao H, Qiu G, Shen L. Bioleaching of rare earth elements from ores and waste materials: Current status, economic viability and future prospects. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123217. [PMID: 39500151 DOI: 10.1016/j.jenvman.2024.123217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/16/2024] [Accepted: 11/01/2024] [Indexed: 11/28/2024]
Abstract
Rare earth elements (REEs) are critical components of numerous products widely used in many areas, and the demand for REEs is increasing dramatically in recent years. Physical-chemical leaching is commonly adopted for the recovery of REEs from ores and solid wastes, but concerns over the generation of hazards, operation safety, and environmental pollution have urged the transition to greener and more sustainable leaching methods. Bioleaching is considered an excellent alternative for the recovery of REEs. This review provided an overview on the REEs recovery from primary and secondary resources via different bioleaching strategies. The techno-economics of bioleaching for REEs recovery were highlighted, and key factors affecting the economic viability of bioleaching were identified. Finally, strategies including the utilization of low-cost substrates as feedstocks, non-sterile bioleaching, recycling and reutilization of biolixiviants, and development of robust bioleaching strains were proposed to improve the economic competitiveness of bioleaching. It is expected that this review could serve as a useful guideline on the design of more economically competitive bioleaching processes for the recovery REEs from different resources.
Collapse
Affiliation(s)
- Zhu Chen
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, PR China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, Hunan, PR China.
| | - Zebin Han
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, PR China
| | - Binyuan Gao
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, PR China
| | - Hongbo Zhao
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, PR China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, Hunan, PR China
| | - Guanzhou Qiu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, PR China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, Hunan, PR China
| | - Li Shen
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, PR China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, Hunan, PR China.
| |
Collapse
|
4
|
Pakostova E, Graves J, Latvyte E, Maddalena G, Horsfall L. A novel closed-loop biotechnology for recovery of cobalt from a lithium-ion battery active cathode material. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001475. [PMID: 39016549 PMCID: PMC11318048 DOI: 10.1099/mic.0.001475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/19/2024] [Indexed: 07/18/2024]
Abstract
In recent years, the demand for lithium-ion batteries (LIBs) has been increasing rapidly. Conventional recycling strategies (based on pyro- and hydrometallurgy) are damaging for the environment and more sustainable methods need to be developed. Bioleaching is a promising environmentally friendly approach that uses microorganisms to solubilize metals. However, a bioleaching-based technology has not yet been applied to recover valuable metals from waste LIBs on an industrial scale. A series of experiments was performed to improve metal recovery rates from an active cathode material (LiCoO2; LCO). (i) Direct bioleaching of ≤0.5 % LCO with two prokaryotic acidophilic consortia achieved >80 % Co and 90 % Li extraction. Significantly lower metal recovery rates were obtained at 30 °C than at 45 °C. (ii) In contrast, during direct bioleaching of 3 % LCO with consortia adapted to elevated LCO levels, the 30 °C consortium performed significantly better than the 45 °C consortium, solubilizing 73 and 93 % of the Co and Li, respectively, during one-step bioleaching, and 83 and 99 % of the Co and Li, respectively, during a two-step process. (iii) The adapted 30°C consortium was used for indirect leaching in a low-waste closed-loop system (with 10 % LCO). The process involved generation of sulfuric acid in an acid-generating bioreactor (AGB), 2-3 week leaching of LCO with the biogenic acid (pH 0.9), selective precipitation of Co as hydroxide, and recirculation of the metal-free liquor back into the AGB. In total, 58.2 % Co and 100 % Li were solubilized in seven phases, and >99.9 % of the dissolved Co was recovered after each phase as a high-purity Co hydroxide. Additionally, Co nanoparticles were generated from the obtained Co-rich leachates, using Desulfovibrio alaskensis, and Co electrowinning was optimized as an alternative recovery technique, yielding high recovery rates (91.1 and 73.6% on carbon felt and roughened steel, respectively) from bioleachates that contained significantly lower Co concentrations than industrial hydrometallurgical liquors. The closed-loop system was highly dominated by the mixotrophic archaeon Ferroplasma and sulfur-oxidizing bacteria Acidithiobacillus caldus and Acidithiobacillus thiooxidans. The developed system achieved high metal recovery rates and provided high-purity solid products suitable for a battery supply chain, while minimizing waste production and the inhibitory effects of elevated concentrations of dissolved metals on the leaching prokaryotes. The system is suitable for scale-up applications and has the potential to be adapted to different battery chemistries.
Collapse
Affiliation(s)
- Eva Pakostova
- Centre for Health and Life Sciences, Institute of Health and Wellbeing, Coventry University, Coventry, CV1 5FB, UK
- Centre for Manufacturing and Materials, Institute for Clean Growth and Future Mobility, Coventry University, Coventry, CV1 5FB, UK
- MIRARCO Mining Innovation, Sudbury, ON P3E 2C6, Canada
- Goodman School of Mines, Laurentian University, Sudbury, ON P3E 2C6, Canada
| | - John Graves
- Centre for Manufacturing and Materials, Institute for Clean Growth and Future Mobility, Coventry University, Coventry, CV1 5FB, UK
| | - Egle Latvyte
- Centre for Manufacturing and Materials, Institute for Clean Growth and Future Mobility, Coventry University, Coventry, CV1 5FB, UK
| | - Giovanni Maddalena
- School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3FF, UK
- Faraday Institution (ReLiB project), Quad One, Harwell Science and Innovation Campus, Didcot, UK
| | - Louise Horsfall
- School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3FF, UK
- Faraday Institution (ReLiB project), Quad One, Harwell Science and Innovation Campus, Didcot, UK
| |
Collapse
|
5
|
Arias D, Zepeda V, Nancucheo I, Saldaña M, Galleguillos PA. Osmotic response in Leptospirillum ferriphilum isolated from an industrial copper bioleaching environment to sulfate. Front Microbiol 2024; 15:1369244. [PMID: 38855770 PMCID: PMC11157003 DOI: 10.3389/fmicb.2024.1369244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/08/2024] [Indexed: 06/11/2024] Open
Abstract
Iron and sulfur-oxidizing microorganisms play important roles in several natural and industrial processes. Leptospirillum (L.) ferriphilum, is an iron-oxidizing microorganism with a remarkable adaptability to thrive in extreme acidic environments, including heap bioleaching processes, acid mine drainage (AMD) and natural acidic water. A strain of L. ferriphilum (IESL25) was isolated from an industrial bioleaching process in northern Chile. This strain was challenged to grow at increasing concentrations of sulfate in order to assess changes in protein expression profiles, cells shape and to determine potential compatible solute molecules. The results unveiled changes in three proteins: succinyl CoA (SCoA) synthetase, isocitrate dehydrogenase (IDH) and aspartate semialdehyde dehydrogenase (ASD); which were notably overexpressed when the strain grew at elevated concentrations of sulfate. ASD plays a pivotal role in the synthesis of the compatible solute ectoine, which was identified along with hydroxyectoine by using matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF). The relationship between IDH, SCoA, and ectoine production could be due to the TCA cycle, in which both enzymes produce metabolites that can be utilized as precursors or intermediates in the biosynthesis of ectoine. In addition, distinct filamentous cellular morphology in L. ferriphilum IESL25 was observed when growing under sulfate stress conditions. This study highlights a new insight into the possible cellular responses of L. ferriphilum under the presence of high sulfate levels, commonly found in bioleaching of sulfide minerals or AMD environments.
Collapse
Affiliation(s)
- Dayana Arias
- Laboratory of Molecular Biology and Applied Microbiology, Centro de Investigación en Fisiología y Medicina de Altura (FIMEDALT), Departamento Biomédico, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, Chile
| | - Víctor Zepeda
- Scientific and Technological Research Centre for Mining Research, CICITEM, Antofagasta, Chile
| | - Ivan Nancucheo
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Concepción, Chile
| | - Manuel Saldaña
- Faculty of Engineering and Architecture, Arturo Prat University, Iquique, Chile
| | - Pedro A. Galleguillos
- Scientific and Technological Research Centre for Mining Research, CICITEM, Antofagasta, Chile
| |
Collapse
|
6
|
Bakhti A, Moghimi H, Bozorg A, Stankovic S, Manafi Z, Schippers A. Comparison of bioleaching of a sulfidic copper ore (chalcopyrite) in column percolators and in stirred-tank bioreactors including microbial community analysis. CHEMOSPHERE 2024; 349:140945. [PMID: 38104736 DOI: 10.1016/j.chemosphere.2023.140945] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/05/2023] [Accepted: 12/10/2023] [Indexed: 12/19/2023]
Abstract
Chalcopyrite is the most abundant Cu-sulfide and economically the most important copper mineral in the world. It is known to be recalcitrant in hydrometallurgical processing and therefore chalcopyrite bioleaching has been thoroughly studied for improvement of processing. In this study, the microbial diversity in 22 samples from the Sarcheshmeh copper mine in Iran was investigated via 16S rRNA gene sequencing. In total, 1063 species were recognized after metagenomic analysis including the ferrous iron- and sulfur-oxidizing acidophilic genera Acidithiobacillus, Leptospirillum, Sulfobacillus and Ferroplasma. Mesophilic as well as moderately thermophilic acidophilic ferrous iron- and sulfur-oxidizing microorganisms were enriched from these samples and bioleaching was studied in shake flask experiments using a chalcopyrite-containing ore sample from the same mine. These enrichment cultures were further used as inoculum for bioleaching experiments in percolation columns for simulating heap bioleaching. Addition of 100 mM NaCl to the bioleaching medium was assessed to improve the dissolution rate of chalcopyrite. For comparison, bioleaching in stirred tank reactors with a defined microbial consortium was carried out as well. While just maximal 32% copper could be extracted in the flask bioleaching experiments, 73% and 76% of copper recovery was recorded after 30 and 10 days bioleaching in columns and bioreactors, respectively. Based on the results, both, the application of moderately thermophilic acidophilic bacteria in stirred tank bioreactors, and natural enrichment cultures of mesoacidophiles, with addition of 100 mM NaCl in column percolators with agglomerated ore allowed for a robust chalcopyrite dissolution and copper recovery from Sarcheshmeh copper ore via bioleaching.
Collapse
Affiliation(s)
- Azam Bakhti
- Department of Microbial Biotechnology, College of Science, University of Tehran, Tehran, Iran; Federal Institute for Geosciences and Natural Resources (BGR), Hannover, Germany
| | - Hamid Moghimi
- Department of Microbial Biotechnology, College of Science, University of Tehran, Tehran, Iran.
| | - Ali Bozorg
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Srdjan Stankovic
- Federal Institute for Geosciences and Natural Resources (BGR), Hannover, Germany
| | - Zahra Manafi
- National Iranian Copper Industries Company, Kerman, Iran
| | - Axel Schippers
- Federal Institute for Geosciences and Natural Resources (BGR), Hannover, Germany.
| |
Collapse
|
7
|
Karimi Darvanjooghi MH, Magdouli S, Brar SK. Recent challenges in biological cyanidation and oxidation of sulfide-based refractory gold ore. World J Microbiol Biotechnol 2024; 40:67. [PMID: 38197973 DOI: 10.1007/s11274-024-03887-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 01/07/2024] [Indexed: 01/11/2024]
Abstract
In mining industries, biomining (comprising biooxidation and bioleaching) is implemented to extract metals from specific ores and waste streams with less environmental effect and expense. Usually, micron-sized gold particles are held in a crystal lattice of iron sulfide minerals and expensively extracted using common approaches. Researchers and industries are interested in developing recent technology and biologically sustainable methods in both pretreatment and further extraction steps for extracting this valuable metal from ores. Diverse studies in biooxidation, as a conventional pretreatment, and biocyanidation, as a new proposed biotechnological method in the downstream gold extraction step, have addressed scientific and technological issues in the extraction of this metal. These two methods have become economically practical by merging high-throughput microbiological data, extraction and recovery process knowledge, and theory validation. However, there is still a gap in the implementation of both the pretreatment method and extraction method due to the consistency and their compatibility with operational recovery conditions. This review brings out the recent biooxidation and biocyanidation improvements, innovation, industry and academic research, and obstacles to gold extraction with a brief explanation to address the recent developments.
Collapse
Affiliation(s)
| | - Sara Magdouli
- Department of Civil Engineering, Lassonde School of Engineering, York University, Toronto, ON, M3J 1P3, Canada
| | - Satinder Kaur Brar
- Department of Civil Engineering, Lassonde School of Engineering, York University, Toronto, ON, M3J 1P3, Canada.
| |
Collapse
|
8
|
Hribovšek P, Olesin Denny E, Dahle H, Mall A, Øfstegaard Viflot T, Boonnawa C, Reeves EP, Steen IH, Stokke R. Putative novel hydrogen- and iron-oxidizing sheath-producing Zetaproteobacteria thrive at the Fåvne deep-sea hydrothermal vent field. mSystems 2023; 8:e0054323. [PMID: 37921472 PMCID: PMC10734525 DOI: 10.1128/msystems.00543-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/02/2023] [Indexed: 11/04/2023] Open
Abstract
IMPORTANCE Knowledge on microbial iron oxidation is important for understanding the cycling of iron, carbon, nitrogen, nutrients, and metals. The current study yields important insights into the niche sharing, diversification, and Fe(III) oxyhydroxide morphology of Ghiorsea, an iron- and hydrogen-oxidizing Zetaproteobacteria representative belonging to Zetaproteobacteria operational taxonomic unit 9. The study proposes that Ghiorsea exhibits a more extensive morphology of Fe(III) oxyhydroxide than previously observed. Overall, the results increase our knowledge on potential drivers of Zetaproteobacteria diversity in iron microbial mats and can eventually be used to develop strategies for the cultivation of sheath-forming Zetaproteobacteria.
Collapse
Affiliation(s)
- Petra Hribovšek
- Centre for Deep Sea Research, University of Bergen, Bergen, Norway
- Department of Earth Science, University of Bergen, Bergen, Norway
| | - Emily Olesin Denny
- Centre for Deep Sea Research, University of Bergen, Bergen, Norway
- Department of Biological Sciences, University of Bergen, Bergen, Norway
- Computational Biology Unit, University of Berge, Bergen, Norway
| | - Håkon Dahle
- Centre for Deep Sea Research, University of Bergen, Bergen, Norway
- Department of Biological Sciences, University of Bergen, Bergen, Norway
- Computational Biology Unit, University of Berge, Bergen, Norway
| | - Achim Mall
- Centre for Deep Sea Research, University of Bergen, Bergen, Norway
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Thomas Øfstegaard Viflot
- Centre for Deep Sea Research, University of Bergen, Bergen, Norway
- Department of Earth Science, University of Bergen, Bergen, Norway
| | - Chanakan Boonnawa
- Centre for Deep Sea Research, University of Bergen, Bergen, Norway
- Department of Earth Science, University of Bergen, Bergen, Norway
| | - Eoghan P. Reeves
- Centre for Deep Sea Research, University of Bergen, Bergen, Norway
- Department of Earth Science, University of Bergen, Bergen, Norway
| | - Ida Helene Steen
- Centre for Deep Sea Research, University of Bergen, Bergen, Norway
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Runar Stokke
- Centre for Deep Sea Research, University of Bergen, Bergen, Norway
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| |
Collapse
|
9
|
Hobart KK, Greensky Z, Hernandez K, Feinberg JM, Bailey JV, Jones DS. Microbial communities from weathered outcrops of a sulfide-rich ultramafic intrusion, and implications for mine waste management. Environ Microbiol 2023; 25:3512-3526. [PMID: 37667903 DOI: 10.1111/1462-2920.16489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 07/20/2023] [Indexed: 09/06/2023]
Abstract
The Duluth Complex (DC) contains sulfide-rich magmatic intrusions that represent one of the largest known economic deposits of copper, nickel, and platinum group elements. Previous work showed that microbial communities associated with experimentally-weathered DC waste rock and tailings were dominated by uncultivated taxa and organisms not typically associated with mine waste. However, those experiments were designed for kinetic testing and do not necessarily represent the conditions expected for long-term environmental weathering. We used 16S rRNA gene methods to characterize the microbial communities present on the surfaces of naturally-weathered and historically disturbed outcrops of DC material. Rock surfaces were dominated by diverse uncultured Ktedonobacteria, Acetobacteria, and Actinobacteria, with abundant algae and other phototrophs. These communities were distinct from microbial assemblages from experimentally-weathered DC rocks, suggesting different energy and nutrient resources in environmental samples. Sulfide mineral incubations performed with and without algae showed that photosynthetic microorganisms could have an inhibitory effect on autotrophic populations, resulting in slightly lower sulfate release and differences in dominant microorganisms. The microbial assemblages from these weathered outcrops show how communities develop during weathering of sulfide-rich DC rocks and represent baseline data that could evaluate the effectiveness of future reclamation of waste produced by large-scale mining operations.
Collapse
Affiliation(s)
- Kathryn K Hobart
- Department of Earth & Environmental Sciences, University of Minnesota, Minneapolis, Minnesota, USA
- Institute for Rock Magnetism, University of Minnesota, Minneapolis, Minnesota, USA
| | - ZhaaZhaawaanong Greensky
- Department of Earth & Environmental Sciences, University of Minnesota, Minneapolis, Minnesota, USA
| | - Kimberly Hernandez
- Department of Earth & Environmental Sciences, University of Minnesota, Minneapolis, Minnesota, USA
| | - Joshua M Feinberg
- Department of Earth & Environmental Sciences, University of Minnesota, Minneapolis, Minnesota, USA
- Institute for Rock Magnetism, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jake V Bailey
- Department of Earth & Environmental Sciences, University of Minnesota, Minneapolis, Minnesota, USA
| | - Daniel S Jones
- Department of Earth & Environmental Sciences, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Earth and Environmental Science, New Mexico Institute of Mining and Technology, Socorro, New Mexico, USA
- National Cave and Karst Research Institute, Carlsbad, New Mexico, USA
| |
Collapse
|
10
|
Smieska L, Guerinot ML, Olson Hoal K, Reid M, Vatamaniuk O. Synchrotron science for sustainability: life cycle of metals in the environment. Metallomics 2023; 15:mfad041. [PMID: 37370221 DOI: 10.1093/mtomcs/mfad041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023]
Abstract
The movement of metals through the environment links together a wide range of scientific fields: from earth sciences and geology as weathering releases minerals; to environmental sciences as metals are mobilized and transformed, cycling through soil and water; to biology as living things take up metals from their surroundings. Studies of these fundamental processes all require quantitative analysis of metal concentrations, locations, and chemical states. Synchrotron X-ray tools can address these requirements with high sensitivity, high spatial resolution, and minimal sample preparation. This perspective describes the state of fundamental scientific questions in the lifecycle of metals, from rocks to ecosystems, from soils to plants, and from environment to animals. Key X-ray capabilities and facility infrastructure for future synchrotron-based analytical resources serving these areas are summarized, and potential opportunities for future experiments are explored.
Collapse
Affiliation(s)
- Louisa Smieska
- Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, NY 14853, USA
| | - Mary Lou Guerinot
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| | - Karin Olson Hoal
- Department of Earth & Atmospheric Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Matthew Reid
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Olena Vatamaniuk
- School of Integrative Plant Science Plant Biology Section, Cornell University, Ithaca NY 14853, USA
| |
Collapse
|
11
|
Saldaña M, Jeldres M, Galleguillos Madrid FM, Gallegos S, Salazar I, Robles P, Toro N. Bioleaching Modeling-A Review. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16103812. [PMID: 37241440 DOI: 10.3390/ma16103812] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023]
Abstract
The leaching of minerals is one of the main unit operations in the metal dissolution process, and in turn it is a process that generates fewer environmental liabilities compared to pyrometallurgical processes. As an alternative to conventional leaching methods, the use of microorganisms in mineral treatment processes has become widespread in recent decades, due to advantages such as the non-production of emissions or pollution, energy savings, low process costs, products compatible with the environment, and increases in the benefit of low-grade mining deposits. The purpose of this work is to introduce the theoretical foundations associated with modeling the process of bioleaching, mainly the modeling of mineral recovery rates. The different models are collected from models based on conventional leaching dynamics modeling, based on the shrinking core model, where the oxidation process is controlled by diffusion, chemically, or by film diffusion until bioleaching models based on statistical analysis are presented, such as the surface response methodology or the application of machine learning algorithms. Although bioleaching modeling (independent of modeling techniques) of industrial (or large-scale mined) minerals is a fairly developed area, bioleaching modeling applied to rare earth elements is a field with great growth potential in the coming years, as in general bioleaching has the potential to be a more sustainable and environmentally friendly mining method than traditional mining methods.
Collapse
Affiliation(s)
- Manuel Saldaña
- Faculty of Engineering and Architecture, Arturo Prat University, Iquique 1110939, Chile
- Departamento de Ingeniería Química y Procesos de Minerales, Universidad de Antofagasta, Antofagasta 1270300, Chile
| | - Matías Jeldres
- Departamento de Ingeniería Química y Procesos de Minerales, Universidad de Antofagasta, Antofagasta 1270300, Chile
| | | | - Sandra Gallegos
- Faculty of Engineering and Architecture, Arturo Prat University, Iquique 1110939, Chile
| | - Iván Salazar
- Departamento de Ingeniería Civil, Universidad Católica del Norte, Antofagasta 1270709, Chile
| | - Pedro Robles
- Escuela de Ingeniería Química, Pontificia Universidad Católica de Valparaíso, Valparaíso 2340000, Chile
| | - Norman Toro
- Faculty of Engineering and Architecture, Arturo Prat University, Iquique 1110939, Chile
| |
Collapse
|
12
|
Li XT, Huang ZS, Huang Y, Jiang Z, Liang ZL, Yin HQ, Zhang GJ, Jia Y, Deng Y, Liu SJ, Jiang CY. Responses of microbial community to geochemical parameters on vertical depth in bioheap system of low-grade copper sulfide. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161752. [PMID: 36690115 DOI: 10.1016/j.scitotenv.2023.161752] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 06/17/2023]
Abstract
Monitoring of the microbial community in bioleaching system is essential for control process parameters and enhance the leaching efficiency. Due to the difficulty of sampling, microbial distribution, community succession and bioleaching activity along the vertical depth of bioleaching heaps remain unresolved. This study investigated the geochemical parameters and microbial community structure along a depth profile in a bioleaching heap and leachate. 80 ore samples at different heap depths and 9 leaching solution samples from three bioheaps of Zijin Copper Mine were collected. Microbial composition, mineral types and geochemical parameters of these samples were analyzed by 16S rRNA high-throughput sequencing and a series of chemical measurement technologies. The results revealed that the pH, Cu, Fe and the total sulfur contents were the major factors shaping the composition of the microbial communities in the bioleaching system. The extent of mineral oxidation increased as the sample depth increases, followed by the increasing of sulfur oxidizers. The abundance of sulfur and iron oxidizers including members of Acidithiobacillus, Sulfobacillus and Acidiferrobacter were significantly higher in the leaching heap than in the leaching solution, meanwhile, they showed strong positive interactions with other members within the same genera and iron oxidizer Leptospirillum and Ferroplasma. Besides, Acidithiobacillus negatively interacted with heterotrophs such as Sphingobium, Exiguobacterium, Brevundimonas and so on. On the contrast, members of Leptospirillum and unclassified Archaea were significantly abundant in the leaching solution and revealed strong interactions with members of Thermoplasmatales. The main conclusion of this study, especially the leaching potential of microorganisms prevailing in bioheaps and their relationships with geochemical factors, provides theoretical guidance for future process design such as the control of processing parameters and microbial community in heap leaching.
Collapse
Affiliation(s)
- Xiu-Tong Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhong-Sheng Huang
- School of Metallurgy and Environment, Central South University, Changsha 410083, Hunan, China; Zijin Mining Group Company Limited, Shanghang 364200, Fujian, China
| | - Ye Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen Jiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zong-Lin Liang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hua-Qun Yin
- Key Laboratory of Biometallurgy of Ministry of Education, School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Guang-Ji Zhang
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China; Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Yan Jia
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China; Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Ye Deng
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Shuang-Jiang Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Cheng-Ying Jiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
13
|
Dutta D, Rautela R, Gujjala LKS, Kundu D, Sharma P, Tembhare M, Kumar S. A review on recovery processes of metals from E-waste: A green perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160391. [PMID: 36423849 DOI: 10.1016/j.scitotenv.2022.160391] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/06/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
E-waste management has become a global concern because of the enormous rise in the rate of end-of-life electrical and electronic equipment's (EEEs). Disposal of waste EEE directly into the environment leads to adverse effects on the environment as well as on human health. For the management of E-waste, numerous studies have been carried out for extracting metals (base, precious, and rare earth) following pyrometallurgy, hydrometallurgy, and biometallurgy. Irrespective of the advantages of these processes, certain limitations still exist with each of these options in terms of their adoption as treatment techniques. Several journal publications regarding the different processes have been made which aids in future research in the field of E-waste management. This review provides a comprehensive summary of the various metal recovery processes (pyrometallurgy, hydrometallurgy, and biometallurgy) from E-waste, along with their advantages and limitations. A bibliometric study based on the published articles using different keywords in Scopus has been provided for a complete idea about E-waste with green technology perspective like bioleaching, biosorption, etc. The present study also focussed on the circular economic approach towards sustainable E-waste management along with its socio-economic aspects and the economic growth of the country. The present study would provide valuable knowledge in understanding E-waste and its different treatment processes to the students, researchers, industrialists, and policymakers of the country.
Collapse
Affiliation(s)
- Deblina Dutta
- Department of Environmental Science, SRM University- AP, Amaravati, Andhra Pradesh 522 240
| | - Rahul Rautela
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440 020, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, Uttar Pradesh, India
| | - Lohit Kumar Srinivas Gujjala
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440 020, Maharashtra, India
| | - Debajyoti Kundu
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440 020, Maharashtra, India
| | - Pooja Sharma
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440 020, Maharashtra, India
| | - Mamta Tembhare
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440 020, Maharashtra, India
| | - Sunil Kumar
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440 020, Maharashtra, India.
| |
Collapse
|
14
|
Hossein Karimi Darvanjooghi M, Kaur K, Magdouli S, Kaur Brar S. Extracellular polymeric substances overproduction strategy in Ferroplasma acidiphilum growth for biooxidation of low-grade gold bearing ore: Role of monosaccharides. BIORESOURCE TECHNOLOGY 2023; 369:128476. [PMID: 36509301 DOI: 10.1016/j.biortech.2022.128476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
The adhesion of microorganisms to surfaces and the affecting factors is important in biomining pretreatment. In this research, the novelty is focused on studying the monosaccharide's impact on the adaptability and adhesivity of Ferroplasma acidiphilum for oxidization of sulfide-bearing ore containing pyrite harboring 98 % of gold in its crystal lattice. d-sucrose increased EPS production with the highest amount of pyrite dissolution (69 %) as compared to the other types of monosaccharides (d-galactose and d-fructose). Addition of 0.8 wt% d-sucrose enhanced the production of ferric ions 65 % for the ore load of 20 wt% while for the addition of 0.4 wt%, the ferric ions concentration was maximum up to 95 %. The results indicated that the addition of both yeast extract and d-sucrose with the concentration of 0.4 wt% enhanced the EPS (Extracellular Polymeric Substances) biovolume fraction from 7.5 to 32.5 v/v %.
Collapse
Affiliation(s)
| | - Kamalpreet Kaur
- Research Centre of Energy, Mining, and Environment (EME), National Research Council Canada, 6100 Royalmount Ave, Montreal, QC H4P 2R2, Canada
| | - Sara Magdouli
- Department of Civil Engineering, Lassonde School of Engineering, York University, Toronto, Ontario M3J 1P3, Canada
| | - Satinder Kaur Brar
- Department of Civil Engineering, Lassonde School of Engineering, York University, Toronto, Ontario M3J 1P3, Canada.
| |
Collapse
|
15
|
Convergent Community Assembly among Globally Separated Acidic Cave Biofilms. Appl Environ Microbiol 2023; 89:e0157522. [PMID: 36602326 PMCID: PMC9888236 DOI: 10.1128/aem.01575-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Acidophilic bacteria and archaea inhabit extreme geochemical "islands" that can tell us when and how geographic barriers affect the biogeography of microorganisms. Here, we describe microbial communities from extremely acidic (pH 0 to 1) biofilms, known as snottites, from hydrogen sulfide-rich caves. Given the extreme acidity and subsurface location of these biofilms, and in light of earlier work showing strong geographic patterns among snottite Acidithiobacillus populations, we investigated their structure and diversity in order to understand how geography might impact community assembly. We used 16S rRNA gene cloning and fluorescence in situ hybridization (FISH) to investigate 26 snottite samples from four sulfidic caves in Italy and Mexico. All samples had very low biodiversity and were dominated by sulfur-oxidizing bacteria in the genus Acidithiobacillus. Ferroplasma and other archaea in the Thermoplasmatales ranged from 0 to 50% of total cells, and relatives of the bacterial genera Acidimicrobium and Ferrimicrobium were up to 15% of total cells. Rare phylotypes included Sulfobacillus spp. and members of the phyla "Candidatus Dependentiae" and "Candidatus Saccharibacteria" (formerly TM6 and TM7). Although the same genera of acidophiles occurred in snottites on separate continents, most members of those genera represent substantially divergent populations, with 16S rRNA genes that are only 95 to 98% similar. Our findings are consistent with a model of community assembly where sulfidic caves are stochastically colonized by microorganisms from local sources, which are strongly filtered through environmental selection for extreme acid tolerance, and these different colonization histories are maintained by dispersal restrictions within and among caves. IMPORTANCE Microorganisms that are adapted to extremely acidic conditions, known as extreme acidophiles, are catalysts for rock weathering, metal cycling, and mineral formation in naturally acidic environments. They are also important drivers of large-scale industrial processes such as biomining and contaminant remediation. Understanding the factors that govern their ecology and distribution can help us better predict and utilize their activities in natural and engineered systems. However, extremely acidic habitats are unusual in that they are almost always isolated within circumneutral landscapes. So where did their acid-adapted inhabitants come from, and how do new colonists arrive and become established? In this study, we took advantage of a unique natural experiment in Earth's subsurface to show how isolation may have played a role in the colonization history, community assembly, and diversity of highly acidic microbial biofilms.
Collapse
|
16
|
Interesting Halophilic Sulphur-Oxidising Bacteria with Bioleaching Potential: Implications for Pollutant Mobilisation from Mine Waste. Microorganisms 2023; 11:microorganisms11010222. [PMID: 36677514 PMCID: PMC9866277 DOI: 10.3390/microorganisms11010222] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/05/2023] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
For many years, research on the microbial-dissolution of metals from ores or waste materials mainly focussed on the study of acidophilic organisms. However, most acidophilic bioleaching microorganisms have limited tolerance to high chloride concentrations, thereby requiring fresh water for bioleaching operations. There is a growing interest in the use of seawater for leaching purposes, especially in regions with less access to fresh water. Consequently, there is a need to find halophilic organisms with bioleaching potentials. This study investigated the bioleaching potentials of four moderately halophilic sulphur-oxidising bacteria: Thiomicrospira cyclica, Thiohalobacter thiocyanaticus, Thioclava electrotropha and Thioclava pacifica. Results revealed T. electrotropha and T. pacifica as the most promising for bioleaching. Pure cultures of the two Thioclava strains liberated about 30% Co, and between 8-17% Cu, Pb, Zn, K, Cd, and Mn from a mine waste rock sample from the Neves Corvo mine, Portugal. Microwave roasting of the waste rock at 400 and 500 °C improved the bioleaching efficiency of T. electrotropha for Pb (13.7 to 45.7%), Ag (5.3 to 36%) and In (0 to 27.4%). Mineralogical analysis of the bioleached residues using SEM/MLA-GXMAP showed no major difference in the mineral compositions before or after bioleaching by the Thioclava spp. Generally, the bioleaching rates of the Thioclava spp. are quite low compared to that of the conventional acidophilic bioleaching bacteria. Nevertheless, their ability to liberate potential pollutants (metal(loid)s) into solution from mine waste raises environmental concerns. This is due to their relevance in the biogeochemistry of mine waste dumps, as similar neutrophile halophilic sulphur-oxidising organisms (e.g., Halothiobacillus spp.) have been isolated from mine wastes. On the other hand, the use of competent halophilic microorganisms could be the future of bioleaching due to their high tolerance to Cl- ions and their potential to catalyse mineral dissolution in seawater media, instead of fresh water.
Collapse
|
17
|
Li S, Li G, Huang X, Chen Y, Lv C, Bai L, Zhang K, He H, Dai J. Cultivar-specific response of rhizosphere bacterial community to uptake of cadmium and mineral elements in rice (Oryza sativa L.). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114403. [PMID: 36508785 DOI: 10.1016/j.ecoenv.2022.114403] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/16/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Toxic metal-contaminated farmland from Cadmium (Cd) can enhance the accumulation of Cd and impair the absorption of mineral elements in brown rice. Although several studies have been conducted on Cd exposure on rice, little has been reported on the relationship between Cd and mineral elements in brown rice and the regulatory mechanism of rhizosphere microorganisms during element uptake. Thus, a field study was undertaken to screen japonica rice cultivars with low Cd and high mineral elements levels, analyze the quantitative relationship between Cd and seven mineral elements, and investigate the cultivar-specific response of rice rhizosphere bacterial communities to differences in Cd and mineral uptake in japonica rice. Results showed that Huaidao-9 and Xudao-7 had low Cd absorption and high amounts of mineral nutrient elements (Fe, Zn, Mg, and Ca, LCHM group), whereas Zhongdao-1 and Xinkedao-31 showed opposite accumulation characteristics (HCLM group). Stepwise regression analysis showed that zinc, iron, and potassium are the key minerals that affect Cd accumulation in japonica rice and zinc was the most important factor, accounting for 68.99 %. The accumulation of Cd and mineral elements is potentially associated with rhizosphere soil bacteria. Taxa enriched in the LCHM rhizosphere (phyla Acidobacteriota and MBNT15) indicated the high nutrient characteristics of the soil and reduced activity of Cd in soil. The HCLM rhizosphere was highly colonized by metal-activating bacteria (Actinobacteria), lignin-degrading bacteria (Actinobacteria and Chlorofexi), and bacteria scavenging nutrients and trace elements (Anaerolinea and Ketobacter). Moreover, the differences in the uptake of Cd and mineral elements affected predicted functions of microbial communities, including sulfur oxidation and sulfur derivative formation, human or plant pathogen, and functions related to the iron oxidation and nitrate reduction. The results indicate a potential association of Cd and mineral elements uptake and accumulation with rhizosphere bacteria in rice, thus providing theoretical basis and a new perspective on the maintenance of rice security and high quality simultaneously.
Collapse
Affiliation(s)
- Shuangshuang Li
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Guangxian Li
- Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Xianmin Huang
- Shandong General Station of Agricultural Environmental Protection and Rural Energy, Jinan 250100, China
| | - Yihui Chen
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Cheng Lv
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Liyong Bai
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Ke Zhang
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Huan He
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Jiulan Dai
- Environment Research Institute, Shandong University, Qingdao 266237, China.
| |
Collapse
|
18
|
Sand W, Schippers A, Hedrich S, Vera M. Progress in bioleaching: fundamentals and mechanisms of microbial metal sulfide oxidation - part A. Appl Microbiol Biotechnol 2022; 106:6933-6952. [PMID: 36194263 PMCID: PMC9592645 DOI: 10.1007/s00253-022-12168-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/30/2022]
Abstract
Abstract Bioleaching of metal sulfides is performed by diverse microorganisms. The dissolution of metal sulfides occurs via two chemical pathways, either the thiosulfate or the polysulfide pathway. These are determined by the metal sulfides’ mineralogy and their acid solubility. The microbial cell enables metal sulfide dissolution via oxidation of iron(II) ions and inorganic sulfur compounds. Thereby, the metal sulfide attacking agents iron(III) ions and protons are generated. Cells are active either in a planktonic state or attached to the mineral surface, forming biofilms. This review, as an update of the previous one (Vera et al., 2013a), summarizes some recent discoveries relevant to bioleaching microorganisms, contributing to a better understanding of their lifestyle. These comprise phylogeny, chemical pathways, surface science, biochemistry of iron and sulfur metabolism, anaerobic metabolism, cell–cell communication, molecular biology, and biofilm lifestyle. Recent advances from genetic engineering applied to bioleaching microorganisms will allow in the future to better understand important aspects of their physiology, as well as to open new possibilities for synthetic biology applications of leaching microbial consortia. Key points • Leaching of metal sulfides is strongly enhanced by microorganisms • Biofilm formation and extracellular polymer production influences bioleaching • Cell interactions in mixed bioleaching cultures are key for process optimization
Collapse
Affiliation(s)
- Wolfgang Sand
- Institute of Biosciences, TU Bergakademie Freiberg, Freiberg, Germany. .,Faculty of Chemistry, University Duisburg-Essen, Essen, Germany.
| | - Axel Schippers
- Bundesanstalt für Geowissenschaften und Rohstoffe (BGR), Hannover, Germany
| | - Sabrina Hedrich
- Institute of Biosciences, TU Bergakademie Freiberg, Freiberg, Germany
| | - Mario Vera
- Instituto de Ingeniería Biológica y Médica, Escuelas de Ingeniería, Medicina y Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile. .,Departamento de Ingeniería Hidráulica y Ambiental, Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
19
|
Moncayo EA, Debut A, Vizuete K, Jumbo-Flores D, Aguirre P. Sticky bacteria: Combined effect of galactose and high ferric iron concentration on extracellular polymeric substances production and the attachment of Acidithiobacillus ferrooxidans on a polymetallic sulfide ore surface. Front Microbiol 2022; 13:951402. [PMID: 36171747 PMCID: PMC9512070 DOI: 10.3389/fmicb.2022.951402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/16/2022] [Indexed: 11/23/2022] Open
Abstract
Adaptation and microbial attachment mechanisms for the degradation of sulfide ores are mediated by the production of extracellular polymeric substances (EPS) and their role in biofilm formation. EPS production responds to induction mechanisms associated with environmental conditions. In this study, the double induction of EPS with galactose and high ferric iron concentrations in planktonic cells of Acidithiobacillus ferrooxidans, and their attachment on the surface of a polymetallic sulfide ore from Bella Rica-Azuay in Ecuador were evaluated. A. ferrooxidans cells were previously adapted to different concentrations of galactose [0, 0.15, and 0.25% (w/v)], using two ferrous iron concentrations as an energy source (9 and 18 g L–1) in a 9K culture medium. EPS production and its effect on mineral attachment were determined at the time point of maximal growth. The results obtained show a maximum cell attachment of 94.1% within 2 h at 0.15% of galactose and 18 g⋅L–1 of ferric iron concentration, compared to 71.4% without galactose and 9 g⋅L–1 of ferric iron. The maximum concentration of EPS was obtained with a 0.25% galactose concentration; however, it did not result in greater attachment compared to 0.15% galactose concentration. Through the combined induction of low galactose concentration and high ferric iron concentration, the percentage of bacterial attachment can be increased and, therefore, a possible increase in the rate of biooxidation and bioleaching could be obtained.
Collapse
Affiliation(s)
- Eduardo A. Moncayo
- Maestría en Química Aplicada, Facultad de Ciencias Exactas y Naturales, Universidad Técnica Particular de Loja, Loja, Ecuador
- Grupo de Investigación y Desarrollo de la Biotecnología BioSin-Biociencias, Quito, Ecuador
| | - Alexis Debut
- Centro de Nanociencia y Nanotecnología, Universidad de las Fuerzas Armadas ESPE, Sangolquí, Ecuador
| | - Karla Vizuete
- Centro de Nanociencia y Nanotecnología, Universidad de las Fuerzas Armadas ESPE, Sangolquí, Ecuador
| | - Diana Jumbo-Flores
- Grupo de Investigación en Materiales y Ambiente, Departamento de Química, Universidad Técnica Particular de Loja (UTPL), Loja, Ecuador
| | - Paulina Aguirre
- Grupo de Investigación en Materiales y Ambiente, Departamento de Química, Universidad Técnica Particular de Loja (UTPL), Loja, Ecuador
- *Correspondence: Paulina Aguirre,
| |
Collapse
|
20
|
Chen J, Liu Y, Diep P, Mahadevan R. Harnessing synthetic biology for sustainable biomining with Fe/S-oxidizing microbes. Front Bioeng Biotechnol 2022; 10:920639. [PMID: 36131722 PMCID: PMC9483119 DOI: 10.3389/fbioe.2022.920639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Biomining is a biotechnological approach where microorganisms are used to recover metals from ores and waste materials. While biomining applications are motivated by critical issues related to the climate crisis (e.g., habitat destruction due to mine effluent pollution, metal supply chains, increasing demands for cleantech-critical metals), its drawbacks hinder its widespread commercial applications: lengthy processing times, low recovery, and metal selectivity. Advances in synthetic biology provide an opportunity to engineer iron/sulfur-oxidizing microbes to address these limitations. In this forum, we review recent progress in synthetic biology-enhanced biomining with iron/sulfur-oxidizing microbes and delineate future research avenues.
Collapse
Affiliation(s)
- Jinjin Chen
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| | - Yilan Liu
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| | - Patrick Diep
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| | - Radhakrishnan Mahadevan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
21
|
Ferreira P, Fernandes P, Ramos M. The archaeal non-heme iron-containing Sulfur Oxygenase Reductase. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Le LTHL, Yoo W, Wang Y, Jeon S, Kim KK, Kim HW, Kim TD. Dual functional roles of a novel bifunctional β-lactamase/esterase from Lactococcus garvieae. Int J Biol Macromol 2022; 206:203-212. [PMID: 35183603 DOI: 10.1016/j.ijbiomac.2022.02.081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/27/2022] [Accepted: 02/14/2022] [Indexed: 11/05/2022]
Abstract
A novel bifunctional β-lactamase/esterase (LgLacI), which is capable of hydrolyzing β-lactam-containing antibiotics including ampicillin, oxacillin, and cefotaxime as well as synthesizing biodiesels, was cloned from Lactococcus garvieae. Unlike most bacterial esterases/lipases that have G-x-S-x-G motif, LgLacI, which contains S-x-x-K catalytic motif, has sequence similarities to bacterial family VIII esterase as well as β-lactamases. The catalytic properties of LgLacI were explored using a wide range of biochemical methods including spectroscopy, assays, structural modeling, mutagenesis, and chromatography. We confirmed the bifunctional property of LgLacI hydrolyzing both esters and β-lactam antibiotics. This study provides novel perspectives into a bifunctional enzyme from L. garvieae, which can degrade β-lactam antibiotics with high esterase activity.
Collapse
Affiliation(s)
- Ly Thi Huong Luu Le
- Department of Chemistry, Graduate School of General Studies, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Wanki Yoo
- Department of Chemistry, Graduate School of General Studies, Sookmyung Women's University, Seoul 04310, Republic of Korea; Department of Precision Medicine, Sungkyunkwan University, College of Medicine, Suwon 2066, Republic of Korea
| | - Ying Wang
- Department of Chemistry, Graduate School of General Studies, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Sangeun Jeon
- Department of Chemistry, Graduate School of General Studies, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Kyeong Kyu Kim
- Department of Precision Medicine, Sungkyunkwan University, College of Medicine, Suwon 2066, Republic of Korea
| | - Han-Woo Kim
- Unit of Practical Applications, Korea Polar Research Institute, Incheon 21990, Republic of Korea; Department of Polar Sciences, University of Science and Technology, Incheon 21990, Republic of Korea
| | - T Doohun Kim
- Department of Chemistry, Graduate School of General Studies, Sookmyung Women's University, Seoul 04310, Republic of Korea.
| |
Collapse
|
23
|
Bioleaching of Heavy Metals from Printed Circuit Boards with an Acidophilic Iron-Oxidizing Microbial Consortium in Stirred Tank Reactors. Bioengineering (Basel) 2022; 9:bioengineering9020079. [PMID: 35200431 PMCID: PMC8869702 DOI: 10.3390/bioengineering9020079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/03/2022] [Accepted: 02/09/2022] [Indexed: 11/17/2022] Open
Abstract
In this study, bioleaching was carried out for the recovery of metals (copper, zinc, tin, lead, gold and silver) from printed circuit boards residues (PCBs), one of the most important wastes from electrical and electronic equipment, using an acidophilic iron-oxidizing bacterial consortium enriched with minerals from a gold mine in the Arequipa region, Peru. High-throughput sequencing and analysis of the 16S rRNA biomarker revealed that this consortium was predominantly composed of Tissierella, Acidiphilium and Leptospirillum bacteria, from which the latter is known to grow by chemolithotrophy through iron oxidation. After the enrichment process, the acidophilic iron-oxidizing consortium was first tested for its tolerance to different PCBs concentrations, showing best growth up to 10 g/L of PCBs and a tolerance index of 0.383. Based on these results, the bioleaching efficiency of the consortium was investigated for 10 g/L of PCBs in stirred tank reactors coupled to an aeration system, for 18 days. High bioleaching efficiencies were achieved for copper and zinc (69% and 91%, respectively), indicating that these two metals can be easily extracted in this leaching system. Lower extraction efficiencies were achieved for tin (16%) and gold (28%), while for lead and silver only a residual recovery (<0.25%) was detected. These results indicate that the enriched bacterial consortium originating from the Arequipa region, Peru, has a high capacity to recover different metals of economic importance.
Collapse
|
24
|
Chen SY, Wu JQ, Sung S. Effects of sulfur dosage on continuous bioleaching of heavy metals from contaminated sediment. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127257. [PMID: 34601403 DOI: 10.1016/j.jhazmat.2021.127257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/07/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
The bioleaching technology has been considered as a promising green technology for remediation of contaminated sediments in recent years. Bioleaching technology was generally conducted in the batch bioreactor; however, the continuous bioreactor should be developed for the application of bioleaching technology in the future. The purposes of this study were to establish a continuous bioleaching process, and to evaluate the effects of sulfur dosage on the efficiency of metal removal during this continuous bioleaching process. The obtained results show that the pH decrease, sulfate production and metal removal efficiency all increased with increasing sulfur dosage in the continuous bioleaching process due to high substrate concentration for sulfur-oxidizing bacteria. After 30 days of operation time, the maximum solubilization efficiencies for Zn, Ni, Cu and Cr were found to be 78%, 90%, 88% and 68%, respectively, at 5% of sulfur dosage. After the bioleaching process, heavy metals bound in the carbonates, Fe-Mn oxides and organics/sulfides in the sediment were effectively removed and the potential ecological and toxic risks of treated sediment were greatly reduced. The results of bacterial community analyses demonstrated that this continuous bioleaching process were dominated by several acidophilic sulfur-oxidizing bacteria; S. thermosulfidooxidans, At. thiooxidans/At. ferrooxidans, S. thermotolerans and At. albertensis, whereas the percentage of less-acidophilic sulfur-oxidizing bacteria (T. thioparus and T. cuprina) was lower than 15% of total bacteria. In addition, the cell numbers of sulfur-oxidizing bacteria increased as the sulfur dosage was increased in the continuous bioleaching process.
Collapse
Affiliation(s)
- Shen-Yi Chen
- Department of Safety, Health and Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan, ROC.
| | - Jun-Qi Wu
- Department of Safety, Health and Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan, ROC
| | - Shihwu Sung
- College of Agriculture, Forestry and Natural Resource Management, University of Hawaii at Hilo, Hilo, HI 96720-4091, USA
| |
Collapse
|
25
|
Santomartino R, Zea L, Cockell CS. The smallest space miners: principles of space biomining. Extremophiles 2022; 26:7. [PMID: 34993644 PMCID: PMC8739323 DOI: 10.1007/s00792-021-01253-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 12/09/2021] [Indexed: 12/03/2022]
Abstract
As we aim to expand human presence in space, we need to find viable approaches to achieve independence from terrestrial resources. Space biomining of the Moon, Mars and asteroids has been indicated as one of the promising approaches to achieve in-situ resource utilization by the main space agencies. Structural and expensive metals, essential mineral nutrients, water, oxygen and volatiles could be potentially extracted from extraterrestrial regolith and rocks using microbial-based biotechnologies. The use of bioleaching microorganisms could also be applied to space bioremediation, recycling of waste and to reinforce regenerative life support systems. However, the science around space biomining is still young. Relevant differences between terrestrial and extraterrestrial conditions exist, including the rock types and ores available for mining, and a direct application of established terrestrial biomining techniques may not be a possibility. It is, therefore, necessary to invest in terrestrial and space-based research of specific methods for space applications to learn the effects of space conditions on biomining and bioremediation, expand our knowledge on organotrophic and community-based bioleaching mechanisms, as well as on anaerobic biomining, and investigate the use of synthetic biology to overcome limitations posed by the space environments.
Collapse
Affiliation(s)
- Rosa Santomartino
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, EH9 3FD, UK.
| | - Luis Zea
- BioServe Space Technologies, University of Colorado Boulder, Boulder, CO, USA
| | - Charles S Cockell
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, EH9 3FD, UK
| |
Collapse
|
26
|
Chalcocite (bio)hydrometallurgy—current state, mechanism, and future directions: a review. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2021.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
27
|
Narayanan M, Natarajan D, Kandasamy S, Chinnathambi A, Ali Alharbi S, Karuppusamy I, Kathirvel B. Pyrite biomining proficiency of sulfur dioxygenase (SDO) enzyme extracted from Acidithiobacillus thiooxidans. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.09.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
28
|
Mahmoud YAG, El-Naggar ME, Abdel-Megeed A, El-Newehy M. Recent Advancements in Microbial Polysaccharides: Synthesis and Applications. Polymers (Basel) 2021; 13:polym13234136. [PMID: 34883639 PMCID: PMC8659985 DOI: 10.3390/polym13234136] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/15/2021] [Accepted: 11/22/2021] [Indexed: 12/21/2022] Open
Abstract
Polysaccharide materials are widely applied in different applications including food, food packaging, drug delivery, tissue engineering, wound dressing, wastewater treatment, and bioremediation sectors. They were used in these domains due to their efficient, cost-effective, non-toxicity, biocompatibility, and biodegradability. As is known, polysaccharides can be synthesized by different simple, facile, and effective methods. Of these polysaccharides are cellulose, Arabic gum, sodium alginate, chitosan, chitin, curdlan, dextran, pectin, xanthan, pullulan, and so on. In this current article review, we focused on discussing the synthesis and potential applications of microbial polysaccharides. The biosynthesis of polysaccharides from microbial sources has been considered. Moreover, the utilization of molecular biology tools to modify the structure of polysaccharides has been covered. Such polysaccharides provide potential characteristics to transfer toxic compounds and decrease their resilience to the soil. Genetically modified microorganisms not only improve yield of polysaccharides, but also allow economically efficient production. With the rapid advancement of science and medicine, biosynthesis of polysaccharides research has become increasingly important. Synthetic biology approaches can play a critical role in developing polysaccharides in simple and facile ways. In addition, potential applications of microbial polysaccharides in different fields with a particular focus on food applications have been assessed.
Collapse
Affiliation(s)
- Yehia A.-G. Mahmoud
- Department of Botany and Microbiology, Faculty of Science, Tanta University, Tanta 31527, Egypt;
| | - Mehrez E. El-Naggar
- Textile Research Division, National Research Center (Affiliation ID: 60014618), Cairo 12622, Egypt
- Correspondence: (M.E.E.-N.); (M.E.-N.)
| | - Ahmed Abdel-Megeed
- Department of Plant Protection, Faculty of Agriculture Saba Basha, Alexandria University, Alexandria 21531, Egypt;
| | - Mohamed El-Newehy
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
- Department of Chemistry, Faculty of Science, Tanta University, Tanta 31527, Egypt
- Correspondence: (M.E.E.-N.); (M.E.-N.)
| |
Collapse
|
29
|
Aguirre P, Saavedra A, Moncayo E, Hedrich S, Guerrero K, Gentina JC. Sticky Bacteria: Understanding the Behavior of a D-Galactose Adapted Consortium of Acidophilic Chemolithotroph Bacteria and Their Attachment on a Concentrate of Polymetallic Mineral. Front Microbiol 2021; 12:767639. [PMID: 34745076 PMCID: PMC8566890 DOI: 10.3389/fmicb.2021.767639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 09/30/2021] [Indexed: 11/29/2022] Open
Abstract
Various strategies to accelerate the formation of biofilms on minerals have been studied, and one of them is the use of D-galactose as an inducer of EPS production in planktonic cells of biooxidant bacteria. With the aim to evaluate the influence on the attachment and the effect over the solubilization of a polymetallic mineral concentrate, the behavior of a microbial consortium formed by Acidithiobacillus thiooxidans DSM 14887T and Leptospirillum ferrooxidans DSM 2705T previously induced with D-galactose for the early formation of EPS was studied. These microorganisms were previously adapted to 0.15 and 0.25% of D-galactose, respectively; afterward, different proportions of both strains were put in contact with the particle surface of a concentrate of polymetallic mineral. Also, to evaluate the affinity of each bacterium to the mineral, attachment tests were carried out with one of these species acting as a pre-colonizer. The same consortia were used to evaluate the solubilization of the polymetallic mineral. The results obtained show that the induction by D-galactose increases the microbial attachment percentage to the mineral by at least 10% with respect to the control of non-adapted consortia. On the other hand, the tests carried out with pre-colonization show that the order of inoculation also affects the microbial attachment percentage. From the different proportions tested, it was determined that the use of a consortium with a proportion of 50% of each species previously adapted to D-galactose and inoculated simultaneously, present a microbial attachment percentage to the mineral greater than 95% and better solubilization of a polymetallic mineral, reaching values of 9.7 and 11.7mgL-1 h-1 of Fe3+ and SO4 2-, respectively. Therefore, the use of D-galactose in small concentrations as inducer of EPS in acidophilic cells and the selection of an adequate strategy of inoculation can be beneficial to improve biooxidation since it would allow this process to develop in a shorter time by achieving a greater number of attached cells in a shorter time accelerating the solubilization of a sulfide mineral. Graphical AbstractEPS production using D-galactose as inducer and its influence in the attachment of consortia formed by differents proportions of A. thiooxidans and L. ferrooxidans inoculated at the same time and when one of them acting as a pre-colonizer.
Collapse
Affiliation(s)
- Paulina Aguirre
- Departamento de Química, Universidad Técnica Particular de Loja (UTPL), Loja, Ecuador
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Albert Saavedra
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Eduardo Moncayo
- Departamento de Química, Universidad Técnica Particular de Loja (UTPL), Loja, Ecuador
| | - Sabrina Hedrich
- Institute of Biosciences, TU Bergakademie Freiberg, Freiberg, Germany
| | - Karlo Guerrero
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Juan Carlos Gentina
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| |
Collapse
|
30
|
Feng S, Qiu Y, Huang Z, Yin Y, Zhang H, Zhu D, Tong Y, Yang H. The adaptation mechanisms of Acidithiobacillus caldus CCTCC M 2018054 to extreme acid stress: Bioleaching performance, physiology, and transcriptomics. ENVIRONMENTAL RESEARCH 2021; 199:111341. [PMID: 34015291 DOI: 10.1016/j.envres.2021.111341] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 05/09/2023]
Abstract
To understand the acid-resistant mechanism of bioleaching microorganism Acidithiobacillus caldus CCTCC M 2018054, its physiology and metabolic changes at the transcriptional level under extreme acid stress were systemically studied. Scanning electron microscopy (SEM), Fourier transform infrared reflection (FTIR) and X-ray diffraction (XRD) showed that with an increase in acidity, the absorption peak of sulfur oxidation-related functional groups such as S-O decreased significantly, and a dense sulfur passivation film appeared on the surface of the ore. Confocal laser scanning microscopy (CLSM) revealed that coverage scale of extracellular polymeric substance (EPS) and biofilm fluctuated accordingly along with the increasing acid stress (pH-stat 1.5, 1.2 0.9 and 0.6) during the bioleaching process. In response to acid stress, the increased levels of intracellular glutamic acid, alanine, cysteine, and proline contributed to the maintenance of intracellular pH homeostasis via decarboxylation and alkaline neutralization. Higher unsaturated fatty acid content was closely related to membrane fluidity. Up to 490 and 447 differentially expressed genes (DEGs) were identified at pH 1.5 vs pH 1.2 and pH 1.2 vs pH 0.9, respectively, and 177 common DEGs were associated with two-component system (TCS) regulation, transporter regulation, energy metabolism, and stress response. The upregulation of kdpB helped cells defend against proton invasion, whereas the downregulation of cysB and cbl implied stronger oxidation of sulfur compounds. The transcriptional level of sqr, sor, and soxA was significantly increased and consolidated the energy supply needed for resisting acid stress. Furthermore, eight of the identified DEGs (sor, cbl, ompA, atpF, nuoH, nuoC, sqr, grxB) were verified as being related to the acid stress response process. This study contributes toward expanding the application of these acidophiles in industrial bioleaching.
Collapse
Affiliation(s)
- Shoushuai Feng
- Key Laboratory of Carbohydrate Chemistry and Biotechnology (Jiangnan University) Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Yongkang Qiu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology (Jiangnan University) Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Zhuangzhuang Huang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology (Jiangnan University) Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Yijun Yin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology (Jiangnan University) Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Hailing Zhang
- Department of Biological Engineering, College of Life Science, Yantai University, Shandong, 408100, China
| | - Deqiang Zhu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Yanjun Tong
- Key Laboratory of Carbohydrate Chemistry and Biotechnology (Jiangnan University) Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.
| | - Hailin Yang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology (Jiangnan University) Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, China.
| |
Collapse
|
31
|
Abstract
Tungsten is recognized as a critical metal due to its unique properties, economic importance, and limited sources of supply. It has wide applications where hardness, high density, high wear, and high-temperature resistance are required, such as in mining, construction, energy generation, electronics, aerospace, and defense sectors. The two primary tungsten minerals, and the only minerals of economic importance, are wolframite and scheelite. Secondary tungsten minerals are rare and generated by hydrothermal or supergene alteration rather than by atmospheric weathering. There are no reported concerns for tungsten toxicity. However, tungsten tailings and other residues may represent severe risks to human health and the environment. Tungsten metal scrap is the only secondary source for this metal but reprocessing of tungsten tailings may also become important in the future. Enhanced gravity separation, wet high-intensity magnetic separation, and flotation have been reported to be successful in reprocessing tungsten tailings, while bioleaching can assist with removing some toxic elements. In 2020, the world’s tungsten mine production was estimated at 84 kt of tungsten (106 kt WO3), with known tungsten reserves of 3400 kt. In addition, old tungsten tailings deposits may have great potential for exploration. The incomplete statistics indicate about 96 kt of tungsten content in those deposits, with an average grade of 0.1% WO3 (versus typical grades of 0.3–1% in primary deposits). This paper aims to provide an overview of tungsten minerals, tungsten primary and secondary resources, and tungsten mine waste, including its environmental risks and potential for reprocessing.
Collapse
|
32
|
Progress, Challenges, and Perspectives of Bioleaching for Recovering Heavy Metals from Mine Tailings. ADSORPT SCI TECHNOL 2021. [DOI: 10.1155/2021/9941979] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The accumulation of mine tailings on Earth is a serious environmental challenge. The importance for the recovery of heavy metals, together with the economic benefits of precious and base metals, is a strong incentive to develop sustainable methods to recover metals from tailings. Currently, researchers are attempting to improve the efficiency of metal recovery from tailings using bioleaching, a more sustainable method compared to traditional methods. In this work, the research status of using biological leaching technologies to recover heavy metals from tailings was reviewed. Furthermore, CiteSpace 5.7.R2 was used to visually analyze the keywords of relevant studies on biological leaching of tailings to intuitively establish the current research hotspots. We found that current research has made recent progress on influencing factors and microbial genetic data, and innovations have also been made regarding the improvement of the rate of metal leaching by biological leaching combined with other technologies. This is of great significance for the development of bioleaching technologies and industrial production of heavy metals in tailings. Finally, challenges and opportunities for bioleaching provide directions for further research by the scientific community.
Collapse
|
33
|
Blake RC, Shively JE, Timkovich R, White RA. Homogeneous Cytochrome 579 Is an Octamer That Reacts Too Slowly With Soluble Iron to Be the Initial Iron Oxidase in the Respiratory Chain of Leptospirillum ferriphilum. Front Microbiol 2021; 12:673066. [PMID: 34012429 PMCID: PMC8126622 DOI: 10.3389/fmicb.2021.673066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/13/2021] [Indexed: 11/20/2022] Open
Abstract
The exact role that cytochrome 579 plays in the aerobic iron respiratory chain of Leptospirillum ferriphilum is unclear. This paper presents genomic, structural, and kinetic data on the cytochrome 579 purified from cell-free extracts of L. ferriphilum cultured on soluble iron. Electrospray mass spectrometry of electrophoretically homogeneous cytochrome 579 yielded two principal peaks at 16,015 and 16,141 Daltons. N-terminal amino acid sequencing of the purified protein yielded data that were used to determine the following: there are seven homologs of cytochrome 579; each homolog possesses the CXXCH heme-binding motif found in c-type cytochromes; each of the seven sequenced strains of L. ferriphilum expresses only two of the seven homologs of the cytochrome; and each homolog contains an N-terminal signal peptide that directs the mature protein to an extra-cytoplasmic location. Static light scattering and macroion mobility measurements on native cytochrome 579 yielded masses of 125 and 135 kDaltons, respectively. The reduced alkaline pyridine hemochromogen spectrum of the purified cytochrome had an alpha absorbance maximum at 567 nm, a property not exhibited by any known heme group. The iron-dependent reduction and oxidation of the octameric cytochrome exhibited positively cooperative kinetic behavior with apparent Hill coefficients of 5.0 and 3.7, respectively, when the purified protein was mixed with mM concentrations of soluble iron. Consequently, the extrapolated rates of reduction at sub-mM iron concentrations were far too slow for cytochrome 579 to be the initial iron oxidase in the aerobic respiratory chain of L. ferriphilum. Rather, these observations support the hypothesis that the acid-stable cytochrome 579 is a periplasmic conduit of electrons from initial iron oxidation in the outer membrane of this Gram-negative bacterium to a terminal oxidase in the plasma membrane.
Collapse
Affiliation(s)
- Robert C Blake
- Division of Basic Pharmaceutical Sciences, Xavier University of Louisiana, New Orleans, LA, United States
| | - John E Shively
- Division of Immunology, Beckman Research Institute of the City of Hope, Duarte, CA, United States
| | - Russell Timkovich
- Department of Chemistry, University of Alabama, Tuscaloosa, AL, United States
| | - Richard Allen White
- Department of Bioinformatics and Genomics, University of North Carolina, Charlotte, NC, United States.,Department of Bioinformatics and Genomics, University of North Carolina, Kannapolis, NC, United States.,Australian Centre for Astrobiology, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
34
|
Unraveling the Central Role of Sulfur-Oxidizing Acidiphilium multivorum LMS in Industrial Bioprocessing of Gold-Bearing Sulfide Concentrates. Microorganisms 2021; 9:microorganisms9050984. [PMID: 34062882 PMCID: PMC8147356 DOI: 10.3390/microorganisms9050984] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/19/2021] [Accepted: 04/29/2021] [Indexed: 11/16/2022] Open
Abstract
Acidiphilium multivorum LMS is an acidophile isolated from industrial bioreactors during the processing of the gold-bearing pyrite-arsenopyrite concentrate at 38–42 °C. Most strains of this species are obligate organoheterotrophs that do not use ferrous iron or reduced sulfur compounds as energy sources. However, the LMS strain was identified as one of the predominant sulfur oxidizers in acidophilic microbial consortia. In addition to efficient growth under strictly heterotrophic conditions, the LMS strain proved to be an active sulfur oxidizer both in the presence or absence of organic compounds. Interestingly, Ac. multivorum LMS was able to succeed more common sulfur oxidizers in microbial populations, which indicated a previously underestimated role of this bacterium in industrial bioleaching operations. In this study, the first draft genome of the sulfur-oxidizing Ac. multivorum was sequenced and annotated. Based on the functional genome characterization, sulfur metabolism pathways were reconstructed. The LMS strain possessed a complicated multi-enzyme system to oxidize elemental sulfur, thiosulfate, sulfide, and sulfite to sulfate as the final product. Altogether, the phenotypic description and genome analysis unraveled a crucial role of Ac. multivorum in some biomining processes and revealed unique strain-specific characteristics, including the ars genes conferring arsenic resistance, which are similar to those of phylogenetically distinct microorganisms.
Collapse
|
35
|
Barragán CE, Márquez MA, Dopson M, Montoya D. RNA transcript response by an Acidithiobacillus spp. mixed culture reveals adaptations to growth on arsenopyrite. Extremophiles 2021; 25:143-158. [PMID: 33616780 DOI: 10.1007/s00792-021-01217-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/25/2021] [Indexed: 11/26/2022]
Abstract
Biooxidation of gold-bearing refractory mineral ores such as arsenopyrite (FeAsS) in stirred tanks produces solutions containing highly toxic arsenic concentrations. In this study, ferrous iron and inorganic sulfur-oxidizing Acidithiobacillus strain IBUN Ppt12 most similar to Acidithiobacillus ferrianus and inorganic sulfur compound oxidizing Acidithiobacillus sp. IBUNS3 were grown in co-culture during biooxidation of refractory FeAsS. Total RNA was extracted and sequenced from the planktonic cells to reveal genes with different transcript counts involved in the response to FeAsS containing medium. The co-culture's response to arsenic release during biooxidation included the ars operon genes that were independently regulated according to the arsenopyrite concentration. Additionally, increased mRNA transcript counts were identified for transmembrane ion transport proteins, stress response mechanisms, accumulation of inorganic polyphosphates, urea catabolic processes, and tryptophan biosynthesis. Acidithiobacillus spp. RNA transcripts also included those encoding the Rus and PetI proteins involved in ferrous iron oxidation and gene clusters annotated as encoding inorganic sulfur compound metabolism enzymes. Finally, mRNA counts of genes related to DNA methylation, management of oxidative stress, chemotaxis, and motility during biooxidation were decreased compared to cells growing without mineral. The results provide insights into the adaptation of Acidithiobacillus spp. to growth during biooxidation of arsenic-bearing sulfides.
Collapse
Affiliation(s)
- Carlos Eduardo Barragán
- Bioprocesses and Bioprospecting Group, Biotechnology Institute (IBUN), Universidad Nacional de Colombia, Bogotá D.C., Colombia
- Applied Mineralogy and Bioprocesses Research Group, Facultad de Minas, Universidad Nacional de Colombia, Medellín, Colombia
| | - Marco Antonio Márquez
- Applied Mineralogy and Bioprocesses Research Group, Facultad de Minas, Universidad Nacional de Colombia, Medellín, Colombia
| | - Mark Dopson
- Centre for Ecology and Evolution in Microbial Model Systems EEMiS, Linnaeus University, Kalmar, Sweden
| | - Dolly Montoya
- Bioprocesses and Bioprospecting Group, Biotechnology Institute (IBUN), Universidad Nacional de Colombia, Bogotá D.C., Colombia.
| |
Collapse
|
36
|
Jugnia LB, Drouin K, Thériault P. Enhanced biotreatability of petroleum hydrocarbon-contaminated mining waste coupled with the attenuation of acid drainage production. JOURNAL OF ENVIRONMENTAL QUALITY 2020; 49:1477-1490. [PMID: 33029810 DOI: 10.1002/jeq2.20147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/02/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
A biostimulation study was conducted on mining waste residue with nutrient (nitrogen and phosphorus) and/or liming agent (ash or CaCO3 ) amendment to assess petroleum hydrocarbon (PHC) biodegradation efficiency by indigenous microorganisms. Compounds accumulated and/or released by treated samples were also monitored to determine the potential for acid mine drainage production during biostimulation. The potential for natural attenuation (i.e., the biodegradation of PHC contamination) was initially low but increased significantly upon nutrient addition. The best results were obtained when nutrient addition was coupled with the addition of a liming agent, notably CaCO3 , which contributed to maintaining near-neutral pH values. In fact, during treatment without a liming agent, pH decreased due to the oxidation of sulfide minerals, resulting in acid mine drainage production with increased metals released into sample leachates. Sulfur- and iron-oxidizing bacteria were detected primarily in samples not amended with liming agents, and the predominant organisms were affiliated with Acidithiobacillus spp. and Acidiphilium spp. Overall, the results of the present study demonstrated that amendment with a liming agent when treating PHC-contaminated mining waste residue contributes to maintaining a pH close to neutrality, mitigates sulfate release, and reduces the release of metals without negatively affecting the activity of PHC degraders.
Collapse
Affiliation(s)
- Louis-B Jugnia
- Energy, Mining and Environment Research Center, National Research Council Canada, 6100 Royalmount Ave., Montreal, Québec, H4P2R2, Canada
| | - Karine Drouin
- Energy, Mining and Environment Research Center, National Research Council Canada, 6100 Royalmount Ave., Montreal, Québec, H4P2R2, Canada
| | | |
Collapse
|
37
|
Bio-Oxidation of a Double Refractory Gold Ore and Investigation of Preg-Robbing of Gold from Thiourea Solution. METALS 2020. [DOI: 10.3390/met10091216] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Carbonaceous sulfidic gold ores are commonly double refractory and thus require pretreatment before gold extraction. In this paper, the capacity of pre-bio-oxidation can simultaneously decompose sulfides or deactivate carbonaceous matters (CM) from a double refractory gold ore (DRGO) using pure cultures of A. ferrooxidans or L. ferrooxidans, and a mixed culture containing A. ferrooxidans and L. ferrooxidans was investigated. The results showed that direct thiourea leaching of the as-received DRGO yielded only 28.7% gold extraction, which was due to the encapsulation of sulfides on gold and the gold adsorption of CM. After bio-oxidation, thiourea leaching of the DRGO resulted in gold extraction of over 75–80%. Moreover, bio-oxidation can effectively reduce the adsorption of carbon to gold. XRD, SEM-EDS and FTIR analysis showed that many oxygen-containing groups were introduced on the surface of DRGO during bio-oxidation, while the C=C bond was cleaved and the O–C–O and C–N bonds were degraded, causing a decrease in active sites for gold adsorption. Moreover, passivation materials such as jarosite were formed on the surface of DRGO, which might reduce the affinity of CM for gold in solutions. In addition, the cleavage of the S–S band indicated that sulfides were oxidized by bacteria. This work allows us to explain the applicability of pre-bio-oxidation for degrading both sulfides and CM and increasing gold recovery from DRGO in the thiourea system.
Collapse
|
38
|
Biohydrometallurgical processes for the recovery of precious and base metals from waste electrical and electronic equipments: Current trends and perspectives. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.biteb.2020.100526] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
39
|
Capeness MJ, Horsfall LE. Synthetic biology approaches towards the recycling of metals from the environment. Biochem Soc Trans 2020; 48:1367-1378. [PMID: 32627824 PMCID: PMC7458392 DOI: 10.1042/bst20190837] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/29/2020] [Accepted: 06/08/2020] [Indexed: 01/05/2023]
Abstract
Metals are a finite resource and their demand for use within existing and new technologies means metal scarcity is increasingly a global challenge. Conversely, there are areas containing such high levels of metal pollution that they are hazardous to life, and there is loss of material at every stage of the lifecycle of metals and their products. While traditional resource extraction methods are becoming less cost effective, due to a lowering quality of ore, industrial practices have begun turning to newer technologies to tap into metal resources currently locked up in contaminated land or lost in the extraction and manufacturing processes. One such technology uses biology for the remediation of metals, simultaneously extracting resources, decontaminating land, and reducing waste. Using biology for the identification and recovery of metals is considered a much 'greener' alternative to that of chemical methods, and this approach is about to undergo a renaissance thanks to synthetic biology. Synthetic biology couples molecular genetics with traditional engineering principles, incorporating a modular and standardised practice into the assembly of genetic parts. This has allowed the use of non-model organisms in place of the normal laboratory strains, as well as the adaption of environmentally sourced genetic material to standardised parts and practices. While synthetic biology is revolutionising the genetic capability of standard model organisms, there has been limited incursion into current practices for the biological recovery of metals from environmental sources. This mini-review will focus on some of the areas that have potential roles to play in these processes.
Collapse
Affiliation(s)
- Michael J. Capeness
- Centre for Systems and Synthetic Biology, and the Centre for Science at Extreme Conditions, School of Biological Sciences, University of Edinburgh, Roger Land Building, Alexander Crum Brown Road, Edinburgh EH9 3FF, U.K
| | - Louise E. Horsfall
- Centre for Systems and Synthetic Biology, and the Centre for Science at Extreme Conditions, School of Biological Sciences, University of Edinburgh, Roger Land Building, Alexander Crum Brown Road, Edinburgh EH9 3FF, U.K
| |
Collapse
|
40
|
Abstract
Mismanagement of mine waste rock can mobilize acidity, metal (loid)s, and other contaminants, and thereby negatively affect downstream environments. Hence, strategic long-term planning is required to prevent and mitigate deleterious environmental impacts. Technical frameworks to support waste-rock management have existed for decades and typically combine static and kinetic testing, field-scale experiments, and sometimes reactive-transport models. Yet, the design and implementation of robust long-term solutions remains challenging to date, due to site-specificity in the generated waste rock and local weathering conditions, physicochemical heterogeneity in large-scale systems, and the intricate coupling between chemical kinetics and mass- and heat-transfer processes. This work reviews recent advances in our understanding of the hydrogeochemical behavior of mine waste rock, including improved laboratory testing procedures, innovative analytical techniques, multi-scale field investigations, and reactive-transport modeling. Remaining knowledge-gaps pertaining to the processes involved in mine waste weathering and their parameterization are identified. Practical and sustainable waste-rock management decisions can to a large extent be informed by evidence-based simplification of complex waste-rock systems and through targeted quantification of a limited number of physicochemical parameters. Future research on the key (bio)geochemical processes and transport dynamics in waste-rock piles is essential to further optimize management and minimize potential negative environmental impacts.
Collapse
|
41
|
Panyushkina A, Matyushkina D, Pobeguts O. Understanding Stress Response to High-Arsenic Gold-Bearing Sulfide Concentrate in Extremely Metal-Resistant Acidophile Sulfobacillus thermotolerans. Microorganisms 2020; 8:E1076. [PMID: 32707712 PMCID: PMC7409299 DOI: 10.3390/microorganisms8071076] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/15/2020] [Accepted: 07/17/2020] [Indexed: 12/15/2022] Open
Abstract
Biooxidation of gold-bearing arsenopyrite concentrates, using acidophilic microbial communities, is among the largest commercial biohydrometallurgical processes. However, molecular mechanisms of microbial responses to sulfide raw materials have not been widely studied. The goal of this research was to gain insight into the defense strategies of the acidophilic bacterium Sulfobacillus thermotolerans, which dominates microbial communities functioning in industrial biooxidation processes at >35 °C, against the toxic effect of the high-arsenic gold-bearing sulfide concentrate. In addition to extreme metal resistance, this acidophile proved to be one of the most As-tolerant microorganisms. Comparative proteomic analysis indicated that 30 out of 33 differentially expressed proteins were upregulated in response to the ore concentrate, while the synthesis level of the functional proteins required for cell survival was not negatively affected. Despite a high level of cellular metal(loid) accumulation, no specific metal(loid)-resistant systems were regulated. Instead, several proteins involved in the metabolic pathways and stress response, including MBL fold metallo-hydrolase, sulfide:quinone oxidoreductase, and GroEL chaperonin, may play crucial roles in resistance to the sulfide ore concentrate and arsenic, in particular. This study provides the first data on the microbial responses to sulfide ore concentrates and advances our understanding of defense mechanisms against toxic compounds in acidophiles.
Collapse
Affiliation(s)
- Anna Panyushkina
- Winogradsky Institute of Microbiology, Research Centre of Biotechnology of the Russian Academy of Sciences, Leninsky Ave., 33, bld. 2, Moscow 119071, Russia
| | - Daria Matyushkina
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya, 1a, Moscow 119435, Russia; (D.M.); (O.P.)
| | - Olga Pobeguts
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya, 1a, Moscow 119435, Russia; (D.M.); (O.P.)
| |
Collapse
|
42
|
Wang X, Ma L, Wu J, Xiao Y, Tao J, Liu X. Effective bioleaching of low-grade copper ores: Insights from microbial cross experiments. BIORESOURCE TECHNOLOGY 2020; 308:123273. [PMID: 32247948 DOI: 10.1016/j.biortech.2020.123273] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 06/11/2023]
Abstract
The interaction between microorganisms and minerals was a hot topic to reveal the transformation of key elements that affecting bioleaching efficiency. Three typical low-grade copper ores, the main copper-bearing components of which were primary sulfide, secondary sulfide and high-oxidative sulfide copper, were obtained from Dexing, Zijinshan and Luanshya copper mine, respectively. Meanwhile, six typical microorganisms were isolated from each of the three habitats, and assembled as communities based on their origins. Cross bioleaching was carried out under identical conditions. The leaching parameters showed that native strains played excellent roles in their corresponding ore bioleaching process, and community structure was greatly determined by mineral composition, indicating that domestication for longitudinal adaption was an effective way to improve microbial leaching performance. Leptospirillum ferriphilum and Acidithiobacillus ferrooxidans promoted copper release by shifting redox potential and pH of the leachate, respectively, indicating that microbial population regulation was another effective way to improve bioleaching efficiency.
Collapse
Affiliation(s)
- Xingjie Wang
- School of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan 430081, China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Liyuan Ma
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China.
| | - Jiangjun Wu
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Yunhua Xiao
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China; College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Jiemeng Tao
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Xueduan Liu
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| |
Collapse
|
43
|
Annamalai M, Gurumurthy K. Neural network prediction of bioleaching of metals from waste computer printed circuit boards using Levenberg‐Marquardt algorithm. Comput Intell 2020. [DOI: 10.1111/coin.12288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mohan Annamalai
- School of Biosciences and Technology Vellore Institute of Technology Vellore India
| | - Kalaichelvan Gurumurthy
- School of Agricultural Innovations and Advanced Learning Vellore Institute of Technology Vellore India
| |
Collapse
|
44
|
Li Q, Zhu J, Li S, Zhang R, Xiao T, Sand W. Interactions Between Cells of Sulfobacillus thermosulfidooxidans and Leptospirillum ferriphilum During Pyrite Bioleaching. Front Microbiol 2020; 11:44. [PMID: 32063894 PMCID: PMC7000362 DOI: 10.3389/fmicb.2020.00044] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 01/09/2020] [Indexed: 01/29/2023] Open
Abstract
Sulfobacillus and Leptospirillum occur frequently in leaching systems. Here we investigated the effects of cells of L. ferriphilum on biofilm formation and leaching performance by S. thermosulfidooxidans. The effects were caused by the presence of L. ferriphilum or an addition of pyrite leach liquor from L. ferriphilum. Data show that the number of attached S. thermosulfidooxidans on pyrite increases, if the pyrite had been pre-colonized by living biofilms of L. ferriphilum, while it decreases if the pre-colonized biofilms had been inactivated. Coaggregation between S. thermosulfidooxidans and L. ferriphilum occurs during the dual-species biofilm formation, but different effects on bioleaching were noted, if the preculture of L. ferriphilum had been different. If L. ferriphilum had been pre-colonized on a pyrite, significantly negative effect was shown. However, if the two species were simultaneously inoculated into a sterile leaching system, the bioleaching efficiency was better than that of a pure culture of S. thermosulfidooxidans. The effect might be related to a metabolic preference of S. thermosulfidooxidans. If S. thermosulfidooxidans performed leaching in a filtered pyrite leachate from L. ferriphilum, the cells preferred to oxidize RISCs instead of ferrous ion and the number of attached cells decreased compared with the control. This study gives an indication that in a short-term multi-species leaching system the role of S. thermosufidooxidans may be related to the time of its introduction.
Collapse
Affiliation(s)
- Qian Li
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Jianyu Zhu
- Key Laboratory of Biometallurgy of Ministry of Education, School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Shoupeng Li
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, China
| | - Ruiyong Zhang
- Federal Institute for Geosciences and Natural Resources (BGR), Hanover, Germany
| | - Tangfu Xiao
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Wolfgang Sand
- College of Environmental Science and Engineering, Donghua University, Shanghai, China.,Biofilm Centre, Aquatische Biotechnologie, Universität Duisburg-Essen, Essen, Germany
| |
Collapse
|
45
|
Yin Z, Feng S, Tong Y, Yang H. Adaptive mechanism of Acidithiobacillus thiooxidans CCTCC M 2012104 under stress during bioleaching of low-grade chalcopyrite based on physiological and comparative transcriptomic analysis. ACTA ACUST UNITED AC 2019; 46:1643-1656. [DOI: 10.1007/s10295-019-02224-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 08/07/2019] [Indexed: 11/27/2022]
Abstract
Abstract
Acidithiobacillus thiooxidans (A. thiooxidans) is often used for sulfur-bearing ores bioleaching, but its adaptive mechanism to harsh environments remains unclear. Here, we explored the adaptive mechanism of A. thiooxidans in the process of low-grade chalcopyrite bioleaching based on the physiology and comparative transcriptome analysis. It was indicated that A. thiooxidans maintains intracellular pH homeostasis by regulating unsaturated fatty acids, especially cyclopropane fatty acids, intracellular ATP, amino acid metabolism, and antioxidant factors. Comparative transcriptome analysis indicated that the key genes involved in sulfur oxidation, sor and soxABXYZ, were significantly up-regulated, generating more energy to resist extreme environmental stress by more active sulfur metabolism. Confocal laser scanning microscope analysis found that down-regulation of flagellar-related genes was likely to promote the biofilm formation. System-level understanding of leaching microorganisms under extreme stress can contribute to the evolution of these extremophiles via genetic engineering modification work, which further improves bioleaching in future.
Collapse
Affiliation(s)
- Zongwei Yin
- The Key Laboratory of Industrial Biotechnology Ministry of Education Wuxi People’s Republic of China
- grid.258151.a 0000 0001 0708 1323 School of Biotechnology Jiangnan University 1800 Lihu Road Wuxi People’s Republic of China
- grid.258151.a 0000 0001 0708 1323 Key Laboratory of Carbohydrate Chemistry and Biotechnology (Jiangnan University) Ministry of Education Wuxi People’s Republic of China
| | - Shoushuai Feng
- The Key Laboratory of Industrial Biotechnology Ministry of Education Wuxi People’s Republic of China
- grid.258151.a 0000 0001 0708 1323 School of Biotechnology Jiangnan University 1800 Lihu Road Wuxi People’s Republic of China
- grid.258151.a 0000 0001 0708 1323 Key Laboratory of Carbohydrate Chemistry and Biotechnology (Jiangnan University) Ministry of Education Wuxi People’s Republic of China
| | - Yanjun Tong
- grid.258151.a 0000 0001 0708 1323 State Key Laboratory of Food Science and Technology Jiangnan University Wuxi People’s Republic of China
- grid.258151.a 0000 0001 0708 1323 School of Food Science and Technology Jiangnan University 1800 Lihu Road Wuxi People’s Republic of China
| | - Hailin Yang
- The Key Laboratory of Industrial Biotechnology Ministry of Education Wuxi People’s Republic of China
- grid.258151.a 0000 0001 0708 1323 School of Biotechnology Jiangnan University 1800 Lihu Road Wuxi People’s Republic of China
- grid.258151.a 0000 0001 0708 1323 Key Laboratory of Carbohydrate Chemistry and Biotechnology (Jiangnan University) Ministry of Education Wuxi People’s Republic of China
| |
Collapse
|
46
|
Vardanyan N, Sevoyan G, Navasardyan T, Vardanyan A. Recovery of valuable metals from polymetallic mine tailings by natural microbial consortium. ENVIRONMENTAL TECHNOLOGY 2019; 40:3467-3472. [PMID: 29781399 DOI: 10.1080/09593330.2018.1478454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 05/14/2018] [Indexed: 06/08/2023]
Abstract
Possibilities for the recovery of non-ferrous and precious metals from Kapan polymetallic mine tailings (Armenia) were studied. The aim of this paper was to study the possibilities of bioleaching of samples of concentrated tailings by the natural microbial consortium of drainage water. The extent of extraction of metals from the samples of concentrated tailings by natural microbial consortium reached 41-55% and 53-73% for copper and zinc, respectively. Metal leaching efficiencies of pure culture Leptospirillum ferrooxidans Teg were higher, namely 47-93% and 73-81% for copper and zinc, respectively. The content of gold in solid phase of tailings increased about 7-16% and 2-9% after bio-oxidation process by L. ferrooxidans Teg and natural microbial consortium, respectively. It was shown that bioleaching of the samples of tailings could be performed using the natural consortium of drainage water. However, to increase the intensity of the recovery of valuable metals, natural consortium of drainage water combined with iron-oxidizing L. ferrooxidans Teg has been proposed.
Collapse
Affiliation(s)
- Narine Vardanyan
- Department of Microbiology, SPC "Armbiotechnology" of the National Academy of Sciences of Armenia , Yerevan , Armenia
| | - Garegin Sevoyan
- Department of Chemical, Biological and Environmental Technologies, Armenian National Polytechnic University , Yerevan , Armenia
| | | | - Arevik Vardanyan
- Department of Microbiology, SPC "Armbiotechnology" of the National Academy of Sciences of Armenia , Yerevan , Armenia
| |
Collapse
|
47
|
Panyushkina AE, Babenko VV, Nikitina AS, Selezneva OV, Tsaplina IA, Letarova MA, Kostryukova ES, Letarov AV. Sulfobacillus thermotolerans: new insights into resistance and metabolic capacities of acidophilic chemolithotrophs. Sci Rep 2019; 9:15069. [PMID: 31636299 PMCID: PMC6803676 DOI: 10.1038/s41598-019-51486-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 09/23/2019] [Indexed: 11/09/2022] Open
Abstract
The first complete genome of the biotechnologically important species Sulfobacillus thermotolerans has been sequenced. Its 3 317 203-bp chromosome contains an 83 269-bp plasmid-like region, which carries heavy metal resistance determinants and the rusticyanin gene. Plasmid-mediated metal resistance is unusual for acidophilic chemolithotrophs. Moreover, most of their plasmids are cryptic and do not contribute to the phenotype of the host cells. A polyphosphate-based mechanism of metal resistance, which has been previously unknown in the genus Sulfobacillus or other Gram-positive chemolithotrophs, potentially operates in two Sulfobacillus species. The methylcitrate cycle typical for pathogens and identified in the genus Sulfobacillus for the first time can fulfill the energy and/or protective function in S. thermotolerans Kr1 and two other Sulfobacillus species, which have incomplete glyoxylate cycles. It is notable that the TCA cycle, disrupted in all Sulfobacillus isolates under optimal growth conditions, proved to be complete in the cells enduring temperature stress. An efficient antioxidant defense system gives S. thermotolerans another competitive advantage in the microbial communities inhabiting acidic metal-rich environments. The genomic comparisons revealed 80 unique genes in the strain Kr1, including those involved in lactose/galactose catabolism. The results provide new insights into metabolism and resistance mechanisms in the Sulfobacillus genus and other acidophiles.
Collapse
Affiliation(s)
- Anna E Panyushkina
- Research Center of Biotechnology of the Russian Academy of Sciences, Winogradsky Institute of Microbiology, Moscow, 119071, Russia.
| | - Vladislav V Babenko
- Federal Medical Biological Agency, Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, 119435, Russia
| | - Anastasia S Nikitina
- Federal Medical Biological Agency, Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, 119435, Russia
| | - Oksana V Selezneva
- Federal Medical Biological Agency, Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, 119435, Russia
| | - Iraida A Tsaplina
- Research Center of Biotechnology of the Russian Academy of Sciences, Winogradsky Institute of Microbiology, Moscow, 119071, Russia
| | - Maria A Letarova
- Research Center of Biotechnology of the Russian Academy of Sciences, Winogradsky Institute of Microbiology, Moscow, 119071, Russia
| | - Elena S Kostryukova
- Federal Medical Biological Agency, Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, 119435, Russia
| | - Andrey V Letarov
- Research Center of Biotechnology of the Russian Academy of Sciences, Winogradsky Institute of Microbiology, Moscow, 119071, Russia
| |
Collapse
|
48
|
Liu R, Chen Y, Tian Z, Mao Z, Cheng H, Zhou H, Wang W. Enhancing microbial community performance on acid resistance by modified adaptive laboratory evolution. BIORESOURCE TECHNOLOGY 2019; 287:121416. [PMID: 31103940 DOI: 10.1016/j.biortech.2019.121416] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/30/2019] [Accepted: 05/02/2019] [Indexed: 05/09/2023]
Abstract
A new strategy of three-step adaptive laboratory evolution (ALE) was developed to enhance the bioleaching performance of moderately thermophilic consortia. Through consortium construction, directed evolution and chemostat selection, an improved consortium (ALEend) that composed of Leptospirillum ferriphilum (80.32%), Sulfobacillus thermosulfidooxidans (15.82%) and Ferroplasma thermophilum (3.86%) was obtained, showing ferrous iron oxidation rate of 500 mgL-1h-1 and biomass production of 2.0 × 108 cells/mL at pH 0.75. During batch culturing, the ALEend consortium exhibited stable ferrous iron oxidation in wider conditions. PCA indicated that the communities were similar under fluctuating culture conditions, which demonstrated the stable community structure and the reinforced synergistic interactions resulting in the enhanced community performance. Pyrite bioleaching conducted at pH 1.5 and 0.75 revealed that the ALEend consortium extracted 26% and 55% more total iron relative to the original consortium. These findings indicated that the modified ALE may be a promising strategy for microbial community modification to enhance bioleaching.
Collapse
Affiliation(s)
- Ronghui Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Yanzhi Chen
- South China Institute of Environmental Sciences, Guangzhou, China
| | - Zhuang Tian
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Zhenghua Mao
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Haina Cheng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Hongbo Zhou
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China.
| | - Wei Wang
- South China Institute of Environmental Sciences, Guangzhou, China
| |
Collapse
|
49
|
Zouhri L, El Amari K, Marier D, Benkaddour A, Hibti M. Bacteriological and geochemical features of the groundwater resources: Kettara abandoned mine (Morocco). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 252:1698-1708. [PMID: 31284212 DOI: 10.1016/j.envpol.2019.06.098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 06/23/2019] [Accepted: 06/24/2019] [Indexed: 06/09/2023]
Abstract
Waste water of the Kettara village, as well as the abandoned tailings, constitute a potential environmental issue with direct consequences on air, soil, water resources qualities and, on human health. In this paper, experimental investigations examine the environmental impact which is induced by the wastewater, mine tailings and the lithological factors of rocks. This multidisciplinary research allows to i) understand the transfer of the Metallic Trace Elements (selenium, arsenic, nickel and zinc) and sulfate ions in the fractured shales media, ii) to assess the water potability by using the microbiological analysis. The microbiological results reveal the domestic impact by the presence of several kinds of bacteria in the groundwater resources: E. coli, Fecal coliforms, Total coliforms, Enterococci, Mesophilic Aerobic Flora, Sulphite-reducing bacteria and Salmonella. Selenium, arsenic and the bacteriological contamination of the groundwater could be explained by five kinds of factors: i) the geological formations and the nature of the hydrogeological system (unconfined layer), ii) the groundwater flow, the hydraulic relation between the hydrogeological wells and, the fractures network in the shale aquifer. The piezometric map allows to highlight the groundwater flow from the North-East to North-West and to the South-West, the drainage axis towards the P21 well and the presence of the dividing axis in the contaminated zone by the arsenic, iii) the absence of the unhealthy habitats with permeable traditional septic tanks in the village; iv) the transfer of the spreading animal excrements from the soil to groundwater and, v) the migration of the wastewater towards downstream of the groundwater flow. The presence of the reed beds could explain the reduction of bacteria in the hydrogeological wells of the study area.
Collapse
Affiliation(s)
- Lahcen Zouhri
- AGHYLE, Institut Polytechnique UniLaSalle Beauvais, SFR Condorcet FR CNRS 341719, rue Pierre Waguet, F-60026 Beauvais Cedex, France.
| | - Khalid El Amari
- Georesources Laboratory, Department of Earth Sciences, Faculty of Science and Technology Marrakech, Cadi Ayyad University, Abdelkarim El Khattabi Avenue, Guéliz, P.O. Box 549, 4000 Marrakech, Morocco
| | - David Marier
- Institut Polytechnique UniLaSalle Beauvais, SFR Condorcet FR CNRS 341719, rue Pierre Waguet, F-60026 Beauvais Cedex, France
| | - Abdelfattah Benkaddour
- Georesources Laboratory, Department of Earth Sciences, Faculty of Science and Technology Marrakech, Cadi Ayyad University, Abdelkarim El Khattabi Avenue, Guéliz, P.O. Box 549, 4000 Marrakech, Morocco
| | - Mohamed Hibti
- Georesources Laboratory, Department of Earth Sciences, Faculty of Science and Technology Marrakech, Cadi Ayyad University, Abdelkarim El Khattabi Avenue, Guéliz, P.O. Box 549, 4000 Marrakech, Morocco
| |
Collapse
|
50
|
Maximizing Economic Performance in the Mining Industry by Applying Bioleaching Technology for Extraction of Polymetallic Mineral Deposits. MINERALS 2019. [DOI: 10.3390/min9070400] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
There are many sources to increase value in an integrated mining–metallurgy context. The optimal strategy for concentration of minerals from the ore is one of these sources. The elements of mining-metallurgy operations from resources, infrastructure, mining site, processing, and metallurgy are mutually dependent, and reinforce and interact positively with each other to generate a combined value greater than the sum of their individual contributions. Bioleaching technology is an alternative processing technology for treatment of low-grade sulphide ore, and its application contributes to the achievement of better economic results than the conventional pyrometallurgical technology. This work presents the application of bioleaching technology in laboratory conditions for metal extraction from the polymetallic deposit Tenka in East Serbia, belonging to the company Serbia Zijin Bor Copper Doo (formerly the Mining Smelter Basin Bor Group). Bioleaching of sulphide polymetallic raw material is performed by chemolithoautotrophic microorganisms. Applying the bioleaching technology, the achieved recoveries of metals from the polymetallic ore are as follows: Cu 90%, Au 90%, Ag 80%, Zn 72% and Pb 90%. The calculated values for Net Present Value (NPV) and Internal Rate of Return (IRR) are $ 21.927 million and 12.55%, respectively.
Collapse
|