1
|
Gutierrez-Perez C, Cramer RA. Targeting fungal lipid synthesis for antifungal drug development and potentiation of contemporary antifungals. NPJ ANTIMICROBIALS AND RESISTANCE 2025; 3:27. [PMID: 40221522 PMCID: PMC11993586 DOI: 10.1038/s44259-025-00093-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 03/10/2025] [Indexed: 04/14/2025]
Abstract
Two of the three most commonly used classes of antifungal drugs target the fungal membrane through perturbation of sterol biosynthesis or function. In addition to these triazole and polyene antifungals, recent research is identifying new antifungal molecules that perturb lipid biosynthesis and function. Here, we review fungal lipid biosynthesis pathways and their potential as targets for antifungal drug development. An emerging goal is discovering new molecules that potentiate contemporary antifungal drugs in part through perturbation of lipid form and function.
Collapse
Affiliation(s)
- Cecilia Gutierrez-Perez
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
- Department of Molecular Microbiology at Washington University School of Medicine, St. Louis, MO, USA
| | - Robert A Cramer
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA.
| |
Collapse
|
2
|
Zhang Z, Li X, Qi M, Anwar S, Wang B, Ge Y. Comprehensive Analysis of CaFAD Genes Involved in Fatty Acid Accumulation in Coffea arabica and Functional Characterization of CaFAD8 in Transgenic Arabidopsis thaliana. Int J Mol Sci 2025; 26:1023. [PMID: 39940792 PMCID: PMC11816918 DOI: 10.3390/ijms26031023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 02/16/2025] Open
Abstract
The quality of Coffee arabica L. beans, particularly the aroma, is a key determinant of commercial value. Fatty acids, as precursors of volatile aroma compounds, play a crucial role in this quality. Screening and identification of their related genes are of particular significance. This study identified 21 members of the CaFAD gene family in the C. arabica genome using bioinformatics tools. Gene duplication events observed in the CaFAD gene family were likely driven by natural selection and mutation pressure, with natural selection being more prominent. Transcriptome sequencing, qRT-PCR, and fatty acid profiling across four fruit developmental stages revealed that CaFAD8 was closely associated with fatty acid synthesis regulation. Fatty acid content was initially high but decreased during the later stages, while CaFAD8 expression showed an inverse pattern. Subcellular localization indicated that CaFAD8 functions primarily on the inner membrane. CaFAD8-OE heterologous expression experiment in Arabidopsis thaliana reduced the total fatty acid content in seeds but increased unsaturated fatty acids, including oleic, linoleic, and linolenic acids. These findings suggest that CaFAD8 promotes fatty acid unsaturation and provides insights into fatty acid metabolism in C. arabica. This study offers a foundation for understanding CaFAD gene regulation and supports breeding strategies for high-oil C. arabica varieties.
Collapse
Affiliation(s)
- Zhenwei Zhang
- College of Tropical Crops, Yunnan Agricultural University, Pu’er 665099, China; (Z.Z.); (X.L.); (M.Q.); (B.W.)
- Yunnan Provincial Key Laboratory of Coffee, Yunnan Agricultural University, Pu’er 665099, China
| | - Xuejun Li
- College of Tropical Crops, Yunnan Agricultural University, Pu’er 665099, China; (Z.Z.); (X.L.); (M.Q.); (B.W.)
- Yunnan Provincial Key Laboratory of Coffee, Yunnan Agricultural University, Pu’er 665099, China
| | - Meijun Qi
- College of Tropical Crops, Yunnan Agricultural University, Pu’er 665099, China; (Z.Z.); (X.L.); (M.Q.); (B.W.)
- Yunnan Provincial Key Laboratory of Coffee, Yunnan Agricultural University, Pu’er 665099, China
| | - Sumera Anwar
- Department of Botany, Government College Women University Faisalabad, Faisalabad 38000, Pakistan;
| | - Butian Wang
- College of Tropical Crops, Yunnan Agricultural University, Pu’er 665099, China; (Z.Z.); (X.L.); (M.Q.); (B.W.)
- Yunnan Provincial Key Laboratory of Coffee, Yunnan Agricultural University, Pu’er 665099, China
| | - Yu Ge
- College of Tropical Crops, Yunnan Agricultural University, Pu’er 665099, China; (Z.Z.); (X.L.); (M.Q.); (B.W.)
- Yunnan Provincial Key Laboratory of Coffee, Yunnan Agricultural University, Pu’er 665099, China
| |
Collapse
|
3
|
Shin SH, Moon HY, Park HE, Nam GJ, Baek JH, Jeon CO, Jung H, Cha MS, Choi S, Han JJ, Hou CY, Park CS, Kang HA. Elucidation and engineering of Sphingolipid biosynthesis pathway in Yarrowia lipolytica for enhanced production of human-type sphingoid bases and glucosylceramides. Metab Eng 2025; 87:68-85. [PMID: 39603335 DOI: 10.1016/j.ymben.2024.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/10/2024] [Accepted: 11/25/2024] [Indexed: 11/29/2024]
Abstract
Sphingolipids are vital membrane components in in mammalian cells, plants, and various microbes. We aimed to explore and exploit the sphingolipid biosynthesis pathways in an oleaginous and dimorphic yeast Yarrowia lipolytica by constructing and characterizing mutant strains with specific gene deletions and integrating exogenous genes to enhance the production of long-chain bases (LCBs) and glucosylceramides (GlcCers). To block the fungal/plant-specific phytosphingosine (PHS) pathway, we deleted the SUR2 gene encoding a sphinganine C4-hydroxylase, resulting in a remarkably elevated secretory production of dihydrosphingosine (DHS) and sphingosine (So) without acetylation. The Y. lipolytica SUR2 deletion (Ylsur2Δ) strain displayed retarded growth, increased pseudohyphal formation and stress sensitivity, along with the altered profiles of inositolphosphate-containing ceramides, GlcCers, and sterols. The subsequent disruption of the SLD1 gene, encoding a fungal/plant-specific Δ8 sphingolipid desaturase, restored filamentous growth in the Ylsur2Δ strain to a yeast-type form and further increased the production of human-type GlcCers. Additional introduction of mouse alkaline ceramidase 1 (maCER1) into the Ylsur2Δsld1Δ double mutants considerably increased DHS and So production while decreasing GlcCers. The production yields of LCBs from the Ylsur2Δsld1Δ/maCER1 strain increased in proportion to the C/N ratio in the N-source optimized medium, leading to production of 1.4 g/L non-acetylated DHS at the 5 L fed-batch fermentation with glucose feeding. This study highlights the feasibility of using the engineered Y. lipolytica strains as a cell factory for valuable sphingolipid derivatives for pharmaceuticals, cosmeceuticals, and nutraceuticals.
Collapse
Affiliation(s)
- Seo Hyeon Shin
- Department of Life Science, Chung-Ang University, Seoul, 06974, South Korea
| | - Hye Yun Moon
- Department of Life Science, Chung-Ang University, Seoul, 06974, South Korea
| | - Hae Eun Park
- Department of Life Science, Chung-Ang University, Seoul, 06974, South Korea
| | - Gi Jeong Nam
- Department of Life Science, Chung-Ang University, Seoul, 06974, South Korea
| | - Ju Hye Baek
- Department of Life Science, Chung-Ang University, Seoul, 06974, South Korea
| | - Che Ok Jeon
- Department of Life Science, Chung-Ang University, Seoul, 06974, South Korea
| | - Hyunwook Jung
- GF Fermentech, Bugang-myeon, Sejong-si, 30077, South Korea
| | | | - Sol Choi
- GF Fermentech, Bugang-myeon, Sejong-si, 30077, South Korea
| | - Jeong Jun Han
- GF Fermentech, Bugang-myeon, Sejong-si, 30077, South Korea
| | - Chen Yuan Hou
- LCS Biotech, Cheoin-gu, Yongin-si, Gyeonggi-do, 17130, South Korea
| | - Chang Seo Park
- LCS Biotech, Cheoin-gu, Yongin-si, Gyeonggi-do, 17130, South Korea
| | - Hyun Ah Kang
- Department of Life Science, Chung-Ang University, Seoul, 06974, South Korea.
| |
Collapse
|
4
|
Li P, An Z, Sun H, Meng Y, Hou L, Han X, Feng S, Liu Y, Shen S, Zeng F, Dong J, Hao Z. The serine palmitoyltransferase core subunit StLcb2 regulates sphingolipid metabolism and promotes Setosphaeria turcica pathogenicity by modulating appressorium development. Int J Biol Macromol 2024; 283:137928. [PMID: 39579824 DOI: 10.1016/j.ijbiomac.2024.137928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/14/2024] [Accepted: 11/20/2024] [Indexed: 11/25/2024]
Abstract
The fungal pathogen Setosphaeria turcica (S. turcica) causes northern corn leaf blight (NCLB), resulting in significant yield and economic losses in maize. To elucidate the metabolic pathways essential for its pathogenicity, we investigated the metabolome of S. turcica during appressorium development, a critical stage for host infection. Our analysis indicated a substantial enrichment of sphingosine and related compounds during this phase. The application of chemical inhibitors to disrupt sphingolipid metabolism confirmed their pivotal role in appressorium formation and pathogenicity. Additionally, silencing of the serine palmitoyl transferase (Spt) core subunit gene StLCB2 led to significant alterations in fungal morphology and growth, accompanied by changes in cell membrane integrity, surface hydrophobicity, melanin, and sphingosine synthesis. These findings underscore the importance of sphingolipids in the pathogenicity of S. turcica and suggest that targeting specific components of the sphingolipid pathway could aid in developing novel fungicides or genetically engineered maize varieties with increased resistance to NCLB.
Collapse
Affiliation(s)
- Pan Li
- State Key Laboratory of North China Crop Improvement and Regulation/Hebei Bioinformatic Utilization and Technological Innovation Center for Agricultural Microbes, Hebei Agricultural University, Hebei, 071001, China; College of Plant Protection, Hebei Agricultural University, Baoding, Hebei, 071001, China
| | - Zhenwu An
- State Key Laboratory of North China Crop Improvement and Regulation/Hebei Bioinformatic Utilization and Technological Innovation Center for Agricultural Microbes, Hebei Agricultural University, Hebei, 071001, China; College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, 071001, China
| | - Hehe Sun
- College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, 071001, China
| | - Yanan Meng
- College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, 071001, China
| | - Lifeng Hou
- College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, 071001, China
| | - Xinpeng Han
- College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, 071001, China
| | - Shang Feng
- College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, 071001, China
| | - Yuwei Liu
- State Key Laboratory of North China Crop Improvement and Regulation/Hebei Bioinformatic Utilization and Technological Innovation Center for Agricultural Microbes, Hebei Agricultural University, Hebei, 071001, China; College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, 071001, China
| | - Shen Shen
- College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, 071001, China
| | - Fanli Zeng
- State Key Laboratory of North China Crop Improvement and Regulation/Hebei Bioinformatic Utilization and Technological Innovation Center for Agricultural Microbes, Hebei Agricultural University, Hebei, 071001, China; College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, 071001, China.
| | - Jingao Dong
- State Key Laboratory of North China Crop Improvement and Regulation/Hebei Bioinformatic Utilization and Technological Innovation Center for Agricultural Microbes, Hebei Agricultural University, Hebei, 071001, China; College of Plant Protection, Hebei Agricultural University, Baoding, Hebei, 071001, China.
| | - Zhimin Hao
- State Key Laboratory of North China Crop Improvement and Regulation/Hebei Bioinformatic Utilization and Technological Innovation Center for Agricultural Microbes, Hebei Agricultural University, Hebei, 071001, China; College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, 071001, China.
| |
Collapse
|
5
|
Ishikawa T, Domergue F, Amato A, Corellou F. Characterization of Unique Eukaryotic Sphingolipids with Temperature-Dependent Δ8-Unsaturation from the Picoalga Ostreococcus tauri. PLANT & CELL PHYSIOLOGY 2024; 65:1029-1046. [PMID: 38252418 DOI: 10.1093/pcp/pcae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/28/2023] [Accepted: 01/18/2024] [Indexed: 01/23/2024]
Abstract
Sphingolipids (SLs) are ubiquitous components of eukaryotic cell membranes and are found in some prokaryotic organisms and viruses. They are composed of a sphingoid backbone that may be acylated and glycosylated. Assembly of various sphingoid base, fatty acyl and glycosyl moieties results in highly diverse structures. The functional significance of variations in SL chemical diversity and abundance is still in the early stages of investigation. Among SL modifications, Δ8-desaturation of the sphingoid base occurs only in plants and fungi. In plants, SL Δ8-unsaturation is involved in cold hardiness. Our knowledge of the structure and functions of SLs in microalgae lags far behind that of animals, plants and fungi. Original SL structures have been reported from microalgae. However, functional studies are still missing. Ostreococcus tauri is a minimal microalga at the base of the green lineage and is therefore a key organism for understanding lipid evolution. In the present work, we achieved the detailed characterization of O. tauri SLs and unveiled unique glycosylceramides as sole complex SLs. The head groups are reminiscent of bacterial SLs, as they contain hexuronic acid residues and can be polyglycosylated. Ceramide backbones show a limited variety, and SL modification is restricted to Δ8-unsaturation. The Δ8-SL desaturase from O. tauri only produced E isomers. Expression of both Δ8-SL desaturase and Δ8-unsaturation of sphingolipids varied with temperature, with lower levels at 24°C than at 14°C. Overexpression of the Δ8-SL desaturase dramatically increases the level of Δ8 unsaturation at 24°C and is paralleled by a failure to increase cell size. Our work provides the first characterization of O. tauri SLs and functional evidence for the involvement of SL Δ8-unsaturation for temperature acclimation in microalgae, suggesting that this function is an ancestral feature in the green lineage.
Collapse
Affiliation(s)
- Toshiki Ishikawa
- Graduate School of Science and Engineering, Saitama University, 225 Shimo-Okubo, Sakura-ku, Saitama-city, Saitama, 338-8570 Japan
| | - Frédéric Domergue
- Laboratoire de Biogenèse Membranaire, University of Bordeaux, CNRSUMR 5200, Av. Edouard Bourlaux, Villenave d'Ornon 33140, France
| | - Alberto Amato
- Laboratoire de Physiologie Végétale et Cellulaire, Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Centre National de la Recherche Scientifique UMR 5168, Université Grenoble Alpes, CEA, IRIG, 17 Av. Des Martyrs, Grenoble 38000, France
| | - Florence Corellou
- Laboratoire de Physiologie Végétale et Cellulaire, Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Centre National de la Recherche Scientifique UMR 5168, Université Grenoble Alpes, CEA, IRIG, 17 Av. Des Martyrs, Grenoble 38000, France
| |
Collapse
|
6
|
Usmani SA, Kumar M, Arya K, Ali B, Bhardwaj N, Gaur NA, Prasad R, Singh A. Beyond membrane components: uncovering the intriguing world of fungal sphingolipid synthesis and regulation. Res Microbiol 2023; 174:104087. [PMID: 37328042 DOI: 10.1016/j.resmic.2023.104087] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/18/2023]
Abstract
Sphingolipids (SLs) are essential to fungal survival and represent a major class of structural and signaling lipids. Unique SL structures and their biosynthetic enzymes in filamentous fungi make them an ideal drug target. Several studies have contributed towards the functional characterization of specific SL metabolism genes, which have been complemented by advanced lipidomics methods which allow accurate identification and quantification of lipid structures and pathway mapping. These studies have provided a better understanding of SL biosynthesis, degradation and regulation networks in filamentous fungi, which are discussed and elaborated here.
Collapse
Affiliation(s)
- Sana Akhtar Usmani
- Department of Biochemistry, University of Lucknow, Lucknow, Uttar Pradesh, 226024, India
| | - Mohit Kumar
- Amity Institute of Integrative Science and Health and Amity Institute of Biotechnology, Amity University Gurgaon, Haryana, India; International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Khushboo Arya
- Department of Biochemistry, University of Lucknow, Lucknow, Uttar Pradesh, 226024, India
| | - Basharat Ali
- Amity Institute of Integrative Science and Health and Amity Institute of Biotechnology, Amity University Gurgaon, Haryana, India
| | - Nitin Bhardwaj
- Department of Zoology and Environmental Science, Gurukula Kangri Vishwavidyalaya, Haridwar, Uttarakhand 249404, India
| | - Naseem Akhtar Gaur
- International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Rajendra Prasad
- Amity Institute of Integrative Science and Health and Amity Institute of Biotechnology, Amity University Gurgaon, Haryana, India
| | - Ashutosh Singh
- Department of Biochemistry, University of Lucknow, Lucknow, Uttar Pradesh, 226024, India.
| |
Collapse
|
7
|
Guegan H, Poirier W, Ravenel K, Dion S, Delabarre A, Desvillechabrol D, Pinson X, Sergent O, Gallais I, Gangneux JP, Giraud S, Gastebois A. Deciphering the Role of PIG1 and DHN-Melanin in Scedosporium apiospermum Conidia. J Fungi (Basel) 2023; 9:jof9020134. [PMID: 36836250 PMCID: PMC9965090 DOI: 10.3390/jof9020134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/10/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Scedosporium apiospermum is a saprophytic filamentous fungus involved in human infections, of which the virulence factors that contribute to pathogenesis are still poorly characterized. In particular, little is known about the specific role of dihydroxynaphtalene (DHN)-melanin, located on the external layer of the conidia cell wall. We previously identified a transcription factor, PIG1, which may be involved in DHN-melanin biosynthesis. To elucidate the role of PIG1 and DHN-melanin in S. apiospermum, a CRISPR-Cas9-mediated PIG1 deletion was carried out from two parental strains to evaluate its impact on melanin biosynthesis, conidia cell-wall assembly, and resistance to stress, including the ability to survive macrophage engulfment. ΔPIG1 mutants did not produce melanin and showed a disorganized and thinner cell wall, resulting in a lower survival rate when exposed to oxidizing conditions, or high temperature. The absence of melanin increased the exposure of antigenic patterns on the conidia surface. PIG1 regulates the melanization of S. apiospermum conidia, and is involved in the survival to environmental injuries and to the host immune response, that might participate in virulence. Moreover, a transcriptomic analysis was performed to explain the observed aberrant septate conidia morphology and found differentially expressed genes, underlining the pleiotropic function of PIG1.
Collapse
Affiliation(s)
- Hélène Guegan
- CHU Rennes, INSERM, EHESP, IRSET (Institut de Recherche en Santé Environnement et Travail)—UMR_S 1085, 35000 Rennes, France
- Correspondence: ; Tel.: +33-223233496
| | - Wilfried Poirier
- University of Angers, University of Brest, IRF, SFR ICAT, 49000 Angers, France
| | - Kevin Ravenel
- University of Angers, University of Brest, IRF, SFR ICAT, 49000 Angers, France
| | - Sarah Dion
- INSERM, EHESP, IRSET (Institut de Recherche en Santé Environnement et Travail)—UMR_S 1085, 35000 Rennes, France
| | - Aymeric Delabarre
- INSERM, EHESP, IRSET (Institut de Recherche en Santé Environnement et Travail)—UMR_S 1085, 35000 Rennes, France
| | - Dimitri Desvillechabrol
- Institut Pasteur, Université Paris Cité, Plate-Forme Technologique Biomics, 75015 Paris, France
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, 75015 Paris, France
| | - Xavier Pinson
- CNRS, INSERM, Biosit UAR 3480 US_S 018, MRic Core Facility, 35000 Rennes, France
| | - Odile Sergent
- INSERM, EHESP, IRSET (Institut de Recherche en Santé Environnement et Travail)—UMR_S 1085, 35000 Rennes, France
| | - Isabelle Gallais
- INSERM, EHESP, IRSET (Institut de Recherche en Santé Environnement et Travail)—UMR_S 1085, 35000 Rennes, France
| | - Jean-Pierre Gangneux
- CHU Rennes, INSERM, EHESP, IRSET (Institut de Recherche en Santé Environnement et Travail)—UMR_S 1085, 35000 Rennes, France
| | - Sandrine Giraud
- University of Angers, University of Brest, IRF, SFR ICAT, 49000 Angers, France
| | - Amandine Gastebois
- University of Angers, University of Brest, IRF, SFR ICAT, 49000 Angers, France
| |
Collapse
|
8
|
Wang J, Chen YL, Li YK, Chen DK, He JF, Yao N. Functions of Sphingolipids in Pathogenesis During Host-Pathogen Interactions. Front Microbiol 2021; 12:701041. [PMID: 34408731 PMCID: PMC8366399 DOI: 10.3389/fmicb.2021.701041] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/21/2021] [Indexed: 12/23/2022] Open
Abstract
Sphingolipids are a class of membrane lipids that serve as vital structural and signaling bioactive molecules in organisms ranging from yeast to animals. Recent studies have emphasized the importance of sphingolipids as signaling molecules in the development and pathogenicity of microbial pathogens including bacteria, fungi, and viruses. In particular, sphingolipids play key roles in regulating the delicate balance between microbes and hosts during microbial pathogenesis. Some pathogens, such as bacteria and viruses, harness host sphingolipids to promote development and infection, whereas sphingolipids from both the host and pathogen are involved in fungus-host interactions. Moreover, a regulatory role for sphingolipids has been described, but their effects on host physiology and metabolism remain to be elucidated. Here, we summarize the current state of knowledge about the roles of sphingolipids in pathogenesis and interactions with host factors, including how sphingolipids modify pathogen and host metabolism with a focus on pathogenesis regulators and relevant metabolic enzymes. In addition, we discuss emerging perspectives on targeting sphingolipids that function in host-microbe interactions as new therapeutic strategies for infectious diseases.
Collapse
Affiliation(s)
- Jian Wang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Agriculture, Sun Yat-sen University, Guangzhou, China
| | - Yi-Li Chen
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yong-Kang Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ding-Kang Chen
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jia-Fan He
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Agriculture, Sun Yat-sen University, Guangzhou, China
| | - Nan Yao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Agriculture, Sun Yat-sen University, Guangzhou, China
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
9
|
Rollin-Pinheiro R, Almeida YDC, Rochetti VP, Xisto MIDDS, Borba-Santos LP, Rozental S, Barreto-Bergter E. Miltefosine Against Scedosporium and Lomentospora Species: Antifungal Activity and Its Effects on Fungal Cells. Front Cell Infect Microbiol 2021; 11:698662. [PMID: 34368017 PMCID: PMC8343104 DOI: 10.3389/fcimb.2021.698662] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/05/2021] [Indexed: 01/03/2023] Open
Abstract
Scedosporium and Lomentospora species are filamentous fungi responsible for a wide range of infections in humans and are frequently associated with cystic fibrosis and immunocompromising conditions. Because they are usually resistant to many antifungal drugs available in clinical settings, studies of alternative targets in fungal cells and therapeutic approaches are necessary. In the present work, we evaluated the in vitro antifungal activity of miltefosine against Scedosporium and Lomentospora species and how this phospholipid analogue affects the fungal cell. Miltefosine inhibited different Scedosporium and Lomentospora species at 2–4 µg/ml and reduced biofilm formation. The loss of membrane integrity in Scedosporium aurantiacum caused by miltefosine was demonstrated by leakage of intracellular components and lipid raft disorganisation. The exogenous addition of glucosylceramide decreased the inhibitory activity of miltefosine. Reactive oxygen species production and mitochondrial activity were also affected by miltefosine, as well as the susceptibility to fluconazole, caspofungin and myoricin. The data obtained in the present study contribute to clarify the dynamics of the interaction between miltefosine and Scedosporium and Lomentospora cells, highlighting its potential use as new antifungal drug in the future.
Collapse
Affiliation(s)
- Rodrigo Rollin-Pinheiro
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Yuri de Castro Almeida
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Victor Pereira Rochetti
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mariana Ingrid Dutra da Silva Xisto
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luana Pereira Borba-Santos
- Programa de Biologia Celular e Parasitologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Sonia Rozental
- Programa de Biologia Celular e Parasitologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Eliana Barreto-Bergter
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
10
|
Jiang C, Ge J, He B, Zeng B. Glycosphingolipids in Filamentous Fungi: Biological Roles and Potential Applications in Cosmetics and Health Foods. Front Microbiol 2021; 12:690211. [PMID: 34367090 PMCID: PMC8341767 DOI: 10.3389/fmicb.2021.690211] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/28/2021] [Indexed: 11/13/2022] Open
Abstract
Filamentous fungi are a group of economically important fungi used in the production of fermented foods, industrial enzymes, and secondary metabolites. Glycosphingolipids (GSLs) as constituents of lipid rafts are involved in growth, differentiation, and response to environment stress in filamentous fungi. In addition to these key roles, GSLs are also important in the barrier function of skin to retain moisture as a moisturizing ingredient in cosmetics or health products for their strong biological activity as a functional component. GSLs found in filamentous fungi are divided in two major classes: neutral GSLs (glycosylceramides), glucosylceramides (GlcCers), and/or galactosylceramides (GalCers) and acidic GSLs, mannosylinositol phosphorylceramide (MIPC) and mannosyldiinositol phosphorylceramide [M(IP)2C]. Glycosylceramides are one of the abundant GSLs in Aspergillus and known to improve skin-barrier function and prevent intestinal impairment as a prebiotic. Some filamentous fungi of Aspergillus spp., synthesizing both GlcCer and GalCer, would be an amenable source to exploit glycosylceramides that wildly adding in cosmetics as moisturizing ingredients or health food as dietary supplements. In this minireview, the types, structures, and biosynthetic pathways of GSLs in filamentous fungi, and the relevance of GSLs in fungal growth, spore formation, and environmental stress response are explained. Furthermore, the advantage, potential development, and application of GlcCer and GalCer from filamentous fungi Aspergillus spp. are also investigate based on the use of plant GlcCer in health foods and cosmetics.
Collapse
Affiliation(s)
- Chunmiao Jiang
- Jiangxi Key Laboratory of Bioprocess Engineering and Co-Innovation Center for In-Vitro Diagnostic Reagents and Devices of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Jinxin Ge
- Jiangxi Key Laboratory of Bioprocess Engineering and Co-Innovation Center for In-Vitro Diagnostic Reagents and Devices of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Bin He
- Jiangxi Key Laboratory of Bioprocess Engineering and Co-Innovation Center for In-Vitro Diagnostic Reagents and Devices of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Bin Zeng
- Jiangxi Key Laboratory of Bioprocess Engineering and Co-Innovation Center for In-Vitro Diagnostic Reagents and Devices of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China.,College of Pharmacy, Shenzhen Technology University, Shenzhen, China
| |
Collapse
|
11
|
Sphingolipid Inhibitors as an Alternative to Treat Candidiasis Caused by Fluconazole-Resistant Strains. Pathogens 2021; 10:pathogens10070856. [PMID: 34358009 PMCID: PMC8308474 DOI: 10.3390/pathogens10070856] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/01/2021] [Accepted: 07/03/2021] [Indexed: 11/19/2022] Open
Abstract
Candida species are fungal pathogens known to cause a wide spectrum of diseases, and Candida albicans and Candida glabrata are the most common associated with invasive infections. A concerning aspect of invasive candidiasis is the emergence of resistant isolates, especially those highly resistant to fluconazole, the first choice of treatment for these infections. Fungal sphingolipids have been considered a potential target for new therapeutic approaches and some inhibitors have already been tested against pathogenic fungi. The present study therefore aimed to evaluate the action of two sphingolipid synthesis inhibitors, aureobasidin A and myriocin, against different C. albicans and C. glabrata strains, including clinical isolates resistant to fluconazole. Susceptibility tests of aureobasidin A and myriocin were performed using CLSI protocols, and their interaction with fluconazole was evaluated by a checkerboard protocol. All Candida strains tested were sensitive to both inhibitors. Regarding the evaluation of drug interaction, both aureobasidin A and myriocin were synergic with fluconazole, demonstrating that sphingolipid synthesis inhibition could enhance the effect of fluconazole. Thus, these results suggest that sphingolipid inhibitors in conjunction with fluconazole could be useful for treating candidiasis cases, especially those caused by fluconazole resistant isolates.
Collapse
|
12
|
Glucosylceramide Plays a Role in Fungal Germination, Lipid Raft Organization and Biofilm Adhesion of the Pathogenic Fungus Scedosporium aurantiacum. J Fungi (Basel) 2020; 6:jof6040345. [PMID: 33302332 PMCID: PMC7762401 DOI: 10.3390/jof6040345] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 01/02/2023] Open
Abstract
Infections caused by Scedosporium species present a wide range of clinical manifestations, from superficial to disseminated, especially in immunocompromised patients. Glucosylceramides (GlcCer) are glycosphingolipids found on the fungal cell surface and play an important role in growth and pathogenicity processes in different fungi. The present study aimed to evaluate the structure of GlcCer and its role during growth in two S. aurantiacum isolates. Purified GlcCer from both isolates were obtained and its chemical structure identified by mass spectrometry. Using ELISA and immunofluorescence techniques it was observed that germination and NaOH-treatment of conidia favor GlcCer exposure. Monoclonal anti-GlcCer antibody reduced germination when cultivated with the inhibitor of melanin synthesis tricyclazole and also reduced germ tube length of conidia, both cultivated or not with tricyclazole. It was also demonstrated that anti-GlcCer altered lipid rafts organization, as shown by using the fluorescent stain filipin, but did not affect the susceptibility of the cell surface to damaging agents. Anti-GlcCer reduced total biomass and viability in biofilms formed on polystyrene plates. In the presence of anti-GlcCer, germinated S. aurantiacum conidia and biofilms could not adhere to polystyrene with the same efficacy as control cells. These results highlight the relevance of GlcCer in growth processes of S. aurantiacum.
Collapse
|
13
|
Fernandes CM, Poeta MD. Fungal sphingolipids: role in the regulation of virulence and potential as targets for future antifungal therapies. Expert Rev Anti Infect Ther 2020; 18:1083-1092. [PMID: 32673125 PMCID: PMC7657966 DOI: 10.1080/14787210.2020.1792288] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/02/2020] [Indexed: 12/17/2022]
Abstract
INTRODUCTION The antifungal therapy currently available includes three major classes of drugs: polyenes, azoles and echinocandins. However, the clinical use of these compounds faces several challenges: while polyenes are toxic to the host, antifungal resistance to azoles and echinocandins has been reported. AREAS COVERED Fungal sphingolipids (SL) play a pivotal role in growth, morphogenesis and virulence. In addition, fungi possess unique enzymes involved in SL synthesis, leading to the production of lipids which are absent or differ structurally from the mammalian counterparts. In this review, we address the enzymatic reactions involved in the SL synthesis and their relevance to the fungal pathogenesis, highlighting their potential as targets for novel drugs and the inhibitors described so far. EXPERT OPINION The pharmacological inhibition of fungal serine palmitoyltransferase depends on the development of specific drugs, as myriocin also targets the mammalian enzyme. Inhibitors of ceramide synthase might constitute potent antifungals, by depleting the pool of complex SL and leading to the accumulation of the toxic intermediates. Acylhydrazones and aureobasidin A, which inhibit GlcCer and IPC synthesis, are not toxic to the host and effectively treat invasive mycoses, emerging as promising new classes of antifungal drugs.
Collapse
Affiliation(s)
| | - Maurizio Del Poeta
- Department of Microbiology and Immunology, Stony Brook University, NY, USA
- Division of Infectious Diseases, School of Medicine, Stony Brook University, NY, USA
- Veterans Administration Medical Center, Northport, NY, USA
| |
Collapse
|
14
|
Rollin-Pinheiro R, Xisto MIDDS, Rochetti VP, Barreto-Bergter E. Scedosporium Cell Wall: From Carbohydrate-Containing Structures to Host-Pathogen Interactions. Mycopathologia 2020; 185:931-946. [PMID: 32990888 DOI: 10.1007/s11046-020-00480-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/20/2020] [Indexed: 12/16/2022]
Abstract
Scedosporium species are filamentous fungi usually found in sewage and soil from human-impacted areas. They cause a wide range of diseases in humans, from superficial infections, such as mycetoma, to invasive and disseminated cases, especially associated in immunocompromised patients. Scedosporium species are also related to lung colonization in individuals presenting cystic fibrosis and are considered one of the most frequent fungal pathogens associated to this pathology. Scedosporium cell wall contains glycosylated molecules involved in important biological events related to virulence and pathogenicity and represents a significant source of antigens. Polysaccharides, peptidopolysaccharides, O-linked oligosaccharides and glycosphingolipids have been identified on the Scedosporium surface. Their primary structures were determined based on a combination of techniques including gas chromatography, ESI-MS, and 1H and 13C nuclear magnetic resonance. Peptidorhamnnomannans are common cell wall components among Scedosporium species. Comparing different species, minor structural differences in the carbohydrate portions were detected which could be useful to understand variations in virulence observed among the species. N- and O-linked peptidorhamnomannans are major pathogen-associated molecular patterns and, along with α-glucans, play important roles in triggering host innate immunity. Glycosphingolipids, such as glucosylceramides, have highly conserved structures in Scedosporium species and are crucial for fungal growth and virulence. The present review presents current knowledge on structural and functional aspects of Scedosporium glycoconjugates that are relevant for understanding pathogenicity mechanisms and could contribute to the design of new agents capable of inhibiting growth and differentiation of Scedosporium species. Other cell components such as melanin and ectophosphatases will be also included.
Collapse
Affiliation(s)
- Rodrigo Rollin-Pinheiro
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Mariana Ingrid Dutra da Silva Xisto
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Victor Pereira Rochetti
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Eliana Barreto-Bergter
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil.
| |
Collapse
|
15
|
McEvoy K, Normile TG, Poeta MD. Antifungal Drug Development: Targeting the Fungal Sphingolipid Pathway. J Fungi (Basel) 2020; 6:jof6030142. [PMID: 32825250 PMCID: PMC7559796 DOI: 10.3390/jof6030142] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/13/2020] [Accepted: 08/18/2020] [Indexed: 02/06/2023] Open
Abstract
Fungal infections are becoming more prevalent and problematic due to the continual rise of immune deficient patients as well as the progressive development of drug resistance towards currently available antifungal drugs. There has been a significant increase in the development of antifungal compounds with a similar mechanism of action of current drugs. In contrast, there has been very little progress in developing compounds inhibiting totally new fungal targets or/and fungal pathways. This review focuses on novel compounds recently discovered to target the fungal sphingolipids and their metabolizing enzymes.
Collapse
Affiliation(s)
- Kyle McEvoy
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY 11794, USA; (K.M.); (T.G.N.)
| | - Tyler G. Normile
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY 11794, USA; (K.M.); (T.G.N.)
| | - Maurizio Del Poeta
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY 11794, USA; (K.M.); (T.G.N.)
- Division of Infectious Diseases, School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
- Veterans Administration Medical Center, Northport, NY 11768, USA
- Correspondence: ; Tel.: +1-631-632-4024
| |
Collapse
|
16
|
Plant-Unique cis/ trans Isomerism of Long-Chain Base Unsaturation is Selectively Required for Aluminum Tolerance Resulting from Glucosylceramide-Dependent Plasma Membrane Fluidity. PLANTS 2019; 9:plants9010019. [PMID: 31877922 PMCID: PMC7020186 DOI: 10.3390/plants9010019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/13/2019] [Accepted: 12/20/2019] [Indexed: 12/11/2022]
Abstract
Cis/trans isomerism of the Δ8 unsaturation of long-chain base (LCB) is found only in plant sphingolipids. This unique geometry is generated by sphingolipid LCB Δ8 desaturase SLD which produces both isomers at various ratios, resulting in diverse cis/trans ratios in plants. However, the biological significance of this isomeric diversity remains controversial. Here, we show that the plant-specific cis unsaturation of LCB selectively contributes to glucosylceramide (GlcCer)-dependent tolerance to aluminum toxicity. We established three transgenic rice lines with altered LCB unsaturation profiles. Overexpression of SLD from rice (OsSLD-OX), which preferentially exhibits cis-activity, or Arabidopsis (AtSLD-OX), showing preference for trans-activity, facilitated Δ8 unsaturation in different manners: a slight increase of cis-unsaturated glycosylinositolphosphoceramide (GIPC) in OsSLD-OX, and a drastic increase of trans-unsaturated GlcCer and GIPC in AtSLD-OX. Disruption of LCB Δ4 desaturase (des) significantly decreased the content of GlcCer. Fluorescence imaging analysis revealed that OsSLD-OX and AtSLD-OX showed increased plasma membrane fluidity, whereas des had less fluidity, demonstrating that the isomers universally contributed to increasing membrane fluidity. However, the results of a hydroponic assay showed decreased aluminum tolerance in AtSLD-OX and des compared to OsSLD-OX and the control plants, which did not correlate with membrane fluidity. These results suggest that cis-unsaturated GlcCer, not GIPC, selectively serves to maintain the membrane fluidity specifically associated with aluminum tolerance.
Collapse
|
17
|
Abstract
Long chain base (LCB) is a unique building block found in sphingolipids. The initial step of LCB biosynthesis stems from serine:palmitoyl-CoA transferase enzyme, producing 3-ketodihydrosphingosine with multiple regulatory proteins including small subunit SPT a/b and orosomucoid-like protein1-3. 3-Ketodihydrosphingosine reductase and sphingolipid Δ4-desaturase, both of them poorly characterized mammalian enzymes, play key roles for neurological homeostasis based on their pathogenic mutation in humans. Ceramide synthase in mammals has six isoforms with distinct phenotype in each knockout mouse. In plants and fungi, sphingolipids also contain phytosphingosine due to sphingolipid C4-hydroxylase. In contrast to previous notion that dietary intake might be its major route in animals, emerging evidences suggested that phytosphingosine biosynthesis does occur in some tissues such as the skin by mammalian C4-hydroxylase activity of the DEGS2 gene. This short review summarizes LCB biosynthesis with their associating metabolic pathways in animals, plants and fungi. Sphingolipid is a group of lipids that contains a unique building block known as long chain base (LCB). LCB is susceptible to various biosynthetic reactions such as unsaturation, hydroxylation and methylation. A failure of these enzymatic reactions leads to the pathogenesis in humans with an elevation of LCB-derived specific biomarkers. Herein, we summarized emerging evidences in mammalian LCB biosynthesis in sphingolipids. Some unique metabolic pathways in plants and fungi were also discussed.
Collapse
|
18
|
Sphingolipid biosynthetic pathway is crucial for growth, biofilm formation and membrane integrity of Scedosporium boydii. Future Med Chem 2019; 11:2905-2917. [PMID: 31713454 DOI: 10.4155/fmc-2019-0186] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Aim: Glycosphingolipids are conserved lipids displaying a variety of functions in fungal cells, such as determination of cell polarity and virulence. They have been considered as potent targets for new antifungal drugs. The present work aimed to test two inhibitors, myriocin and DL-threo-1-Phenyl-2-palmitoylamino-3-morpholino-1-propanol, in Scedosporium boydii, a pathogenic fungus which causes a wide range of disease. Materials & methods: Mass spectrometry, microscopy and cell biology approaches showed that treatment with both inhibitors led to defects in fungal growth and membrane integrity, and caused an increased susceptibility to the current antifungal agents. Conclusion: These data demonstrate the antifungal potential of drugs inhibiting sphingolipid biosynthesis, as well as the usefulness of sphingolipids as promising targets for the development of new therapeutic options.
Collapse
|
19
|
Hasegawa S, Yamada Y, Iwanami N, Nakayama Y, Nakayama H, Iwatani S, Oura T, Kajiwara S. Identification and functional characterization of Candida albicans mannose-ethanolamine phosphotransferase (Mcd4p). Curr Genet 2019; 65:1251-1261. [PMID: 31073667 DOI: 10.1007/s00294-019-00987-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 03/14/2019] [Accepted: 03/15/2019] [Indexed: 11/28/2022]
Abstract
Glycosylphosphatidylinositol (GPI) is an important compound for the growth of fungi, because GPI-anchored proteins including glycosyltransferases and adhesins are involved in cell-wall integrity, adhesion, and nutrient uptake in this organism. In this study, we examined orf19.5244 in the genome database of the pathogenic fungus Candida albicans, a homologue of the Saccharomyces cerevisiae mannose-ethanolamine phosphotransferase gene, MCD4, which plays a role in GPI synthesis. Expression of this homologue, designated CaMCD4, restored cell growth in a defective conditional mcd4 mutant of S. cerevisiae, Scmcd4t, in which expression of native MCD4 was repressed in the presence of doxycycline (Dox). Analysis of radiolabeled lipids showed that the accumulation of abnormal GPI anchor precursors in Scmcd4t decreased markedly upon expression of CaMCD4. Moreover, we constructed a single mutant (Camcd4/CaMCD4) and a conditional double mutant (Camcd4/Camcd4t) at the MCD4 locus of C. albicans. Repression of CaMCD4 expression by Dox led to a decrease in growth and appearance of abnormal morphology in C. albicans, both in vitro and in a silkworm infection model. These results suggest that CaMcd4p is indispensable for growth of C. albicans both in vitro and in infected hosts and a candidate target for the development of new antifungals.
Collapse
Affiliation(s)
- Satoru Hasegawa
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 J3-07 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
| | - Yuimi Yamada
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 J3-07 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
| | - Noboru Iwanami
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 J3-07 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
| | - Yusuke Nakayama
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 J3-07 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
| | - Hironobu Nakayama
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Minami-Tamagakicho, 3500-3, Suzuka, Mie, 513-8670, Japan
| | - Shun Iwatani
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 J3-07 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
| | - Takahiro Oura
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 J3-07 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
| | - Susumu Kajiwara
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 J3-07 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan.
| |
Collapse
|
20
|
Hartmann DO, Piontkivska D, Moreira CJS, Silva Pereira C. Ionic Liquids Chemical Stress Triggers Sphingoid Base Accumulation in Aspergillus nidulans. Front Microbiol 2019; 10:864. [PMID: 31105664 PMCID: PMC6491925 DOI: 10.3389/fmicb.2019.00864] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 04/04/2019] [Indexed: 11/30/2022] Open
Abstract
Understanding stress responses and signaling pathways in fungi became a fundamental need for the discovery of new specific antifungal targets for fighting emerging life-threatening pathogens and drug resistance. Ionic liquids constitute a unique class of chemicals, which structural diversity and tunable physical and chemical properties can provide a great diversity of stimuli. In this study, we propose the use of ionic liquids as tools to unravel signaling of stress responses in the filamentous fungus Aspergillus nidulans. We assessed how three ionic liquids with distinct effects over the cell wall and plasma membrane affect the biosynthesis of sphingolipids and accumulation of free sphingoid bases in this fungus. The stress imposed by each ionic liquid triggered the sphingolipid biosynthetic pathway and led to distinct profiles of sphingoid bases accumulation. Dodecyltributylphosphonium chloride and 1-decyl-3-methylimidazolium chloride induced the accumulation of sphingosine and of a yet unknown sphingoid base, respectively, while cholinium decanoate did not seem to accumulate any of these intermediates. This study brings further light to the roles of sphingoid bases in A. nidulans. In particular, sphingosine as a possible response mediator to cell wall damage induced by dodecyltributylphosphonium chloride, and involvement of an unknown sphingoid base in the response to plasma membrane permeabilization caused by 1-decyl-3-methylimidazolium chloride. In addition, we completed the genetic assignment of the glucosylceramide pathway in A. nidulans through the identification of the sphingolipid Δ4-desaturase gene (AN4405). The knowledge established reinforces the idea of targeting sphingolipids biosynthesis in the search of improved antifungal compounds.
Collapse
Affiliation(s)
- Diego O Hartmann
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Portugal
| | - Daryna Piontkivska
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Portugal
| | - Carlos J S Moreira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Portugal
| | - Cristina Silva Pereira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Portugal
| |
Collapse
|
21
|
Huber A, Oemer G, Malanovic N, Lohner K, Kovács L, Salvenmoser W, Zschocke J, Keller MA, Marx F. Membrane Sphingolipids Regulate the Fitness and Antifungal Protein Susceptibility of Neurospora crassa. Front Microbiol 2019; 10:605. [PMID: 31031714 PMCID: PMC6471014 DOI: 10.3389/fmicb.2019.00605] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/11/2019] [Indexed: 02/06/2023] Open
Abstract
The membrane sphingolipid glucosylceramide (GlcCer) plays an important role in fungal fitness and adaptation to most diverse environments. Moreover, reported differences in the structure of GlcCer between fungi, plants and animals render this pathway a promising target for new generation therapeutics. Our knowledge about the GlcCer biosynthesis in fungi is mainly based on investigations of yeasts, whereas this pathway is less well characterized in molds. We therefore performed a detailed lipidomic profiling of GlcCer species present in Neurospora crassa and comprehensively show that the deletion of genes encoding enzymes involved in GlcCer biosynthesis affects growth, conidiation and stress response in this model fungus. Importantly, our study evidences that differences in the pathway intermediates and their functional role exist between N. crassa and other fungal species. We further investigated the role of GlcCer in the susceptibility of N. crassa toward two small cysteine-rich and cationic antimicrobial proteins (AMPs), PAF and PAFB, which originate from the filamentous ascomycete Penicillium chrysogenum. The interaction of these AMPs with the fungal plasma membrane is crucial for their antifungal toxicity. We found that GlcCer determines the susceptibility of N. crassa toward PAF, but not PAFB. A higher electrostatic affinity of PAFB than PAF to anionic membrane surfaces might explain the difference in their antifungal mode of action.
Collapse
Affiliation(s)
- Anna Huber
- Division of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Gregor Oemer
- Division of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Nermina Malanovic
- Institute of Molecular Biosciences, Biophysics Division, University of Graz, Graz, Austria
| | - Karl Lohner
- Institute of Molecular Biosciences, Biophysics Division, University of Graz, Graz, Austria
| | - Laura Kovács
- Division of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Johannes Zschocke
- Division of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Markus A Keller
- Division of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Florentine Marx
- Division of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
22
|
Haranahalli K, Honda T, Ojima I. Recent progress in the strategic incorporation of fluorine into medicinally active compounds. J Fluor Chem 2019; 217:29-40. [PMID: 31537946 PMCID: PMC6752223 DOI: 10.1016/j.jfluchem.2018.11.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This account exemplifies our recent progress on the strategic incorporation of fluorine and organofluorine groups to (i) taxoid anticancer agents, (ii) acylhydrazone-based antifungal agents and (iii) inhibitors of matrix metalloproteinase 9 (MMP9) for medicinal chemistry and chemical biology studies. In the case study (i), a series of next-generation fluorotaxoids, bearing m-OCF3 or m-OCF2H group in the C2-benzoate moiety was designed, synthesized and examined for their potencies. A number of these fluorotaxoids possess two orders of magnitude greater potency in different drug-resistant cancer cell lines as compared to paclitaxel. One of these next-generation fluorotaxoids, SB--121205wasselected for detailed mechanistic study against highly paclitaxel-resistant human breast cancer cell line, MCF-7/PTX, which disclosed a unique mechanism of action. Recently, glucosylceramide (GlcCer) synthesis emerged as a promising target for next-generation antifungal agents, especially against cryptococcosis, candidiasis and pulmonary aspergillosis. The HTP screening of compound libraries identified several acylhydrazones as hit compounds. In the case study (ii), fluoro-acylhydrazones containing F, OCF3, OCHF2, o-F/p-OCF3, as well as o-F/p-CF3 functional groups in the ring A and ring B were designed based on these hit compounds, synthesized and examined for their potencies against C. neoformans. A number of those novel fluoro-acylhydrazones exhibited high potency and excellent killing properties. The hemopexin-like domain of matrix metalloproteinases (MMPs) is a highly promising target to circumvent the critical issue in the development of MMP inhibitors for the treatment of various cancers. In the case study (iii), a small optimization library of compounds, based on the OCHF2-containing hit compound, SB-M-001, was generated and evaluated, which identified a fluorine-containing new lead compound, SB-M-103. SB-M-103 was found to inhibit tumor cell growth, migration, and invasion by effectively disrupting the MMP-9 homodimerization.
Collapse
Affiliation(s)
- Krupanandan Haranahalli
- Institute of Chemical Biology & Drug Discovery, Stony Brook University–State University of New York, Stony Brook, NY, 11794-3400, U.S. A
| | - Tadashi Honda
- Department of Chemistry, Stony Brook University–State University of New York, Stony Brook, NY, 11794-3400, U. S. A
- Institute of Chemical Biology & Drug Discovery, Stony Brook University–State University of New York, Stony Brook, NY, 11794-3400, U.S. A
| | - Iwao Ojima
- Department of Chemistry, Stony Brook University–State University of New York, Stony Brook, NY, 11794-3400, U. S. A
- Institute of Chemical Biology & Drug Discovery, Stony Brook University–State University of New York, Stony Brook, NY, 11794-3400, U.S. A
| |
Collapse
|
23
|
Surm JM, Toledo TM, Prentis PJ, Pavasovic A. Insights into the phylogenetic and molecular evolutionary histories of Fad and Elovl gene families in Actiniaria. Ecol Evol 2018; 8:5323-5335. [PMID: 29938056 PMCID: PMC6010785 DOI: 10.1002/ece3.4044] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 02/15/2018] [Accepted: 03/02/2018] [Indexed: 12/13/2022] Open
Abstract
The biosynthesis of long-chain polyunsaturated fatty acids (LC-PUFAs, ≥ C20) is reliant on the action of desaturase and elongase enzymes, which are encoded by the fatty acyl desaturase (Fad) and elongation of very long-chain fatty acid (Elovl) gene families, respectively. In Metazoa, research investigating the distribution and evolution of these gene families has been restricted largely to Bilateria. Here, we provide insights into the phylogenetic and molecular evolutionary histories of the Fad and Elovl gene families in Cnidaria, the sister phylum to Bilateria. Four model cnidarian genomes and six actiniarian transcriptomes were interrogated. Analysis of the fatty acid composition of a candidate cnidarian species, Actinia tenebrosa, was performed to determine the baseline profile of this species. Phylogenetic analysis revealed lineage-specific gene duplication in actiniarians for both the Fad and Elovl gene families. Two distinct cnidarian Fad clades clustered with functionally characterized Δ5 and Δ6 proteins from fungal and plant species, respectively. Alternatively, only a single cnidarian Elovl clade clustered with functionally characterized Elovl proteins (Elovl4), while two additional clades were identified, one actiniarian-specific (Novel ElovlA) and the another cnidarian-specific (Novel ElovlB). In actiniarians, selection analyses revealed pervasive purifying selection acting on both gene families. However, codons in the Elovl gene family show patterns of nucleotide variation consistent with the action of episodic diversifying selection following gene duplication events. Significantly, these codons may encode amino acid residues that are functionally important for Elovl proteins to target and elongate different precursor fatty acids. In A. tenebrosa, the fatty acid analysis revealed an absence of LC-PUFAs > C20 molecules and implies that the Elovl enzymes are not actively contributing to the elongation of these LC-PUFAs. Overall, this study has revealed that actiniarians possess Fad and Elovl genes required for the biosynthesis of some LC-PUFAs, and that these genes appear to be distinct from bilaterians.
Collapse
Affiliation(s)
- Joachim M. Surm
- School of Biomedical SciencesFaculty of HealthQueensland University of TechnologyBrisbaneAustralia
- Institute of Health and Biomedical InnovationQueensland University of TechnologyKelvin GroveAustralia
| | - Tarik M. Toledo
- School of Biomedical SciencesFaculty of HealthQueensland University of TechnologyBrisbaneAustralia
- Institute of Health and Biomedical InnovationQueensland University of TechnologyKelvin GroveAustralia
| | - Peter J. Prentis
- School of Earth, Environmental and Biological SciencesScience and Engineering FacultyQueensland University of TechnologyBrisbaneAustralia
- Institute for Future EnvironmentsQueensland University of TechnologyBrisbaneAustralia
| | - Ana Pavasovic
- School of Biomedical SciencesFaculty of HealthQueensland University of TechnologyBrisbaneAustralia
| |
Collapse
|
24
|
Fernandes CM, de Castro PA, Singh A, Fonseca FL, Pereira MD, Vila TVM, Atella GC, Rozental S, Savoldi M, Del Poeta M, Goldman GH, Kurtenbach E. Functional characterization of the Aspergillus nidulans glucosylceramide pathway reveals that LCB Δ8-desaturation and C9-methylation are relevant to filamentous growth, lipid raft localization and Psd1 defensin activity. Mol Microbiol 2016; 102:488-505. [PMID: 27479571 DOI: 10.1111/mmi.13474] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2016] [Indexed: 12/22/2022]
Abstract
C8-desaturated and C9-methylated glucosylceramide (GlcCer) is a fungal-specific sphingolipid that plays an important role in the growth and virulence of many species. In this work, we investigated the contribution of Aspergillus nidulans sphingolipid Δ8-desaturase (SdeA), sphingolipid C9-methyltransferases (SmtA/SmtB) and glucosylceramide synthase (GcsA) to fungal phenotypes, sensitivity to Psd1 defensin and Galleria mellonella virulence. We showed that ΔsdeA accumulated C8-saturated and unmethylated GlcCer, while gcsA deletion impaired GlcCer synthesis. Although increased levels of unmethylated GlcCer were observed in smtA and smtB mutants, ΔsmtA and wild-type cells showed a similar 9,Me-GlcCer content, reduced by 50% in the smtB disruptant. The compromised 9,Me-GlcCer production in the ΔsmtB strain was not accompanied by reduced filamentation or defects in cell polarity. When combined with the smtA deletion, smtB repression significantly increased unmethylated GlcCer levels and compromised filamentous growth. Furthermore, sdeA and gcsA mutants displayed growth defects and raft mislocalization, which were accompanied by reduced neutral lipids levels and attenuated G. mellonella virulence in the ΔgcsA strain. Finally, ΔsdeA and ΔgcsA showed increased resistance to Psd1, suggesting that GlcCer synthesis and fungal sphingoid base structure specificities are relevant not only to differentiation but also to proper recognition by this antifungal defensin.
Collapse
Affiliation(s)
- C M Fernandes
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - P A de Castro
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - A Singh
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, USA
| | - F L Fonseca
- Centro de Desenvolvimento Tecnológico em Saúde, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - M D Pereira
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - T V M Vila
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - G C Atella
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - S Rozental
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - M Savoldi
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - M Del Poeta
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, USA
| | - G H Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - E Kurtenbach
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
25
|
Abstract
Invasive fungal infections have significantly increased in the last few decades. Three classes of drugs are commonly used to treat these infections: polyenes, azoles and echinocandins. Unfortunately each of these drugs has drawbacks; polyenes are toxic, resistance against azoles is emerging and echinocandins have narrow spectrum of activity. Thus, the development of new antifungals is urgently needed. In this context, fungal sphingolipids have emerged as a potential target for new antifungals, because their biosynthesis in fungi is structurally different than in mammals. Besides, some fungal sphingolipids play an important role in the regulation of virulence in a variety of fungi. This review aims to highlight the diverse strategies that could be used to block the synthesis or/and function of fungal sphingolipids.
Collapse
|
26
|
Rella A, Farnoud AM, Del Poeta M. Plasma membrane lipids and their role in fungal virulence. Prog Lipid Res 2015; 61:63-72. [PMID: 26703191 DOI: 10.1016/j.plipres.2015.11.003] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 10/26/2015] [Accepted: 11/04/2015] [Indexed: 12/24/2022]
Abstract
There has been considerable evidence in recent years suggesting that plasma membrane lipids are important regulators of fungal pathogenicity. Various glycolipids have been shown to impart virulent properties in several fungal species, while others have been shown to play a role in host defense. In addition to their role as virulence factors, lipids also contribute to other virulence mechanisms such as drug resistance, biofilm formation, and release of extracellular vesicles. In addition, lipids also affect the mechanical properties of the plasma membrane through the formation of packed microdomains composed mainly of sphingolipids and sterols. Changes in the composition of lipid microdomains have been shown to disrupt the localization of virulence factors and affect fungal pathogenicity. This review gathers evidence on the various roles of plasma membrane lipids in fungal virulence and how lipids might contribute to the different processes that occur during infection and treatment. Insight into the role of lipids in fungal virulence can lead to an improved understanding of the process of fungal pathogenesis and the development of new lipid-mediated therapeutic strategies.
Collapse
Affiliation(s)
- Antonella Rella
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - Amir M Farnoud
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, Ohio 45701, USA
| | - Maurizio Del Poeta
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| |
Collapse
|
27
|
Singh A, Rella A, Schwacke J, Vacchi-Suzzi C, Luberto C, Del Poeta M. Transmembrane transporter expression regulated by the glucosylceramide pathway in Cryptococcus neoformans. BMC Res Notes 2015; 8:681. [PMID: 26572681 PMCID: PMC4647647 DOI: 10.1186/s13104-015-1613-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 10/20/2015] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The sphingolipid glucosylceramide (GlcCer) and factors involved in the fungal GlcCer pathways were shown earlier to be an integral part of fungal virulence, especially in fungal replication at 37 °C, in neutral/alkaline pH and 5 % CO2 environments (e.g. alveolar spaces). Two mutants, ∆gcs 1 lacking glucosylceramide synthase 1 gene (GCS1) which catalyzes the formation of sphingolipid GlcCer from the C9-methyl ceramide and ∆smt1 lacking sphingolipid C9 methyltransferase gene (SMT1), which adds a methyl group to position nine of the sphingosine backbone of ceramide, of this pathway were attenuated in virulence and have a growth defect at the above-mentioned conditions. These mutants with either no or structurally modified GlcCer located on the cell-membrane have reduced membrane rigidity, which may have altered not only the physical location of membrane proteins but also their expression, as the pathogen's mode of adaptation to changing need. Importantly, pathogens are known to adapt themselves to the changing host environments by altering their patterns of gene expression. RESULTS By transcriptional analysis of gene expression, we identified six genes whose expression was changed from their wild-type counterpart grown in the same conditions, i.e. they became either down regulated or up regulated in these two mutants. The microarray data was validated by real-time PCR, which confirmed their fold change in gene expression. All the six genes we identified, viz siderochrome-iron transporter (CNAG_02083), monosaccharide transporter (CNAG_05340), glucose transporter (CNAG_03772), membrane protein (CNAG_03912), membrane transport protein (CNAG_00539), and sugar transporter (CNAG_06963), are membrane-localized and have significantly altered gene expression levels. Therefore, we hypothesize that these genes function either independently or in tandem with a structurally modified cell wall/plasma membrane resulting from the modifications of the GlcCer pathway and thus possibly disrupt transmembrane signaling complex, which in turn contributes to cryptococcal osmotic, pH, ion homeostasis and its pathobiology. CONCLUSION Six genes identified from gene expression microarrays by gene set enrichment analysis and validated by RT-PCR, are membrane located and associated with the growth defect at neutral-alkaline pH due to the absence and or presence of a structurally modified GlcCer. They may be involved in the transmembrane signaling network in Cryptococcus neoformans, and therefore the pathobiology of the fungus in these conditions.
Collapse
Affiliation(s)
- Arpita Singh
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, 29425, USA. .,Department of Medicine, Division of Infectious Diseases and International Health, University of Virginia, 345 Crispell Dr, Carter Harrison Building, Charlottesville, VA, 22908, USA.
| | - Antonella Rella
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, 29425, USA. .,Department of Molecular Genetics and Microbiology, Stony Brook University, 150 Life Science Building, Stony Brook, NY, 11794, USA.
| | - John Schwacke
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, 29425, USA. .,Integrated Systems and Solutions Division, Scientific Research Corporation, Remount Road, North Charleston, SC, 29406, USA.
| | - Caterina Vacchi-Suzzi
- Department of Preventive Medicine, University of Stony Brook, Stony Brook, NY, 11794, USA.
| | - Chiara Luberto
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, 29425, USA. .,Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY, 11794, USA.
| | - Maurizio Del Poeta
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, 29425, USA. .,Department of Molecular Genetics and Microbiology, Stony Brook University, 150 Life Science Building, Stony Brook, NY, 11794, USA. .,Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, 29425, USA. .,Department of Craniofacial Biology, Medical University of South Carolina, Charleston, SC, 29425, USA. .,Division of Infectious Diseases, Medical University of South Carolina, Charleston, SC, 29425, USA.
| |
Collapse
|
28
|
Derbyshire MC, Michaelson L, Parker J, Kelly S, Thacker U, Powers SJ, Bailey A, Hammond-Kosack K, Courbot M, Rudd J. Analysis of cytochrome b(5) reductase-mediated metabolism in the phytopathogenic fungus Zymoseptoria tritici reveals novel functionalities implicated in virulence. Fungal Genet Biol 2015; 82:69-84. [PMID: 26074495 PMCID: PMC4557397 DOI: 10.1016/j.fgb.2015.05.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 05/19/2015] [Accepted: 05/20/2015] [Indexed: 12/15/2022]
Abstract
Septoria tritici blotch (STB) caused by the Ascomycete fungus Zymoseptoria tritici is one of the most economically damaging diseases of wheat worldwide. Z. tritici is currently a major target for agricultural fungicides, especially in temperate regions where it is most prevalent. Many fungicides target electron transfer enzymes because these are often important for cell function. Therefore characterisation of genes encoding such enzymes may be important for the development of novel disease intervention strategies. Microsomal cytochrome b5 reductases (CBRs) are an important family of electron transfer proteins which in eukaryotes are involved in the biosynthesis of fatty acids and complex lipids including sphingolipids and sterols. Unlike the model yeast Saccharomyces cerevisiae which possesses only one microsomal CBR, the fully sequenced genome of Z. tritici bears three possible microsomal CBRs. RNA sequencing analysis revealed that ZtCBR1 is the most highly expressed of these genes under all in vitro and in planta conditions tested, therefore ΔZtCBR1 mutant strains were generated through targeted gene disruption. These strains exhibited delayed disease symptoms on wheat leaves and severely limited asexual sporulation. ΔZtCBR1 strains also exhibited aberrant spore morphology and hyphal growth in vitro. These defects coincided with alterations in fatty acid, sphingolipid and sterol biosynthesis observed through GC-MS and HPLC analyses. Data is presented which suggests that Z. tritici may use ZtCBR1 as an additional electron donor for key steps in ergosterol biosynthesis, one of which is targeted by azole fungicides. Our study reports the first functional characterisation of CBR gene family members in a plant pathogenic filamentous fungus. This also represents the first direct observation of CBR functional ablation impacting upon fungal sterol biosynthesis.
Collapse
Affiliation(s)
- Mark C Derbyshire
- Department of Plant Biology and Crop Science, Rothamsted Research, West Common, Harpenden, Hertfordshire AL5 2JQ, UK.
| | - Louise Michaelson
- Department of Biological Chemistry and Crop Protection, Rothamsted Research, West Common, Harpenden, Hertfordshire AL5 2JQ, UK
| | - Josie Parker
- Centre for Cytochrome P450 Diversity, Institute of Life Science, College of Medicine, Swansea University Singleton Park, Swansea SA2 8PP, Wales, UK
| | - Steven Kelly
- Centre for Cytochrome P450 Diversity, Institute of Life Science, College of Medicine, Swansea University Singleton Park, Swansea SA2 8PP, Wales, UK
| | | | - Stephen J Powers
- Department of Computational and Systems Biology, Rothamsted Research, West Common, Harpenden, Hertfordshire AL5 2JQ, UK
| | - Andy Bailey
- Bristol University, Senate House, Tyndall Avenue, Bristol BS8 1TH, UK
| | - Kim Hammond-Kosack
- Department of Plant Biology and Crop Science, Rothamsted Research, West Common, Harpenden, Hertfordshire AL5 2JQ, UK
| | - Mikael Courbot
- Syngenta, Syngenta AG, Schaffhauserstrasse, CH-4332 Stein, Switzerland
| | - Jason Rudd
- Department of Plant Biology and Crop Science, Rothamsted Research, West Common, Harpenden, Hertfordshire AL5 2JQ, UK.
| |
Collapse
|
29
|
Watanabe T, Ishibashi Y, Ito M. Physiological Significance of Glycolipid Catabolism in Cryptococcus neoformans. TRENDS GLYCOSCI GLYC 2015. [DOI: 10.4052/tigg.1504.1e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Takashi Watanabe
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University
| | - Yohei Ishibashi
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University
| | - Makoto Ito
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University
| |
Collapse
|
30
|
Watanabe T, Ishibashi Y, Ito M. Physiological Significance of Glycolipid Catabolism in Cryptococcus neoformans (Jpn. Ed.). TRENDS GLYCOSCI GLYC 2015. [DOI: 10.4052/tigg.1504.1j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Takashi Watanabe
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University
| | - Yohei Ishibashi
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University
| | - Makoto Ito
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University
| |
Collapse
|
31
|
Glucosylceramides are required for mycelial growth and full virulence in Penicillium digitatum. Biochem Biophys Res Commun 2014; 455:165-71. [PMID: 25449268 DOI: 10.1016/j.bbrc.2014.10.142] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Accepted: 10/28/2014] [Indexed: 01/05/2023]
Abstract
Glucosylceramides (GlcCers) are important lipid components of the membrane systems of eukaryotes. Recent studies have suggested the roles for GlcCers in regulating fungal growth and pathogenesis. In this study, we report the identification and functional characterization of PdGcs1, a gene encoding GlcCer synthase (GCS) essential for the biosynthesis of GlcCers, in Penicilliumdigitatum genome. We demonstrated that the deletion of PdGcs1 in P. digitatum resulted in the complete loss of production of GlcCer (d18:1/18:0 h) and GlcCer (d18:2/18:0 h), a decrease in vegetation growth and sporulation, and a delay in spore germination. The virulence of the PdGcs1 deletion mutant on citrus fruits was also impaired, as evidenced by the delayed occurrence of water soaking lesion and the formation of smaller size of lesion. These results suggest that PdGcs1 is a bona fide GCS that plays an important role in regulating cell growth, differentiation, and virulence of P. digitatum by controlling the biosynthesis of GlcCers.
Collapse
|
32
|
Watanabe T, Ito T, Goda HM, Ishibashi Y, Miyamoto T, Ikeda K, Taguchi R, Okino N, Ito M. Sterylglucoside catabolism in Cryptococcus neoformans with endoglycoceramidase-related protein 2 (EGCrP2), the first steryl-β-glucosidase identified in fungi. J Biol Chem 2014; 290:1005-19. [PMID: 25361768 DOI: 10.1074/jbc.m114.616300] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cryptococcosis is an infectious disease caused by pathogenic fungi, such as Cryptococcus neoformans and Cryptococcus gattii. The ceramide structure (methyl-d18:2/h18:0) of C. neoformans glucosylceramide (GlcCer) is characteristic and strongly related to its pathogenicity. We recently identified endoglycoceramidase-related protein 1 (EGCrP1) as a glucocerebrosidase in C. neoformans and showed that it was involved in the quality control of GlcCer by eliminating immature GlcCer during the synthesis of GlcCer (Ishibashi, Y., Ikeda, K., Sakaguchi, K., Okino, N., Taguchi, R., and Ito, M. (2012) Quality control of fungus-specific glucosylceramide in Cryptococcus neoformans by endoglycoceramidase-related protein 1 (EGCrP1). J. Biol. Chem. 287, 368-381). We herein identified and characterized EGCrP2, a homologue of EGCrP1, as the enzyme responsible for sterylglucoside catabolism in C. neoformans. In contrast to EGCrP1, which is specific to GlcCer, EGCrP2 hydrolyzed various β-glucosides, including GlcCer, cholesteryl-β-glucoside, ergosteryl-β-glucoside, sitosteryl-β-glucoside, and para-nitrophenyl-β-glucoside, but not α-glucosides or β-galactosides, under acidic conditions. Disruption of the EGCrP2 gene (egcrp2) resulted in the accumulation of a glycolipid, the structure of which was determined following purification to ergosteryl-3β-glucoside, a major sterylglucoside in fungi, by mass spectrometric and two-dimensional nuclear magnetic resonance analyses. This glycolipid accumulated in vacuoles and EGCrP2 was detected in vacuole-enriched fraction. These results indicated that EGCrP2 was involved in the catabolism of ergosteryl-β-glucoside in the vacuoles of C. neoformans. Distinct growth arrest, a dysfunction in cell budding, and an abnormal vacuole morphology were detected in the egcrp2-disrupted mutants, suggesting that EGCrP2 may be a promising target for anti-cryptococcal drugs. EGCrP2, classified into glycohydrolase family 5, is the first steryl-β-glucosidase identified as well as a missing link in sterylglucoside metabolism in fungi.
Collapse
Affiliation(s)
- Takashi Watanabe
- From the Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Tomoharu Ito
- From the Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Hatsumi M Goda
- From the Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Yohei Ishibashi
- From the Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Tomofumi Miyamoto
- the Graduate School of Pharmaceutical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kazutaka Ikeda
- the Institute for Advanced Biosciences, Keio University, 246-2 Mizukami, Kakuganji, Tsuruoka, Yamagata 997-0052, Japan, and
| | - Ryo Taguchi
- the Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, 1200 Matsumoto-cho, Kasugai-shi, Aichi 487-8501, Japan
| | - Nozomu Okino
- From the Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Makoto Ito
- From the Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan,
| |
Collapse
|
33
|
Oguro Y, Yamazaki H, Takagi M, Takaku H. Antifungal activity of plant defensin AFP1 in Brassica juncea involves the recognition of the methyl residue in glucosylceramide of target pathogen Candida albicans. Curr Genet 2013; 60:89-97. [PMID: 24253293 DOI: 10.1007/s00294-013-0416-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 10/30/2013] [Accepted: 11/06/2013] [Indexed: 01/03/2023]
Abstract
An antifungal defensin, AFP1, of Brassica juncea inhibits the growth of various microorganisms. The molecular details of this inhibition remain largely unknown. Herein, we reveal that a specific structure of fungal sphingolipid glucosylceramide (GlcCer) is critical for the sensitivity of Candida albicans cells to AFP1. Our results revealed that AFP1 induces plasma membrane permeabilization and the production of reactive oxygen species (ROS) in wild-type C. albicans cells, but not in cells lacking the ninth methyl residue of the GlcCer sphingoid base moiety, which is a characteristic feature of fungi. AFP1-induced ROS production is responsible for its antifungal activity, with a consequent loss of yeast cell viability. These findings suggest that AFP1 specifically recognizes the structural difference of GlcCer for targeting of the fungal pathogens.
Collapse
Affiliation(s)
- Yoshifumi Oguro
- Department of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, 265-1 Higashijima, Akiha-ku, Niigata, 956-8603, Japan
| | | | | | | |
Collapse
|
34
|
Ishibashi Y, Kohyama-Koganeya A, Hirabayashi Y. New insights on glucosylated lipids: metabolism and functions. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1831:1475-85. [PMID: 23770033 DOI: 10.1016/j.bbalip.2013.06.001] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 06/01/2013] [Accepted: 06/04/2013] [Indexed: 01/05/2023]
Abstract
Ceramide, cholesterol, and phosphatidic acid are major basic structures for cell membrane lipids. These lipids are modified with glucose to generate glucosylceramide (GlcCer), cholesterylglucoside (ChlGlc), and phosphatidylglucoside (PtdGlc), respectively. Glucosylation dramatically changes the functional properties of lipids. For instance, ceramide acts as a strong tumor suppressor that causes apoptosis and cell cycle arrest, while GlcCer has an opposite effect, downregulating ceramide activities. All glucosylated lipids are enriched in lipid rafts or microdomains and play fundamental roles in a variety of cellular processes. In this review, we discuss the biological functions and metabolism of these three glucosylated lipids.
Collapse
Affiliation(s)
- Yohei Ishibashi
- Laboratory for Molecular Membrane Neuroscience, RIKEN Brain Science Institute, Wako, Saitama, Japan
| | | | | |
Collapse
|
35
|
Michaelson LV, Markham JE, Zäeuner S, Matsumoto M, Chen M, Cahoon EB, Napier JA. Identification of a cytochrome b5-fusion desaturase responsible for the synthesis of triunsaturated sphingolipid long chain bases in the marine diatom Thalassiosira pseudonana. PHYTOCHEMISTRY 2013; 90:50-5. [PMID: 23510654 DOI: 10.1016/j.phytochem.2013.02.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 02/18/2013] [Accepted: 02/20/2013] [Indexed: 05/10/2023]
Abstract
Triunsaturated sphingolipid long chain bases (LCBs) have previously been reported in some specialised tissues of marine invertebrates. We report the presence of similar LCBs in the marine diatom Thalassiosira pseudonana and identify the cytochrome b5-fusion desaturase responsible for the introduction of the third double bond at the Δ10 position in d18:3Δ4,8,10. This study extends the catalytic repertoire of the cytochrome b5 fusion desaturase family, also indicating the presence of orthologues in other marine invertebrates. The function of these polyunsaturated sphingolipid LCBs is currently unknown but it was previously suggested that they play an essential role in primitive animals. The identification of the desaturase responsible for their synthesis paves the way for further studies.
Collapse
Affiliation(s)
- Louise V Michaelson
- Department of Biological Chemistry, Rothamsted Research, Harpenden, Herts AL5 2JQ, UK
| | | | | | | | | | | | | |
Collapse
|
36
|
Vallejo MC, Nakayasu ES, Longo LVG, Ganiko L, Lopes FG, Matsuo AL, Almeida IC, Puccia R. Lipidomic analysis of extracellular vesicles from the pathogenic phase of Paracoccidioides brasiliensis. PLoS One 2012; 7:e39463. [PMID: 22745761 PMCID: PMC3382159 DOI: 10.1371/journal.pone.0039463] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 05/21/2012] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Fungal extracellular vesicles are able to cross the cell wall and transport molecules that help in nutrient acquisition, cell defense, and modulation of the host defense machinery. METHODOLOGY/PRINCIPAL FINDINGS Here we present a detailed lipidomic analysis of extracellular vesicles released by Paracoccidioides brasiliensis at the yeast pathogenic phase. We compared data of two representative isolates, Pb3 and Pb18, which have distinct virulence profiles and phylogenetic background. Vesicle lipids were fractionated into different classes and analyzed by either electrospray ionization- or gas chromatography-mass spectrometry. We found two species of monohexosylceramide and 33 phospholipid species, including phosphatidylcholine, phosphatidylethanolamine, phosphatidic acid, phosphatidylserine, phosphatidylinositol, and phosphatidylglycerol. Among the phospholipid-bound fatty acids in extracellular vesicles, C181 predominated in Pb3, whereas C18:2 prevailed in Pb18. The prevalent sterol in Pb3 and Pb18 vesicles was brassicasterol, followed by ergosterol and lanosterol. Inter-isolate differences in sterol composition were observed, and also between extracellular vesicles and whole cells. CONCLUSIONS/SIGNIFICANCE The extensive lipidomic analysis of extracellular vesicles from two P. brasiliensis isolates will help to understand the composition of these fungal components/organelles and will hopefully be useful to study their biogenesis and role in host-pathogen interactions.
Collapse
Affiliation(s)
- Milene C. Vallejo
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, UNIFESP, São Paulo, São Paulo, Brazil
| | - Ernesto S. Nakayasu
- Border Biomedical Research Center, Department of Biological Sciences, University of Texas at El Paso (UTEP), El Paso, Texas, United States of America
| | - Larissa V. G. Longo
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, UNIFESP, São Paulo, São Paulo, Brazil
| | - Luciane Ganiko
- Border Biomedical Research Center, Department of Biological Sciences, University of Texas at El Paso (UTEP), El Paso, Texas, United States of America
| | - Felipe G. Lopes
- Border Biomedical Research Center, Department of Biological Sciences, University of Texas at El Paso (UTEP), El Paso, Texas, United States of America
| | - Alisson L. Matsuo
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, UNIFESP, São Paulo, São Paulo, Brazil
| | - Igor C. Almeida
- Border Biomedical Research Center, Department of Biological Sciences, University of Texas at El Paso (UTEP), El Paso, Texas, United States of America
| | - Rosana Puccia
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, UNIFESP, São Paulo, São Paulo, Brazil
| |
Collapse
|
37
|
Qureshi A, Wray D, Rhome R, Barry W, Del Poeta M. Detection of antibody against fungal glucosylceramide in immunocompromised patients: a potential new diagnostic approach for cryptococcosis. Mycopathologia 2012; 173:419-25. [PMID: 21971701 PMCID: PMC5125071 DOI: 10.1007/s11046-011-9485-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 09/16/2011] [Indexed: 10/17/2022]
Abstract
We have developed an ELISA to determine the value of anti-glucosylceramide antibody for the prediction of disseminated cryptococcosis in immunocompromised subjects and performed a clinical prospective study at the Medical University of South Carolina. The study enrolled a total of 53 patients who were free of active fungal diseases at the time of enrollment but at risk of developing one because they were all immunocompromised, e.g., (1) patients positive for HIV and (2) patients post- or awaiting solid organ transplantation. Among 53 patients enrolled, two patients developed invasive cryptococcosis, and in both patients, IgM anti-GlcCer was detected in sera using the ELISA at least 6 weeks prior to the clinical presentation of the brain disease. These results were corroborated by a cryptococcal antigen lateral flow assay, which was also positive in serum prior to the development of meningoencephalitis. However, a high number of positive results were also detected in patients with no evidence of cryptococcosis. This study highlights the potential utility of this new assay in early diagnostic testing algorithms for patients at risk for cryptococcosis, but further investigations are needed to validate the sensitivity and specificity of the glucosylceramide ELISA as a predictor of cryptococcosis.
Collapse
Affiliation(s)
- Asfia Qureshi
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 173 Ashley Ave, BSB 512A, Charleston, SC 29425, USA
| | - Dannah Wray
- Division of Infectious Diseases, Medical University of South Carolina, Charleston, SC, USA
| | - Ryan Rhome
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 173 Ashley Ave, BSB 512A, Charleston, SC 29425, USA
| | - William Barry
- Division of Infectious Diseases, Medical University of South Carolina, Charleston, SC, USA
| | - Maurizio Del Poeta
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 173 Ashley Ave, BSB 512A, Charleston, SC 29425, USA
- Division of Infectious Diseases, Medical University of South Carolina, Charleston, SC, USA
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
- Department of Craniofacial Biology, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
38
|
Börgel D, van den Berg M, Hüller T, Andrea H, Liebisch G, Boles E, Schorsch C, van der Pol R, Arink A, Boogers I, van der Hoeven R, Korevaar K, Farwick M, Köhler T, Schaffer S. Metabolic engineering of the non-conventional yeast Pichia ciferrii for production of rare sphingoid bases. Metab Eng 2012; 14:412-26. [PMID: 22449569 DOI: 10.1016/j.ymben.2012.03.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2011] [Revised: 02/19/2012] [Accepted: 03/09/2012] [Indexed: 12/13/2022]
Abstract
The study describes the identification of sphingolipid biosynthesis genes in the non-conventional yeast Pichia ciferrii, the development of tools for its genetic modification as well as their application for metabolic engineering of P. ciferrii with the goal to generate strains capable of producing the rare sphingoid bases sphinganine and sphingosine. Several canonical genes encoding ceramide synthase (encoded by PcLAG1 and PcLAF1), alkaline ceramidase (PcYXC1) and sphingolipid C-4-hydroxylase(PcSYR2), as well as structural genes for dihydroceramide Δ(4)-desaturase (PcDES1) and sphingolipid Δ(8)-desaturase (PcSLD1) were identified, indicating that P. ciferrii would be capable of synthesizing desaturated sphingoid bases, a property not ubiquitously found in yeasts. In order to convert the phytosphingosine-producing P. ciferrii wildtype into a strain capable of producing predominantly sphinganine, Syringomycin E-resistant mutants were isolated. A stable mutant almost exclusively producing high levels of acetylated sphinganine was obtained and used as the base strain for further metabolic engineering. A metabolic pathway required for the three-step conversion of sphinganine to sphingosine was implemented in the sphinganine producing P. ciferrii strain and subsequently enhanced by screening for the appropriate heterologous enzymes, improvement of gene expression and codon optimization. These combined efforts led to a strain capable of producing 240mgL(-1) triacetyl sphingosine in shake flask, with tri- and diacetyl sphinganine being the main by-products. Lab-scale fermentation of this strain resulted in production of up to 890mgkg(-1) triacetyl sphingosine. A third by-product was unequivocally identified as triacetyl sphingadienine. It could be shown that inactivation of the SLD1 gene in P. ciferrii efficiently suppresses triacetyl sphingadienine formation. Further improvement of the described P. ciferrii strains will enable a biotechnological route to produce sphinganine and sphingosine for cosmetic and pharmaceutical applications.
Collapse
Affiliation(s)
- Daniel Börgel
- Evonik Degussa, Project House ProFerm, Creavis Technologies & Innovation, Rodenbacher Chaussee 4, D-63457 Hanau, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Lee H, Khanal Lamichhane A, Garraffo HM, Kwon-Chung KJ, Chang YC. Involvement of PDK1, PKC and TOR signalling pathways in basal fluconazole tolerance in Cryptococcus neoformans. Mol Microbiol 2012; 84:130-46. [PMID: 22339665 DOI: 10.1111/j.1365-2958.2012.08016.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This study shows the importance of PDK1, TOR and PKC signalling pathways to the basal tolerance of Cryptococcus neoformans towards fluconazole, the widely used drug for treatment of cryptococcosis. Mutations in genes integral to these pathway resulted in hypersensitivity to the drug. Upon fluconazole treatment, Mpk1, the downstream target of PKC was phosphorylated and its phosphorylation required Pdk1. We show genetically that the PDK1 and TOR phosphorylation sites in Ypk1 as well as the kinase activity of Ypk1 are required for the fluconazole basal tolerance. The involvement of these pathways in fluconazole basal tolerance was associated with sphingolipid homeostasis. Deletion of PDK1, SIN1 or YPK1 but not MPK1 affected cell viability in the presence of sphingolipid biosynthesis inhibitors. Concurrently, pdk1Δ, sin1Δ, ypk1Δ and mpk1Δ exhibited altered sphingolipid content and elevated fluconazole accumulation compared with the wild type. The fluconazole hypersensitivity phenotype of these mutants, therefore, appears to be the result of malfunction of the influx/efflux systems due to modifications of membrane sphingolipid content. Interestingly, the reduced virulence of these strains in mice suggests that the cryptococcal PDK1, PKC, and likely the TOR pathways play an important role in managing stress exerted either by fluconazole or by the host environment.
Collapse
Affiliation(s)
- Hyeseung Lee
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases Laboratory of Bioorganic Chemistry, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | |
Collapse
|
40
|
Chen M, Markham JE, Cahoon EB. Sphingolipid Δ8 unsaturation is important for glucosylceramide biosynthesis and low-temperature performance in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 69:769-81. [PMID: 22023480 DOI: 10.1111/j.1365-313x.2011.04829.x] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Plants contain a large diversity of sphingolipid structures, arising in part from C4 hydroxylation and Δ4 and Δ8 desaturation of the component long-chain bases (LCBs). Typically, 85-90% of sphingolipid LCBs in Arabidopsis leaves contain a cis or transΔ8 double bond produced by sphingoid LCB Δ8 desaturase (SLD). To understand the metabolic and physiological significance of Δ8 unsaturation, studies were performed using mutants of the Arabidopsis SLD genes AtSLD1 and AtSLD2. Our studies revealed that both genes are constitutively expressed, the corresponding polypeptides are ER-localized, and expression of these genes in Saccharomyces cerevisiae yields mixtures of cis/transΔ8 desaturation products, predominantly as trans isomers. Consistent in part with the higher expression of AtSLD1 in Arabidopsis plants, AtSLD1 T-DNA mutants showed large reductions in Δ8 unsaturated LCBs in all organs examined, whereas AtSLD2 mutants showed little change in LCB unsaturation. Double mutants of AtSLD1 and AtSLD2 showed no detectable LCB Δ8 unsaturation. Comprehensive analysis of sphingolipids in rosettes of these mutants revealed a 50% reduction in glucosylceramide levels and a corresponding increase in glycosylinositolphosphoceramides that were restored by complementation with a wild-type copy of AtSLD1. Double sld1 sld2 mutants lacked apparent growth phenotypes under optimal conditions, but displayed altered responses to certain stresses, including prolonged exposure to low temperatures. These results are consistent with a role for LCB Δ8 unsaturation in selective channeling of ceramides for the synthesis of complex sphingolipids and the physiological performance of Arabidopsis.
Collapse
Affiliation(s)
- Ming Chen
- Center for Plant Science Innovation, University of Nebraska-Lincoln, 1901 Vine Street, Lincoln, NE 68588, USA
| | | | | |
Collapse
|
41
|
Cheon SA, Bal J, Song Y, Hwang HM, Kim AR, Kang WK, Kang HA, Hannibal-Bach HK, Knudsen J, Ejsing CS, Kim JY. Distinct roles of two ceramide synthases, CaLag1p and CaLac1p, in the morphogenesis of Candida albicans. Mol Microbiol 2012; 83:728-45. [PMID: 22211636 DOI: 10.1111/j.1365-2958.2011.07961.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Lag1p and Lac1p catalyse ceramide synthesis in Saccharomyces cerevisiae. This study shows that Lag1 family proteins are generally required for polarized growth in hemiascomycetous yeast. However, in contrast to S. cerevisiae where these proteins are functionally redundant, C. albicans Lag1p (CaLag1p) and Lac1p (CaLac1p) are functionally distinct. Lack of CaLag1p, but not CaLac1p, caused severe defects in the growth and hyphal morphogenesis of C. albicans. Deletion of CaLAG1 decreased expression of the hypha-specific HWP1 and ECE1 genes. Moreover, overexpression of CaLAG1 induced pseudohyphal growth in this organism under non-hypha-inducing conditions, suggesting that CaLag1p is necessary for relaying signals to induce hypha-specific gene expression. Analysis of ceramide and sphingolipid composition revealed that CaLag1p predominantly synthesizes ceramides with C24:0/C26:0 fatty acid moieties, which are involved in generating inositol-containing sphingolipids, whereas CaLac1p produces ceramides with C18:0 fatty acid moieties, which are precursors for glucosylsphingolipids. Thus, our study demonstrates that CaLag1p and CaLac1p have distinct substrate specificities and physiological roles in C. albicans.
Collapse
Affiliation(s)
- Seon Ah Cheon
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 305-764, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Ishibashi Y, Ikeda K, Sakaguchi K, Okino N, Taguchi R, Ito M. Quality control of fungus-specific glucosylceramide in Cryptococcus neoformans by endoglycoceramidase-related protein 1 (EGCrP1). J Biol Chem 2011; 287:368-381. [PMID: 22072709 DOI: 10.1074/jbc.m111.311340] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
A fungus-specific glucosylceramide (GlcCer), which contains a unique sphingoid base possessing two double bonds and a methyl substitution, is essential for pathogenicity in fungi. Although the biosynthetic pathway of the GlcCer has been well elucidated, little is known about GlcCer catabolism because a GlcCer-degrading enzyme (glucocerebrosidase) has yet to be identified in fungi. We found a homologue of endoglycoceramidase tentatively designated endoglycoceramidase-related protein 1 (EGCrP1) in several fungal genomic databases. The recombinant EGCrP1 hydrolyzed GlcCer but not other glycosphingolipids, whereas endoglycoceramidase hydrolyzed oligosaccharide-linked glycosphingolipids but not GlcCer. Disruption of egcrp1 in Cryptococcus neoformans, a typical pathogenic fungus causing cryptococcosis, resulted in the accumulation of fungus-specific GlcCer and immature GlcCer that possess sphingoid bases without a methyl substitution concomitant with a dysfunction of polysaccharide capsule formation. These results indicated that EGCrP1 participates in the catabolism of GlcCer and especially functions to eliminate immature GlcCer in vivo that are generated as by-products due to the broad specificity of GlcCer synthase. We conclude that EGCrP1, a glucocerebrosidase identified for the first time in fungi, controls the quality of GlcCer by eliminating immature GlcCer incorrectly generated in C. neoformans, leading to accurate processing of fungus-specific GlcCer.
Collapse
Affiliation(s)
- Yohei Ishibashi
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Kazutaka Ikeda
- Department of Metabolome, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Institute for Advanced Biosciences, Keio University, 246-2 Mizukami, Kakuganji, Tsuruoka, Yamagata 997-0052, Japan
| | - Keishi Sakaguchi
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Nozomu Okino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Ryo Taguchi
- Department of Metabolome, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, 1200 Matsumoto-cho, Kasugai-shi, Aichi 487-8501, Japan
| | - Makoto Ito
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan; New Energy and Industrial Technology Development Organization (NEDO), MUZA, Saiwai-ku, Kanagawa 212-8554, Japan.
| |
Collapse
|
43
|
Ternes P, Wobbe T, Schwarz M, Albrecht S, Feussner K, Riezman I, Cregg JM, Heinz E, Riezman H, Feussner I, Warnecke D. Two pathways of sphingolipid biosynthesis are separated in the yeast Pichia pastoris. J Biol Chem 2011; 286:11401-14. [PMID: 21303904 DOI: 10.1074/jbc.m110.193094] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although the yeast Saccharomyces cerevisiae has only one sphingolipid class with a head group based on phosphoinositol, the yeast Pichia pastoris as well as many other fungi have a second class, glucosylceramide, which has a glucose head group. These two sphingolipid classes are in addition distinguished by a characteristic structure of their ceramide backbones. Here, we investigate the mechanisms controlling substrate entry into the glucosylceramide branch of the pathway. By a combination of enzymatic in vitro studies and lipid analysis of genetically engineered yeast strains, we show that the ceramide synthase Bar1p occupies a key branching point in sphingolipid biosynthesis in P. pastoris. By preferring dihydroxy sphingoid bases and C(16)/C(18) acyl-coenzyme A as substrates, Bar1p produces a structurally well defined group of ceramide species, which is the exclusive precursor for glucosylceramide biosynthesis. Correlating with the absence of glucosylceramide in this yeast, a gene encoding Bar1p is missing in S. cerevisiae. We could not successfully investigate the second ceramide synthase in P. pastoris that is orthologous to S. cerevisiae Lag1p/Lac1p. By analyzing the ceramide and glucosylceramide species in a collection of P. pastoris knock-out strains in which individual genes encoding enzymes involved in glucosylceramide biosynthesis were systematically deleted, we show that the ceramide species produced by Bar1p have to be modified by two additional enzymes, sphingolipid Δ4-desaturase and fatty acid α-hydroxylase, before the final addition of the glucose head group by the glucosylceramide synthase. Together, this set of four enzymes specifically defines the pathway leading to glucosylceramide biosynthesis.
Collapse
Affiliation(s)
- Philipp Ternes
- Department of Plant Biochemistry, Albrecht von Haller Institute for Plant Sciences, Georg August University, Göttingen, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
In recent years, the study of lipid signalling networks has significantly increased. Although best studied in mammalian cells, lipid signalling is now appreciated also in microbial cells, particularly in yeasts and moulds. For instance, microbial sphingolipids and their metabolizing enzymes play a key role in the regulation of fungal pathogenicity, especially in Cryptococcus neoformans, through the modulation of different microbial pathways and virulence factors. Another example is the quorum sensing molecule (QSM) farnesol. In fact, this QSM is involved not only in mycelial growth and biofilm formation of Candida albicans, but also in many stress related responses. In moulds, such as Aspergillus fumigatus, QSM and sphingolipids are important for maintaining cell wall integrity and virulence. Finally, fungal cells make oxylipins to increase their virulence attributes and to counteract the host immune defences. In this review, we discuss these aspects in details.
Collapse
Affiliation(s)
- Arpita Singh
- Biochemistry and Molecular Biology Microbiology and Immunology Division of Infectious Diseases, Medical University of South Carolina, Charleston, SC 29425, USA
| | | |
Collapse
|
45
|
Noble SM, French S, Kohn LA, Chen V, Johnson AD. Systematic screens of a Candida albicans homozygous deletion library decouple morphogenetic switching and pathogenicity. Nat Genet 2010; 42:590-8. [PMID: 20543849 PMCID: PMC2893244 DOI: 10.1038/ng.605] [Citation(s) in RCA: 550] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Accepted: 05/12/2010] [Indexed: 01/07/2023]
Abstract
Candida albicans is the most common cause of serious fungal disease in humans. Creation of isogenic null mutants of this diploid organism, which requires sequential gene targeting, allows dissection of virulence mechanisms. Published analyses of such mutants show a near-perfect correlation between C. albicans pathogenicity and the ability to undergo a yeast-to-hypha morphological switch in vitro. However, most studies used mutants constructed with a marker that is itself a virulence determinant and therefore complicates their interpretation. Using alternative markers, we created ~3000 homozygous deletion strains affecting 674 genes or roughly 11% of the C. albicans genome. Screening for infectivity in a mouse model and for morphological switching and cell proliferation in vitro, we identified 115 infectivity-attenuated mutants, of which nearly half demonstrated normal morphological switching and proliferation. Analysis of such mutants identified the glycolipid, glucosylceramide, as the first small molecule synthesized by this pathogen to be required specifically for virulence.
Collapse
Affiliation(s)
- Suzanne M Noble
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California, USA.
| | | | | | | | | |
Collapse
|
46
|
Rhome R, Del Poeta M. Sphingolipid signaling in fungal pathogens. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 688:232-7. [PMID: 20919658 DOI: 10.1007/978-1-4419-6741-1_16] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Sphingolipid involvement in infectious disease is a new and exciting branch of research. Various microbial pathogens have been shown to synthesize their own sphingolipids and some have evolved methods to "hijack" host sphingolipids for their own use. For instance, Sphingomonas species are bacterial pathogens that lack the lipopolysaccharide component typical but instead contain glycosphingolipids (Kawahara 1991, 2006). In terms of sphingolipid signaling and function, perhaps the best-studied group of microbes is the pathogenic fungi. Pathogenic fungi still represent significant problems in human disease, despite treatments that have been used for decades. Because fungi are eukaryotic, drug targets in fungi can have many similarities to mammalian processes. This often leads to significant side effects of antifungal drugs that can be dose limiting in many patient populations. The search for fungal-specific drugs and the need for better understanding of cellular processes of pathogenic fungi has led to a large body of research on fungal signaling. One particularly interesting and rapidly growing field in this research is the involvement of fungal sphingolipid pathways in signaling and virulence. In this chapter, the research relating to sphingolipid signaling pathogenic fungi will be reviewed and summarized, in addition to highlighting pathways that show promise for future research.
Collapse
Affiliation(s)
- Ryan Rhome
- Department of Biochemistry and Molecular Biology, Division of Infectious Diseases, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | |
Collapse
|
47
|
Oura T, Kajiwara S. Candida albicans sphingolipid C9-methyltransferase is involved in hyphal elongation. MICROBIOLOGY-SGM 2009; 156:1234-1243. [PMID: 20019081 DOI: 10.1099/mic.0.033985-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
C9-methylated glucosylceramide is a fungus-specific sphingolipid. This lipid is a major membrane component in the cell and is thought to play important roles in the growth and virulence of several fungal species. To investigate the importance of the methyl branch of the long-chain base in glucosylceramides in pathogenic fungi, we identified and characterized a sphingolipid C9-methyltransferase gene (MTS1, C9-MethylTransferase for Sphingolipid 1) in the pathogenic yeast Candida albicans. The mts1 disruptant lacked (E,E)-9-methylsphinga-4,8-dienine in its glucosylceramides and contained (E)-sphing-4-enine and (E,E)-sphinga-4,8-dienine. Reintroducing the MTS1 gene into the mts1 disruptant restored the synthesis of (E,E)-9-methylsphinga-4,8-dienine in the glucosylceramides. We also created a disruptant of the HSX11 gene, encoding glucosylceramide synthase, which catalyses the final step of glucosylceramide synthesis, in C. albicans and compared this mutant with the mts1 disruptant. The C. albicans mts1 and hsx11 disruptants both had a decreased hyphal growth rate compared to the wild-type strain. The hsx11 disruptant showed increased susceptibility to SDS and fluconazole, similar to a previously reported sld1 disruptant that contained only (E)-sphing-4-enine in its glucosylceramides, suggesting that these strains have defects in their cell membrane structures. In contrast, the mts1 disruptant grew similarly to wild-type in medium containing SDS or fluconazole. These results suggest that the C9-methyl group of a long-chain base in glucosylceramides plays an important role in the hyphal elongation of C. albicans independent of lipid membrane disruption.
Collapse
Affiliation(s)
- Takahiro Oura
- Department of Life Science, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-B5 Nagatsuta, Midori-ku, Yokohama, Kanagawa 266-8501, Japan
| | - Susumu Kajiwara
- Department of Life Science, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-B5 Nagatsuta, Midori-ku, Yokohama, Kanagawa 266-8501, Japan
| |
Collapse
|