1
|
Smythe P, Efthimiou G. In Silico Genomic and Metabolic Atlas of Limosilactobacillus reuteri DSM 20016: An Insight into Human Health. Microorganisms 2022; 10:microorganisms10071341. [PMID: 35889060 PMCID: PMC9320016 DOI: 10.3390/microorganisms10071341] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 11/23/2022] Open
Abstract
Probiotics are bacterial strains that are known to provide host health benefits. Limosilactobacillus reuteri is a well-documented lactic acid bacterium that has been cultured from numerous human sites. The strain investigated was L. reuteri DSM 20016, which has been found to produce useful metabolites. The strain was explored using genomic and proteomic tools, manual searches, and databases, including KEGG, STRING, BLAST Sequence Similarity Search, and UniProt. This study located over 200 key genes that were involved in human health benefit pathways. L. reuteri DSM 20016 has metabolic pathways to produce acetate, propionate, and lactate, and there is evidence of a pathway for butanoate production through a FASII mechanism. The bacterium produces histamine through the hdc operon, which may be able to suppress proinflammatory TNF, and the bacterium also has the ability to synthesize folate and riboflavin, although whether they are secreted is yet to be explored. The strain can bind to human Caco2 cells through srtA, mapA/cnb, msrB, and fbpA and can compete against enteric bacteria using reuterin, which is an antimicrobial that induces oxidative stress. The atlas could be used for designing metabolic engineering approaches to improve beneficial metabolite biosynthesis and better probiotic-based cures.
Collapse
Affiliation(s)
- Paisleigh Smythe
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, Castle Hill Hospital, Daisy Building, Hull HU16 5JQ, UK;
| | - Georgios Efthimiou
- Department of Biomedical and Forensic Sciences, University of Hull, Cottingham Road, Hardy Building, Hull HU6 7RX, UK
- Correspondence: ; Tel.: +44-(0)1482-465970
| |
Collapse
|
2
|
Patra F, Duary RK. Determination and Safety Aspects of Probiotic Cultures. PROBIOTICS, PREBIOTICS AND SYNBIOTICS 2022:122-160. [DOI: 10.1002/9781119702160.ch6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
3
|
Langa S, Arqués JL, Medina M, Landete JM. Coproduction of colicin V and lactic acid bacteria bacteriocins in lactococci and enterococci strains of biotechnological interest. J Appl Microbiol 2017; 122:1159-1167. [PMID: 28261897 DOI: 10.1111/jam.13439] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 02/28/2017] [Accepted: 02/28/2017] [Indexed: 11/27/2022]
Abstract
AIMS The aim of this study was the coproduction in a single strain of the Gram-negative bacteriocin colicin V with other bacteriocins from lactic acid bacteria (LAB). METHODS AND RESULTS Colicin V was expressed in Lactococcus and Enterococcus strains by replacing the colicin V leader peptide by the leader peptide and promoter of d-alanyl-d-alanine carboxypeptidase from Lactobacillus reuteri CECT925 in pNZ8048 (pNZ:LR-colV). The antimicrobial activity of colicin V against the indicator organism Escherichia coli DH5α in transformed strains was checked by agar diffusion assay and SDS-PAGE analysis. CONCLUSIONS Lactococcus and Enterococcus transformed with pNZ:LR-colV were able to coproduce colicin V at high levels together with other LAB bacteriocins such as nisin A, nisin Z, lacticin 481 or enterocins A and B, obtaining broad-spectrum activity strains with large potential applications. SIGNIFICANCE AND IMPACT OF THE STUDY The construction showed in this work could be used for the heterologous expression of other bacteriocins active against Gram-negative bacteria or wide-spectrum bacteriocins from LAB.
Collapse
Affiliation(s)
- S Langa
- Departamento de Tecnología de Alimentos, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - J L Arqués
- Departamento de Tecnología de Alimentos, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - M Medina
- Departamento de Tecnología de Alimentos, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - J M Landete
- Departamento de Tecnología de Alimentos, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| |
Collapse
|
4
|
Gagic D, Ciric M, Wen WX, Ng F, Rakonjac J. Exploring the Secretomes of Microbes and Microbial Communities Using Filamentous Phage Display. Front Microbiol 2016; 7:429. [PMID: 27092113 PMCID: PMC4823517 DOI: 10.3389/fmicb.2016.00429] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 03/17/2016] [Indexed: 01/12/2023] Open
Abstract
Microbial surface and secreted proteins (the secretome) contain a large number of proteins that interact with other microbes, host and/or environment. These proteins are exported by the coordinated activities of the protein secretion machinery present in the cell. A group of bacteriophage, called filamentous phage, have the ability to hijack bacterial protein secretion machinery in order to amplify and assemble via a secretion-like process. This ability has been harnessed in the use of filamentous phage of Escherichia coli in biotechnology applications, including screening large libraries of variants for binding to “bait” of interest, from tissues in vivo to pure proteins or even inorganic substrates. In this review we discuss the roles of secretome proteins in pathogenic and non-pathogenic bacteria and corresponding secretion pathways. We describe the basics of phage display technology and its variants applied to discovery of bacterial proteins that are implicated in colonization of host tissues and pathogenesis, as well as vaccine candidates through filamentous phage display library screening. Secretome selection aided by next-generation sequence analysis was successfully applied for selective display of the secretome at a microbial community scale, the latter revealing the richness of secretome functions of interest and surprising versatility in filamentous phage display of secretome proteins from large number of Gram-negative as well as Gram-positive bacteria and archaea.
Collapse
Affiliation(s)
- Dragana Gagic
- Institute of Fundamental Sciences, Massey UniversityPalmerston North, New Zealand; Animal Science, Grasslands Research Centre, AgResearch Ltd, Palmerston NorthNew Zealand
| | - Milica Ciric
- Institute of Fundamental Sciences, Massey UniversityPalmerston North, New Zealand; Animal Science, Grasslands Research Centre, AgResearch Ltd, Palmerston NorthNew Zealand
| | - Wesley X Wen
- Institute of Fundamental Sciences, Massey University Palmerston North, New Zealand
| | - Filomena Ng
- Animal Science, Grasslands Research Centre, AgResearch Ltd, Palmerston North New Zealand
| | - Jasna Rakonjac
- Institute of Fundamental Sciences, Massey University Palmerston North, New Zealand
| |
Collapse
|
5
|
Use of anaerobic green fluorescent protein versus green fluorescent protein as reporter in lactic acid bacteria. Appl Microbiol Biotechnol 2015; 99:6865-77. [DOI: 10.1007/s00253-015-6770-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 06/08/2015] [Accepted: 06/11/2015] [Indexed: 01/09/2023]
|
6
|
Fevre C, Bestebroer J, Mebius MM, de Haas CJC, van Strijp JAG, Fitzgerald JR, Haas PJA. Staphylococcus aureus proteins SSL6 and SElX interact with neutrophil receptors as identified using secretome phage display. Cell Microbiol 2014; 16:1646-65. [PMID: 24840181 DOI: 10.1111/cmi.12313] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 05/02/2014] [Accepted: 05/05/2014] [Indexed: 12/20/2022]
Abstract
In order to cause colonization and invasive disease, pathogenic bacteria secrete proteins that modulate host immune defences. Identification and characterization of these proteins leads to a better understanding of the pathological processes underlying infectious and inflammatory diseases and is essential in the development of new strategies for their prevention and treatment. Current techniques to functionally characterize these proteins are laborious and inefficient. Here we describe a high-throughput functional selection strategy using phage display in order to identify immune evasion proteins. Using this technique we identified two previously uncharacterized proteins secreted by Staphylococcus aureus, SElX and SSL6 that bind to neutrophil surface receptors. SElX binds PSGL-1 on neutrophils and thereby inhibits the interaction between PSGL-1 and P-selectin, a crucial step in the recruitment of neutrophils to the site of infection. SSL6 is the first bacterial protein identified that binds CD47, a widely expressed cell surface protein recently described as an interesting target in anti-cancer therapy. Our findings provide new insights into the pathogenesis of S. aureus infections and support phage display as an efficient method to identify bacterial secretome proteins interacting with humoral or cellular immune components.
Collapse
Affiliation(s)
- Cindy Fevre
- Department of Medical Microbiology, University Medical Center Utrecht, PO G04.614, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
7
|
Su Y, Zhang B, Su L. CD4 detected from Lactobacillus helps understand the interaction between Lactobacillus and HIV. Microbiol Res 2013; 168:273-7. [PMID: 23318049 DOI: 10.1016/j.micres.2012.12.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Revised: 12/12/2012] [Accepted: 12/15/2012] [Indexed: 11/27/2022]
Abstract
Human immunodeficiency virus (HIV) preferentially infects and destroys CD4+ cells and leads to a gradual decline in the number of CD4 cells. Despite evidence that probiotics increase CD4+ T lymphocytes in patients with HIV/acquired immunodeficiency syndrome (AIDS) and lower the risk of HIV transmission, little is known about the detailed mechanism underlying these effects. In this study, we investigated the cell surface protein of Lactobacillus and its role in blocking HIV-1 transmission by lactobacilli. Using reverse transcription-polymerase chain reaction (RT-PCR), immunofluorescence, and flow cytometry (fluorescence-activated cell sorting, FACS), we detected the CD4 receptor on the surface of Lactobacillus. Monoclonal antibody (mAb) for the CD4 receptor could partially inhibit HIV-1 binding to Lactobacillus. In addition, Lactobacillus could decrease HIV-1 pseudovirus infection of TZM-bl cells in vitro by 60-70%. Our data suggest that Lactobacillus can use this receptor to bind HIV and block HIV infection. This may in turn increase the CD4 T lymphocyte count in patients with HIV. These data provide direct evidence that Lactobacillus expresses the CD4 receptor and utilizes it to block HIV transmission.
Collapse
Affiliation(s)
- Yan Su
- Department of Microbiology and Immunology, Xinjiang Agricultural University, China.
| | | | | |
Collapse
|
8
|
Brisson G, Payken HF, Sharpe JP, Jiménez-Flores R. Characterization of Lactobacillus reuteri interaction with milk fat globule membrane components in dairy products. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:5612-5619. [PMID: 20377223 DOI: 10.1021/jf904381s] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
A set of methods has been developed to study the adhesion between four Lactobacillus reuteri strains and the milk fat globule membrane (MFGM) components in dairy products. By combining sucrose density gradient (SDG) centrifugation and bacterial DNA quantification it was found which strains of L. reuteri were more strongly associated with the dairy products, and the results were corroborated by direct binding rate and force measurements made with optical tweezers. It was determined that strong binding was associated with hydrophobicity of the bacteria and that this hydrophobicity is correlated with the presence of LiCl-extractable protein on the surface of the bacteria. Confocal laser scanning microscopy (CLSM) allowed for the visualization of interactions between bacteria and MFGM. This study demonstrates that these methods can be used in combination to characterize, both qualitatively and quantitatively, the adhesion of lactic acid bacteria strains in dairy products.
Collapse
Affiliation(s)
- Guillaume Brisson
- Dairy Products Technology Center, California Polytechnic State University, San Luis Obispo, California 93407, USA
| | | | | | | |
Collapse
|
9
|
Search for protein adhesin gene in Bifidobacterium longum genome using surface phage display technology. Bull Exp Biol Med 2009; 146:782-5. [PMID: 19513383 DOI: 10.1007/s10517-009-0423-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
A fragment of the nucleotide sequence encoding polypeptide binding to HT-29 epithelial cells was cloned from VMKB44 Bifidobacterium longum genome library using surface phage display technology. Sequencing of this polypeptide consisting of 26 amino acid residues showed that it is an extracellular fragment of a large BL0155 transmembrane protein belonging to the ABC transport protein superfamily. The genes encoding homologues of this protein were detected in genomes of not only bifidobacteria of different species, but also in many other enteric commencals and pathogens.
Collapse
|
10
|
Macías-Rodríguez ME, Zagorec M, Ascencio F, Vázquez-Juárez R, Rojas M. Lactobacillus fermentum BCS87 expresses mucus- and mucin-binding proteins on the cell surface. J Appl Microbiol 2009; 107:1866-74. [PMID: 19548890 DOI: 10.1111/j.1365-2672.2009.04368.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AIMS To identify and characterize adhesion-associated proteins in the potential probiotic Lactobacillus fermentum BCS87. METHODS AND RESULTS Protein suspensions obtained from the treatment of Lact. fermentum BCS87 with 1 mol 1(-1) LiCl were analysed by Western blotting using HRP-labelled porcine mucus and mucin. Two adhesion-associated proteins with relative molecular weight of 29 and 32 kDa were identified. The N-terminal and internal peptides of the 32 kDa protein (32-Mmubp) were sequenced, and the corresponding gene (32-mmub) was found by inverse polymerase chain reaction. The complete nucleotide sequence of 32-mmub revealed an open reading frame of 903 bp encoding a primary protein of 300 amino acids and a mature protein of 272 residues. A basic local alignment search showed 47-99% identity to solute-binding components of ATP binding cassette transporter proteins in Lactobacillus, Streptococcus and Clostridium. An OpuAC-conserved domain was identified and phylogenetic relationship analysis confirmed that 32-Mmubp belongs to the OpuAC family. CONCLUSIONS Adhesion of Lact. fermentum BCS87 appeared to be mediated by two surface-associated proteins. 32-Mmubp is a component of ABC transporter system that also functions as an adhesin. SIGNIFICANCE AND IMPACT OF THE STUDY Characterization of 32-Mmubp and 32-mmub will contribute to understanding the host-bacteria interactions of Lact. fermentum with the intestinal tract of pigs.
Collapse
Affiliation(s)
- M E Macías-Rodríguez
- Laboratorio de Patogénesis Microbiana, Centro de Investigaciones Biológicas del Noroeste, La Paz, Baja California Sur, México
| | | | | | | | | |
Collapse
|
11
|
Hüfner E, Britton RA, Roos S, Jonsson H, Hertel C. Global transcriptional response of Lactobacillus reuteri to the sourdough environment. Syst Appl Microbiol 2008; 31:323-38. [DOI: 10.1016/j.syapm.2008.06.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Revised: 06/25/2008] [Accepted: 06/26/2008] [Indexed: 10/21/2022]
|
12
|
Jankovic D, Collett MA, Lubbers MW, Rakonjac J. Direct selection and phage display of a Gram-positive secretome. Genome Biol 2008; 8:R266. [PMID: 18078523 PMCID: PMC2246268 DOI: 10.1186/gb-2007-8-12-r266] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2007] [Revised: 11/01/2007] [Accepted: 12/13/2007] [Indexed: 12/23/2022] Open
Abstract
A phage display system for direct selection, identification, expression and purification of bacterial secretome proteins has been developed. Surface, secreted and transmembrane protein-encoding open reading frames, collectively the secretome, can be identified in bacterial genome sequences using bioinformatics. However, functional analysis of translated secretomes is possible only if many secretome proteins are expressed and purified individually. We have now developed and applied a phage display system for direct selection, identification, expression and purification of bacterial secretome proteins.
Collapse
Affiliation(s)
- Dragana Jankovic
- Institute of Molecular Biosciences, Massey University, Palmerston North, New Zealand.
| | | | | | | |
Collapse
|
13
|
Genomic and genetic characterization of the bile stress response of probiotic Lactobacillus reuteri ATCC 55730. Appl Environ Microbiol 2008; 74:1812-9. [PMID: 18245259 DOI: 10.1128/aem.02259-07] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Probiotic bacteria encounter various stresses after ingestion by the host, including exposure to the low pH in the stomach and bile in the small intestine. The probiotic microorganism Lactobacillus reuteri ATCC 55730 has previously been shown to survive in the human small intestine. To address how L. reuteri can resist bile stress, we performed microarray experiments to determine gene expression changes that occur when the organism is exposed to physiological concentrations of bile. A wide variety of genes that displayed differential expression in the presence of bile indicated that the cells were dealing with several types of stress, including cell envelope stress, protein denaturation, and DNA damage. Mutations in three genes were found to decrease the strain's ability to survive bile exposure: lr1864, a Clp chaperone; lr0085, a gene of unknown function; and lr1516, a putative esterase. Mutations in two genes that form an operon, lr1584 (a multidrug resistance transporter in the major facilitator superfamily) and lr1582 (unknown function), were found to impair the strain's ability to restart growth in the presence of bile. This study provides insight into the possible mechanisms that L. reuteri ATCC 55730 may use to survive and grow in the presence of bile in the small intestine.
Collapse
|
14
|
Wall T, Båth K, Britton RA, Jonsson H, Versalovic J, Roos S. The early response to acid shock in Lactobacillus reuteri involves the ClpL chaperone and a putative cell wall-altering esterase. Appl Environ Microbiol 2007; 73:3924-35. [PMID: 17449683 PMCID: PMC1932720 DOI: 10.1128/aem.01502-06] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To be able to function as a probiotic, bacteria have to survive the passage through the gastrointestinal tract. We have examined survival and gene expression of Lactobacillus reuteri ATCC 55730 after a sudden shift in environmental acidity to a pH close to the conditions in the human stomach. More than 80% of the L. reuteri cells survived at pH 2.7 for 1 h. A genomewide expression analysis experiment using microarrays displayed 72 differentially expressed genes at this pH. The early response to severe acid shock in L. reuteri differed from long-term acid adaptation to milder acid stress studied in other lactic acid bacteria. The genes induced included the following: clpL, genes putatively involved in alterations of the cell membrane and the cell wall; genes encoding transcriptional regulators; phage genes; and genes of unknown function. Two genes, clpL, encoding an ATPase with chaperone activity, and lr1516, encoding a putative esterase, were selected for mutation analyses. The mutants were significantly more sensitive to acid than the wild type was. Thus, these genes could contribute to the survival of L. reuteri in the gastrointestinal tract.
Collapse
Affiliation(s)
- Torun Wall
- Department of Microbiology, Swedish University of Agricultural Sciences, Box 7025, SE-750 07 Uppsala, Sweden, and Department of Pathology, Texas Children's Hospital, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
15
|
Båth K, Roos S, Wall T, Jonsson H. The cell surface of Lactobacillus reuteri ATCC 55730 highlighted by identification of 126 extracellular proteins from the genome sequence. FEMS Microbiol Lett 2005; 253:75-82. [PMID: 16242863 DOI: 10.1016/j.femsle.2005.09.042] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2005] [Revised: 09/12/2005] [Accepted: 09/14/2005] [Indexed: 02/08/2023] Open
Abstract
Bioinformatical analyses of a draft genome sequence of the commensal bacterium Lactobacillus reuteri ATCC 55730 revealed 126 genes encoding putative extracellular proteins. The function, localization and distribution in bacterial species were predicted. Interestingly, few proteins possessed LPXTG motifs or C-terminal transmembrane anchors. Instead eight proteins were putatively anchored by GW repeats and several secreted proteins were likely to be re-associated to the surface. The majority of the extracellular proteins were widely distributed, i.e., found universally or in gram-positive bacteria, but 24 were only detected in L. reuteri. Further, the number of transporters was lower, while the number of enzyme was higher than in related species.
Collapse
Affiliation(s)
- Klara Båth
- Department of Microbiology, Swedish University of Agricultural Sciences, Box 7025, SE-750 07 Uppsala, Sweden
| | | | | | | |
Collapse
|
16
|
Walter J, Chagnaud P, Tannock GW, Loach DM, Dal Bello F, Jenkinson HF, Hammes WP, Hertel C. A high-molecular-mass surface protein (Lsp) and methionine sulfoxide reductase B (MsrB) contribute to the ecological performance of Lactobacillus reuteri in the murine gut. Appl Environ Microbiol 2005; 71:979-86. [PMID: 15691956 PMCID: PMC546760 DOI: 10.1128/aem.71.2.979-986.2005] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Members of the genus Lactobacillus are common inhabitants of the gut, yet little is known about the traits that contribute to their ecological performance in gastrointestinal ecosystems. Lactobacillus reuteri 100-23 persists in the gut of the reconstituted Lactobacillus-free mouse after a single oral inoculation. Recently, three genes of this strain that were specifically induced (in vivo induced) in the murine gut were identified (38). We report here the detection of a gene of L. reuteri 100-23 that encodes a high-molecular-mass surface protein (Lsp) that shows homology to proteins involved in the adherence of other bacteria to epithelial cells and in biofilm formation. The three in vivo-induced genes and lsp of L. reuteri 100-23 were inactivated by insertional mutagenesis in order to study their biological importance in the murine gastrointestinal tract. Competition experiments showed that mutation of lsp and a gene encoding methionine sulfoxide reductase (MsrB) reduced ecological performance. Mutation of lsp impaired the adherence of the bacteria to the epithelium of the mouse forestomach and altered colonization dynamics. Homologues of lsp and msrB are present in the genomes of several strains of Lactobacillus and may play an important role in the maintenance of these bacteria in gut ecosystems.
Collapse
Affiliation(s)
- Jens Walter
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin, New Zealand.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Turner MS, Hafner LM, Walsh T, Giffard PM. Identification and characterization of the novel LysM domain-containing surface protein Sep from Lactobacillus fermentum BR11 and its use as a peptide fusion partner in Lactobacillus and Lactococcus. Appl Environ Microbiol 2004; 70:3673-80. [PMID: 15184172 PMCID: PMC427774 DOI: 10.1128/aem.70.6.3673-3680.2004] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Examination of supernatant fractions from broth cultures of Lactobacillus fermentum BR11 revealed the presence of a number of proteins, including a 27-kDa protein termed Sep. The amino-terminal sequence of Sep was determined, and the gene encoding it was cloned and sequenced. Sep is a 205-amino-acid protein and contains a 30-amino-acid secretion signal and has overall homology (between 39 and 92% identity) with similarly sized proteins of Lactobacillus reuteri, Enterococcus faecium, Streptococcus pneumoniae, Streptococcus agalactiae, and Lactobacillus plantarum. The carboxy-terminal 81 amino acids of Sep also have strong homology (86% identity) to the carboxy termini of the aggregation-promoting factor (APF) surface proteins of Lactobacillus gasseri and Lactobacillus johnsonii. The mature amino terminus of Sep contains a putative peptidoglycan-binding LysM domain, thereby making it distinct from APF proteins. We have identified a common motif within LysM domains that is shared with carbohydrate binding YG motifs which are found in streptococcal glucan-binding proteins and glucosyltransferases. Sep was investigated as a heterologous peptide expression vector in L. fermentum, Lactobacillus rhamnosus GG and Lactococcus lactis MG1363. Modified Sep containing an amino-terminal six-histidine epitope was found associated with the cells but was largely present in the supernatant in the L. fermentum, L. rhamnosus, and L. lactis hosts. Sep as well as the previously described surface protein BspA were used to express and secrete in L. fermentum or L. rhamnosus a fragment of human E-cadherin, which contains the receptor region for Listeria monocytogenes. This study demonstrates that Sep has potential for heterologous protein expression and export in lactic acid bacteria.
Collapse
Affiliation(s)
- Mark S Turner
- Infectious Diseases Program, School of Life Sciences, Faculty of Science, Queensland University of Technology, Brisbane, Queensland 4001, Australia.
| | | | | | | |
Collapse
|