1
|
Zolghadri S, Saboury AA. Catalytic mechanism of tyrosinases. Enzymes 2024; 56:31-54. [PMID: 39304290 DOI: 10.1016/bs.enz.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Tyrosinases (TYR) play a key role in melanin biosynthesis by catalyzing two reactions: monophenolase and diphenolase activities. Despite low amino acid sequence homology, TYRs from various organisms (from bacteria to humans) have similar active site architectures and catalytic mechanisms. The active site of the TYRs contains two copper ions coordinated by histidine (His) residues. The catalytic mechanism of TYRs involves electron transfer between copper sites, leading to the hydroxylation of monophenolic compounds to diphenols and the subsequent oxidation of these to corresponding dopaquinones. Although extensive studies have been conducted on the structure, catalytic mechanism, and enzymatic capabilities of TYRs, some mechanistic aspects are still debated. This chapter will delve into the structure of the active site, catalytic function, and inhibition mechanism of TYRs. The goal is to improve our understanding of the molecular mechanisms underlying TYR activity. This knowledge can help in developing new strategies to modulate TYR function and potentially treat diseases linked to melanin dysregulation.
Collapse
Affiliation(s)
- Samaneh Zolghadri
- Department of Biology, Jahrom Branch, Islamic Azad University, Jahrom, Iran.
| | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| |
Collapse
|
2
|
Gallego-Parrilla JJ, Severi E, Chandra G, Palmer T. Identification of novel tail-anchored membrane proteins integrated by the bacterial twin-arginine translocase. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001431. [PMID: 38363712 PMCID: PMC10924467 DOI: 10.1099/mic.0.001431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/22/2024] [Indexed: 02/18/2024]
Abstract
The twin-arginine protein transport (Tat) system exports folded proteins across the cytoplasmic membranes of prokaryotes and the energy transducing-membranes of plant thylakoids and mitochondria. Proteins are targeted to the Tat machinery by N-terminal signal peptides with a conserved twin-arginine motif, and some substrates are exported as heterodimers where the signal peptide is present on one of the partner proteins. A subset of Tat substrates is found in the membrane. Tat-dependent membrane proteins usually have large globular domains and a single transmembrane helix present at the N- or C-terminus. Five Tat substrates that have C-terminal transmembrane helices have previously been characterized in the model bacterium Escherichia coli. Each of these is an iron-sulfur cluster-containing protein involved in electron transfer from hydrogen or formate. Here we have undertaken a bioinformatic search to identify further tail-anchored Tat substrates encoded in bacterial genomes. Our analysis has revealed additional tail-anchored iron-sulfur proteins associated in modules with either a b-type cytochrome or a quinol oxidase. We also identified further candidate tail-anchored Tat substrates, particularly among members of the actinobacterial phylum, that are not predicted to contain cofactors. Using reporter assays, we show experimentally that six of these have both N-terminal Tat signal peptides and C-terminal transmembrane helices. The newly identified proteins include a carboxypeptidase and a predicted protease, and four sortase substrates for which membrane integration is a prerequisite for covalent attachment to the cell wall.
Collapse
Affiliation(s)
- José Jesús Gallego-Parrilla
- Microbes in Health and Disease Theme, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Emmanuele Severi
- Microbes in Health and Disease Theme, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Govind Chandra
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Tracy Palmer
- Microbes in Health and Disease Theme, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| |
Collapse
|
3
|
Pospíšil J, Schwarz M, Ziková A, Vítovská D, Hradilová M, Kolář M, Křenková A, Hubálek M, Krásný L, Vohradský J. σ E of Streptomyces coelicolor can function both as a direct activator or repressor of transcription. Commun Biol 2024; 7:46. [PMID: 38184746 PMCID: PMC10771440 DOI: 10.1038/s42003-023-05716-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 12/18/2023] [Indexed: 01/08/2024] Open
Abstract
σ factors are considered as positive regulators of gene expression. Here we reveal the opposite, inhibitory role of these proteins. We used a combination of molecular biology methods and computational modeling to analyze the regulatory activity of the extracytoplasmic σE factor from Streptomyces coelicolor. The direct activator/repressor function of σE was then explored by experimental analysis of selected promoter regions in vivo. Additionally, the σE interactome was defined. Taken together, the results characterize σE, its regulation, regulon, and suggest its direct inhibitory function (as a repressor) in gene expression, a phenomenon that may be common also to other σ factors and organisms.
Collapse
Affiliation(s)
- Jiří Pospíšil
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4, Czech Republic.
| | - Marek Schwarz
- Laboratory of Bioinformatics, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4, Czech Republic
| | - Alice Ziková
- Laboratory of Bioinformatics, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4, Czech Republic
| | - Dragana Vítovská
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4, Czech Republic
| | - Miluše Hradilová
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4, Czech Republic
| | - Michal Kolář
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4, Czech Republic
| | - Alena Křenková
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 542/2, 160 00, Prague 6, Czech Republic
| | - Martin Hubálek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 542/2, 160 00, Prague 6, Czech Republic
| | - Libor Krásný
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4, Czech Republic
| | - Jiří Vohradský
- Laboratory of Bioinformatics, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4, Czech Republic.
| |
Collapse
|
4
|
Panis F, Rompel A. The Novel Role of Tyrosinase Enzymes in the Storage of Globally Significant Amounts of Carbon in Wetland Ecosystems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:11952-11968. [PMID: 35944157 PMCID: PMC9454253 DOI: 10.1021/acs.est.2c03770] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 05/30/2023]
Abstract
Over the last millennia, wetlands have been sequestering carbon from the atmosphere via photosynthesis at a higher rate than releasing it and, therefore, have globally accumulated 550 × 1015 g of carbon, which is equivalent to 73% of the atmospheric carbon pool. The accumulation of organic carbon in wetlands is effectuated by phenolic compounds, which suppress the degradation of soil organic matter by inhibiting the activity of organic-matter-degrading enzymes. The enzymatic removal of phenolic compounds by bacterial tyrosinases has historically been blocked by anoxic conditions in wetland soils, resulting from waterlogging. Bacterial tyrosinases are a subgroup of oxidoreductases that oxidatively remove phenolic compounds, coupled to the reduction of molecular oxygen to water. The biochemical properties of bacterial tyrosinases have been investigated thoroughly in vitro within recent decades, while investigations focused on carbon fluxes in wetlands on a macroscopic level have remained a thriving yet separated research area so far. In the wake of climate change, however, anoxic conditions in wetland soils are threatened by reduced rainfall and prolonged summer drought. This potentially allows tyrosinase enzymes to reduce the concentration of phenolic compounds, which in turn will increase the release of stored carbon back into the atmosphere. To offer compelling evidence for the novel concept that bacterial tyrosinases are among the key enzymes influencing carbon cycling in wetland ecosystems first, bacterial organisms indigenous to wetland ecosystems that harbor a TYR gene within their respective genome (tyr+) have been identified, which revealed a phylogenetically diverse community of tyr+ bacteria indigenous to wetlands based on genomic sequencing data. Bacterial TYR host organisms covering seven phyla (Acidobacteria, Actinobacteria, Bacteroidetes, Firmicutes, Nitrospirae, Planctomycetes, and Proteobacteria) have been identified within various wetland ecosystems (peatlands, marshes, mangrove forests, bogs, and alkaline soda lakes) which cover a climatic continuum ranging from high arctic to tropic ecosystems. Second, it is demonstrated that (in vitro) bacterial TYR activity is commonly observed at pH values characteristic for wetland ecosystems (ranging from pH 3.5 in peatlands and freshwater swamps to pH 9.0 in soda lakes and freshwater marshes) and toward phenolic compounds naturally present within wetland environments (p-coumaric acid, gallic acid, protocatechuic acid, p-hydroxybenzoic acid, caffeic acid, catechin, and epicatechin). Third, analyzing the available data confirmed that bacterial host organisms tend to exhibit in vitro growth optima at pH values similar to their respective wetland habitats. Based on these findings, it is concluded that, following increased aeration of previously anoxic wetland soils due to climate change, TYRs are among the enzymes capable of reducing the concentration of phenolic compounds present within wetland ecosystems, which will potentially destabilize vast amounts of carbon stored in these ecosystems. Finally, promising approaches to mitigate the detrimental effects of increased TYR activity in wetland ecosystems and the requirement of future investigations of the abundance and activity of TYRs in an environmental setting are presented.
Collapse
|
5
|
Panis F, Krachler RF, Krachler R, Rompel A. Expression, Purification, and Characterization of a Well-Adapted Tyrosinase from Peatlands Identified by Partial Community Analysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:11445-11454. [PMID: 34156250 PMCID: PMC8375020 DOI: 10.1021/acs.est.1c02514] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/23/2021] [Accepted: 05/24/2021] [Indexed: 05/30/2023]
Abstract
In peatlands, bacterial tyrosinases (TYRs) are proposed to act as key regulators of carbon storage by removing phenolic compounds, which inhibit the degradation of organic carbon. Historically, TYR activity has been blocked by anoxia resulting from persistent waterlogging; however, recent events of prolonged summer drought have boosted TYR activity and, consequently, the release of carbon stored in the form of organic compounds from peatlands. Since 30% of the global soil carbon stock is stored in peatlands, a profound understanding of the production and activity of TYRs is essential to assess the impact of carbon dioxide emitted from peatlands on climate change. TYR partial sequences identified by degenerated primers suggest a versatile TYR enzyme community naturally present in peatlands, which is produced by a phylogenetically diverse spectrum of bacteria, including Proteobacteria and Actinobacteria. One full-length sequence of an extracellular TYR (SzTYR) identified from a soda-rich inland salt marsh has been heterologously expressed and purified. SzTYR exhibits a molecular mass of 30 891.8 Da and shows a pH optimum of 9.0. Spectroscopic studies and kinetic investigations characterized SzTYR as a tyrosinase and proved its activity toward monophenols (coumaric acid), diphenols (caffeic acid, protocatechuic acid), and triphenols (gallic acid) naturally present in peatlands.
Collapse
Affiliation(s)
- Felix Panis
- Universität
Wien, Fakultät
für Chemie, Institut für Biophysikalische Chemie, Althanstraße 14, 1090 Wien, Austria
| | - Rudolf F. Krachler
- Fakultät
für Chemie, Institut für Anorganische Chemie, Universität Wien, Althanstraße 14, 1090 Wien, Austria
| | - Regina Krachler
- Fakultät
für Chemie, Institut für Anorganische Chemie, Universität Wien, Althanstraße 14, 1090 Wien, Austria
| | - Annette Rompel
- Universität
Wien, Fakultät
für Chemie, Institut für Biophysikalische Chemie, Althanstraße 14, 1090 Wien, Austria
| |
Collapse
|
6
|
Hamed MB, Vrancken K, Bilyk B, Koepff J, Novakova R, van Mellaert L, Oldiges M, Luzhetskyy A, Kormanec J, Anné J, Karamanou S, Economou A. Monitoring Protein Secretion in Streptomyces Using Fluorescent Proteins. Front Microbiol 2018; 9:3019. [PMID: 30581427 PMCID: PMC6292873 DOI: 10.3389/fmicb.2018.03019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 11/22/2018] [Indexed: 01/25/2023] Open
Abstract
Fluorescent proteins are a major cell biology tool to analyze protein sub-cellular topology. Here we have applied this technology to study protein secretion in the Gram-positive bacterium Streptomyces lividans TK24, a widely used host for heterologous protein secretion biotechnology. Green and monomeric red fluorescent proteins were fused behind Sec (SPSec) or Tat (SPTat) signal peptides to direct them through the respective export pathway. Significant secretion of fluorescent eGFP and mRFP was observed exclusively through the Tat and Sec pathways, respectively. Plasmid over-expression was compared to a chromosomally integrated spSec-mRFP gene to allow monitoring secretion under high and low level synthesis in various media. Fluorimetric detection of SPSec-mRFP recorded folded states, while immuno-staining detected even non-folded topological intermediates. Secretion of SPSec-mRFP is unexpectedly complex, is regulated independently of cell growth phase and is influenced by the growth regime. At low level synthesis, highly efficient secretion occurs until it is turned off and secretory preforms accumulate. At high level synthesis, the secretory pathway overflows and proteins are driven to folding and subsequent degradation. High-level synthesis of heterologous secretory proteins, whether secretion competent or not, has a drastic effect on the endogenous secretome, depending on their secretion efficiency. These findings lay the foundations of dissecting how protein targeting and secretion are regulated by the interplay between the metabolome, secretion factors and stress responses in the S. lividans model.
Collapse
Affiliation(s)
- Mohamed Belal Hamed
- Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium.,Molecular Biology Department, National Research Centre, Dokki, Egypt
| | - Kristof Vrancken
- Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
| | | | - Joachim Koepff
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Renata Novakova
- Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Lieve van Mellaert
- Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Marco Oldiges
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Andriy Luzhetskyy
- Helmholtz-Zentrum für Infektionsforschung GmbH, Braunschweig, Germany
| | - Jan Kormanec
- Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Jozef Anné
- Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Spyridoula Karamanou
- Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Anastassios Economou
- Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
7
|
Gullón S, Mellado RP. The Cellular Mechanisms that Ensure an Efficient Secretion in Streptomyces. Antibiotics (Basel) 2018; 7:E33. [PMID: 29661993 PMCID: PMC6022935 DOI: 10.3390/antibiotics7020033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/10/2018] [Accepted: 04/11/2018] [Indexed: 01/01/2023] Open
Abstract
Gram-positive soil bacteria included in the genus Streptomyces produce a large variety of secondary metabolites in addition to extracellular hydrolytic enzymes. From the industrial and commercial viewpoints, the S. lividans strain has generated greater interest as a host bacterium for the overproduction of homologous and heterologous hydrolytic enzymes as an industrial application, which has considerably increased scientific interest in the characterization of secretion routes in this bacterium. This review will focus on the secretion machinery in S. lividans.
Collapse
Affiliation(s)
- Sonia Gullón
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología (CNB-CSIC), c/Darwin 3, 28049 Madrid, Spain.
| | - Rafael P Mellado
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología (CNB-CSIC), c/Darwin 3, 28049 Madrid, Spain.
| |
Collapse
|
8
|
Tsolis KC, Tsare EP, Orfanoudaki G, Busche T, Kanaki K, Ramakrishnan R, Rousseau F, Schymkowitz J, Rückert C, Kalinowski J, Anné J, Karamanou S, Klapa MI, Economou A. Comprehensive subcellular topologies of polypeptides in Streptomyces. Microb Cell Fact 2018; 17:43. [PMID: 29544487 PMCID: PMC5853079 DOI: 10.1186/s12934-018-0892-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 03/08/2018] [Indexed: 11/10/2022] Open
Abstract
Background Members of the genus Streptomyces are Gram-positive bacteria that are used as important cell factories to produce secondary metabolites and secrete heterologous proteins. They possess some of the largest bacterial genomes and thus proteomes. Understanding their complex proteomes and metabolic regulation will improve any genetic engineering approach. Results Here, we performed a comprehensive annotation of the subcellular localization of the proteome of Streptomyces lividans TK24 and developed the Subcellular Topology of Polypeptides in Streptomyces database (SToPSdb) to make this information widely accessible. We first introduced a uniform, improved nomenclature that re-annotated the names of ~ 4000 proteins based on functional and structural information. Then protein localization was assigned de novo using prediction tools and edited by manual curation for 7494 proteins, including information for 183 proteins that resulted from a recent genome re-annotation and are not available in current databases. The S. lividans proteome was also linked with those of other model bacterial strains including Streptomyces coelicolor A3(2) and Escherichia coli K-12, based on protein homology, and can be accessed through an open web interface. Finally, experimental data derived from proteomics experiments have been incorporated and provide validation for protein existence or topology for 579 proteins. Proteomics also reveals proteins released from vesicles that bleb off the membrane. All export systems known in S. lividans are also presented and exported proteins assigned export routes, where known. Conclusions SToPSdb provides an updated and comprehensive protein localization annotation resource for S. lividans and other streptomycetes. It forms the basis for future linking to databases containing experimental data of proteomics, genomics and metabolomics studies for this organism. Electronic supplementary material The online version of this article (10.1186/s12934-018-0892-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Konstantinos C Tsolis
- Laboratory of Molecular Bacteriology, Dpt. of Microbiology and Immunology, Rega Institute, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Evridiki-Pandora Tsare
- Metabolic Engineering & Systems Biology Laboratory, Institute of Chemical Engineering Sciences, Foundation for Research and Technology-Hellas (FORTH/ICE-HT), Patras, Greece.,Department of General Biology, School of Medicine, University of Patras, Patras, Greece
| | - Georgia Orfanoudaki
- Institute of Molecular Biology and Biotechnology-FoRTH, P.O. Box 1385, Iraklio, Crete, Greece
| | - Tobias Busche
- Center for Biotechnology (CeBiTec), Universität Bielefeld, 33594, Bielefeld, Germany
| | - Katerina Kanaki
- Institute of Molecular Biology and Biotechnology-FoRTH, P.O. Box 1385, Iraklio, Crete, Greece
| | - Reshmi Ramakrishnan
- VIB-KU Leuven Center for Brain & Disease Research and VIB Switch Laboratory, Department for Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Frederic Rousseau
- VIB-KU Leuven Center for Brain & Disease Research and VIB Switch Laboratory, Department for Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Joost Schymkowitz
- VIB-KU Leuven Center for Brain & Disease Research and VIB Switch Laboratory, Department for Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Christian Rückert
- Center for Biotechnology (CeBiTec), Universität Bielefeld, 33594, Bielefeld, Germany
| | - Jörn Kalinowski
- Center for Biotechnology (CeBiTec), Universität Bielefeld, 33594, Bielefeld, Germany
| | - Jozef Anné
- Laboratory of Molecular Bacteriology, Dpt. of Microbiology and Immunology, Rega Institute, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Spyridoula Karamanou
- Laboratory of Molecular Bacteriology, Dpt. of Microbiology and Immunology, Rega Institute, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Maria I Klapa
- Metabolic Engineering & Systems Biology Laboratory, Institute of Chemical Engineering Sciences, Foundation for Research and Technology-Hellas (FORTH/ICE-HT), Patras, Greece
| | - Anastassios Economou
- Laboratory of Molecular Bacteriology, Dpt. of Microbiology and Immunology, Rega Institute, KU Leuven, Herestraat 49, 3000, Leuven, Belgium.
| |
Collapse
|
9
|
Matoba Y, Kihara S, Muraki Y, Bando N, Yoshitsu H, Kuroda T, Sakaguchi M, Kayama K, Tai H, Hirota S, Ogura T, Sugiyama M. Activation Mechanism of the Streptomyces Tyrosinase Assisted by the Caddie Protein. Biochemistry 2017; 56:5593-5603. [DOI: 10.1021/acs.biochem.7b00635] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yasuyuki Matoba
- Graduate School of Biomedical & Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8551, Japan
| | - Shogo Kihara
- Graduate School of Biomedical & Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8551, Japan
| | - Yoshimi Muraki
- Graduate School of Biomedical & Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8551, Japan
| | - Naohiko Bando
- Graduate School of Biomedical & Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8551, Japan
| | - Hironari Yoshitsu
- Graduate School of Biomedical & Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8551, Japan
| | - Teruo Kuroda
- Graduate School of Biomedical & Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8551, Japan
| | - Miyuki Sakaguchi
- Picobiology
Institute, Graduate School of Life Science, University of Hyogo, RSC-UH Leading Program Center, Koto 1-1-1, Koto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Kure’e Kayama
- Picobiology
Institute, Graduate School of Life Science, University of Hyogo, RSC-UH Leading Program Center, Koto 1-1-1, Koto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Hulin Tai
- Graduate
School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama,
Ikoma, Nara 630-0192, Japan
| | - Shun Hirota
- Graduate
School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama,
Ikoma, Nara 630-0192, Japan
| | - Takashi Ogura
- Picobiology
Institute, Graduate School of Life Science, University of Hyogo, RSC-UH Leading Program Center, Koto 1-1-1, Koto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Masanori Sugiyama
- Graduate School of Biomedical & Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8551, Japan
| |
Collapse
|
10
|
Freudl R. Beyond amino acids: Use of the Corynebacterium glutamicum cell factory for the secretion of heterologous proteins. J Biotechnol 2017; 258:101-109. [DOI: 10.1016/j.jbiotec.2017.02.023] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/21/2017] [Accepted: 02/21/2017] [Indexed: 11/16/2022]
|
11
|
Protein Secretion in Gram-Positive Bacteria: From Multiple Pathways to Biotechnology. Curr Top Microbiol Immunol 2017; 404:267-308. [PMID: 27885530 DOI: 10.1007/82_2016_49] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A number of Gram-positive bacteria are important players in industry as producers of a diverse array of economically interesting metabolites and proteins. As discussed in this overview, several Gram-positive bacteria are valuable hosts for the production of heterologous proteins. In contrast to Gram-negative bacteria, proteins secreted by Gram-positive bacteria are released into the culture medium where conditions for correct folding are more appropriate, thus facilitating the isolation and purification of active proteins. Although seven different protein secretion pathways have been identified in Gram-positive bacteria, the majority of heterologous proteins are produced via the general secretion or Sec pathway. Not all proteins are equally well secreted, because heterologous protein production often faces bottlenecks including hampered secretion, susceptibility to proteases, secretion stress, and metabolic burden. These bottlenecks are associated with reduced yields leading to non-marketable products. In this chapter, besides a general overview of the different protein secretion pathways, possible hurdles that may hinder efficient protein secretion are described and attempts to improve yield are discussed including modification of components of the Sec pathway. Attention is also paid to omics-based approaches that may offer a more rational approach to optimize production of heterologous proteins.
Collapse
|
12
|
Petrus MLC, Vijgenboom E, Chaplin AK, Worrall JAR, van Wezel GP, Claessen D. The DyP-type peroxidase DtpA is a Tat-substrate required for GlxA maturation and morphogenesis in Streptomyces. Open Biol 2016; 6:150149. [PMID: 26740586 PMCID: PMC4736821 DOI: 10.1098/rsob.150149] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The filamentous bacterium Streptomyces lividans depends on the radical copper oxidase GlxA for the formation of reproductive aerial structures and, in liquid environments, for the formation of pellets. Incorporation of copper into the active site is essential for the formation of a cross-linked tyrosyl-cysteine cofactor, which is needed for enzymatic activity. In this study, we show a crucial link between GlxA maturation and a group of copper-related proteins including the chaperone Sco and a novel DyP-type peroxidase hereinafter called DtpA. Under copper-limiting conditions, the sco and dtpA deletion mutants are blocked in aerial growth and pellet formation, similarly to a glxA mutant. Western blot analysis showed that GlxA maturation is perturbed in the sco and dtpA mutants, but both maturation and morphology can by rescued by increasing the bioavailability of copper. DtpA acts as a peroxidase in the presence of GlxA and is a substrate for the twin-arginine translocation (Tat) translocation pathway. In agreement, the maturation status of GlxA is also perturbed in tat mutants, which can be compensated for by the addition of copper, thereby partially restoring their morphological defects. Our data support a model wherein a copper-trafficking pathway and Tat-dependent secretion of DtpA link to the GlxA-dependent morphogenesis pathway.
Collapse
Affiliation(s)
- Marloes L C Petrus
- Molecular Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Erik Vijgenboom
- Molecular Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Amanda K Chaplin
- School of Biological Science, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
| | - Jonathan A R Worrall
- School of Biological Science, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
| | - Gilles P van Wezel
- Molecular Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Dennis Claessen
- Molecular Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| |
Collapse
|
13
|
Anusree M, Wendisch VF, Nampoothiri KM. Co-expression of endoglucanase and β-glucosidase in Corynebacterium glutamicum DM1729 towards direct lysine fermentation from cellulose. BIORESOURCE TECHNOLOGY 2016; 213:239-244. [PMID: 27020126 DOI: 10.1016/j.biortech.2016.03.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Revised: 02/29/2016] [Accepted: 03/01/2016] [Indexed: 06/05/2023]
Abstract
The aim of the present study is the development of a consolidated bioprocess for the production of lysine with recombinant Corynebacterium glutamicum DM1729 strains expressing endoglucanase and β-glucosidase genes. Here, the endoglucanase genes from Xanthomonas campestris XCC3521 and XCC2387 and betaglucosidase gene from Saccharophagus degradans Sde1394 were cloned in C. glutamicum DM1729 and expressed either extracellularly or on cell surface. The highest β-glucosidase activity of 9±0.5U/OD600 of 1 and endoglucanase activity of 5.5±0.8U was obtained in C. glutamicum DM 1729 (pVWEx1-TATXCC2387) (pEKEx3-PorC-Sde1394) when cellobiose (20g/L) alone or in combination with carboxymethyl cellulose (20g/L) was used as the carbon sources respectively. The overall efforts resulted in a lysine titre of 5.9±0.5mM. The ability of the constructs to utilize carboxymethyl cellulose and cellobiose for growth and amino acid production proves the concept of utilization of C. glutamicum as a biocatalyst in the lignocellulosic biorefinery.
Collapse
Affiliation(s)
- Murali Anusree
- Biotechnology Division, CSIR - National Institute For Interdisciplinary Science and Technology (NIIST), Trivandrum 695 019, Kerala, India
| | - Volker F Wendisch
- Chair of Genetics of Prokaryotes, Bielefeld University, Universitaetsstr. 25, 33615 Bielefeld, Germany
| | - K Madhavan Nampoothiri
- Biotechnology Division, CSIR - National Institute For Interdisciplinary Science and Technology (NIIST), Trivandrum 695 019, Kerala, India.
| |
Collapse
|
14
|
Exploring the Feasibility of the Sec Route to Secrete Proteins Using the Tat Route in Streptomyces lividans. Mol Biotechnol 2016. [PMID: 26202494 DOI: 10.1007/s12033-015-9883-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Streptomyces lividans uses mainly two pathways to target secretory proteins to the cytoplasmic membrane. The major pathway (Sec pathway) transports pre-proteins using the signal recognition particle, and the minor Tat pathway is responsible for the secretion using a folded conformation of a relatively low number of proteins. The signal peptides of the Sec-dependent alpha-amylase and the Tat-dependent agarase were interchanged and fused in-frame to the corresponding mature part of the other enzyme. Alpha-amylase was unable to use the Tat route when fused to the agarase signal peptide, while agarase used the Sec route when it was targeted by the alpha-amylase signal peptide. In addition to the signal peptide some yet unidentified parts of the secreted proteins may play a role in selecting the secretory route. Structure predictions for the Tat- and Sec-dependent proteins suggest that less structured proteins are more likely to be candidates for the Tat route.
Collapse
|
15
|
Abstract
Twin-arginine protein translocation systems (Tat) translocate fully folded and co-factor-containing proteins across biological membranes. In this review, we focus on the Tat pathway of Gram-positive bacteria. The minimal Tat pathway is composed of two components, namely a TatA and TatC pair, which are often complemented with additional TatA-like proteins. We provide overviews of our current understanding of Tat pathway composition and mechanistic aspects related to Tat-dependent cargo protein translocation. This includes Tat pathway flexibility, requirements for the correct folding and incorporation of co-factors in cargo proteins and the functions of known cargo proteins. Tat pathways of several Gram-positive bacteria are discussed in detail, with emphasis on the Tat pathway of Bacillus subtilis. We discuss both shared and unique features of the different Gram-positive bacterial Tat pathways. Lastly, we highlight topics for future research on Tat, including the development of this protein transport pathway for the biotechnological secretion of high-value proteins and its potential applicability as an antimicrobial drug target in pathogens.
Collapse
Affiliation(s)
- Vivianne J Goosens
- MRC Centre for Molecular Bacteriology and Infection, Section of Microbiology, Imperial College London, London, SW7 2AZ, UK
| | - Jan Maarten van Dijl
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 30001, 9700, RB, Groningen, The Netherlands.
| |
Collapse
|
16
|
Anné J, Vrancken K, Van Mellaert L, Van Impe J, Bernaerts K. Protein secretion biotechnology in Gram-positive bacteria with special emphasis on Streptomyces lividans. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:1750-61. [PMID: 24412306 DOI: 10.1016/j.bbamcr.2013.12.023] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 12/26/2013] [Accepted: 12/31/2013] [Indexed: 02/07/2023]
Abstract
Proteins secreted by Gram-positive bacteria are released into the culture medium with the obvious benefit that they usually retain their native conformation. This property makes these host cells potentially interesting for the production of recombinant proteins, as one can take full profit of established protocols for the purification of active proteins. Several state-of-the-art strategies to increase the yield of the secreted proteins will be discussed, using Streptomyces lividans as an example and compared with approaches used in some other host cells. It will be shown that approaches such as increasing expression and translation levels, choice of secretion pathway and modulation of proteins thereof, avoiding stress responses by changing expression levels of specific (stress) proteins, can be helpful to boost production yield. In addition, the potential of multi-omics approaches as a tool to understand the genetic background and metabolic fluxes in the host cell and to seek for new targets for strain and protein secretion improvement is discussed. It will be shown that S. lividans, along with other Gram-positive host cells, certainly plays a role as a production host for recombinant proteins in an economically viable way. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.
Collapse
Affiliation(s)
- Jozef Anné
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Laboratory of Molecular Bacteriology, Herestraat 49, box 1037, B-3000 Leuven, Belgium.
| | - Kristof Vrancken
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Laboratory of Molecular Bacteriology, Herestraat 49, box 1037, B-3000 Leuven, Belgium.
| | - Lieve Van Mellaert
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Laboratory of Molecular Bacteriology, Herestraat 49, box 1037, B-3000 Leuven, Belgium.
| | - Jan Van Impe
- Chemical and Biochemical Process Technology and Control Section (BioTeC), Department of Chemical Engineering, KU Leuven, Willem de Croylaan 46 box 2423, B-3001 Leuven, Belgium.
| | - Kristel Bernaerts
- Chemical and Biochemical Process Technology and Control Section (BioTeC), Department of Chemical Engineering, KU Leuven, Willem de Croylaan 46 box 2423, B-3001 Leuven, Belgium.
| |
Collapse
|
17
|
Role of the twin arginine protein transport pathway in the assembly of the Streptomyces coelicolor cytochrome bc1 complex. J Bacteriol 2013; 196:50-9. [PMID: 24142258 DOI: 10.1128/jb.00776-13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The cytochrome bc1-cytochrome aa3 complexes together comprise one of the major branches of the bacterial aerobic respiratory chain. In actinobacteria, the cytochrome bc1 complex shows a number of unusual features in comparison to other cytochrome bc1 complexes. In particular, the Rieske iron-sulfur protein component of this complex, QcrA, is a polytopic rather than a monotopic membrane protein. Bacterial Rieske proteins are usually integrated into the membrane in a folded conformation by the twin arginine protein transport (Tat) pathway. In this study, we show that the activity of the Streptomyces coelicolor M145 cytochrome bc1 complex is dependent upon an active Tat pathway. However, the polytopic Rieske protein is still integrated into the membrane in a ΔtatC mutant strain, indicating that a second protein translocation machinery also participates in its assembly. Difference spectroscopy indicated that the cytochrome c component of the complex was correctly assembled in the absence of the Tat machinery. We show that the intact cytochrome bc1 complex can be isolated from S. coelicolor M145 membranes by affinity chromatography. Surprisingly, a stable cytochrome bc1 complex containing the Rieske protein can be isolated from membranes even when the Tat system is inactive. These findings strongly suggest that the additional transmembrane segments of the S. coelicolor Rieske protein mediate hydrophobic interactions with one or both of the cytochrome subunits.
Collapse
|
18
|
Goosens VJ, Monteferrante CG, van Dijl JM. The Tat system of Gram-positive bacteria. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1843:1698-706. [PMID: 24140208 DOI: 10.1016/j.bbamcr.2013.10.008] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Revised: 10/08/2013] [Accepted: 10/08/2013] [Indexed: 10/26/2022]
Abstract
The twin-arginine protein translocation (Tat) system has a unique ability to translocate folded and co-factor-containing proteins across lipid bilayers. The Tat pathway is present in bacteria, archaea and in the thylakoid membranes of chloroplasts and, depending on the organism and environmental conditions, it can be deemed important for cell survival, virulence or bioproduction. This review provides an overview of the current understanding of the Tat system with specific focus on Gram-positive bacteria. The 'universal minimal Tat system' is composed of a TatA and a TatC protein. However, this pathway is more commonly composed of two TatA-like proteins and one TatC protein. Often the TatA-like proteins have diverged to have two different functions and, in this case, the second TatA-like protein is usually referred to as TatB. The correct folding and/or incorporation of co-factors are requirements for translocation, and the known quality control mechanisms are examined in this review. A number of examples of crosstalk between the Tat system and other protein transport systems, such as the Sec-YidC translocon and signal peptidases or sheddases are also discussed. Further, an overview of specific Gram-positive bacterial Tat systems found in monoderm and diderm species is detailed. Altogether, this review highlights the unique features of Gram-positive bacterial Tat systems and pinpoints key questions that remain to be addressed in future research. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.
Collapse
Affiliation(s)
- Vivianne J Goosens
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 30001, 9700 RB Groningen, The Netherlands
| | - Carmine G Monteferrante
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 30001, 9700 RB Groningen, The Netherlands
| | - Jan Maarten van Dijl
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 30001, 9700 RB Groningen, The Netherlands.
| |
Collapse
|
19
|
Lamp J, Weber M, Cingöz G, Ortiz de Orué Lucana D, Schrempf H. A Streptomyces-specific member of the metallophosphatase superfamily contributes to spore dormancy and interaction with Aspergillus proliferans. FEMS Microbiol Lett 2013; 342:89-97. [PMID: 23480800 DOI: 10.1111/1574-6968.12121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 03/01/2013] [Accepted: 03/04/2013] [Indexed: 11/27/2022] Open
Abstract
We have identified, cloned and characterized a formerly unknown protein from Streptomyces lividans spores. The deduced protein belongs to a novel member of the metallophosphatase superfamily and contains a phosphatase domain and predicted binding sites for divalent ions. Very close relatives are encoded in the genomic DNA of many different Streptomyces species. As the deduced related homologues diverge from other known phosphatase types, we named the protein MptS (metallophosphatase type from Streptomyces). Comparative physiological and biochemical investigations and analyses by fluorescence microscopy of the progenitor strain, designed mutants carrying either a disruption of the mptS gene or the reintroduced gene as fusion with histidine codons or the egfp gene led to the following results: (i) the mptS gene is transcribed in the course of aerial mycelia formation. (ii) The MptS protein is produced during the late stages of growth, (iii) accumulates within spores, (iv) functions as an active enzyme that releases inorganic phosphate from an artificial model substrate, (v) is required for spore dormancy and (vi) MptS supports the interaction amongst Streptomyces lividans spores with conidia of the fungus Aspergillus proliferans. We discuss the possible role(s) of MptS-dependent enzymatic activity and the implications for spore biology.
Collapse
Affiliation(s)
- Jessica Lamp
- FB Biologie/Chemie, Universität Osnabrück, Osnabrück 49069, Germany
| | | | | | | | | |
Collapse
|
20
|
Vertès AA. Protein Secretion Systems of Corynebacterium glutamicum. CORYNEBACTERIUM GLUTAMICUM 2013. [DOI: 10.1007/978-3-642-29857-8_13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
21
|
Sanssouci É, Lerat S, Daigle F, Grondin G, Shareck F, Beaulieu C. Deletion of TerD-domain-encoding genes: effect on Streptomyces coelicolor development. Can J Microbiol 2012; 58:1221-9. [PMID: 23072443 DOI: 10.1139/w2012-101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
TerD-domain-encoding genes (tdd genes) are highly represented in the Streptomyces coelicolor genome. One of these, the tdd8 gene, was recently shown to have a crucial influence on growth, differentiation, and spore development of this filamentous bacterium. The investigation of the potential role of tdd genes has been extended here to tdd7 (SCO2367) and tdd13 (SCO4277). Both genes are highly expressed in bacteria grown in liquid-rich medium (tryptic soy broth). However, the deletion of these genes in S. coelicolor showed contrasting effects regarding developmental patterns, sporulation, and antibiotic production. Deletion of the tdd7 gene induced a reduction of growth in liquid medium, wrinkling of the mycelium on solid medium, and poor spore and actinorhodin production. On the other hand, deletion of the tdd13 gene did not significantly affect growth in liquid medium but induced a small colony phenotype on solid medium with abundant sporulation and overproduction of undecylprodigiosin. Although their exact functions remain undefined, the present data suggest a major involvement of TerD proteins in the proper development of S. coelicolor.
Collapse
Affiliation(s)
- Édith Sanssouci
- Centre d'Étude et de Valorisation de la Diversité Microbienne, Département de biologie, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| | | | | | | | | | | |
Collapse
|
22
|
Dynamic localization of Tat protein transport machinery components in Streptomyces coelicolor. J Bacteriol 2012; 194:6272-81. [PMID: 23002216 DOI: 10.1128/jb.01425-12] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The Tat pathway transports folded proteins across the bacterial cytoplasmic membrane and is a major route of protein export in the Streptomyces genus of bacteria. In this study, we have examined the localization of Tat components in the model organism Streptomyces coelicolor by constructing enhanced green fluorescent protein (eGFP) and mCherry fusions with the TatA, TatB, and TatC proteins. All three components colocalized dynamically in the vegetative hyphae, with foci of each tagged protein being prominent at the tips of emerging germ tubes and of the vegetative hyphae, suggesting that this may be a primary site of Tat secretion. Time-lapse imaging revealed that localization of the Tat components was highly dynamic during tip growth and again demonstrated a strong preference for apical sites in growing hyphae. During aerial hypha formation, TatA-eGFP and TatB-eGFP fusions relocalized to prespore compartments, indicating repositioning of Tat components during the Streptomyces life cycle.
Collapse
|
23
|
Recombinant protein production and streptomycetes. J Biotechnol 2012; 158:159-67. [DOI: 10.1016/j.jbiotec.2011.06.028] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 06/17/2011] [Accepted: 06/22/2011] [Indexed: 11/21/2022]
|
24
|
Shen X, Li S, Du Y, Mao X, Li Y. The N-terminal hydrophobic segment of Streptomyces coelicolor FtsY forms a transmembrane structure to stabilize its membrane localization. FEMS Microbiol Lett 2012; 327:164-71. [DOI: 10.1111/j.1574-6968.2011.02478.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2011] [Revised: 11/26/2011] [Accepted: 12/01/2011] [Indexed: 11/29/2022] Open
Affiliation(s)
- Xueling Shen
- Institute of Biochemistry; College of Life Sciences; Zhejiang University; Hangzhou; China
| | - Shanzhen Li
- Institute of Biochemistry; College of Life Sciences; Zhejiang University; Hangzhou; China
| | - Yiling Du
- Institute of Biochemistry; College of Life Sciences; Zhejiang University; Hangzhou; China
| | - Xuming Mao
- Institute of Biochemistry; College of Life Sciences; Zhejiang University; Hangzhou; China
| | - Yongquan Li
- Institute of Biochemistry; College of Life Sciences; Zhejiang University; Hangzhou; China
| |
Collapse
|
25
|
|
26
|
Mellado RP. Summing up particular features of protein secretion in Streptomyces lividans. World J Microbiol Biotechnol 2011. [DOI: 10.1007/s11274-011-0709-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
27
|
Abstract
Proteins that reside partially or completely outside the bacterial cytoplasm require specialized pathways to facilitate their localization. Globular proteins that function in the periplasm must be translocated across the hydrophobic barrier of the inner membrane. While the Sec pathway transports proteins in a predominantly unfolded conformation, the Tat pathway exports folded protein substrates. Protein transport by the Tat machinery is powered solely by the transmembrane proton gradient, and there is no requirement for nucleotide triphosphate hydrolysis. Proteins are targeted to the Tat machinery by N-terminal signal peptides that contain a consensus twin arginine motif. In Escherichia coli and Salmonella there are approximately thirty proteins with twin arginine signal peptides that are transported by the Tat pathway. The majority of these bind complex redox cofactors such as iron sulfur clusters or the molybdopterin cofactor. Here we describe what is known about Tat substrates in E. coli and Salmonella, the function and mechanism of Tat protein export, and how the cofactor insertion step is coordinated to ensure that only correctly assembled substrates are targeted to the Tat machinery.
Collapse
|
28
|
Joshi MV, Mann SG, Antelmann H, Widdick DA, Fyans JK, Chandra G, Hutchings MI, Toth I, Hecker M, Loria R, Palmer T. The twin arginine protein transport pathway exports multiple virulence proteins in the plant pathogen Streptomyces scabies. Mol Microbiol 2010; 77:252-71. [PMID: 20487278 DOI: 10.1111/j.1365-2958.2010.07206.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Summary Streptomyces scabies is one of a group of organisms that causes the economically important disease potato scab. Analysis of the S. scabies genome sequence indicates that it is likely to secrete many proteins via the twin arginine protein transport (Tat) pathway, including several proteins whose coding sequences may have been acquired through horizontal gene transfer and share a common ancestor with proteins in other plant pathogens. Inactivation of the S. scabies Tat pathway resulted in pleiotropic phenotypes including slower growth rate and increased permeability of the cell envelope. Comparison of the extracellular proteome of the wild type and DeltatatC strains identified 73 predicted secretory proteins that were present in reduced amounts in the tatC mutant strain, and 47 Tat substrates were verified using a Tat reporter assay. The DeltatatC strain was almost completely avirulent on Arabidopsis seedlings and was delayed in attaching to the root tip relative to the wild-type strain. Genes encoding 14 candidate Tat substrates were individually inactivated, and seven of these mutants were reduced in virulence compared with the wild-type strain. We conclude that the Tat pathway secretes multiple proteins that are required for full virulence.
Collapse
Affiliation(s)
- Madhumita V Joshi
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Chater KF, Biró S, Lee KJ, Palmer T, Schrempf H. The complex extracellular biology ofStreptomyces. FEMS Microbiol Rev 2010; 34:171-98. [DOI: 10.1111/j.1574-6976.2009.00206.x] [Citation(s) in RCA: 336] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
30
|
Copper-Containing Oxidases: Occurrence in Soil Microorganisms, Properties, and Applications. SOIL BIOLOGY 2010. [DOI: 10.1007/978-3-642-02436-8_13] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
31
|
Worrall JAR, Vijgenboom E. Copper mining in Streptomyces: enzymes, natural products and development. Nat Prod Rep 2010; 27:742-56. [DOI: 10.1039/b804465c] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
32
|
Koebsch I, Overbeck J, Piepmeyer S, Meschke H, Schrempf H. A molecular key for building hyphae aggregates: the role of the newly identified Streptomyces protein HyaS. Microb Biotechnol 2009; 2:343-60. [PMID: 21261929 PMCID: PMC3815755 DOI: 10.1111/j.1751-7915.2009.00093.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Streptomycetes produce many metabolites with medical and biotechnological applications. During fermentations, their hyphae build aggregates, a process in which the newly identified protein HyaS plays an important role. The corresponding hyaS gene is present within all investigated Streptomyces species. Reporter fusions indicate that transcription of hyaS occurs within substrate hyphae of the Streptomyces lividans wild type (WT). The HyaS protein is dominantly associated with the substrate hyphae. The WT strain forms cylindrically shaped clumps of densely packed substrate hyphae, often fusing to higher aggregates (pellets), which remain stably associated during shaking. Investigations by electron microscopy suggest that HyaS induces tight fusion‐like contacts among substrate hyphae. In contrast, the pellets of the designed hyaS disruption mutant ΔH are irregular in shape, contain frequently outgrowing bunches of hyphae, and fuse less frequently. ΔH complemented with a plasmid carrying hyaS resembles the WT phenotype. Biochemical studies indicate that the C‐terminal region of HyaS has amine oxidase activity. Investigations of ΔH transformants, each carrying a specifically mutated gene, lead to the conclusion that the in situ oxidase activity correlates with the pellet‐inducing role of HyaS, and depends on the presence of certain histidine residues. Furthermore, the level of undecylprodigiosin, a red pigment with antibiotic activity, is influenced by the engineered hyaS subtype within a strain. These data present the first molecular basis for future manipulation of pellets, and concomitant production of secondary metabolites during biotechnological processes.
Collapse
Affiliation(s)
- Ilona Koebsch
- University of Osnabrück, FB Biology/Chemistry, Applied Genetics of Microorganisms, 49069 Osnabrück, Germany
| | | | | | | | | |
Collapse
|
33
|
Identification and molecular characterization of twin-arginine translocation system (Tat) in Xanthomonas oryzae pv. oryzae strain PXO99. Arch Microbiol 2008; 191:163-70. [PMID: 18998110 DOI: 10.1007/s00203-008-0440-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2008] [Revised: 09/16/2008] [Accepted: 10/13/2008] [Indexed: 10/21/2022]
Abstract
Xanthomonas oryzae pv. oryzae causes bacterial leaf blight, one of the most widespread and destructive bacterial diseases in rice. This study identified and characterized the contribution of the twin-arginine translocation (Tat) pathway to motility, chemotaxis, extracellular polysaccharide (EPS) production and virulence in X. oryzae pv. oryzae strain PXO99. The tatC disruption mutant (strain TCM) of strain PXO99 were generated, and confirmed both by PCR and Southern blotting. Strain PXO99 cells were highly motile in NYGB 0.3% soft agar plate. In contrast, the tatC mutation impaired motility. Furthermore, strain TCM cells lacked detectable flagella and exhibited almost no chemotaxis toward glucose under aerobic conditions, indicating that the Tat secretion pathway contributed to flagellar biogenesis and chemotactic responses. It was also observed that strain TCM exhibited a reductive production of extracellular polysaccharide (EPS) and a significant reduction of virulence on rice plants when compared with the wild type PXO99. However, the tatC mutation in strain PXO99 did not affect growth rate and the ability to induce hypersensitive response (HR) in nonhost tobacco (Nicotiana tabacum L. cv. Samsun). Our findings indicated that the Tat system of X. oryzae pv. oryzae played an important role in the pathogen's virulence.
Collapse
|
34
|
De Buck E, Höper D, Lammertyn E, Hecker M, Anné J. Differential 2-D protein gel electrophoresis analysis of Legionella pneumophila wild type and Tat secretion mutants. Int J Med Microbiol 2008; 298:449-61. [PMID: 17723319 DOI: 10.1016/j.ijmm.2007.06.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2007] [Revised: 05/07/2007] [Accepted: 06/05/2007] [Indexed: 10/22/2022] Open
Abstract
The twin-arginine translocation (Tat) pathway is a secretory pathway for translocation of folded proteins with two arginines in their signal peptide across the cytoplasmic membrane. Recently, we showed the presence of the Tat secretion pathway in Legionella pneumophila Philadelphia-1 and its role in intracellular replication and biofilm formation. To analyse the importance of the Tat pathway in protein export and its role in L. pneumophila virulence, a comparative 2-D protein gel electrophoresis analysis was performed on supernatants of the wild type and two Tat secretion mutants in order to identify possible Tat substrates. Twenty proteins were identified as differential proteins, eight of which were present in a lower quantity in the supernatant of the tat mutants. Among these, one protein with a typical twin-arginine motif in its signal peptide was identified as the 3',5'-cyclic nucleotide phosphodiesterase. Two other proteins that resulted as differential proteins from this study were flagellin and LvrE, which were studied in more detail and their Tat-dependence was further confirmed with specific antibodies. LvrE was shown to play a role in intracellular growth in differentiated U937 cells.
Collapse
Affiliation(s)
- Emmy De Buck
- Laboratory of Bacteriology, Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | | | | | | | | |
Collapse
|
35
|
Guimond J, Morosoli R. Identification of Streptomyces lividans proteins secreted by the twin-arginine translocation pathway following growth with different carbon sources. Can J Microbiol 2008; 54:549-58. [DOI: 10.1139/w08-041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Genome-based signal peptide predictions classified Streptomyces coelicolor as the microorganism that secretes the most proteins through the twin-arginine translocation (Tat)-dependent secretion pathway. Availability of a ΔtatC mutant of the closely related strain Streptomyces lividans impaired Tat-dependent protein secretion and enabled identification of many extracellular proteins that are secreted via the Tat pathway. Proteomic techniques were applied to analyze proteins from the supernatants of log-phase cultures. Since the bacterial secretome depends mainly on the carbon sources available during growth, xylose, glucose, chitin, and soil extracts were used. A total of 63 proteins were identified, among which 7 were predicted by the TATscan program, and 20 were not predicted but contained a potential Tat signal motif. Thirteen proteins having no signal sequence could be co-transported by Tat-dependent proteins because the genes that encode these proteins are in close proximity in the genome. Finally, the presence of 23 proteins lacking signal peptides was difficult to explain. More secreted proteins could be identified as Tat substrates in varying carbon sources.
Collapse
Affiliation(s)
- Julien Guimond
- INRS-Institut Armand-Frappier, Université du Québec, 531 boulevard des Prairies, Laval, QC H7V 1B7, Canada
| | - Rolf Morosoli
- INRS-Institut Armand-Frappier, Université du Québec, 531 boulevard des Prairies, Laval, QC H7V 1B7, Canada
| |
Collapse
|
36
|
Function and redundancy of the chaplin cell surface proteins in aerial hypha formation, rodlet assembly, and viability in Streptomyces coelicolor. J Bacteriol 2008; 190:5879-89. [PMID: 18586935 DOI: 10.1128/jb.00685-08] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The chaplins are a family of eight secreted proteins that are critical for raising aerial hyphae in Streptomyces coelicolor. These eight chaplins can be separated into two main groups: the long chaplins (ChpA to -C) and the short chaplins (ChpD to -H). The short chaplins can be further subdivided on the basis of their abilities to form intramolecular disulfide bonds: ChpD, -F, -G, and -H contain two Cys residues, while ChpE has none. A "minimal chaplin strain" containing only chpC, chpE, and chpH was constructed and was found to raise a substantial aerial mycelium. This strain was used to examine the roles of specific chaplins. Within this strain, the Cys-containing ChpH was identified as the major polymerization unit contributing to aerial hypha formation and assembly of an intricate rodlet ultrastructure on the aerial surfaces, and the two Cys residues were determined to be critical for its function. ChpC augmented aerial hypha formation and rodlet assembly, likely by anchoring the short chaplins to the cell surface, while ChpE was essential for the viability of wild-type S. coelicolor. Interestingly, the lethal effects of a chpE null mutation could be suppressed by the loss of the other chaplins, the inactivation of the twin arginine translocation (Tat) secretion pathway, or the loss of the rodlins.
Collapse
|
37
|
Zhou M, Boekhorst J, Francke C, Siezen RJ. LocateP: genome-scale subcellular-location predictor for bacterial proteins. BMC Bioinformatics 2008; 9:173. [PMID: 18371216 PMCID: PMC2375117 DOI: 10.1186/1471-2105-9-173] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Accepted: 03/27/2008] [Indexed: 11/10/2022] Open
Abstract
Background In the past decades, various protein subcellular-location (SCL) predictors have been developed. Most of these predictors, like TMHMM 2.0, SignalP 3.0, PrediSi and Phobius, aim at the identification of one or a few SCLs, whereas others such as CELLO and Psortb.v.2.0 aim at a broader classification. Although these tools and pipelines can achieve a high precision in the accurate prediction of signal peptides and transmembrane helices, they have a much lower accuracy when other sequence characteristics are concerned. For instance, it proved notoriously difficult to identify the fate of proteins carrying a putative type I signal peptidase (SPIase) cleavage site, as many of those proteins are retained in the cell membrane as N-terminally anchored membrane proteins. Moreover, most of the SCL classifiers are based on the classification of the Swiss-Prot database and consequently inherited the inconsistency of that SCL classification. As accurate and detailed SCL prediction on a genome scale is highly desired by experimental researchers, we decided to construct a new SCL prediction pipeline: LocateP. Results LocateP combines many of the existing high-precision SCL identifiers with our own newly developed identifiers for specific SCLs. The LocateP pipeline was designed such that it mimics protein targeting and secretion processes. It distinguishes 7 different SCLs within Gram-positive bacteria: intracellular, multi-transmembrane, N-terminally membrane anchored, C-terminally membrane anchored, lipid-anchored, LPxTG-type cell-wall anchored, and secreted/released proteins. Moreover, it distinguishes pathways for Sec- or Tat-dependent secretion and alternative secretion of bacteriocin-like proteins. The pipeline was tested on data sets extracted from literature, including experimental proteomics studies. The tests showed that LocateP performs as well as, or even slightly better than other SCL predictors for some locations and outperforms current tools especially where the N-terminally anchored and the SPIase-cleaved secreted proteins are concerned. Overall, the accuracy of LocateP was always higher than 90%. LocateP was then used to predict the SCLs of all proteins encoded by completed Gram-positive bacterial genomes. The results are stored in the database LocateP-DB [1]. Conclusion LocateP is by far the most accurate and detailed protein SCL predictor for Gram-positive bacteria currently available.
Collapse
Affiliation(s)
- Miaomiao Zhou
- Centre for Molecular and Biomolecular Informatics, Radboud University Nijmegen Medical Centre, PO Box 9101, 6500 HB Nijmegen, The Netherlands.
| | | | | | | |
Collapse
|
38
|
Widdick DA, Eijlander RT, van Dijl JM, Kuipers OP, Palmer T. A Facile Reporter System for the Experimental Identification of Twin-Arginine Translocation (Tat) Signal Peptides from All Kingdoms of Life. J Mol Biol 2008; 375:595-603. [DOI: 10.1016/j.jmb.2007.11.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2007] [Revised: 10/29/2007] [Accepted: 11/01/2007] [Indexed: 11/25/2022]
|
39
|
Worrall JAR, Machczynski MC, Keijser BJF, di Rocco G, Ceola S, Ubbink M, Vijgenboom E, Canters GW. Spectroscopic characterization of a high-potential lipo-cupredoxin found in Streptomyces coelicolor. J Am Chem Soc 2007; 128:14579-89. [PMID: 17090042 DOI: 10.1021/ja064112n] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
For many streptomycetes, a distinct dependence on the "bioavailability" of copper ions for their morphological development has been reported. Analysis of the Streptomyces coelicolor genome reveals a number of gene products encoding for putative copper-binding proteins. One of these appears as an unusual copper-binding protein with a lipoprotein signal sequence and a cupredoxin-like domain harboring a putative Type-1 copper-binding motif. Cloning of this gene from S. coelicolor and subsequent heterologous expression in Escherichia coli has allowed for a thorough spectroscopic interrogation of this putative copper-binding protein. Optical and electron paramagnetic resonance spectroscopies have confirmed the presence of a "classic" Type-1 copper site with the axial ligand to the copper a methionine. Paramagnetic NMR spectroscopy on both the native Cu(II) form and Co(II)-substituted protein has yielded active-site structural information, which on comparison with that of other cupredoxin active sites reveals metal-ligand interactions most similar to the "classic" Type-1 copper site found in the amicyanin family of cupredoxins. Despite this high structural similarity, the Cu(II)/(I) midpoint potential of the S. coelicolor protein is an unprecedented +605 mV vs normal hydrogen electrode at neutral pH (amicyanin approximately +250 mV), with no active-site protonation of the N-terminal His ligand observed. Suggestions for the physiological role/function of this high-potential cupredoxin are discussed.
Collapse
Affiliation(s)
- Jonathan A R Worrall
- Contribution from the Leiden Institute of Chemistry, Leiden University, Gorlaeus Laboratories, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
40
|
De Keersmaeker S, Vrancken K, Van Mellaert L, Anné J, Geukens N. The Tat pathway in Streptomyces lividans: interaction of Tat subunits and their role in translocation. Microbiology (Reading) 2007; 153:1087-1094. [PMID: 17379717 DOI: 10.1099/mic.0.2006/003053-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The twin-arginine translocation (Tat) pathway transports folded proteins across bacterial cytoplasmic membranes. The Tat system of Streptomyces lividans consists of TatA, TatB and TatC, unlike most Gram-positive bacteria, which only have TatA and TatC subunits. Interestingly, in S. lividans TatA and TatB are localized in both the cytoplasm and the membrane. In the cytoplasm soluble TatA and TatB were found as monomers or as part of a hetero-oligomeric complex. Further analysis showed that specific information for recognition of the precursor by the soluble Tat components is mainly present in the twin-arginine signal peptide. Study of the role of the Tat subunits in complex assembly and stability in the membrane and cytoplasm showed that TatB stabilizes TatC whereas a key role in driving Tat complex assembly is suggested for TatC. Finally, by analysis of the oligomeric properties of TatA in the membrane of S. lividans and study of the affinity of membrane-embedded TatA for Tat/Sec precursors, a role for TatA as a translocator is postulated.
Collapse
Affiliation(s)
- Sophie De Keersmaeker
- Laboratory of Bacteriology, Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - Kristof Vrancken
- Laboratory of Bacteriology, Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - Lieve Van Mellaert
- Laboratory of Bacteriology, Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - Jozef Anné
- Laboratory of Bacteriology, Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - Nick Geukens
- Laboratory of Bacteriology, Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| |
Collapse
|
41
|
Alexeev I, Sultana A, Mäntsälä P, Niemi J, Schneider G. Aclacinomycin oxidoreductase (AknOx) from the biosynthetic pathway of the antibiotic aclacinomycin is an unusual flavoenzyme with a dual active site. Proc Natl Acad Sci U S A 2007; 104:6170-5. [PMID: 17395717 PMCID: PMC1851095 DOI: 10.1073/pnas.0700579104] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Aclacinomycin (Acl) oxidoreductase (AknOx) catalyzes the last two steps in the biosynthesis of polyketide antibiotics of the Acl group, the oxidation of the terminal sugar moiety rhodinose to l-aculose. We present the crystal structure of AknOx with bound FAD and the product AclY, refined to 1.65-A resolution. The overall fold of AknOx identifies the enzyme as a member of the p-cresol methylhydroxylase superfamily. The cofactor is bicovalently attached to His-70 and Cys-130 as 8alpha-Ndelta1-histidyl, 6-S-cysteinyl FAD. The polyketide ligand is bound in a deep cleft in the substrate-binding domain, with the tetracyclic ring system close to the enzyme surface and the three-sugar chain extending into the protein interior. The terminal sugar residue packs against the isoalloxazine ring of FAD and positions the carbon atoms that are oxidized close to the N5 atom of FAD. The structure and site-directed mutagenesis data presented here are consistent with a mechanism where the two different reactions of AknOx are catalyzed in the same active site but by different active site residues. Tyr-450 is responsible for proton removal from the C-4 hydroxyl group in the first reaction, the oxidation of rhodinose to cinerulose A. Tyr-378 acts as a catalytic base involved in proton abstraction from C3 of cinerulose A in the second reaction, for formation L-aculose. Replacement of this residue, however, does not impair the conversion of rhodinose to cinerulose A.
Collapse
Affiliation(s)
- Igor Alexeev
- *Department of Biochemistry and Food Chemistry, University of Turku, FIN-20014, Turku, Finland; and
| | - Azmiri Sultana
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Pekka Mäntsälä
- *Department of Biochemistry and Food Chemistry, University of Turku, FIN-20014, Turku, Finland; and
| | - Jarmo Niemi
- *Department of Biochemistry and Food Chemistry, University of Turku, FIN-20014, Turku, Finland; and
- To whom correspondence may be addressed. E-mail: or
| | - Gunter Schneider
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 77 Stockholm, Sweden
- To whom correspondence may be addressed. E-mail: or
| |
Collapse
|
42
|
Abstract
The twin-arginine translocation (Tat) pathway is responsible for the export of folded proteins across the cytoplasmic membrane of bacteria. Substrates for the Tat pathway include redox enzymes requiring cofactor insertion in the cytoplasm, multimeric proteins that have to assemble into a complex prior to export, certain membrane proteins, and proteins whose folding is incompatible with Sec export. These proteins are involved in a diverse range of cellular activities including anaerobic metabolism, cell envelope biogenesis, metal acquisition and detoxification, and virulence. The Escherichia coli translocase consists of the TatA, TatB, and TatC proteins, but little is known about the precise sequence of events that leads to protein translocation, the energetic requirements, or the mechanism that prevents the export of misfolded proteins. Owing to the unique characteristics of the pathway, it holds promise for biotechnological applications.
Collapse
Affiliation(s)
- Philip A Lee
- Institute for Cellular and Molecular Biology, Department of Chemical Engineering, University of Texas, Austin, Texas 78712-0231, USA.
| | | | | |
Collapse
|
43
|
Widdick DA, Dilks K, Chandra G, Bottrill A, Naldrett M, Pohlschröder M, Palmer T. The twin-arginine translocation pathway is a major route of protein export in Streptomyces coelicolor. Proc Natl Acad Sci U S A 2006; 103:17927-32. [PMID: 17093047 PMCID: PMC1693849 DOI: 10.1073/pnas.0607025103] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The twin-arginine translocation (Tat) pathway is a protein transport system for the export of folded proteins. Substrate proteins are targeted to the Tat translocase by N-terminal signal peptides harboring a distinctive R-R-x-Phi-Phi "twin-arginine" amino acid motif. Using a combination of proteomic techniques, the protein contents from the cell wall of the model Gram-positive bacterium Streptomyces coelicolor were identified and compared with that of mutant strains defective in Tat transport. The proteomic experiments pointed to 43 potentially Tat-dependent extracellular proteins. Of these, 25 were verified as bearing bona fide Tat-targeting signal peptides after independent screening with a facile, rapid, and sensitive reporter assay. The identified Tat substrates, among others, include polymer-degrading enzymes, phosphatases, and binding proteins as well as enzymes involved in secondary metabolism. Moreover, in addition to predicted extracellular substrates, putative lipoproteins were shown to be Tat-dependent. This work provides strong experimental evidence that the Tat system is used as a major general export pathway in Streptomyces.
Collapse
Affiliation(s)
- David A. Widdick
- Departments of *Molecular Microbiology and
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom; and
| | - Kieran Dilks
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104
| | | | - Andrew Bottrill
- Biological Chemistry, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Mike Naldrett
- Biological Chemistry, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | | | - Tracy Palmer
- Departments of *Molecular Microbiology and
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
44
|
Whittaker MM, Whittaker JW. Streptomyces coelicolor oxidase (SCO2837p): A new free radical metalloenzyme secreted by Streptomyces coelicolor A3(2). Arch Biochem Biophys 2006; 452:108-18. [PMID: 16884677 DOI: 10.1016/j.abb.2006.06.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2006] [Revised: 06/10/2006] [Accepted: 06/20/2006] [Indexed: 11/23/2022]
Abstract
The SCO2837 open-reading frame is located within the conserved central core region of the Streptomyces coelicolor A3(2) genome, which contains genes required for essential cellular functions. SCO2837 protein (SCO2837p) expressed by Pichia pastoris is a copper metalloenzyme, catalyzing the oxidation of simple alcohols to aldehydes and reduction of dioxygen to hydrogen peroxide. Distinct optical absorption spectra are observed for oxidized and one-electron reduced holoenzyme, and a free radical EPR signal is present in the oxidized apoprotein, characteristic of the Tyr-Cys redox cofactor previously reported for fungal secretory radical copper oxidases, galactose oxidase and glyoxal oxidase, with which it shares weak sequence similarity. SCO2837p was detected in the growth medium of both S. coelicolor and a recombinant expression host (Streptomyces lividans TK64) by Western blotting, with the expression level dependent on the nature of the carbon source. This represents the first characterized example of a prokaryotic radical copper oxidase.
Collapse
Affiliation(s)
- Mei M Whittaker
- Department of Environmental and Biomolecular Systems, Oregon Health and Science University, Beaverton, OR 97006-8291, USA
| | | |
Collapse
|
45
|
Geukens N, Rao C V S, Mellado RP, Frederix F, Reekmans G, De Keersmaeker S, Vrancken K, Bonroy K, Van Mellaert L, Lammertyn E, Anné J. Surface plasmon resonance-based interaction studies reveal competition of Streptomyces lividans type I signal peptidases for binding preproteins. Microbiology (Reading) 2006; 152:1441-1450. [PMID: 16622060 DOI: 10.1099/mic.0.28734-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Type I signal peptidases (SPases) are responsible for the cleavage of signal peptides from secretory proteins.Streptomyces lividanscontains four different SPases, denoted SipW, SipX, SipY and SipZ, having at least some differences in their substrate specificity. In this reportin vitropreprotein binding/processing and protein secretion in single SPase mutants was determined to gain more insight into the substrate specificity of the different SPases and the underlying molecular basis. Results indicated that preproteins do not preferentially bind to a particular SPase, suggesting SPase competition for binding preproteins. This observation, together with the fact that each SPase could process each preprotein tested with a similar efficiency in anin vitroassay, suggested that there is no real specificity in substrate binding and processing, and that they are all actively involved in preprotein processingin vivo. Although this seems to be the case for some proteins tested, high-level secretion of others was clearly dependent on only one particular SPase demonstrating clear differences in substrate preference at thein vivoprocessing level. Hence, these results strongly suggest that there are additional factors other than the cleavage requirements of the enzymes that strongly affect the substrate preference of SPasesin vivo.
Collapse
Affiliation(s)
- Nick Geukens
- Laboratory of Bacteriology, Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - Smitha Rao C V
- Laboratory of Bacteriology, Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - Rafael P Mellado
- Department of Microbial Biotechnology, Centro Nacional de Biotecnologia, Campus de la Universidad Autonoma, Cantoblanco, 28049 Madrid, Spain
| | | | | | - Sophie De Keersmaeker
- Laboratory of Bacteriology, Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - Kristof Vrancken
- Laboratory of Bacteriology, Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | | | - Lieve Van Mellaert
- Laboratory of Bacteriology, Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - Elke Lammertyn
- Laboratory of Bacteriology, Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - Jozef Anné
- Laboratory of Bacteriology, Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| |
Collapse
|
46
|
Posey JE, Shinnick TM, Quinn FD. Characterization of the twin-arginine translocase secretion system of Mycobacterium smegmatis. J Bacteriol 2006; 188:1332-40. [PMID: 16452415 PMCID: PMC1367255 DOI: 10.1128/jb.188.4.1332-1340.2006] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The twin-arginine translocation (TAT) system secretes fully folded proteins that contain a twin-arginine motif within their signal sequence across the cytoplasmic membrane in bacteria. Using a green fluorescent protein fused with a TAT signal sequence, we demonstrated that Mycobacterium smegmatis contains a TAT system. By inactivating individual genes, we showed that three genes (tatA, tatB, and tatC) are required for a functional TAT system in M. smegmatis. The tat mutants exhibited a decreased growth rate and altered colony morphology compared to the parent strain. Comparison of the secreted proteins of the deltatatC and parent strain by two-dimensional polyacrylamide gel electrophoresis revealed an alteration in the secretion of at least five proteins, and one of the major TAT-dependent secreted proteins was identified as beta-lactamase (BlaS). The genome of M. smegmatis was analyzed with the TATFIND program, and 49 putative TAT substrates were identified, including the succinate transporter DctP. Because disruption of the TAT secretion system has a direct effect on the physiology of M. smegmatis and homologs of the TAT proteins are also present in the genome of Mycobacterium tuberculosis, the TAT secretion system or its substrates may be good candidates for drug or vaccine development.
Collapse
Affiliation(s)
- James E Posey
- Division of TB Elimination, National Center for HIV, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, USA.
| | | | | |
Collapse
|
47
|
Abstract
Tyrosinases are nearly ubiquitously distributed in all domains of life. They are essential for pigmentation and are important factors in wound healing and primary immune response. Their active site is characterized by a pair of antiferromagnetically coupled copper ions, CuA and CuB, which are coordinated by six histidine residues. Such a "type 3 copper centre" is the common feature of tyrosinases, catecholoxidases and haemocycanins. It is also one of several other copper types found in the multi-copper oxidases (ascorbate oxidase, laccase). The copper pair of tyrosinases binds one molecule of atmospheric oxygen to catalyse two different kinds of enzymatic reactions: (1) the ortho-hydroxylation of monophenols (cresolase activity) and (2) the oxidation of o-diphenols to o-diquinones (catecholase activity). The best-known function is the formation of melanins from L-tyrosine via L-dihydroxyphenylalanine (L-dopa). The complicated hydroxylation mechanism at the active centre is still not completely understood, because nothing is known about their tertiary structure. One main reason for this deficit is that hitherto tyrosinases from eukaryotic sources could not be isolated in sufficient quantities and purities for detailed structural studies. This is not the case for prokaryotic tyrosinases from different Streptomyces species, having been intensively characterized genetically and spectroscopically for decades. The Streptomyces tyrosinases are non-modified monomeric proteins with a low molecular mass of ca. 30kDa. They are secreted to the surrounding medium, where they are involved in extracellular melanin production. In the species Streptomyces, the tyrosinase gene is part of the melC operon. Next to the tyrosinase gene (melC2), this operon contains an additional ORF called melC1, which is essential for the correct expression of the enzyme. This review summarizes the present knowledge of bacterial tyrosinases, which are promising models in order to get more insights in structure, enzymatic reactions and functions of "type 3 copper" proteins in general.
Collapse
Affiliation(s)
- Harald Claus
- Institute for Microbiology and Wine Research, University of Mainz, Becherweg 15, D-55099 Mainz, Germany.
| | | |
Collapse
|
48
|
Kimura Y, Saiga H, Hamanaka H, Matoba H. Myxococcus xanthus twin-arginine translocation system is important for growth and development. Arch Microbiol 2005; 184:387-96. [PMID: 16331440 DOI: 10.1007/s00203-005-0067-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2005] [Revised: 09/08/2005] [Accepted: 11/07/2005] [Indexed: 11/25/2022]
Abstract
The twin-arginine translocation (Tat) system serves to export fully folded proteins across the cytoplasmic membrane. In many bacteria, three major components, TatA, TatB and TatC, are the functionally essential constituents of the Tat system. A Myxococcus xanthus tatB-tatC deletion mutant could aggregate and form mounds, but was unable to form fruiting bodies under nutritionally limiting conditions. When tatB-tatC mutant vegetative cells were cultured with 0.5 M glycerol, the cell morphology changed to spore-like spherical cells, but the spores were not resistant to heat and sonication treatments. In contrast to the wild-type strain, the tatB-tatC mutant also showed a decreased cell growth rate and a lower maximum cell concentration. These results suggest possibility that the Tat system may contribute to export of various important proteins for development and growth for M. xanthus.
Collapse
Affiliation(s)
- Yoshio Kimura
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, 761-0795, Kagawa, Miki-cho, Japan.
| | | | | | | |
Collapse
|
49
|
McDonough JA, Hacker KE, Flores AR, Pavelka MS, Braunstein M. The twin-arginine translocation pathway of Mycobacterium smegmatis is functional and required for the export of mycobacterial beta-lactamases. J Bacteriol 2005; 187:7667-79. [PMID: 16267291 PMCID: PMC1280313 DOI: 10.1128/jb.187.22.7667-7679.2005] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The twin-arginine translocation (Tat) pathway exports folded proteins across the bacterial cytoplasmic membrane and is responsible for the proper extracytoplasmic localization of proteins involved in a variety of cellular functions, including pathogenesis. The Mycobacterium tuberculosis and Mycobacterium smegmatis genomes contain open reading frames with homology to components of the Tat export system (TatABC) as well as potential Tat-exported proteins possessing N-terminal signal sequences with the characteristic twin-arginine motif. Due to the importance of exported virulence factors in the pathogenesis of M. tuberculosis and the limited understanding of mycobacterial protein export systems, we sought to determine the functional nature of the Tat export pathway in mycobacteria. Here we describe phenotypic analyses of DeltatatA and DeltatatC deletion mutants of M. smegmatis, which demonstrated that tatA and tatC encode components of a functional Tat system capable of exporting characteristic Tat substrates. Both mutants displayed a growth defect on agar medium and hypersensitivity to sodium dodecyl sulfate. The mutants were also defective in the export of active beta-lactamases of M. smegmatis (BlaS) and M. tuberculosis (BlaC), both of which possess twin-arginine signal sequences. The Tat-dependent nature of BlaC was further revealed by mutation of the twin-arginine motif. Finally, we demonstrated that replacement of the native signal sequence of BlaC with the predicted Tat signal sequences of M. tuberculosis phospholipase C proteins (PlcA and PlcB) resulted in the Tat-dependent export of an enzymatically active 'BlaC. Thus, 'BlaC can be used as a genetic reporter for Tat-dependent export in mycobacteria.
Collapse
Affiliation(s)
- Justin A McDonough
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill,27599-7290, USA
| | | | | | | | | |
Collapse
|
50
|
Li H, Jacques PÉ, Ghinet MG, Brzezinski R, Morosoli R. Determining the functionality of putative Tat-dependent signal peptides in Streptomyces coelicolor A3(2) by using two different reporter proteins. MICROBIOLOGY-SGM 2005; 151:2189-2198. [PMID: 16000709 DOI: 10.1099/mic.0.27893-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The availability of the complete genome sequence of Streptomyces coelicolor A3(2) has allowed the prediction of the Tat-exported proteins of this Gram-positive bacterium. To predict secreted proteins that potentially use the Tat pathway for their secretion, the TATscan program was developed. This program identified 129 putative Tat substrates. To test the validity of these predictions, nine signal sequences, including three which were not identified by existing prediction programs, were selected and fused to the structural xlnC gene in place of its native signal sequence. Xylanase C (XlnC) is a cofactorless enzyme which is secreted in an active form exclusively through the Tat-dependent pathway by Streptomyces lividans. Among the nine chosen signal sequences, seven were shown to be Tat-dependent, one was Sec-dependent and one was probably not a signal sequence. The seven Tat-dependent signal sequences comprised two lipoprotein signal sequences and three sequences not predicted by previous programs. Pulse-chase experiments showed that the precursor-processing rate in the seven transformants was generally slower than wild-type XlnC, indicating that these signal peptides were not equivalent in secretion. This suggested that there might be some incompatibility between the signal peptide and the reporter protein fused to it. To test this possibility, the signal peptides were fused to a cofactorless chitosanase (SCO0677), a Tat-dependent protein validated in this work but structurally different from XlnC. With some fluctuations, similar results were obtained with this enzyme, indicating that the type of folding of the reporter protein had little effect on the Tat secretion process.
Collapse
Affiliation(s)
- Haiming Li
- INRS-Institut Armand-Frappier, Université du Québec, 531 blvd des Prairies, Ville de Laval, Québec, Canada H7V 1B7
| | - Pierre-Étienne Jacques
- Centre d'étude et de Valorization de la Diversité Microbienne, Département de biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada J1K 2R1
| | - Mariana Gabriela Ghinet
- Centre d'étude et de Valorization de la Diversité Microbienne, Département de biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada J1K 2R1
| | - Ryszard Brzezinski
- Centre d'étude et de Valorization de la Diversité Microbienne, Département de biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada J1K 2R1
| | - Rolf Morosoli
- INRS-Institut Armand-Frappier, Université du Québec, 531 blvd des Prairies, Ville de Laval, Québec, Canada H7V 1B7
| |
Collapse
|