1
|
Li L, Yang B, Wang J, Wei Y, Xiang B, Liu Y, Wu P, Li W, Wang Y, Zhao X, Qin J, Liu M, Liu R, Ma G, Fu T, Wang M, Liu B. CobB-mediated deacetylation of the chaperone CesA regulates Escherichia coli O157:H7 virulence. Gut Microbes 2024; 16:2331435. [PMID: 38502202 PMCID: PMC10956630 DOI: 10.1080/19490976.2024.2331435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 03/13/2024] [Indexed: 03/21/2024] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is a common food-borne pathogen that can cause acute diseases. Lysine acetylation is a post-translational modification (PTM) that occurs in various prokaryotes and is regulated by CobB, the only deacetylase found in bacteria. Here, we demonstrated that CobB plays an important role in the virulence of EHEC O157:H7 and that deletion of cobB significantly decreased the intestinal colonization ability of bacteria. Using acetylation proteomic studies, we systematically identified several proteins that could be regulated by CobB in EHEC O157:H7. Among these CobB substrates, we found that acetylation at the K44 site of CesA, a chaperone for the type-III secretion system (T3SS) translocator protein EspA, weakens its binding to EspA, thereby reducing the stability of this virulence factor; this PTM ultimately attenuating the virulence of EHEC O157:H7. Furthermore, we showed that deacetylation of the K44 site, which is deacetylated by CobB, promotes the interaction between CesA and EspA, thereby increasing bacterial virulence in vitro and in animal experiments. In summary, we showed that acetylation influences the virulence of EHEC O157:H7, and uncovered the mechanism by which CobB contributes to bacterial virulence based on the regulation of CesA deacetylation.
Collapse
Affiliation(s)
- Linxing Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
| | - Bin Yang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
| | - Jing Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
| | - Yi Wei
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
| | - Binbin Xiang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
| | - Yutao Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
| | - Pan Wu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
| | - Wanwu Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
| | - Yanling Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
| | - Xinyu Zhao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
| | - Jingliang Qin
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
| | - Miaomiao Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
| | - Ruiying Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
| | - Guozhen Ma
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
| | - Tian Fu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
| | - Min Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
- Nankai International Advanced Research Institute, Nankai University, Shenzhen, China
| | - Bin Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
- Nankai International Advanced Research Institute, Nankai University, Shenzhen, China
| |
Collapse
|
2
|
Gershberg J, Braverman D, Sal-Man N. Transmembrane domains of type III-secreted proteins affect bacterial-host interactions in enteropathogenic E. coli. Virulence 2021; 12:902-917. [PMID: 33729090 PMCID: PMC7993127 DOI: 10.1080/21505594.2021.1898777] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Many bacterial pathogens utilize a specialized secretion system, termed type III secretion system (T3SS), to translocate effector proteins into host cells and establish bacterial infection. The T3SS is anchored within the bacterial membranes and contains a long needle/filament that extends toward the host-cell and forms, at its distal end, a pore complex within the host membrane. The T3SS pore complex consists of two bacterial proteins, termed SctB and SctE, which have conflicting targeting indications; a signal sequence that targets to secretion to the extracellular environment via the T3SS, and transmembrane domains (TMDs) that target to membrane localization. In this study, we investigate whether the TMD sequences of SctB and SctE have special features that differentiate them from classical TMDs and allow them to escape bacterial membrane integration. For this purpose, we exchanged the SctB and SctE native TMDs for alternative hydrophobic sequences and found that the TMD sequences of SctB and SctE dictate membrane destination (bacterial versus host membrane). Moreover, we examined the role of the SctB TMD sequence in the activity of the full-length protein, post secretion, and found that the TMD does not serve only as a hydrophobic segment, but is also involved in the ability of the protein to translocate itself and other proteins into and across the host cell membrane.
Collapse
Affiliation(s)
- Jenia Gershberg
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Dor Braverman
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Neta Sal-Man
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
3
|
Hotinger JA, Pendergrass HA, May AE. Molecular Targets and Strategies for Inhibition of the Bacterial Type III Secretion System (T3SS); Inhibitors Directly Binding to T3SS Components. Biomolecules 2021; 11:biom11020316. [PMID: 33669653 PMCID: PMC7922566 DOI: 10.3390/biom11020316] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 01/01/2023] Open
Abstract
The type III secretion system (T3SS) is a virulence apparatus used by many Gram-negative pathogenic bacteria to cause infections. Pathogens utilizing a T3SS are responsible for millions of infections yearly. Since many T3SS knockout strains are incapable of causing systemic infection, the T3SS has emerged as an attractive anti-virulence target for therapeutic design. The T3SS is a multiprotein molecular syringe that enables pathogens to inject effector proteins into host cells. These effectors modify host cell mechanisms in a variety of ways beneficial to the pathogen. Due to the T3SS’s complex nature, there are numerous ways in which it can be targeted. This review will be focused on the direct targeting of components of the T3SS, including the needle, translocon, basal body, sorting platform, and effector proteins. Inhibitors will be considered a direct inhibitor if they have a binding partner that is a T3SS component, regardless of the inhibitory effect being structural or functional.
Collapse
|
4
|
Cryoelectron-microscopy structure of the enteropathogenic Escherichia coli type III secretion system EspA filament. Proc Natl Acad Sci U S A 2021; 118:2022826118. [PMID: 33397726 PMCID: PMC7812819 DOI: 10.1073/pnas.2022826118] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic Escherichia coli (EHEC) utilize a macromolecular type III secretion system (T3SS) to inject effector proteins into eukaryotic cells. This apparatus spans the inner and outer bacterial membranes and includes a helical needle protruding into the extracellular space. Thus far observed only in EPEC and EHEC and not found in other pathogenic Gram-negative bacteria that have a T3SS is an additional helical filament made by the EspA protein that forms a long extension to the needle, mediating both attachment to eukaryotic cells and transport of effector proteins through the intestinal mucus layer. Here, we present the structure of the EspA filament from EPEC at 3.4 Å resolution. The structure reveals that the EspA filament is a right-handed 1-start helical assembly with a conserved lumen architecture with respect to the needle to ensure the seamless transport of unfolded cargos en route to the target cell. This functional conservation is despite the fact that there is little apparent overall conservation at the level of sequence or structure with the needle. We also unveil the molecular details of the immunodominant EspA epitope that can now be exploited for the rational design of epitope display systems.
Collapse
|
5
|
A Reporter System for Fast Quantitative Monitoring of Type 3 Protein Secretion in Enteropathogenic E. coli. Microorganisms 2020; 8:microorganisms8111786. [PMID: 33202599 PMCID: PMC7696366 DOI: 10.3390/microorganisms8111786] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 12/16/2022] Open
Abstract
The type 3 secretion system is essential for pathogenesis of several human and animal Gram-negative bacterial pathogens. The T3SS comprises a transmembrane injectisome, providing a conduit from the bacterial cytoplasm to the host cell cytoplasm for the direct delivery of effectors (including toxins). Functional studies of T3SS commonly monitor the extracellular secretion of proteins by SDS-PAGE and western blot analysis, which are slow and semi-quantitative in nature. Here, we describe an enzymatic reporter-based quantitative and rapid in vivo assay for T3SS secretion studies in enteropathogenic E. coli (EPEC). The assay monitors the secretion of the fusion protein SctA-PhoA through the injectisome based on a colorimetric assay that quantifies the activity of alkaline phosphatase. We validated the usage of this reporter system by following the secretion in the absence of various injectisome components, including domains of the gatekeeper essential for T3SS function. This platform can now be used for the isolation of mutations, functional analysis and anti-virulence compound screening.
Collapse
|
6
|
Serapio-Palacios A, Finlay BB. Dynamics of expression, secretion and translocation of type III effectors during enteropathogenic Escherichia coli infection. Curr Opin Microbiol 2020; 54:67-76. [PMID: 32058947 DOI: 10.1016/j.mib.2019.12.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 12/30/2019] [Indexed: 12/14/2022]
Abstract
Enteropathogenic Escherichia coli (EPEC) is an important cause of infant diarrhea and mortality worldwide. The locus of enterocyte effacement (LEE) pathogenicity island in the EPEC genome encodes a type 3 secretion system (T3SS). This nanomachine directly injects a sophisticated arsenal of effectors into host cells, which is critical for EPEC pathogenesis. To colonize the gut mucosa, EPEC alters its gene expression in response to host environmental signals. Regulation of the LEE has been studied extensively, revealing key mechanisms of transcriptional regulation, and more recently at the posttranscriptional and posttranslational levels. Moreover, the T3SS assembly and secretion is a highly coordinated process that ensures hierarchical delivery of effectors upon cell contact. EPEC effectors and virulence factors not only manipulate host cellular processes, but also modulate effector translocation by controlling T3SS formation. In this review, we focus on the regulation of EPEC virulence genes and modulation of effector secretion and translocation.
Collapse
Affiliation(s)
| | - Barton Brett Finlay
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada; Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
7
|
Slater SL, Sågfors AM, Pollard DJ, Ruano-Gallego D, Frankel G. The Type III Secretion System of Pathogenic Escherichia coli. Curr Top Microbiol Immunol 2019; 416:51-72. [PMID: 30088147 DOI: 10.1007/82_2018_116] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Infection with enteropathogenic and enterohaemorrhagic Escherichia coli (EPEC and EHEC), enteroinvasive E. coli (EIEC) and Shigella relies on the elaboration of a type III secretion system (T3SS). Few strains also encode a second T3SS, named ETT2. Through the integration of coordinated intracellular and extracellular cues, the modular T3SS is assembled within the bacterial cell wall, as well as the plasma membrane of the host cell. As such, the T3SS serves as a conduit, allowing the chaperone-regulated translocation of effector proteins directly into the host cytosol to subvert eukaryotic cell processes. Recent technological advances revealed high structural resolution of the T3SS apparatus and how it could be exploited to treat enteric disease. This chapter summarises the current knowledge of the structure and function of the E. coli T3SSs.
Collapse
Affiliation(s)
- Sabrina L Slater
- Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Agnes M Sågfors
- Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Dominic J Pollard
- Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - David Ruano-Gallego
- Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Gad Frankel
- Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK.
| |
Collapse
|
8
|
Pal RR, Baidya AK, Mamou G, Bhattacharya S, Socol Y, Kobi S, Katsowich N, Ben-Yehuda S, Rosenshine I. Pathogenic E. coli Extracts Nutrients from Infected Host Cells Utilizing Injectisome Components. Cell 2019; 177:683-696.e18. [DOI: 10.1016/j.cell.2019.02.022] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 09/21/2018] [Accepted: 02/13/2019] [Indexed: 12/18/2022]
|
9
|
Portaliou AG, Tsolis KC, Loos MS, Balabanidou V, Rayo J, Tsirigotaki A, Crepin VF, Frankel G, Kalodimos CG, Karamanou S, Economou A. Hierarchical protein targeting and secretion is controlled by an affinity switch in the type III secretion system of enteropathogenic Escherichia coli. EMBO J 2017; 36:3517-3531. [PMID: 29109154 PMCID: PMC5709732 DOI: 10.15252/embj.201797515] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 09/05/2017] [Accepted: 10/11/2017] [Indexed: 11/09/2022] Open
Abstract
Type III secretion (T3S), a protein export pathway common to Gram-negative pathogens, comprises a trans-envelope syringe, the injectisome, with a cytoplasm-facing translocase channel. Exported substrates are chaperone-delivered to the translocase, EscV in enteropathogenic Escherichia coli, and cross it in strict hierarchical manner, for example, first "translocators", then "effectors". We dissected T3S substrate targeting and hierarchical switching by reconstituting them in vitro using inverted inner membrane vesicles. EscV recruits and conformationally activates the tightly membrane-associated pseudo-effector SepL and its chaperone SepD. This renders SepL a high-affinity receptor for translocator/chaperone pairs, recognizing specific chaperone signals. In a second, SepD-coupled step, translocators docked on SepL become secreted. During translocator secretion, SepL/SepD suppress effector/chaperone binding to EscV and prevent premature effector secretion. Disengagement of the SepL/SepD switch directs EscV to dedicated effector export. These findings advance molecular understanding of T3S and reveal a novel mechanism for hierarchical trafficking regulation in protein secretion channels.
Collapse
Affiliation(s)
- Athina G Portaliou
- Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Konstantinos C Tsolis
- Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Maria S Loos
- Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Vassileia Balabanidou
- Institute of Molecular Biology and Biotechnology, FORTH (Foundation of Research and Technology), University of Crete, Heraklion, Greece
| | - Josep Rayo
- Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Alexandra Tsirigotaki
- Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Valerie F Crepin
- Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Gad Frankel
- Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | | | - Spyridoula Karamanou
- Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Anastassios Economou
- Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| |
Collapse
|
10
|
MacDonald J, Miletic S, Gaildry T, Chin-Fatt A, Menassa R. Co-expression with the Type 3 Secretion Chaperone CesT from Enterohemorrhagic E. coli Increases Accumulation of Recombinant Tir in Plant Chloroplasts. FRONTIERS IN PLANT SCIENCE 2017; 8:283. [PMID: 28321227 PMCID: PMC5337511 DOI: 10.3389/fpls.2017.00283] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 02/16/2017] [Indexed: 05/29/2023]
Abstract
Type 3 secretion systems (T3SSs) are utilized by pathogenic Escherichia coli to infect their hosts and many proteins from these systems are affected by chaperones specific to T3SS-containing bacteria. Toward developing a recombinant vaccine against enterohaemorrhagic E. coli (EHEC), we expressed recombinant T3SS and related proteins from predominant EHEC serotypes in Nicotiana chloroplasts. Nicotiana benthamiana were transiently transformed to express chloroplast-targeted Tir, NleA, and EspD from the EHEC serotype O157:H7; a fusion of EspA proteins from serotypes O157:H7 and O26:H11; and a fusion of epitopes of Tir (Tir-ep) from serotypes O157:H7, O26:H11, O45:H2, and O111:H8. C-terminal GFP reporter fusion constructs were also developed and transiently expressed to confirm subcellular localization and quantify relative expression levels in situ. Recombinant proteins were co-expressed with chaperones specific to each T3SS protein with the goal of increasing their accumulation in the chloroplast. We found that co-expression with the chloroplast-targeted chaperone CesT significantly increases accumulation of recombinant Tir when the latter is either transiently expressed in the nucleus and targeted to the chloroplast of N. benthamiana or stably expressed in transplastomic Nicotiana tabacum. CesT also helped maintain higher levels of Tir:GFP fusion protein over time both in vivo and ex vivo, indicating that the favorable effect of CesT on accumulation of Tir is not specific to a single time point or to fresh material. By contrast, T3SS chaperones CesT, CesAB, CesD, and CesD2 did not increase accumulation of NleA:GFP, EspA:GFP, or EspD:GFP, which suggests dissimilar functioning of these chaperone-substrate combinations. CesT did not increase accumulation of Tir-ep:GFP, which may be due to the absence of the CesT binding domain from this fusion protein. The fusion to GFP improved accumulation of Tir-ep relative to the unfused protein, but not for the other recombinant proteins. These results emphasize the importance of native chaperones and stabilizing fusions as potential tools for the production of higher levels of recombinant proteins in plants; and may have implications for understanding interactions between T3SS chaperones and their substrates. In particular, our findings highlight the potential of T3SS chaperones to increase accumulation of recombinant T3SS proteins in heterologous systems.
Collapse
Affiliation(s)
- Jacqueline MacDonald
- London Research and Development Centre, Agriculture and Agri-Food Canada, LondonON, Canada
| | - Sean Miletic
- London Research and Development Centre, Agriculture and Agri-Food Canada, LondonON, Canada
- Department of Biology, University of Western Ontario, LondonON, Canada
| | - Typhanie Gaildry
- London Research and Development Centre, Agriculture and Agri-Food Canada, LondonON, Canada
- Department of Biology, Université de BordeauxTalence, France
| | - Adam Chin-Fatt
- London Research and Development Centre, Agriculture and Agri-Food Canada, LondonON, Canada
- Department of Biology, University of Western Ontario, LondonON, Canada
| | - Rima Menassa
- London Research and Development Centre, Agriculture and Agri-Food Canada, LondonON, Canada
| |
Collapse
|
11
|
Functional Characterization of EscK (Orf4), a Sorting Platform Component of the Enteropathogenic Escherichia coli Injectisome. J Bacteriol 2016; 199:JB.00538-16. [PMID: 27795324 DOI: 10.1128/jb.00538-16] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/03/2016] [Indexed: 02/07/2023] Open
Abstract
The type III secretion system (T3SS) is a supramolecular machine used by many bacterial pathogens to translocate effector proteins directly into the eukaryotic host cell cytoplasm. Enteropathogenic Escherichia coli (EPEC) is an important cause of infantile diarrheal disease in underdeveloped countries. EPEC virulence relies on a T3SS encoded within a chromosomal pathogenicity island known as the locus of enterocyte effacement (LEE). In this work, we pursued the functional characterization of the LEE-encoded protein EscK (previously known as Orf4). We provide evidence indicating that EscK is crucial for efficient T3S and belongs to the SctK (OrgA/YscK/MxiK) protein family, whose members have been implicated in the formation of a sorting platform for secretion of T3S substrates. Bacterial fractionation studies showed that EscK localizes to the inner membrane independently of the presence of any other T3SS component. Combining yeast two-hybrid screening and pulldown assays, we identified an interaction between EscK and the C-ring/sorting platform component EscQ. Site-directed mutagenesis of conserved residues revealed amino acids that are critical for EscK function and for its interaction with EscQ. In addition, we found that T3S substrate overproduction is capable of compensating for the absence of EscK. Overall, our data suggest that EscK is a structural component of the EPEC T3SS sorting platform, playing a central role in the recruitment of T3S substrates for boosting the efficiency of the protein translocation process. IMPORTANCE The type III secretion system (T3SS) is an essential virulence determinant for enteropathogenic Escherichia coli (EPEC) colonization of intestinal epithelial cells. Multiple EPEC effector proteins are injected via the T3SS into enterocyte cells, leading to diarrheal disease. The T3SS is encoded within a genomic pathogenicity island termed the locus of enterocyte effacement (LEE). Here we unravel the function of EscK, a previously uncharacterized LEE-encoded protein. We show that EscK is central for T3SS biogenesis and function. EscK forms a protein complex with EscQ, the main component of the cytoplasmic sorting platform, serving as a docking site for T3S substrates. Our results provide a comprehensive functional analysis of an understudied component of T3SSs.
Collapse
|
12
|
Gaytán MO, Martínez-Santos VI, Soto E, González-Pedrajo B. Type Three Secretion System in Attaching and Effacing Pathogens. Front Cell Infect Microbiol 2016; 6:129. [PMID: 27818950 PMCID: PMC5073101 DOI: 10.3389/fcimb.2016.00129] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 09/27/2016] [Indexed: 02/06/2023] Open
Abstract
Enteropathogenic Escherichia coli and enterohemorrhagic E. coli are diarrheagenic bacterial human pathogens that cause severe gastroenteritis. These enteric pathotypes, together with the mouse pathogen Citrobacter rodentium, belong to the family of attaching and effacing pathogens that form a distinctive histological lesion in the intestinal epithelium. The virulence of these bacteria depends on a type III secretion system (T3SS), which mediates the translocation of effector proteins from the bacterial cytosol into the infected cells. The core architecture of the T3SS consists of a multi-ring basal body embedded in the bacterial membranes, a periplasmic inner rod, a transmembrane export apparatus in the inner membrane, and cytosolic components including an ATPase complex and the C-ring. In addition, two distinct hollow appendages are assembled on the extracellular face of the basal body creating a channel for protein secretion: an approximately 23 nm needle, and a filament that extends up to 600 nm. This filamentous structure allows these pathogens to get through the host cells mucus barrier. Upon contact with the target cell, a translocation pore is assembled in the host membrane through which the effector proteins are injected. Assembly of the T3SS is strictly regulated to ensure proper timing of substrate secretion. The different type III substrates coexist in the bacterial cytoplasm, and their hierarchical secretion is determined by specialized chaperones in coordination with two molecular switches and the so-called sorting platform. In this review, we present recent advances in the understanding of the T3SS in attaching and effacing pathogens.
Collapse
Affiliation(s)
- Meztlli O Gaytán
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México Ciudad de México, Mexico
| | - Verónica I Martínez-Santos
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México Ciudad de México, Mexico
| | - Eduardo Soto
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México Ciudad de México, Mexico
| | - Bertha González-Pedrajo
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México Ciudad de México, Mexico
| |
Collapse
|
13
|
Probiotic Enterococcus faecalis Symbioflor® down regulates virulence genes of EHEC in vitro and decrease pathogenicity in a Caenorhabditis elegans model. Arch Microbiol 2016; 199:203-213. [DOI: 10.1007/s00203-016-1291-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 08/30/2016] [Accepted: 09/12/2016] [Indexed: 11/30/2022]
|
14
|
The Locus of Enterocyte Effacement and Associated Virulence Factors of Enterohemorrhagic Escherichia coli. Microbiol Spectr 2016; 2:EHEC-0007-2013. [PMID: 26104209 DOI: 10.1128/microbiolspec.ehec-0007-2013] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A subset of Shiga toxin-producing Escherichia coli strains, termed enterohemorrhagic E. coli (EHEC), is defined in part by the ability to produce attaching and effacing (A/E) lesions on intestinal epithelia. Such lesions are characterized by intimate bacterial attachment to the apical surface of enterocytes, cytoskeletal rearrangements beneath adherent bacteria, and destruction of proximal microvilli. A/E lesion formation requires the locus of enterocyte effacement (LEE), which encodes a Type III secretion system that injects bacterial proteins into host cells. The translocated proteins, termed effectors, subvert a plethora of cellular pathways to the benefit of the pathogen, for example, by recruiting cytoskeletal proteins, disrupting epithelial barrier integrity, and interfering with the induction of inflammation, phagocytosis, and apoptosis. The LEE and selected effectors play pivotal roles in intestinal persistence and virulence of EHEC, and it is becoming clear that effectors may act in redundant, synergistic, and antagonistic ways during infection. Vaccines that target the function of the Type III secretion system limit colonization of reservoir hosts by EHEC and may thus aid control of zoonotic infections. Here we review the features and functions of the LEE-encoded Type III secretion system and associated effectors of E. coli O157:H7 and other Shiga toxin-producing E. coli strains.
Collapse
|
15
|
Portaliou AG, Tsolis KC, Loos MS, Zorzini V, Economou A. Type III Secretion: Building and Operating a Remarkable Nanomachine. Trends Biochem Sci 2016; 41:175-189. [DOI: 10.1016/j.tibs.2015.09.005] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 09/16/2015] [Accepted: 09/18/2015] [Indexed: 12/21/2022]
|
16
|
Abstract
Enteropathogenic Escherichia coli (EPEC) strains induce morphological changes in infected epithelial cells. The resulting attaching and effacing (A/E) lesion is characterized by intimate bacterial adherence to epithelial cells, with microvillus destruction, cytoskeletal rearrangement, and aggregation of host cytoskeletal proteins. This review presents an overview of the adhesion mechanisms used for the colonization of the human gastrointestinal tract by EPEC. The mechanisms underlying EPEC adhesion, prior to and during the formation of the A/E lesion, and the host cytosolic responses to bacterial infection leading to diarrheal disease are discussed.
Collapse
|
17
|
SepD/SepL-dependent secretion signals of the type III secretion system translocator proteins in enteropathogenic Escherichia coli. J Bacteriol 2015; 197:1263-75. [PMID: 25645555 DOI: 10.1128/jb.02401-14] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The type III protein secretion system (T3SS) encoded by the locus of enterocyte effacement (LEE) is essential for the pathogenesis of attaching/effacing bacterial pathogens, including enteropathogenic Escherichia coli (EPEC), enterohemorrhagic E. coli (EHEC), and Citrobacter rodentium. These pathogens use the T3SS to sequentially secrete three categories of proteins: the T3SS needle and inner rod protein components; the EspA, EspB, and EspD translocators; and many LEE- and non-LEE-encoded effectors. SepD and SepL are essential for translocator secretion, and mutations in either lead to hypersecretion of effectors. However, how SepD and SepL control translocator secretion and secretion hierarchy between translocators and effectors is poorly understood. In this report, we show that the secreted T3SS components, the translocators, and both LEE- and non-LEE-encoded effectors all carry N-terminal type III secretion and translocation signals. These signals all behave like those of the effectors and are sufficient for mediating type III secretion and translocation by wild-type EPEC and hypersecretion by the sepD and sepL mutants. Our results extended previous observations and suggest that the secretion hierarchy of the different substrates is determined by a signal other than the N-terminal secretion signal. We identified a domain located immediately downstream of the N-terminal secretion signal in the translocator EspB that is required for SepD/SepL-dependent secretion. We further demonstrated that this EspB domain confers SepD/SepL- and CesAB-dependent secretion on the secretion signal of effector EspZ. Our results thus suggest that SepD and SepL control and regulate secretion hierarchy between translocators and effectors by recognizing translocator-specific export signals. IMPORTANCE Many bacterial pathogens use a syringe-like protein secretion apparatus, termed the type III protein secretion system (T3SS), to secrete and inject numerous proteins directly into the host cells to cause disease. The secreted proteins perform different functions at various stages during infection and are classified into three substrate categories (T3SS components, translocators, and effectors). They all contain secretion signals at their N termini, but how their secretion hierarchy is determined is poorly understood. Here, we show that the N-terminal secretion signals from different substrate categories all behave the same and do not confer substrate specificity. We further characterize the secretion signals of the translocators and identify a translocator-specific signal, demonstrating that substrate-specific secretion signals are required in regulating T3SS substrate hierarchy.
Collapse
|
18
|
Kariu T, Sharma K, Singh P, Smith AA, Backstedt B, Buyuktanir O, Pal U. BB0323 and novel virulence determinant BB0238: Borrelia burgdorferi proteins that interact with and stabilize each other and are critical for infectivity. J Infect Dis 2014; 211:462-71. [PMID: 25139020 DOI: 10.1093/infdis/jiu460] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We have shown that Borrelia burgdorferi gene product BB0323 is essential for cell fission and pathogen persistence in vivo. Here we describe characterization of a conserved hypothetical protein annotated as BB0238, which specifically interacts with the N-terminal region of BB0323. We show that BB0238 is a subsurface protein, and similar to BB0323, exists in the periplasm and as a membrane-bound protein. Deletion of bb0238 in infectious B. burgdorferi did not affect microbial growth in vitro or survival in ticks, but the mutant was unable to persist in mice or transmit from ticks--defects that are restored on genetic complementation. Remarkably, BB0238 and BB0323 contribute to mutual posttranslational stability, because deletion of one causes dramatic reduction in the protein level of the other partner. Interference with the function of BB0238 or BB0323 and their interaction may provide novel strategies to combat B. burgdorferi infection.
Collapse
Affiliation(s)
- Toru Kariu
- Department of Veterinary Medicine and Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park
| | - Kavita Sharma
- Department of Veterinary Medicine and Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park
| | - Preeti Singh
- Department of Veterinary Medicine and Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park
| | - Alexis A Smith
- Department of Veterinary Medicine and Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park
| | - Brian Backstedt
- Department of Veterinary Medicine and Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park
| | - Ozlem Buyuktanir
- Department of Veterinary Medicine and Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park
| | - Utpal Pal
- Department of Veterinary Medicine and Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park
| |
Collapse
|
19
|
Galán JE, Lara-Tejero M, Marlovits TC, Wagner S. Bacterial type III secretion systems: specialized nanomachines for protein delivery into target cells. Annu Rev Microbiol 2014; 68:415-38. [PMID: 25002086 DOI: 10.1146/annurev-micro-092412-155725] [Citation(s) in RCA: 384] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
One of the most exciting developments in the field of bacterial pathogenesis in recent years is the discovery that many pathogens utilize complex nanomachines to deliver bacterially encoded effector proteins into target eukaryotic cells. These effector proteins modulate a variety of cellular functions for the pathogen's benefit. One of these protein-delivery machines is the type III secretion system (T3SS). T3SSs are widespread in nature and are encoded not only by bacteria pathogenic to vertebrates or plants but also by bacteria that are symbiotic to plants or insects. A central component of T3SSs is the needle complex, a supramolecular structure that mediates the passage of the secreted proteins across the bacterial envelope. Working in conjunction with several cytoplasmic components, the needle complex engages specific substrates in sequential order, moves them across the bacterial envelope, and ultimately delivers them into eukaryotic cells. The central role of T3SSs in pathogenesis makes them great targets for novel antimicrobial strategies.
Collapse
Affiliation(s)
- Jorge E Galán
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut 06536;
| | | | | | | |
Collapse
|
20
|
Lin CN, Sun WSW, Lu HY, Ng SC, Liao YS, Syu WJ. Protein interactions and regulation of EscA in enterohemorrhagic E. coli. PLoS One 2014; 9:e85354. [PMID: 24454847 PMCID: PMC3890302 DOI: 10.1371/journal.pone.0085354] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 11/26/2013] [Indexed: 11/18/2022] Open
Abstract
Infections caused by enterohemorrhagic Escherichia coli (EHEC) can lead to diarrhea with abdominal cramps and sometimes are complicated by severe hemolytic uremic syndrome. EHEC secretes effector proteins into host cells through a type III secretion system that is composed of proteins encoded by a chromosomal island, locus for the enterocyte effacement (LEE). EspA is the major component of the filamentous structure connecting the bacteria and the host's cells. Synthesis and secretion of EspA must be carefully controlled since the protein is prone to polymerize. CesAB, CesA2, and EscL have been identified as being able to interact with EspA. Furthermore, the intracellular level of EspA declines when cesAB, cesA2, and escL are individually deleted. Here, we report a LEE gene named l0033, which also affects the intracellular level of EspA. We renamed l0033 as escA since its counterpart in enteropathogenic E. coli has been recently described. Similar to CesAB, EscL, and CesA2, EscA interacts with EspA and enhances the protein stability of EspA. However, EscA is also able to interact with inner membrane-associated EscL, CesA2, and EscN, but not with cytoplasmic CesAB. In terms of gene organizations, escA locates in LEE3. Expression of EscA is faithfully regulated via Mpc, the first gene product of LEE3. Since Mpc is tightly regulated to low level, we suggest that EscA is highly synchronized and critical to the process of escorting EspA to its final destination.
Collapse
Affiliation(s)
- Ching-Nan Lin
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | - Wei-Sheng W. Sun
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan, Republic of China
- Taiwan International Graduate Program in Molecular Medicine, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Hui-Yin Lu
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | - Swee-Chuan Ng
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | - Ying-Shu Liao
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | - Wan-Jr Syu
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan, Republic of China
- Taiwan International Graduate Program in Molecular Medicine, Academia Sinica, Taipei, Taiwan, Republic of China
- * E-mail:
| |
Collapse
|
21
|
Chen L, Ai X, Portaliou AG, Minetti CASA, Remeta DP, Economou A, Kalodimos CG. Substrate-activated conformational switch on chaperones encodes a targeting signal in type III secretion. Cell Rep 2013; 3:709-15. [PMID: 23523349 DOI: 10.1016/j.celrep.2013.02.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Revised: 01/27/2013] [Accepted: 02/22/2013] [Indexed: 02/07/2023] Open
Abstract
The targeting of type III secretion (TTS) proteins at the injectisome is an important process in bacterial virulence. Nevertheless, how the injectisome specifically recognizes TTS substrates among all bacterial proteins is unknown. A TTS peripheral membrane ATPase protein located at the base of the injectisome has been implicated in the targeting process. We have investigated the targeting of the EspA filament protein and its cognate chaperone, CesAB, to the EscN ATPase of the enteropathogenic E. coli (EPEC). We show that EscN selectively engages the EspA-loaded CesAB but not the unliganded CesAB. Structure analysis revealed that the targeting signal is encoded in a disorder-order structural transition in CesAB that is elicited only upon the binding of its physiological substrate, EspA. Abrogation of the interaction between the CesAB-EspA complex and EscN resulted in severe secretion and infection defects. Additionally, we show that the targeting and secretion signals are distinct and that the two processes are likely regulated by different mechanisms.
Collapse
Affiliation(s)
- Li Chen
- Center of Integrative Proteomics Research and Department of Chemistry & Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Protein export according to schedule: architecture, assembly, and regulation of type III secretion systems from plant- and animal-pathogenic bacteria. Microbiol Mol Biol Rev 2012; 76:262-310. [PMID: 22688814 DOI: 10.1128/mmbr.05017-11] [Citation(s) in RCA: 312] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Flagellar and translocation-associated type III secretion (T3S) systems are present in most gram-negative plant- and animal-pathogenic bacteria and are often essential for bacterial motility or pathogenicity. The architectures of the complex membrane-spanning secretion apparatuses of both systems are similar, but they are associated with different extracellular appendages, including the flagellar hook and filament or the needle/pilus structures of translocation-associated T3S systems. The needle/pilus is connected to a bacterial translocon that is inserted into the host plasma membrane and mediates the transkingdom transport of bacterial effector proteins into eukaryotic cells. During the last 3 to 5 years, significant progress has been made in the characterization of membrane-associated core components and extracellular structures of T3S systems. Furthermore, transcriptional and posttranscriptional regulators that control T3S gene expression and substrate specificity have been described. Given the architecture of the T3S system, it is assumed that extracellular components of the secretion apparatus are secreted prior to effector proteins, suggesting that there is a hierarchy in T3S. The aim of this review is to summarize our current knowledge of T3S system components and associated control proteins from both plant- and animal-pathogenic bacteria.
Collapse
|
23
|
Kurushima J, Kuwae A, Abe A. Btc22 chaperone is required for secretion and stability of the type III secreted protein Bsp22 in Bordetella bronchiseptica. FEMS Microbiol Lett 2012; 331:144-51. [PMID: 22458424 DOI: 10.1111/j.1574-6968.2012.02561.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 03/09/2012] [Accepted: 03/26/2012] [Indexed: 12/22/2022] Open
Abstract
The type III secretion system (T3SS) is a sophisticated protein secretion machinery that delivers bacterial virulence proteins into host cells. A needle-tip protein, Bsp22 , is one of the secreted substrates of the T3SS and plays an essential role in the full function of the T3SS in Bordetella bronchiseptica. In this study, we found that BB1618 functions as a chaperone for Bsp22 . The deletion of BB1618 resulted in a dramatic impairment of Bsp22 secretion into the culture supernatants and Bsp22 stability in the bacterial cytosol. In contrast, the secretion of other type III secreted proteins was not affected by the BB1618 mutation. Furthermore, the BB1618 mutant strain could not induce cytotoxicity and displayed the same phenotypes as the Bsp22 mutant strain. An immunoprecipitation assay demonstrated that BB1618 interacts with Bsp22 , but not with BopB and BopD . Thus, we identified BB1618 as a specific type III chaperone for Bsp22 . Therefore, we propose that BB1618 be renamed Btc22 for the Bordetella type III chaperone for Bsp22 .
Collapse
Affiliation(s)
- Jun Kurushima
- Laboratory of Bacterial Infection, Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
| | | | | |
Collapse
|
24
|
Chen L, Balabanidou V, Remeta DP, Minetti CASA, Portaliou AG, Economou A, Kalodimos CG. Structural instability tuning as a regulatory mechanism in protein-protein interactions. Mol Cell 2012; 44:734-44. [PMID: 22152477 DOI: 10.1016/j.molcel.2011.09.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 06/22/2011] [Accepted: 09/10/2011] [Indexed: 10/14/2022]
Abstract
Protein-protein interactions mediate a vast number of cellular processes. Here, we present a regulatory mechanism in protein-protein interactions mediated by finely tuned structural instability and coupled with molecular mimicry. We show that a set of type III secretion (TTS) autoinhibited homodimeric chaperones adopt a molten globule-like state that transiently exposes the substrate binding site as a means to become rapidly poised for binding to their cognate protein substrates. Packing defects at the homodimeric interface stimulate binding, whereas correction of these defects results in less labile chaperones that give rise to nonfunctional biological systems. The protein substrates use structural mimicry to offset the weak spots in the chaperones and to counteract their autoinhibitory conformation. This regulatory mechanism of protein activity is evolutionarily conserved among several TSS systems and presents a lucid example of functional advantage conferred upon a biological system by finely tuned structural instability.
Collapse
Affiliation(s)
- Li Chen
- Department of Chemistry & Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Thomassin JL, He X, Thomas NA. Role of EscU auto-cleavage in promoting type III effector translocation into host cells by enteropathogenic Escherichia coli. BMC Microbiol 2011; 11:205. [PMID: 21933418 PMCID: PMC3189125 DOI: 10.1186/1471-2180-11-205] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Accepted: 09/20/2011] [Indexed: 01/13/2023] Open
Abstract
Background Type III secretion systems (T3SS) of bacterial pathogens coordinate effector protein injection into eukaryotic cells. The YscU/FlhB group of proteins comprises members associated with T3SS which undergo a specific auto-cleavage event at a conserved NPTH amino acid sequence. The crystal structure of the C-terminal portion of EscU from enteropathogenic Escherichia coli (EPEC) suggests this auto-cleaving protein provides an interface for substrate interactions involved in type III secretion events. Results We demonstrate EscU must be auto-cleaved for bacteria to efficiently deliver type III effectors into infected cells. A non-cleaving EscU(N262A) variant supported very low levels of in vitro effector secretion. These effector proteins were not able to support EPEC infection of cultured HeLa cells. In contrast, EscU(P263A) was demonstrated to be partially auto-cleaved and moderately restored effector translocation and functionality during EPEC infection, revealing an intermediate phenotype. EscU auto-cleavage was not required for inner membrane association of the T3SS ATPase EscN or the ring forming protein EscJ. In contrast, in the absence of EscU auto-cleavage, inner membrane association of the multicargo type III secretion chaperone CesT was altered suggesting that EscU auto-cleavage supports docking of chaperone-effector complexes at the inner membrane. In support of this interpretation, evidence of novel effector protein breakdown products in secretion assays were linked to the non-cleaved status of EscU(N262A). Conclusions These data provide new insight into the role of EscU auto-cleavage in EPEC. The experimental data suggests that EscU auto-cleavage results in a suitable binding interface at the inner membrane that accommodates protein complexes during type III secretion events. The results also demonstrate that altered EPEC genetic backgrounds that display intermediate levels of effector secretion and translocation can be isolated and studied. These genetic backgrounds should be valuable in deciphering sequential and temporal events involved in EPEC type III secretion.
Collapse
Affiliation(s)
- Jenny-Lee Thomassin
- Department of Microbiology and Immunology, Dalhousie University, 5850 College Street, PO Box 15000, Halifax, Nova Scotia, B3H 4R2 Canada
| | | | | |
Collapse
|
26
|
Humphries RM, Armstrong GD. Sticky situation: localized adherence of enteropathogenic Escherichia coli to the small intestine epithelium. Future Microbiol 2011; 5:1645-61. [PMID: 21133687 DOI: 10.2217/fmb.10.124] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Enteropathogenic Escherichia coli (EPEC) primarily cause gastrointestinal illness in neonates. They accomplish this by a complex coordinated multistage strategy, whereby the organisms colonize the epithelial lining of the small intestine. This process can be divided into four stages: first, localized, nonintimate adherence; second, type III secretion-mediated injection of effector proteins, third effacement of microvilli and, finally, intimate adherence. In this article, we review the history and current state of knowledge, as well as present potential future directions for further investigating the fascinating processes by which EPEC and related organisms colonize the human intestine and cause disease.
Collapse
Affiliation(s)
- Romney M Humphries
- University of Calgary, Department of Microbiology and Infectious Diseases, Calgary, Alberta, Canada
| | | |
Collapse
|
27
|
Atypical enteropathogenic Escherichia coli that contains functional locus of enterocyte effacement genes can be attaching-and-effacing negative in cultured epithelial cells. Infect Immun 2011; 79:1833-41. [PMID: 21343354 DOI: 10.1128/iai.00693-10] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Enteropathogenic Escherichia coli (EPEC) induces a characteristic histopathology on enterocytes known as the attaching-and-effacing (A/E) lesion, which is triggered by proteins encoded by the locus of enterocyte effacement (LEE). EPEC is currently classified as typical EPEC (tEPEC) and atypical EPEC (aEPEC), based on the presence or absence of the EPEC adherence factor plasmid, respectively. Here we analyzed the LEE regions of three aEPEC strains displaying the localized adherence-like (LAL), aggregative adherence (AA), and diffuse adherence (DA) patterns on HEp-2 cells as well as one nonadherent (NA) strain. The adherence characteristics and the ability to induce A/E lesions were investigated with HeLa, Caco-2, T84, and HT29 cells. The adherence patterns and fluorescent actin staining (FAS) assay results were reproducible with all cell lines. The LEE region was structurally intact and functional in all strains regardless of their inability to cause A/E lesions. An EspF(U)-expressing plasmid (pKC471) was introduced into all strains, demonstrating no influence of this protein on either the adherence patterns or the capacity to cause A/E of the adherent strains. However, the NA strain harboring pKC471 expressed the LAL pattern and was able to induce A/E lesions on HeLa cells. Our data indicate that FAS-negative aEPEC strains are potentially able to induce A/E in vivo, emphasizing the concern about this test for the determination of aEPEC virulence. Also, the presence of EspF(U) was sufficient to provide an adherent phenotype for a nonadherent aEPEC strain via the direct or indirect activation of the LEE4 and LEE5 operons.
Collapse
|
28
|
Davis AJ, Díaz DADJ, Mecsas J. A dominant-negative needle mutant blocks type III secretion of early but not late substrates in Yersinia. Mol Microbiol 2010; 76:236-59. [PMID: 20199604 PMCID: PMC2911021 DOI: 10.1111/j.1365-2958.2010.07096.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Yersinia pseudotuberculosis uses a type III secretion system (T3SS) to deliver effectors into host cells. A key component of the T3SS is the needle, which is a hollow tube on the bacterial surface through which effectors are secreted, composed of the YscF protein. To study needle assembly, we performed a screen for dominant-negative yscF alleles that prevented effector secretion in the presence of wild-type (WT) YscF. One allele, yscF-L54V, prevents WT YscF secretion and needle assembly, although purified YscF-L54V polymerizes in vitro. YscF-L54V binds to its chaperones YscE and YscG, and the YscF-L54V-EG complex targets to the T3SS ATPase, YscN. We propose that YscF-L54V stalls at a binding site in the needle assembly pathway following its release from the chaperones, which blocks the secretion of WT YscF and other early substrates required for building a needle. Interestingly, YscF-L54V does not affect the activity of pre-assembled actively secreting machines, indicating that a factor and/or binding site required for YscF secretion is absent from T3SS machines already engaged in effector secretion. Thus, substrate switching may involve the removal of an early substrate-specific binding site as a mechanism to exclude early substrates from Yop-secreting machines.
Collapse
Affiliation(s)
- Alison J Davis
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA.
| | | | | |
Collapse
|
29
|
Functional characterization of SsaE, a novel chaperone protein of the type III secretion system encoded by Salmonella pathogenicity island 2. J Bacteriol 2009; 191:6843-54. [PMID: 19767440 DOI: 10.1128/jb.00863-09] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The type III secretion system (T3SS) encoded by Salmonella pathogenicity island 2 (SPI-2) is involved in systemic infection and intracellular replication of Salmonella enterica serovar Typhimurium. In this study, we investigated the function of SsaE, a small cytoplasmic protein encoded within the SPI-2 locus, which shows structural similarity to the T3SS class V chaperones. An S. enterica serovar Typhimurium ssaE mutant failed to secrete SPI-2 translocator SseB and SPI-2-dependent effector PipB proteins. Coimmunoprecipitation and mass spectrometry analyses using an SsaE-FLAG fusion protein indicated that SsaE interacts with SseB and a putative T3SS-associated ATPase, SsaN. A series of deleted and point-mutated SsaE-FLAG fusion proteins revealed that the C-terminal coiled-coil domain of SsaE is critical for protein-protein interactions. Although SseA was reported to be a chaperone for SseB and to be required for its secretion and stability in the bacterial cytoplasm, an sseA deletion mutant was able to secrete the SseB in vitro when plasmid-derived SseB was overexpressed. In contrast, ssaE mutant strains could not transport SseB extracellularly under the same assay conditions. In addition, an ssaE(I55G) point-mutated strain that expresses the SsaE derivative lacking the ability to form a C-terminal coiled-coil structure showed attenuated virulence comparable to that of an SPI-2 T3SS null mutant, suggesting that the coiled-coil interaction of SsaE is absolutely essential for the functional SPI-2 T3SS and for Salmonella virulence. Based on these findings, we propose that SsaE recognizes translocator SseB and controls its secretion via SPI-2 type III secretion machinery.
Collapse
|
30
|
Ku CP, Lio JCW, Wang SH, Lin CN, Syu WJ. Identification of a third EspA-binding protein that forms part of the type III secretion system of enterohemorrhagic Escherichia coli. J Biol Chem 2008; 284:1686-93. [PMID: 19028682 DOI: 10.1074/jbc.m807478200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Enterohemorrhagic Escherichia coli utilizes a type III secretion system to deliver virulent effectors into cells. The secretion apparatus comprises a membrane basal body and an external needle complex of which EspA is the major component. An l0050-deletion (DeltaL50) mutation was found to impair type III secretion and bacterial adherence. These phenotypes and the localization of the gene product to the inner membrane support the hypothesis that L0050, renamed EscL, forms part of the secretion apparatus. Furthermore, in DeltaL50, the amount of EspA present within the cell lysate was found to have diminished, whereas the EspA co-cistron-expressed partner protein EspB remained unaffected. The decreased EspA level appeared to result from instability of the newly synthesized EspA protein in DeltaL50 rather than a decrease in EspA mRNA. Using both biochemical co-purification and a bacterial two-hybrid interaction system, we were able to conclude that EscL is a third protein that, in addition to CesAB and CesA2, interacts with EspA and enhances the stability of intracellular EspA.
Collapse
Affiliation(s)
- Chen-Peng Ku
- Institute of Microbiology and Immunology, National Yang-Ming University, Beitou, Taipei, 112, Taiwan
| | | | | | | | | |
Collapse
|
31
|
Su MSW, Kao HC, Lin CN, Syu WJ. Gene l0017 encodes a second chaperone for EspA of enterohaemorrhagic Escherichia coli O157 : H7. MICROBIOLOGY-SGM 2008; 154:1094-1103. [PMID: 18375802 DOI: 10.1099/mic.0.2007/013946-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Escherichia coli O157:H7 tightly associates with host cells through the formation of a pedestal structure in which cell cytoskeleton rearrangement has been observed. These pathogenic properties have been attributed to an island, known as the locus of enterocyte effacement (LEE), located on the bacterial chromosome. Gene l0017 is one of the LEE genes that has been less well characterized. To understand further the function of the gene, an l0017-deleted mutant was created. The mutant lost type III protein secretion (TTS) capacity. In terms of intracellular components, there was a substantial decrease in the level of EspA, but no apparent effect on Tir and EspB was observed. Fractionation of the bacterial proteins indicated that L0017 was part of the inner-membrane fraction. This association with the membrane is consistent with the hypothesis that L0017 may act as one of the TTS components. In addition, L0017 was found to affect regulation of EspA at a post-transcriptional level. The presence of L0017 readily stabilized EspA and the interaction between L0017 and EspA was demonstrated by their co-purification as well as by a bacterial two-hybrid system. Therefore, L0017 is a chaperone, the second chaperone identified in this system after CesAB, and escorts EspA, a protein with a great tendency to polymerize.
Collapse
Affiliation(s)
- Marcia Shu-Wei Su
- Institute of Microbiology and Immunology, National Yang-Ming University, Beitou 112, Taipei, Taiwan
| | - Hsi-Chun Kao
- Institute of Microbiology and Immunology, National Yang-Ming University, Beitou 112, Taipei, Taiwan
| | - Ching-Nan Lin
- Institute of Microbiology and Immunology, National Yang-Ming University, Beitou 112, Taipei, Taiwan
| | - Wan-Jr Syu
- Institute of Microbiology and Immunology, National Yang-Ming University, Beitou 112, Taipei, Taiwan
| |
Collapse
|
32
|
Identification of amino acid residues within the N-terminal domain of EspA that play a role in EspA filament biogenesis and function. J Bacteriol 2008; 190:2221-6. [PMID: 18178741 DOI: 10.1128/jb.01753-07] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Enteropathogenic Escherichia coli employs a filamentous type III secretion system, made by homopolymerization of the translocator protein EspA. In this study, we have shown that the N-terminal region of EspA has a role in EspA's protein stability, interaction with the CesAB chaperone, and filament biogenesis and function.
Collapse
|
33
|
Zheng J, Li N, Tan YP, Sivaraman J, Mok YK, Mo ZL, Leung KY. EscC is a chaperone for the Edwardsiella tarda type III secretion system putative translocon components EseB and EseD. MICROBIOLOGY-SGM 2007; 153:1953-1962. [PMID: 17526852 DOI: 10.1099/mic.0.2006/004952-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Edwardsiella tarda is a Gram-negative enteric pathogen that causes disease in both humans and animals. Recently, a type III secretion system (T3SS) has been found to contribute to Ed. tarda pathogenesis. EseB, EseC and EseD were shown to be secreted by the T3SS and to be the major components of the extracellular proteins (ECPs). Based on sequence similarity, they have been proposed to function as the 'translocon' of the T3SS needle structure. In this study, it was shown that EseB, EseC and EseD formed a protein complex after secretion, which is consistent with their possible roles as translocon components. The secretion of EseB and EseD was dependent on EscC (previously named Orf2). EscC has the characteristics of a chaperone; it is a small protein (13 kDa), located next to the translocators in the T3SS gene cluster, and has a coiled-coil structure at the N-terminal region as predicted by coils. An in-frame deletion of escC abolished the secretion of EseB and EseD, and complementation of DeltaescC restored the export of EseB and EseD into the culture supernatant. Further studies showed that EscC is not a secreted protein and is located on the membrane and in the cytoplasm. Mutation of escC did not affect the transcription of eseB but reduced the amount of EseB as measured by using an EseB-LacZ fusion protein in Ed. tarda. Co-purification studies demonstrated that EscC formed complexes with EseB and EseD. The results suggest that EscC functions as a T3SS chaperone for the putative translocon components EseB and EseD in Ed. tarda.
Collapse
Affiliation(s)
- Jun Zheng
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 117543, Singapore
| | - Nan Li
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 117543, Singapore
| | - Yuen Peng Tan
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 117543, Singapore
| | - J Sivaraman
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 117543, Singapore
| | - Yu-Keung Mok
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 117543, Singapore
| | - Zhao Lan Mo
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Ka Yin Leung
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 117543, Singapore
| |
Collapse
|
34
|
Moreira CG, Palmer K, Whiteley M, Sircili MP, Trabulsi LR, Castro AFP, Sperandio V. Bundle-forming pili and EspA are involved in biofilm formation by enteropathogenic Escherichia coli. J Bacteriol 2006; 188:3952-61. [PMID: 16707687 PMCID: PMC1482920 DOI: 10.1128/jb.00177-06] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Microcolony formation is one of the initial steps in biofilm development, and in enteropathogenic Escherichia coli (EPEC) it is mediated by several adhesins, including the bundle-forming pilus (BFP) and the EspA filament. Here we report that EPEC forms biofilms on plastic under static conditions and a flowthrough continuous culture system. The abilities of several EPEC isogenic mutants to form biofilms were assessed. Adhesins such as BFP and EspA, important in microcolony formation on epithelial cells, are also involved in bacterial aggregation during biofilm formation on abiotic surfaces. Mutants that do not express BFP or EspA form more-diffuse biofilms than does the wild type. We also determined, using gfp transcriptional fusions, that, consistent with the role of these adhesins in biofilms, the genes encoding BFP and EspA are expressed during biofilm formation. Finally, expression of espA is controlled by a quorum-sensing (QS) regulatory mechanism, and the EPEC qseA QS mutant also forms altered biofilms, suggesting that this signaling mechanism plays an important role in EPEC biofilm development. Taken together, these studies allowed us to propose a model of EPEC biofilm formation.
Collapse
Affiliation(s)
- Cristiano G Moreira
- Department of Microbiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9048, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Yip CK, Strynadka NCJ. New structural insights into the bacterial type III secretion system. Trends Biochem Sci 2006; 31:223-30. [PMID: 16537106 DOI: 10.1016/j.tibs.2006.02.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2005] [Revised: 02/03/2006] [Accepted: 02/23/2006] [Indexed: 12/23/2022]
Abstract
The virulence-associated type III secretion system (T3SS) enables many Gram-negative bacterial pathogens to translocate proteins into the eukaryotic host cells that they infect. This unique protein transport process is mediated by the type III secretion apparatus (T3SA), a multisubunit membrane-spanning macromolecular assembly comprising >20 different proteins. Recent studies have identified biochemical and structural properties of the core T3SA, in addition to several components constituting this complex, with important implications for both the assembly process and the overall function of the T3SA.
Collapse
Affiliation(s)
- Calvin K Yip
- Department of Biochemistry and Molecular Biology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, Canada, V6T1Z3
| | | |
Collapse
|
36
|
Luo W, Donnenberg MS. Analysis of the function of enteropathogenic Escherichia coli EspB by random mutagenesis. Infect Immun 2006; 74:810-20. [PMID: 16428723 PMCID: PMC1360311 DOI: 10.1128/iai.74.2.810-820.2006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Enteropathogenic Escherichia coli (EPEC) is an important cause of infantile diarrhea, especially in developing countries. EspB, a key virulence factor of EPEC, is required for the attaching and effacing effect characteristic of EPEC and enterohemorrhagic E. coli and has been posited to play several functions in the process of infection. Attaching and effacing activity is associated with the accumulation of filamentous actin beneath adherent bacteria as measured in the fluorescence actin staining (FAS) test. To determine whether different domains of EspB are responsible for different functions, 42 plasmids carrying mutated espB were introduced into an espB deletion mutant. Two major groups of espB mutants were identified. One group of 17 mutants exhibited positive FAS results and normal levels of hemolytic activity. Another group of 22 mutants exhibited negative FAS results and low levels of hemolytic activity. Three mutants were exceptional. One mutant was FAS positive but had significantly reduced hemolytic activity. Conversely, a second mutant was FAS negative but had full hemolytic activity. A third mutant had a significantly reduced FAS level compared to the wild type but full hemolytic activity. The results of EspF and Tir translocation assays confirmed that FAS-negative insertions disrupt effector translocation and mutants with FAS-positive insertions retain protein translocation activity. These results suggest that EspB has distinct domain functions involved in effector translocation that can be distinguished from its role as a component of the translocation pore.
Collapse
Affiliation(s)
- Wensheng Luo
- Division of Infectious Diseases, University of Maryland School of Medicine, 20 Penn St., Baltimore, MD 21201, USA
| | | |
Collapse
|
37
|
Abstract
Bacterial pathogens achieve the internalization of a multitude of virulence factors into eukaryotic cells. Some secrete extracellular toxins which bring about their own entry, usually by hijacking cell surface receptors and endocytic pathways. Others possess specialized secretion and translocation systems to directly inject bacterial proteins into the host cytosol. Recent advances in the structural biology of these virulence factors has begun to reveal at the molecular level how these bacterial proteins are delivered and modulate host activities ranging from cytoskeletal structure to cell cycle progression.
Collapse
Affiliation(s)
- C Erec Stebbins
- Laboratory of Structural Microbiology, Rockefeller University, New York, NY 10021, USA.
| |
Collapse
|
38
|
Kuwae A, Matsuzawa T, Ishikawa N, Abe H, Nonaka T, Fukuda H, Imajoh-Ohmi S, Abe A. BopC is a novel type III effector secreted by Bordetella bronchiseptica and has a critical role in type III-dependent necrotic cell death. J Biol Chem 2006; 281:6589-600. [PMID: 16407269 DOI: 10.1074/jbc.m512711200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
In Bordetella bronchiseptica, the functional type III secretion system (TTSS) is required for the induction of necrotic cell death in infected mammalian cells. To identify the factor(s) involved in necrotic cell death, type III-secreted proteins from B. bronchiseptica were analyzed using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and electrospray ionization tandem mass spectrometry. We identified a 69-kDa secreted protein designated BopC. The gene encoding BopC is located outside of the TTSS locus and is also highly conserved in both Bordetella parapertussis and Bordetella pertussis. The results of a lactate dehydrogenase release assay and terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end-labeling assay demonstrated that BopC is required for necrotic cell death. It has been reported that tyrosine-phosphorylated proteins (PY) of host cells are dephosphorylated during B. bronchiseptica infection in a TTSS-dependent manner. We found that BopC is also involved in PY dephosphorylation in infected host cells. It appears that the necrotic cell death triggered by BopC occurs prior to the PY reduction in host cells, because Bordetella-induced cell death was not affected even in the presence of a dephosphorylation inhibitor. Furthermore, a translocation assay showed that the signal sequence for both secretion into culture supernatant and translocation into the host cell is located in 48 amino acid residues of the BopC N terminus. This report reveals for the first time that a novel type III effector, BopC, is required for the induction of necrotic cell death during Bordetella infection.
Collapse
Affiliation(s)
- Asaomi Kuwae
- Laboratory of Bacterial Infection, Kitasato Institute for Life Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Kenjale R, Wilson J, Zenk SF, Saurya S, Picking WL, Picking WD, Blocker A. The needle component of the type III secreton of Shigella regulates the activity of the secretion apparatus. J Biol Chem 2005; 280:42929-37. [PMID: 16227202 DOI: 10.1074/jbc.m508377200] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Gram-negative bacteria commonly interact with eukaryotic host cells by using type III secretion systems (TTSSs or secretons). TTSSs serve to transfer bacterial proteins into host cells. Two translocators, IpaB and IpaC, are first inserted with the aid of IpaD by Shigella into the host cell membrane. Then at least two supplementary effectors of cell invasion, IpaA and IpgD, are transferred into the host cytoplasm. How TTSSs are induced to secrete is unknown, but their activation appears to require direct contact of the external distal tip of the apparatus with the host cell. The extracellular domain of the TTSS is a hollow needle protruding 60 nm beyond the bacterial surface. The monomeric unit of the Shigella flexneri needle, MxiH, forms a superhelical assembly. To probe the role of the needle in the activation of the TTSS for secretion, we examined the structure-function relationship of MxiH by mutagenesis. Most point mutations led to normal needle assembly, but some led to polymerization or possible length control defects. In other mutants, secretion was constitutively turned "on." In a further set, it was "constitutively on" but experimentally "uninducible." Finally, upon induction of secretion, some mutants released only the translocators and not the effectors. Most types of mutants were defective in interactions with host cells. Together, these data indicate that the needle directly controls the activity of the TTSS and suggest that it may be used to "sense" host cells.
Collapse
Affiliation(s)
- Roma Kenjale
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Enterohemorrhagic Escherichia coli (EHEC) was first recognized as a cause of human disease in 1983 and is associated with diarrhea and hemorrhagic colitis, which may be complicated by life-threatening renal and neurological sequelae. EHEC are defined by their ability to produce one or more Shiga-like toxins (Stx), which mediate the systemic complications of EHEC infections, and to induce characteristic attaching and effacing lesions on intestinal epithelia, a phenotype that depends on the locus of enterocyte effacement. Acquisition of Stx-encoding bacteriophages by enteropathogenic E. coli is believed to have contributed to the evolution of EHEC, and consequently some virulence factors are conserved in both pathotypes. A key requirement for E. coli to colonize the intestines and produce disease is the ability to adhere to epithelial cells lining the gastrointestinal tract. Here, we review knowledge of the adhesins produced by EHEC and other Stx-producing E. coli, with emphasis on genetic, structural, and mechanistic aspects and their contribution to pathogenesis.
Collapse
Affiliation(s)
- Mark P Stevens
- Division of Microbiology, Institute for Animal Health, Compton Laboratory, Berkshire RG20 7NN, United Kingdom
| | - Timothy S Wallis
- Division of Microbiology, Institute for Animal Health, Compton Laboratory, Berkshire RG20 7NN, United Kingdom
| |
Collapse
|
41
|
Thomas NA, Deng W, Puente JL, Frey EA, Yip CK, Strynadka NCJ, Finlay BB. CesT is a multi-effector chaperone and recruitment factor required for the efficient type III secretion of both LEE- and non-LEE-encoded effectors of enteropathogenicEscherichia coli. Mol Microbiol 2005; 57:1762-79. [PMID: 16135239 DOI: 10.1111/j.1365-2958.2005.04802.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Enteropathogenic Escherichia coli (EPEC) is an intestinal attaching and effacing pathogen that utilizes a type III secretion system (T3SS) for the delivery of effectors into host cells. The chaperone CesT has been shown to bind and stabilize the type III translocated effectors Tir and Map in the bacterial cytoplasm prior to their delivery into host cells. In this study we demonstrate a role for CesT in effector recruitment to the membrane embedded T3SS. CesT-mediated effector recruitment was dependent on the presence of the T3SS membrane-associated ATPase EscN. EPEC DeltacesT carrying a C-terminal CesT variant, CesT(E142G), exhibited normal cytoplasmic Tir stability function, but was less efficient in secreting Tir, further implicating CesT in type III secretion. In vivo co-immunoprecipitation studies using CesT-FLAG containing EPEC lysates demonstrated that CesT interacts with Tir and EscN, consistent with the notion of CesT recruiting Tir to the T3SS. CesT was also shown to be required for the efficient secretion of several type III effectors encoded within and outside the locus of enterocyte effacement (LEE) in addition to Tir and Map. Furthermore, a CesT affinity column was shown to specifically retain multiple effector proteins from EPEC culture supernatants. These findings indicate that CesT is centrally involved in recruiting multiple type III effectors to the T3SS via EscN for efficient secretion, and functionally redefine the role of CesT in multiple type III effector interactions.
Collapse
Affiliation(s)
- Nikhil A Thomas
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | | | | | | | | | | | | |
Collapse
|
42
|
Crepin VF, Shaw R, Abe CM, Knutton S, Frankel G. Polarity of enteropathogenic Escherichia coli EspA filament assembly and protein secretion. J Bacteriol 2005; 187:2881-9. [PMID: 15805534 PMCID: PMC1070392 DOI: 10.1128/jb.187.8.2881-2889.2005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Type III secretion systems (TTSS) are sophisticated macromolecular structures that play an imperative role in bacterial infections and human disease. The TTSS needle complex is conserved among bacterial pathogens and shows broad similarity to the flagellar basal body. However, the TTSS of enteropathogenic and enterohemorrhagic Escherichia coli, two important human enteric pathogens, is unique in that it has an approximately 12-nm-diameter filamentous extension to the needle that is composed of the secreted translocator protein EspA. EspA filaments and flagellar structures have very similar helical symmetry parameters. In this study we investigated EspA filament assembly and the delivery of effector proteins across the bacterial cell wall. We show that EspA filaments are elongated by addition of EspA subunits to the tip of the growing filament. Moreover, EspA filament length is modulated by the availability of intracellular EspA subunits. Finally, we provide direct evidence that EspA filaments are hollow conduits through which effector proteins are delivered to the extremity of the bacterial cell (and subsequently into the host cell).
Collapse
Affiliation(s)
- Valérie F Crepin
- Centre for Molecular Microbiology and Infection, Flowers Building, Imperial College London, London SW7 2AZ, UK
| | | | | | | | | |
Collapse
|
43
|
Tan YP, Zheng J, Tung SL, Rosenshine I, Leung KY. Role of type III secretion in Edwardsiella tarda virulence. Microbiology (Reading) 2005; 151:2301-2313. [PMID: 16000720 DOI: 10.1099/mic.0.28005-0] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Edwardsiella tarda is a Gram-negative enteric bacterium affecting both animals and humans. Recently, a type III secretion system (TTSS) was found in Ed. tarda. Such systems are generally used by bacterial pathogens to deliver virulence factors into host cells to subvert normal cell functions. Genome-walking was performed from the eseB and esrB genes (homologues of Salmonella sseB and ssrB, respectively) identified in previous studies, to determine the sequences of the TTSS. Thirty-five ORFs were identified which encode the TTSS apparatus, chaperones, effectors and regulators. Mutants affected in genes representing each category were generated and found to have decreased survival and growth in fish phagocytes. LD50 values of the mutants were increased by at least 10-fold in comparison to those of the wild-type strain. The adherence and invasion rates of the esrA and esrB mutants were enhanced while those of the other mutants remained similar to the wild-type. The eseC and eseD mutants showed slight autoaggregation in Dulbecco's Modified Eagle Medium, whereas the rest of the mutants failed to autoaggregate. Regulation of the TTSS was found to involve the two-component regulatory system esrA–esrB. This study showed that the TTSS is important for Ed. tarda pathogenesis. An understanding of this system will provide greater insight into the virulence mechanisms of this bacterial pathogen.
Collapse
Affiliation(s)
- Y P Tan
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Science Drive 4, Singapore 117543
| | - J Zheng
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Science Drive 4, Singapore 117543
| | - S L Tung
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Science Drive 4, Singapore 117543
| | - I Rosenshine
- Department of Molecular Genetics and Biotechnology, Faculty of Medicine, The Hebrew University, PO Box 12272, Jerusalem 91120, Israel
| | - K Y Leung
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Science Drive 4, Singapore 117543
| |
Collapse
|
44
|
Garmendia J, Frankel G, Crepin VF. Enteropathogenic and enterohemorrhagic Escherichia coli infections: translocation, translocation, translocation. Infect Immun 2005; 73:2573-85. [PMID: 15845459 PMCID: PMC1087358 DOI: 10.1128/iai.73.5.2573-2585.2005] [Citation(s) in RCA: 310] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Junkal Garmendia
- CMMI, Flowers Building, Imperial College London, London SW7 2AZ, United Kingdom
| | | | | |
Collapse
|
45
|
Lio JCW, Syu WJ. Identification of a negative regulator for the pathogenicity island of enterohemorrhagic Escherichia coli O157:H7. J Biomed Sci 2005; 11:855-63. [PMID: 15591783 DOI: 10.1007/bf02254371] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2004] [Accepted: 07/07/2004] [Indexed: 01/21/2023] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) forms histological lesions termed attaching and effacing lesions (A/E lesions) on infected large intestine tissue. The major virulence factors involved in A/E lesions reside on a locus of enterocyte effacement (LEE), a pathogenicity island. The LEE comprises 41 specific open reading frames, of which most are organized in 5 major operons, LEE1, LEE2, LEE3, LEE4, and tir(LEE5). The expression of LEE genes is regulated in a complicated manner by environmental factors such as temperature, osmolarity, and quorum sensing. Current knowledge is that regulation is hierarchical: a pivotal positive regulator, ler, is first stimulated, which in turn activates the expression of other operons. Herein, we report on the presence of a negative regulation protein located within the LEE. L0044 is 372 bp in length and is located outside of the 5 major operons. An isogenic L0044 deletion mutant displayed loss of the repression phenotype and increased synthesis of several LEE proteins when bacteria were cultured under repressive conditions that disfavor expression of LEE proteins. Reciprocally, trans expression of L0044 suppressed the expression of the LEE. Furthermore, mRNA of ler increased as a result of deleting L0044, and disrupting ler in a L0044-deleted background reversed the loss of the repression phenotype. Thus, L0044 plays a role in regulating the expression of virulence genes in EHEC by modulating the activation of ler.
Collapse
Affiliation(s)
- Joaquim Chan-Wang Lio
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | | |
Collapse
|
46
|
Deng W, Li Y, Hardwidge PR, Frey EA, Pfuetzner RA, Lee S, Gruenheid S, Strynakda NCJ, Puente JL, Finlay BB. Regulation of type III secretion hierarchy of translocators and effectors in attaching and effacing bacterial pathogens. Infect Immun 2005; 73:2135-46. [PMID: 15784556 PMCID: PMC1087438 DOI: 10.1128/iai.73.4.2135-2146.2005] [Citation(s) in RCA: 152] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Human enteropathogenic Escherichia coli (EPEC), enterohemorrhagic E. coli (EHEC), and the mouse pathogen Citrobacter rodentium (CR) belong to the family of attaching and effacing (A/E) bacterial pathogens. They possess the locus of enterocyte effacement (LEE) pathogenicity island, which encodes a type III secretion system. These pathogens secrete a number of proteins into culture media, including type III effector proteins and translocators that are required for the translocation of effectors into host cells. Preliminary evidence indicated that the LEE-encoded SepL and Rorf6/SepD may form a molecular switch that controls the secretion of translocators and effectors in CR. Here, we show that SepL and SepD indeed perform this function in A/E pathogens such as EHEC and EPEC. Their sepL and sepD mutants do not secrete translocators but exhibit enhanced secretion of effectors. We demonstrate that SepL and SepD interact with each other and that both SepL and SepD are localized to the bacterial membranes. Furthermore, we demonstrate that culture media influence the type III secretion profile of EHEC, EPEC, and CR and that low-calcium concentrations inhibit secretion of translocators but promote the secretion of effectors, similar to effects on type III secretion by mutations in sepL and sepD. However, the secretion profile of the sepD and sepL mutants is not affected by these culture conditions. Collectively, our results suggest that SepL and SepD not only are necessary for efficient translocator secretion in A/E pathogens but also control a switch from translocator to effector secretion by sensing certain environmental signals such as low calcium.
Collapse
Affiliation(s)
- Wanyin Deng
- Michael Smith Laboratories, University of British Columbia, 301-2185, East Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Pallen MJ, Beatson SA, Bailey CM. Bioinformatics, genomics and evolution of non-flagellar type-III secretion systems: a Darwinian perpective. FEMS Microbiol Rev 2005; 29:201-29. [PMID: 15808742 DOI: 10.1016/j.femsre.2005.01.001] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2004] [Revised: 12/22/2004] [Accepted: 01/06/2005] [Indexed: 12/17/2022] Open
Abstract
We review the biology of non-flagellar type-III secretion systems from a Darwinian perspective, highlighting the themes of evolution, conservation, variation and decay. The presence of these systems in environmental organisms such as Myxococcus, Desulfovibrio and Verrucomicrobium hints at roles beyond virulence. We review newly discovered sequence homologies (e.g., YopN/TyeA and SepL). We discuss synapomorphies that might be useful in formulating a taxonomy of type-III secretion. The problem of information overload is likely to be ameliorated by launch of a web site devoted to the comparative biology of type-III secretion ().
Collapse
Affiliation(s)
- Mark J Pallen
- Bacterial Pathogenesis and Genomics Unit, Division of Immunity and Infection, Medical School, University of Birmingham, Birmingham, West Midlands B15 2TT, UK.
| | | | | |
Collapse
|
48
|
Pallen MJ, Beatson SA, Bailey CM. Bioinformatics analysis of the locus for enterocyte effacement provides novel insights into type-III secretion. BMC Microbiol 2005; 5:9. [PMID: 15757514 PMCID: PMC1084347 DOI: 10.1186/1471-2180-5-9] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2004] [Accepted: 03/09/2005] [Indexed: 12/17/2022] Open
Abstract
Background Like many other pathogens, enterohaemorrhagic and enteropathogenic strains of Escherichia coli employ a type-III secretion system to translocate bacterial effector proteins into host cells, where they then disrupt a range of cellular functions. This system is encoded by the locus for enterocyte effacement. Many of the genes within this locus have been assigned names and functions through homology with the better characterised Ysc-Yop system from Yersinia spp. However, the functions and homologies of many LEE genes remain obscure. Results We have performed a fresh bioinformatics analysis of the LEE. Using PSI-BLAST we have been able to identify several novel homologies between LEE-encoded and Ysc-Yop-associated proteins: Orf2/YscE, Orf5/YscL, rORF8/EscI, SepQ/YscQ, SepL/YopN-TyeA, CesD2/LcrR. In addition, we highlight homology between EspA and flagellin, and report many new homologues of the chaperone CesT. Conclusion We conclude that the vast majority of LEE-encoded proteins do indeed possess homologues and that homology data can be used in combination with experimental data to make fresh functional predictions.
Collapse
Affiliation(s)
- Mark J Pallen
- Bacterial Pathogenesis and Genomics Unit, Division of Immunity and Infection, Medical School, University of Birmingham, Birmingham, B15 2TT, UK
| | - Scott A Beatson
- Bacterial Pathogenesis and Genomics Unit, Division of Immunity and Infection, Medical School, University of Birmingham, Birmingham, B15 2TT, UK
| | - Christopher M Bailey
- Bacterial Pathogenesis and Genomics Unit, Division of Immunity and Infection, Medical School, University of Birmingham, Birmingham, B15 2TT, UK
| |
Collapse
|
49
|
Castillo A, Eguiarte LE, Souza V. A genomic population genetics analysis of the pathogenic enterocyte effacement island in Escherichia coli: the search for the unit of selection. Proc Natl Acad Sci U S A 2005; 102:1542-7. [PMID: 15668384 PMCID: PMC547851 DOI: 10.1073/pnas.0408633102] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Comparative genomic analysis is a powerful tool for understanding the history and organization of complete genomes. The mathematical tools of population genetics combined with genomic analysis provide a powerful approach to dissect heterogeneities in genome evolution. This study presents a hierarchical analysis of the enterocyte and effacement island (35 kb), which is found in the enteropathogenic and enterohemorrhagic strains in Escherichia coli and in Citrobacter rodentium. The locus of enterocyte and effacement in E. coli is considered to be a clonal unit inside a clonal organism and is expected to evolve as a single unit. This analysis examines the clonal assumption by determining genetic diversity, GC content, and the substitution rates at the different functional levels of (i) the complete pathogenic island, (ii) the five operons in which the island is organized, and (iii) for each of the individual 41 genes that comprise the locus. We find that there is a conserved region that is composed of genes that belong to the type III secretion system and that may be products of horizontal transfer. A more diverse region is composed of genes for secreted proteins and genes that we infer to be original components of the E. coli genome. This genetic mosaic seems to be differentially affected by selection and mutation. Our results suggest that recombination and selection may be breaking this structure so that different elements are, at best, weakly coupled in their evolution. These observations suggest that the units of selection are not the complete island, but rather, much smaller units that comprise the island.
Collapse
Affiliation(s)
- Amanda Castillo
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ap. 75-275, Coyoacán, 04510, México
| | | | | |
Collapse
|
50
|
Berdichevsky T, Friedberg D, Nadler C, Rokney A, Oppenheim A, Rosenshine I. Ler is a negative autoregulator of the LEE1 operon in enteropathogenic Escherichia coli. J Bacteriol 2005; 187:349-57. [PMID: 15601719 PMCID: PMC538822 DOI: 10.1128/jb.187.1.349-357.2005] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Enteropathogenic Escherichia coli (EPEC) causes severe diarrhea in young children. Essential for colonization of the host intestine is the LEE pathogenicity island, which comprises a cluster of operons encoding a type III secretion system and related proteins. The LEE1 operon encodes Ler, which positively regulates many EPEC virulence genes in the LEE region and elsewhere in the chromosome. We found that Ler acts as a specific autorepressor of LEE1 transcription. We further show that Ler specifically binds upstream of the LEE1 operon in vivo and in vitro. A comparison of the Ler affinities to different DNA regions suggests that the autoregulation mechanism limits the steady-state level of Ler to concentrations that are just sufficient for activation of the LEE2 and LEE3 promoters and probably other LEE promoters. This mechanism may reflect the need of EPEC to balance maximizing the colonization efficiency by increasing the expression of the virulence genes and minimizing the immune response of the host by limiting their expression. In addition, we found that the autoregulation mechanism reduces the cell-to-cell variability in the levels of LEE1 expression. Our findings point to a new negative regulatory circuit that suppresses the noise and optimizes the expression levels of ler and other LEE1 genes.
Collapse
Affiliation(s)
- Tatiana Berdichevsky
- Department of Molecular Genetics and Biotechnology, Faculty of Medicine, The Hebrew University, POB 12272, Jerusalem 91120, Israel
| | | | | | | | | | | |
Collapse
|