1
|
Shu R, Liu G, Xu Y, Liu B, Huang Z, Wang H. AcrAB Efflux Pump Plays a Crucial Role in Bile Salts Resistance and Pathogenesis of Klebsiella pneumoniae. Antibiotics (Basel) 2024; 13:1146. [PMID: 39766536 PMCID: PMC11672700 DOI: 10.3390/antibiotics13121146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/24/2024] [Accepted: 11/27/2024] [Indexed: 01/11/2025] Open
Abstract
Bile salts possess innate antibacterial properties and can cause significant damage to bacteria. To survive in the mammalian gut, Klebsiella pneumoniae has developed mechanisms to tolerate bile salts; however, the specific mechanisms remain unclear. Transposon library screening revealed that the efflux pump AcrAB is involved in bile salt resistance. acrA and acrB mutants exhibited high sensitivity not only to bile salts but also to SDS and various antibiotics, with a switch-loop, comprising residues G615, F616, A617, and G618, proving to be crucial in this process. A colonization defect of acrA and acrB mutants was demonstrated to be located in the mouse small intestine, where the bile salt concentration is higher compared to the large intestine. Additionally, both acrA and acrB mutants displayed reduced virulence in the Galleria mellonella model. In conclusion, our results suggest that the Resistance-Nodulation-Cell Division efflux pump serves as a critical determinant in the pathogenesis of K. pneumoniae through various aspects.
Collapse
Affiliation(s)
- Rundong Shu
- Sanya Institute of Nanjing Agricultural University, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (R.S.); (G.L.); (Y.X.); (B.L.)
| | - Ge Liu
- Sanya Institute of Nanjing Agricultural University, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (R.S.); (G.L.); (Y.X.); (B.L.)
- Zhengzhou Agricultural Science and Technology Research Institute, Zhengzhou 450015, China
| | - Yunyu Xu
- Sanya Institute of Nanjing Agricultural University, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (R.S.); (G.L.); (Y.X.); (B.L.)
| | - Bojun Liu
- Sanya Institute of Nanjing Agricultural University, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (R.S.); (G.L.); (Y.X.); (B.L.)
| | - Zhi Huang
- Sanya Institute of Nanjing Agricultural University, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (R.S.); (G.L.); (Y.X.); (B.L.)
| | - Hui Wang
- Sanya Institute of Nanjing Agricultural University, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (R.S.); (G.L.); (Y.X.); (B.L.)
| |
Collapse
|
2
|
Raabis SM, Westerman TL, Cruz E, Deblois CL, Suen G, Elfenbein JR. Sensitivity of dairy calf Salmonella enterica serotype Cerro isolates to infection-relevant stressors. Microbiol Spectr 2024; 12:e0021224. [PMID: 39145636 PMCID: PMC11448428 DOI: 10.1128/spectrum.00212-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 06/16/2024] [Indexed: 08/16/2024] Open
Abstract
Salmonella enterica serotype Cerro (S. Cerro) is an emerging Salmonella serotype isolated from cattle, but the association of S. Cerro with disease is not well understood. While comparative genomic analyses of bovine S. Cerro isolates have indicated mutations in elements associated with virulence, the correlation of S. Cerro fecal shedding with clinical disease in cattle varies between epidemiologic studies. The primary objective of this study was to characterize the infection-relevant phenotypes of S. Cerro fecal isolates obtained from neonatal calves born on a dairy farm in Wisconsin, USA. The S. Cerro isolates varied in biofilm production and sensitivity to the bile salt deoxycholate. All S. Cerro isolates were sensitive to sodium hypochlorite, hydrogen peroxide, and acidic shock. However, S. Cerro isolates were resistant to nitric oxide stress. Two S. Cerro isolates were unable to compete with S. Typhimurium during infection of calf ligated intestinal loops, indicating decreased fitness in vivo. Together, our data suggest that S. Cerro is sensitive to some innate antimicrobial defenses present in the gut, many of which are also used to control Salmonella in the environment. The observed phenotypic variation in S. Cerro isolates from a single farm suggest phenotypic plasticity that could impact infectious potential, transmission, and persistence on a farm.IMPORTANCESalmonella enterica is a zoonotic pathogen that threatens both human and animal health. Salmonella enterica serotype Cerro is being isolated from cattle at increasing frequency over the past two decades; however, its association with clinical disease is unclear. The goal of this study was to characterize infection-relevant phenotypes of S. Cerro isolates obtained from dairy calves from a single farm. Our work shows that there can be variation among temporally related S. Cerro isolates and that these isolates are sensitive to killing by toxic compounds of the innate immune system and those used for environmental control of Salmonella. This work contributes to our understanding of the pathogenic potential of the emerging pathogen S. Cerro.
Collapse
Affiliation(s)
- Sarah M Raabis
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Trina L Westerman
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Eddy Cruz
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Courtney L Deblois
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Bacteriology, College of Agricultural and Life Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Garret Suen
- Department of Bacteriology, College of Agricultural and Life Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Johanna R Elfenbein
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Food Research Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
3
|
Kavanaugh LG, Dey D, Shafer WM, Conn GL. Structural and functional diversity of Resistance-Nodulation-Division (RND) efflux pump transporters with implications for antimicrobial resistance. Microbiol Mol Biol Rev 2024; 88:e0008923. [PMID: 39235227 PMCID: PMC11426026 DOI: 10.1128/mmbr.00089-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024] Open
Abstract
SUMMARYThe discovery of bacterial efflux pumps significantly advanced our understanding of how bacteria can resist cytotoxic compounds that they encounter. Within the structurally and functionally distinct families of efflux pumps, those of the Resistance-Nodulation-Division (RND) superfamily are noteworthy for their ability to reduce the intracellular concentration of structurally diverse antimicrobials. RND systems are possessed by many Gram-negative bacteria, including those causing serious human disease, and frequently contribute to resistance to multiple antibiotics. Herein, we review the current literature on the structure-function relationships of representative transporter proteins of tripartite RND efflux pumps of clinically important pathogens. We emphasize their contribution to bacterial resistance to clinically used antibiotics, host defense antimicrobials and other biocides, as well as highlighting structural similarities and differences among efflux transporters that help bacteria survive in the face of antimicrobials. Furthermore, we discuss technical advances that have facilitated and advanced efflux pump research and suggest future areas of investigation that will advance antimicrobial development efforts.
Collapse
Affiliation(s)
- Logan G Kavanaugh
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
- Graduate Program in Microbiology and Molecular Genetics, Emory University, Atlanta, Georgia, USA
| | - Debayan Dey
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | - William M Shafer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
- Laboratories of Microbial Pathogenesis, VA Medical Research Service, Veterans Affairs Medical Center, Decatur, Georgia, USA
- Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Graeme L Conn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
4
|
Sutar AA, Dashpute RS, Shinde YD, Mukherjee S, Chowdhury C. A Systemic Review on Fitness and Survival of Salmonella in Dynamic Environment and Conceivable Ways of Its Mitigation. Indian J Microbiol 2024; 64:267-286. [PMID: 39011015 PMCID: PMC11246371 DOI: 10.1007/s12088-023-01176-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 12/05/2023] [Indexed: 07/17/2024] Open
Abstract
Gastroenteritis caused by non-typhoidal Salmonella still prevails resulting in several recent outbreaks affecting many people worldwide. The presence of invasive non-typhoidal Salmonella is exemplified by several characteristic symptoms and their severity relies on prominent risk factors. The persistence of this pathogen can be attributed to its broad host range, complex pathogenicity and virulence and adeptness in survival under challenging conditions inside the host. Moreover, a peculiar aid of the ever-changing climatic conditions grants this organism with remarkable potential to survive within the environment. Abusive use of antibiotics for the treatment of gastroenteritis has led to the emergence of multiple drug resistance, making the infections difficult to treat. This review emphasizes the importance of early detection of Salmonella, along with strategies for accomplishing it, as well as exploring alternative treatment approaches. The exceptional characteristics exhibited by Salmonella, like strategies of infection, persistence, and survival parallelly with multiple drug resistance, make this pathogen a prominent concern to human health.
Collapse
Affiliation(s)
- Ajit A Sutar
- Biochemical Sciences Division, CSIR- National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, MH 411008 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Rohit S Dashpute
- Biochemical Sciences Division, CSIR- National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, MH 411008 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Yashodhara D Shinde
- Biochemical Sciences Division, CSIR- National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, MH 411008 India
| | - Srestha Mukherjee
- Biochemical Sciences Division, CSIR- National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, MH 411008 India
| | - Chiranjit Chowdhury
- Biochemical Sciences Division, CSIR- National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, MH 411008 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| |
Collapse
|
5
|
Novelli M, Bolla JM. RND Efflux Pump Induction: A Crucial Network Unveiling Adaptive Antibiotic Resistance Mechanisms of Gram-Negative Bacteria. Antibiotics (Basel) 2024; 13:501. [PMID: 38927168 PMCID: PMC11200565 DOI: 10.3390/antibiotics13060501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
The rise of multi-drug-resistant (MDR) pathogenic bacteria presents a grave challenge to global public health, with antimicrobial resistance ranking as the third leading cause of mortality worldwide. Understanding the mechanisms underlying antibiotic resistance is crucial for developing effective treatments. Efflux pumps, particularly those of the resistance-nodulation-cell division (RND) superfamily, play a significant role in expelling molecules from bacterial cells, contributing to the emergence of multi-drug resistance. These are transmembrane transporters naturally produced by Gram-negative bacteria. This review provides comprehensive insights into the modulation of RND efflux pump expression in bacterial pathogens by numerous and common molecules (bile, biocides, pharmaceuticals, additives, plant extracts, etc.). The interplay between these molecules and efflux pump regulators underscores the complexity of antibiotic resistance mechanisms. The clinical implications of efflux pump induction by non-antibiotic compounds highlight the challenges posed to public health and the urgent need for further investigation. By addressing antibiotic resistance from multiple angles, we can mitigate its impact and preserve the efficacy of antimicrobial therapies.
Collapse
Affiliation(s)
- Marine Novelli
- Aix Marseille Univ, INSERM, SSA, MCT, 13385 Marseille, France;
- Université Paris Cité, CNRS, Biochimie des Protéines Membranaires, F-75005 Paris, France
| | | |
Collapse
|
6
|
Lopes AA, Vendrell-Fernández S, Deschamps J, Georgeault S, Cokelaer T, Briandet R, Ghigo JM. Bile-induced biofilm formation in Bacteroides thetaiotaomicron requires magnesium efflux by an RND pump. mBio 2024; 15:e0348823. [PMID: 38534200 PMCID: PMC11078008 DOI: 10.1128/mbio.03488-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 03/06/2024] [Indexed: 03/28/2024] Open
Abstract
Bacteroides thetaiotaomicron is a prominent member of the human gut microbiota contributing to nutrient exchange, gut function, and maturation of the host's immune system. This obligate anaerobe symbiont can adopt a biofilm lifestyle, and it was recently shown that B. thetaiotaomicron biofilm formation is promoted by the presence of bile. This process also requires a B. thetaiotaomicron extracellular DNase, which is not, however, regulated by bile. Here, we showed that bile induces the expression of several Resistance-Nodulation-Division (RND) efflux pumps and that inhibiting their activity with a global competitive efflux inhibitor impaired bile-dependent biofilm formation. We then showed that, among the bile-induced RND-efflux pumps, only the tripartite BT3337-BT3338-BT3339 pump, re-named BipABC [for Bile Induced Pump A (BT3337), B (BT3338), and C (BT3339)], is required for biofilm formation. We demonstrated that BipABC is involved in the efflux of magnesium to the biofilm extracellular matrix, which leads to a decrease of extracellular DNA concentration. The release of magnesium in the biofilm matrix also impacts biofilm structure, potentially by modifying the electrostatic repulsion forces within the matrix, reducing interbacterial distance and allowing bacteria to interact more closely and form denser biofilms. Our study therefore, identified a new molecular determinant of B. thetaiotaomicron biofilm formation in response to bile salts and provides a better understanding on how an intestinal chemical cue regulates biofilm formation in a major gut symbiont.IMPORTANCEBacteroides thetaiotaomicron is a prominent member of the human gut microbiota able to degrade dietary and host polysaccharides, altogether contributing to nutrient exchange, gut function, and maturation of the host's immune system. This obligate anaerobe symbiont can adopt a biofilm community lifestyle, providing protection against environmental factors that might, in turn, protect the host from dysbiosis and dysbiosis-related diseases. It was recently shown that B. thetaiotaomicron exposure to intestinal bile promotes biofilm formation. Here, we reveal that a specific B. thetaiotaomicron membrane efflux pump is induced in response to bile, leading to the release of magnesium ions, potentially reducing electrostatic repulsion forces between components of the biofilm matrix. This leads to a reduction of interbacterial distance and strengthens the biofilm structure. Our study, therefore, provides a better understanding of how bile promotes biofilm formation in a major gut symbiont, potentially promoting microbiota resilience to stress and dysbiosis events.
Collapse
Affiliation(s)
- Anne-Aurélie Lopes
- Institut Pasteur, Université Paris-Cité, UMR CNRS 6047, Genetics of Biofilms Laboratory, Department of Microbiology, Paris, France
- Pediatric Emergency, AP-HP, Necker-Enfants-Malades University Hospital, Paris, France
| | - Sol Vendrell-Fernández
- Institut Pasteur, Université Paris-Cité, UMR CNRS 6047, Genetics of Biofilms Laboratory, Department of Microbiology, Paris, France
| | - Julien Deschamps
- INRAE, AgroParisTech, Université Paris-Saclay Institut Micalis, Paris, France
| | - Sonia Georgeault
- Plateforme IBiSA des Microscopies, Université et CHRU de Tours, Tours, France
| | - Thomas Cokelaer
- Institut Pasteur, Université Paris Cité, Plate-forme Technologique Biomics, Center for Technological Resources and Research, Paris, France
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, Center for Technological Resources and Research, Paris, France
| | - Romain Briandet
- INRAE, AgroParisTech, Université Paris-Saclay Institut Micalis, Paris, France
| | - Jean-Marc Ghigo
- Institut Pasteur, Université Paris-Cité, UMR CNRS 6047, Genetics of Biofilms Laboratory, Department of Microbiology, Paris, France
| |
Collapse
|
7
|
Giraud E, Baucheron S, Foubert I, Doublet B, Nishino K, Cloeckaert A. Major primary bile salts repress Salmonella enterica serovar Typhimurium invasiveness partly via the efflux regulatory locus ramRA. Front Microbiol 2024; 15:1338261. [PMID: 38410385 PMCID: PMC10895713 DOI: 10.3389/fmicb.2024.1338261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/29/2024] [Indexed: 02/28/2024] Open
Abstract
Bile represses Salmonella enterica serovar Typhimurium (S. Typhimurium) intestinal cell invasion, but it remains unclear which bile components and mechanisms are implicated. Previous studies reported that bile inhibits the RamR binding to the ramA promoter, resulting in ramA increased transcription, and that ramA overexpression is associated to decreased expression of type III secretion system 1 (TTSS-1) invasion genes and to impaired intestinal cell invasiveness in S. Typhimurium. In this study, we assessed the possible involvement of the ramRA multidrug efflux regulatory locus and individual bile salts in the bile-mediated repression of S. Typhimurium invasion, using Caco-2 intestinal epithelial cells and S. Typhimurium strain ATCC 14028s. Our results indicate that (i) major primary bile salts, chenodeoxycholate and its conjugated-derivative salts, cholate, and deoxycholate, activate ramA transcription in a RamR-dependent manner, and (ii) it results in repression of hilA, encoding the master activator of TTSS-1 genes, and as a consequence in the repression of cellular invasiveness. On the other hand, crude ox bile extract and cholate were also shown to repress the transcription of hilA independently of RamR, and to inhibit cell invasion independently of ramRA. Altogether, these data suggest that bile-mediated repression of S. Typhimurium invasion occurs through pleiotropic effects involving partly ramRA, as well as other unknown regulatory pathways. Bile components other than the bile salts used in this study might also participate in this phenomenon.
Collapse
Affiliation(s)
| | | | | | | | - Kunihiko Nishino
- Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan
| | | |
Collapse
|
8
|
Abstract
Environments inhabited by Enterobacteriaceae are diverse and often stressful. This is particularly true for Escherichia coli and Salmonella during host association in the gastrointestinal systems of animals. There, E. coli and Salmonella must survive exposure to various antimicrobial compounds produced or ingested by their host. A myriad of changes to cellular physiology and metabolism are required to achieve this feat. A central regulatory network responsible for sensing and responding to intracellular chemical stressors like antibiotics are the Mar, Sox, and Rob systems found throughout the Enterobacteriaceae. Each of these distinct regulatory networks controls expression of an overlapping set of downstream genes whose collective effects result in increased resistance to a wide array of antimicrobial compounds. This collection of genes is known as the mar-sox-rob regulon. This review will provide an overview of the mar-sox-rob regulon and molecular architecture of the Mar, Sox, and Rob systems.
Collapse
Affiliation(s)
- Lon M. Chubiz
- Department of Biology, University of Missouri–St. Louis, St. Louis, Missouri, USA
- Biochemistry and Biotechnology Program, University of Missouri–St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
9
|
Chatterjee R, Chowdhury AR, Mukherjee D, Chakravortty D. From Eberthella typhi to Salmonella Typhi: The Fascinating Journey of the Virulence and Pathogenicity of Salmonella Typhi. ACS OMEGA 2023; 8:25674-25697. [PMID: 37521659 PMCID: PMC10373206 DOI: 10.1021/acsomega.3c02386] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 06/30/2023] [Indexed: 08/01/2023]
Abstract
Salmonella Typhi (S. Typhi), the invasive typhoidal serovar of Salmonella enterica that causes typhoid fever in humans, is a severe threat to global health. It is one of the major causes of high morbidity and mortality in developing countries. According to recent WHO estimates, approximately 11-21 million typhoid fever illnesses occur annually worldwide, accounting for 0.12-0.16 million deaths. Salmonella infection can spread to healthy individuals by the consumption of contaminated food and water. Typhoid fever in humans sometimes is accompanied by several other critical extraintestinal complications related to the central nervous system, cardiovascular system, pulmonary system, and hepatobiliary system. Salmonella Pathogenicity Island-1 and Salmonella Pathogenicity Island-2 are the two genomic segments containing genes encoding virulent factors that regulate its invasion and systemic pathogenesis. This Review aims to shed light on a comparative analysis of the virulence and pathogenesis of the typhoidal and nontyphoidal serovars of S. enterica.
Collapse
Affiliation(s)
- Ritika Chatterjee
- Department
of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Atish Roy Chowdhury
- Department
of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Debapriya Mukherjee
- Department
of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Dipshikha Chakravortty
- Department
of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, Karnataka 560012, India
- Centre
for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India
| |
Collapse
|
10
|
Alsultan A, Walton G, Andrews SC, Clarke SR. Staphylococcus aureus FadB is a dehydrogenase that mediates cholate resistance and survival under human colonic conditions. MICROBIOLOGY (READING, ENGLAND) 2023; 169. [PMID: 36947574 DOI: 10.1099/mic.0.001314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Staphylococcus aureus is a common colonizer of the human gut and in doing so it must be able to resist the actions of the host's innate defences. Bile salts are a class of molecules that possess potent antibacterial activity that control growth. Bacteria that colonize and survive in that niche must be able to resist the action of bile salts, but the mechanisms by which S. aureus does so are poorly understood. Here we show that FadB is a bile-induced oxidoreductase which mediates bile salt resistance and when heterologously expressed in Escherichia coli renders them resistant. Deletion of fadB attenuated survival of S. aureus in a model of the human distal colon.
Collapse
Affiliation(s)
- Amjed Alsultan
- School of Biological Sciences, University of Reading, Whiteknights, Reading, RG6 6EX, UK
- Present address: Department of Internal and Preventive Medicine, College of Veterinary Medicine, University of Al-qadisiyah, Aldewanyiah, Iraq
| | - Gemma Walton
- Food Microbial Sciences Unit, Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading, RG6 6AP, UK
| | - Simon C Andrews
- School of Biological Sciences, University of Reading, Whiteknights, Reading, RG6 6EX, UK
| | - Simon R Clarke
- School of Biological Sciences, University of Reading, Whiteknights, Reading, RG6 6EX, UK
| |
Collapse
|
11
|
Yang X, Stein KR, Hang HC. Anti-infective bile acids bind and inactivate a Salmonella virulence regulator. Nat Chem Biol 2023; 19:91-100. [PMID: 36175659 PMCID: PMC9805502 DOI: 10.1038/s41589-022-01122-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 07/26/2022] [Indexed: 01/03/2023]
Abstract
Bile acids are prominent host and microbiota metabolites that modulate host immunity and microbial pathogenesis. However, the mechanisms by which bile acids suppress microbial virulence are not clear. To identify the direct protein targets of bile acids in bacterial pathogens, we performed activity-guided chemical proteomic studies. In Salmonella enterica serovar Typhimurium, chenodeoxycholic acid (CDCA) most effectively inhibited the expression of virulence genes and invasion of epithelial cells and interacted with many proteins. Notably, we discovered that CDCA can directly bind and inhibit the function of HilD, an important transcriptional regulator of S. Typhimurium virulence and pathogenesis. Our characterization of bile acid-resistant HilD mutants in vitro and in S. Typhimurium infection models suggests that HilD is one of the key protein targets of anti-infective bile acids. This study highlights the utility of chemical proteomics to identify the direct protein targets of microbiota metabolites for mechanistic studies in bacterial pathogens.
Collapse
Affiliation(s)
- Xinglin Yang
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, USA
| | - Kathryn R Stein
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, USA
| | - Howard C Hang
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, USA.
- Department of Chemistry, Scripps Research, La Jolla, CA, USA.
| |
Collapse
|
12
|
Yamasaki S, Yoneda T, Ikawa S, Hayashi-Nishino M, Nishino K. Investigating multidrug efflux pumps associated with fatty acid salt resistance in Escherichia coli. Front Microbiol 2023; 14:954304. [PMID: 36896427 PMCID: PMC9989013 DOI: 10.3389/fmicb.2023.954304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 01/24/2023] [Indexed: 02/25/2023] Open
Abstract
Fatty acids salts exert bactericidal and bacteriostatic effects that inhibit bacterial growth and survival. However, bacteria can overcome these effects and adapt to their environment. Bacterial efflux systems are associated with resistance to different toxic compounds. Here, several bacterial efflux systems were examined to determine their influence on fatty acid salt resistance in Escherichia coli. Both acrAB and tolC E. coli deletion strains were susceptible to fatty acid salts, while plasmids carrying acrAB, acrEF, mdtABC, or emrAB conferred drug resistance to the ΔacrAB mutant, which indicated complementary roles for these multidrug efflux pumps. Our data exemplify the importance of bacterial efflux systems in E. coli resistance to fatty acid salts.
Collapse
Affiliation(s)
- Seiji Yamasaki
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Osaka, Japan.,Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.,Institute for Advanced Co-Creation Studies, Osaka University, Osaka, Japan
| | - Tomohiro Yoneda
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Osaka, Japan.,Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Sota Ikawa
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Osaka, Japan.,Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Mitsuko Hayashi-Nishino
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Osaka, Japan.,Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Kunihiko Nishino
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Osaka, Japan.,Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.,Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
| |
Collapse
|
13
|
Rogers AR, Turner EE, Johnson DT, Ellermeier JR. Envelope Stress Activates Expression of the Twin Arginine Translocation (Tat) System in Salmonella. Microbiol Spectr 2022; 10:e0162122. [PMID: 36036643 PMCID: PMC9604234 DOI: 10.1128/spectrum.01621-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 08/16/2022] [Indexed: 12/31/2022] Open
Abstract
The twin arginine translocation system (Tat) is a protein export system that is conserved in bacteria, archaea, and plants. In Gram-negative bacteria, it is required for the export of folded proteins from the cytoplasm to the periplasm. In Salmonella, there are 30 proteins that are predicted substrates of Tat, and among these are enzymes required for anaerobic respiration and peptidoglycan remodeling. We have demonstrated that some conditions that induce bacterial envelope stress activate expression of a ΔtatABC-lacZ fusion in Salmonella enterica serovar Typhimurium. Particularly, the addition of bile salts to the growth medium causes a 3-fold induction of a ΔtatABC-lacZ reporter fusion. Our data demonstrate that this induction is mediated via the phage shock protein (Psp) stress response system protein PspA. Further, we show that deletion of tatABC increases the induction of tatABC expression in bile salts. Indeed, the data suggest significant interaction between PspA and the Tat system in the regulatory response to bile salts. Although we have not identified the precise mechanism of Psp regulation of tatABC, our work shows that PspA is involved in the activation of tatABC expression by bile salts and adds another layer of complexity to the Salmonella response to envelope stress. IMPORTANCE Salmonella species cause an array of diseases in a variety of hosts. This research is significant in showing induction of the Tat system as a defense against periplasmic stress. Understanding the underlying mechanism of this regulation broadens our understanding of the Salmonella stress response, which is critical to the ability of the organism to cause infection.
Collapse
Affiliation(s)
- Alexandra R. Rogers
- Department of Microbiology and Immunology, Midwestern University, Glendale, Arizona, USA
| | - Ezekeial E. Turner
- College of Graduate Studies, Midwestern University, Glendale, Arizona, USA
| | - Deauna T. Johnson
- Department of Microbiology and Immunology, Midwestern University, Glendale, Arizona, USA
| | - Jeremy R. Ellermeier
- Department of Microbiology and Immunology, Midwestern University, Glendale, Arizona, USA
| |
Collapse
|
14
|
Wang Y, Ge H, Wei X, Zhao X. Research progress on antibiotic resistance of Salmonella. FOOD QUALITY AND SAFETY 2022. [DOI: 10.1093/fqsafe/fyac035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Antibiotic abuse results in various antibiotic resistance among a number of foodborne bacteria, posing a severe threat to food safety. Antibiotic resistance genes are commonly detected in foodborne pathogens, which has sparked much interest in finding solutions to these issues. Various strategies against these drug-resistant pathogens have been studied, including new antibiotics and phages. Recently, a powerful tool has been introduced in the fight against drug-resistant pathogens, namely, clustered regularly interspaced short palindromic repeats-CRISPR associated (CRISPR-Cas) system aggregated by a prokaryotic defense mechanism. This review summarized the mechanism of antibiotic resistance in Salmonella and resistance to common antibiotics, analysed the relationship between Salmonella CRISPR-Cas and antibiotic resistance, discussed the changes in antibiotic resistance on the structure and function of CRISPR-Cas, and finally predicted the mechanism of CRISPR-Cas intervention in Salmonella antibiotic resistance. In the future, CRISPR-Cas is expected to become an important tool to reduce the threat of antibiotic-resistant pathogens in food safety.
Collapse
Affiliation(s)
- Yizhe Wang
- Research Center for Environmental Ecology and Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Hengwei Ge
- Research Center for Environmental Ecology and Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Xinyue Wei
- Research Center for Environmental Ecology and Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Xihong Zhao
- Research Center for Environmental Ecology and Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| |
Collapse
|
15
|
Yoneda T, Sakata H, Yamasaki S, Hayashi-Nishino M, Nishino K. Analysis of multidrug efflux transporters in resistance to fatty acid salts reveals a TolC-independent function of EmrAB in Salmonella enterica. PLoS One 2022; 17:e0266806. [PMID: 35421142 PMCID: PMC9045224 DOI: 10.1371/journal.pone.0266806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 03/28/2022] [Indexed: 11/23/2022] Open
Abstract
Fatty acids salts exhibit bacteriostatic and bactericidal effects to inhibit
bacterial growth and survival. Bacteria adapt to their environment to overcome
these antibacterial effects through undefined mechanisms. In Gram-negative
bacteria, drug efflux systems are associated with resistance to various
substances. Studies have identified multiple drug efflux systems in
Salmonella enterica. The aim of this study was to
investigate whether drug efflux systems contribute to fatty acid salts
resistance in S. enterica. We used deletion
and overexpressing strains of S. enterica for
drug efflux transporters. Susceptibility to fatty acid salts was determined by
measuring minimum inhibitory concentrations and performing growth assays. Our
findings revealed that acrAB, acrEF,
emrAB and tolC in S.
enterica contribute resistance to fatty acid salts.
Furthermore, EmrAB, which is known to function with TolC, contributes to the
fatty acid salts resistance of S. enterica in
a TolC-independent manner. This study revealed that drug efflux systems confer
fatty acid satls resistance to S. enterica.
Notably, although EmrAB is normally associated with antimicrobial resistance in
a TolC-dependent manner, it was found to be involved in fatty acid salts
resistance in a TolC-independent manner, indicating that the utilization of TolC
by EmrAB is substrate dependent in S.
enterica.
Collapse
Affiliation(s)
- Tomohiro Yoneda
- SANKEN (The Institute of Scientific and Industrial Research), Osaka
University, Ibaraki, Osaka, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita,
Osaka, Japan
| | - Hiroki Sakata
- SANKEN (The Institute of Scientific and Industrial Research), Osaka
University, Ibaraki, Osaka, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita,
Osaka, Japan
| | - Seiji Yamasaki
- SANKEN (The Institute of Scientific and Industrial Research), Osaka
University, Ibaraki, Osaka, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita,
Osaka, Japan
- Institute for Advanced Co-Creation Studies, Osaka University, Suita,
Osaka, Japan
| | - Mitsuko Hayashi-Nishino
- SANKEN (The Institute of Scientific and Industrial Research), Osaka
University, Ibaraki, Osaka, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita,
Osaka, Japan
| | - Kunihiko Nishino
- SANKEN (The Institute of Scientific and Industrial Research), Osaka
University, Ibaraki, Osaka, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita,
Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University,
Suita, Osaka, Japan
- * E-mail:
| |
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW Colorectal cancer (CRC) is the third most common cancer and the second most common cause of cancer-related deaths. Of the various established risk factors for this aggressive condition, diet is a notable modifiable risk factor. This review aims to summarize the mounting evidence to suggest the role of diet, the microbiota and their cross-talk in modulating an individual's risk of developing CRC. RECENT FINDINGS Specifically, the metabolism of bile acids and its symbiosis with the microbiota has gained weight given its basis on a high meat, high fat, and low fibre diet that is present in populations with the highest risk of CRC. Bacteria modify bile acids that escape enterohepatic circulation to increase the diversity of the human bile acid pool. The production of microbial bile acids contributes to this as well. Epidemiological studies have shown that changing the diet results in different levels and composition of bile acids, which has in turn modified the risk of CRC at a population level. Evidence to identify underlying mechanisms have tied into the microbiota-led digestions of various foods into fatty acids that feedback into bile acid physiology as well as modulation of endogenous receptors for bile acids. SUMMARY There is adequate evidence to support the role of microbiota in in the metabolism of bile acids, and how this relates to colorectal cancer. Further work is necessary to identify specific bacteriome involved and their underlying mechanistic pathways.
Collapse
|
17
|
Olivar-Casique IB, Medina-Aparicio L, Mayo S, Gama-Martínez Y, Rebollar-Flores JE, Martínez-Batallar G, Encarnación S, Calva E, Hernández-Lucas I. The human bile salt sodium deoxycholate induces metabolic and cell envelope changes in Salmonella Typhi leading to bile resistance. J Med Microbiol 2022; 71. [PMID: 35006066 DOI: 10.1099/jmm.0.001461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Introduction. Salmonella enterica serovar Typhi (S. Typhi) is the etiological agent of typhoid fever. To establish an infection in the human host, this pathogen must survive the presence of bile salts in the gut and gallbladder.Hypothesis. S. Typhi uses multiple genetic elements to resist the presence of human bile.Aims. To determine the genetic elements that S. Typhi utilizes to tolerate the human bile salt sodium deoxycholate.Methodology. A collection of S. Typhi mutant strains was evaluated for their ability to growth in the presence of sodium deoxycholate and ox-bile. Additionally, transcriptomic and proteomic responses elicited by sodium deoxycholate on S. Typhi cultures were also analysed.Results. Multiple transcriptional factors and some of their dependent genes involved in central metabolism, as well as in cell envelope, are required for deoxycholate resistance.Conclusion. These findings suggest that metabolic adaptation to bile is focused on enhancing energy production to sustain synthesis of cell envelope components exposed to damage by bile salts.
Collapse
Affiliation(s)
- Isaac B Olivar-Casique
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210, México
| | - Liliana Medina-Aparicio
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210, México
| | - Selena Mayo
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210, México
| | - Yitzel Gama-Martínez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210, México
| | - Javier E Rebollar-Flores
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210, México
| | - Gabriel Martínez-Batallar
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210, México
| | - Sergio Encarnación
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210, México
| | - Edmundo Calva
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210, México
| | - Ismael Hernández-Lucas
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210, México
| |
Collapse
|
18
|
Mehta J, Rolta R, Dev K. Role of medicinal plants from North Western Himalayas as an efflux pump inhibitor against MDR AcrAB-TolC Salmonella enterica serovar typhimurium: In vitro and In silico studies. JOURNAL OF ETHNOPHARMACOLOGY 2022; 282:114589. [PMID: 34492321 DOI: 10.1016/j.jep.2021.114589] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/20/2021] [Accepted: 08/29/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zingiber officinale Roscoe has been utilized traditionally to cure various diseases like cold, cough, diarrhoea, nausea, asthma, vomiting, toothache, stomach upset, respiratory disorders, joint pain, and throat infection. It is also consumed as spices and ginger tea. AIM OF THE STUDY The current study was aimed to identify the phytocompounds of traditional medicinal plants of North-Western Himalaya that could inhibit the AcrAB-TolC efflux pump activity of Salmonella typhimurium and become sensitive to antibiotic killing at reduced dosage. MATERIAL AND METHODS Medicinal plant extracts were prepared using methanol, aqueous, and ethyl acetate and tested for efflux pump inhibitory activity of Salmonella typhimurium NKS70, NKS174, and NKS773 strains using Ethidium Bromide (EtBr)-agar cartwheel assay. Synergism was assessed by the agar well diffusion method and EPI activity by berberine uptake and EtBr efflux inhibition assays. Microdilution method and checkerboard assays were done to determine the minimum inhibitory concentration (MIC) and fractional inhibitory concentration index (FICI) respectively for a bioactive compound. To validate the phytocompound and efflux pump interaction, molecular docking with 6IE8 (RamA) and 6IE9 (RamR) targets was done using autoDock vina software. Toxicity prediction and drug-likeness were predicted by using ProTox-II and Molinspiration respectively. RESULTS Methanolic and ethyl acetate extracts of P. integerrima, O. sanctum, C. asiatica, M. charantia, Z. officinale, and W. somnifera in combination with ciprofloxacin and tetracycline showed synergistic antimicrobial activity with GIIs of 0.61-1.32 and GIIs 0.56-1.35 respectively. Methanolic extract of Z. officinal enhanced the antimicrobial potency of berberine (2 to 4-folds) and increased the EtBr accumulation. Furthermore, bioassay-guided fractionation leads to the identification of lariciresinol in ethyl acetate fraction, which decreased the MIC by 2-to 4-folds. The ΣFIC values varied from 0.30 to 0.55 with tetracycline, that indicated synergistic/additive effects. Lariciresinol also showed a good binding affinity with 6IE8 (-7.4 kcal mol-1) and 6IE9 (-8.2 kcal mol-1), which is comparable to tetracycline and chenodeoxycholic acid. Lariciresinol followed Lipinski's rule of five. CONCLUSION The data suggest that lariciresinol from Z. officinale could be a potential efflux pump inhibitor that could lead to effective killing of drug resistant Salmonella typhimurium at lower MIC. Molecular docking confirmed the antibacterial EPI mechanism of lariciresinol in Salmonella typhimurium and confirmed to be safe for future use.
Collapse
Affiliation(s)
- Jyoti Mehta
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Bajhol, PO Sultanpur, District Solan, 173229, Himachal Pradesh, India.
| | - Rajan Rolta
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Bajhol, PO Sultanpur, District Solan, 173229, Himachal Pradesh, India
| | - Kamal Dev
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Bajhol, PO Sultanpur, District Solan, 173229, Himachal Pradesh, India.
| |
Collapse
|
19
|
Sharma A, Yadav SP, Sarma D, Mukhopadhaya A. Modulation of host cellular responses by gram-negative bacterial porins. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 128:35-77. [PMID: 35034723 DOI: 10.1016/bs.apcsb.2021.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The outer membrane of a gram-negative bacteria encapsulates the plasma membrane thereby protecting it from the harsh external environment. This membrane acts as a sieving barrier due to the presence of special membrane-spanning proteins called "porins." These porins are β-barrel channel proteins that allow the passive transport of hydrophilic molecules and are impermeable to large and charged molecules. Many porins form trimers in the outer membrane. They are abundantly present on the bacterial surface and therefore play various significant roles in the host-bacteria interactions. These include the roles of porins in the adhesion and virulence mechanisms necessary for the pathogenesis, along with providing resistance to the bacteria against the antimicrobial substances. They also act as the receptors for phage and complement proteins and are involved in modulating the host cellular responses. In addition, the potential use of porins as adjuvants, vaccine candidates, therapeutic targets, and biomarkers is now being exploited. In this review, we focus briefly on the structure of the porins along with their important functions and roles in the host-bacteria interactions.
Collapse
Affiliation(s)
- Arpita Sharma
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, Punjab, India
| | - Shashi Prakash Yadav
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, Punjab, India
| | - Dwipjyoti Sarma
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, Punjab, India
| | - Arunika Mukhopadhaya
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, Punjab, India.
| |
Collapse
|
20
|
Mehta J, Rolta R, Salaria D, Awofisayo O, Fadare OA, Sharma PP, Rathi B, Chopra A, Kaushik N, Choi EH, Kaushik NK. Phytocompounds from Himalayan Medicinal Plants as Potential Drugs to Treat Multidrug-Resistant Salmonella typhimurium: An In Silico Approach. Biomedicines 2021; 9:1402. [PMID: 34680519 PMCID: PMC8533345 DOI: 10.3390/biomedicines9101402] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 11/16/2022] Open
Abstract
Medicinal plants can be used as natural therapeutics to treat diseases in humans. Enteric bacteria possess efflux pumps to remove bile salts from cells to avoid potential membrane damage. Resistance to bile and antibiotics is associated with the survival of Salmonella enterica subspecies enterica serovar Typhimurium (S. typhimurium) within a host. The present study aimed to investigate the binding affinity of major phytocompounds derived from 35 medicinal plants of the North Western Himalayas with the RamR protein (PDB ID 6IE9) of S. typhimurium. Proteins and ligands were prepared using AutoDock software 1.5.6. Molecular docking was performed using AutoDock Vina and MD simulation was performed at 100 ns. Drug likeness and toxicity predictions of hit phytocompounds were evaluated using molinspiration and ProTox II online servers. Moreover, docking, drug likeness, and toxicity results revealed that among all the selected phytocompounds, beta-sitosterol exhibited the most efficacious binding affinity with RamR protein (PDB ID 6IE9) and was nontoxic in nature. MD simulation data revealed that beta-sitosterol in complex with 6IE9 can be used as an antimicrobial. Furthermore, beta-sitosterol is stable in the binding pocket of the target protein; hence, it can be further explored as a drug to inhibit resistance-nodulation-division efflux pumps.
Collapse
Affiliation(s)
- Jyoti Mehta
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Himachal Pradesh 173212, India; (J.M.); (R.R.); (D.S.)
| | - Rajan Rolta
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Himachal Pradesh 173212, India; (J.M.); (R.R.); (D.S.)
| | - Deeksha Salaria
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Himachal Pradesh 173212, India; (J.M.); (R.R.); (D.S.)
| | - Oladoja Awofisayo
- Department of Pharmaceutical and Medical Chemistry, University of Uyo, Uyo 520003, Nigeria;
| | - Olatomide A. Fadare
- Organic Chemistry Research Lab, Department of Chemistry, Obafemi Awolowo University, Osun 220282, Nigeria;
| | - Prem Prakash Sharma
- Laboratory for Translational Chemistry and Drug Discovery, Hansraj College, University of Delhi, Delhi 110007, India; (P.P.S.); (B.R.)
| | - Brijesh Rathi
- Laboratory for Translational Chemistry and Drug Discovery, Hansraj College, University of Delhi, Delhi 110007, India; (P.P.S.); (B.R.)
- Laboratory of Computational Modelling of Drugs, South Ural State University, 454080 Chelyabinsk, Russia
| | - Adity Chopra
- Department of Immunology, University of Oslo, 0315 Oslo, Norway;
| | - Neha Kaushik
- Department of Biotechnology, College of Engineering, Suwon University, Hwaseong-si 18323, Korea;
| | - Eun Ha Choi
- Plasma Bioscience Research Center & Applied Plasma Medicine Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Korea;
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center & Applied Plasma Medicine Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Korea;
| |
Collapse
|
21
|
Salam LB, Obayori OS, Ilori MO, Amund OO. Impact of spent engine oil contamination on the antibiotic resistome of a tropical agricultural soil. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:1251-1271. [PMID: 33993436 DOI: 10.1007/s10646-021-02422-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
Profiling of hydrocarbon-contaminated soils for antibiotic resistance genes (ARGs) is becoming increasingly important due to emerging realities of their preponderance in hydrocarbon-inundated matrices. In this study, the antibiotic resistome of an agricultural soil (1S) and agricultural soil contaminated with spent engine oil (AB1) were evaluated via functional annotation of the open reading frames (ORFs) of their metagenomes using the comprehensive antibiotic database (CARD) and KEGG KofamKOALA. CARD analysis of AB1 metagenome revealed the detection of 24 AMR (antimicrobial resistance) gene families, 66 ARGs, and the preponderance (69.7%) of ARGs responsible for antibiotic efflux in AB1 metagenome. CARD analysis of 1S metagenome revealed four AMR gene families and five ARGs. Functional annotation of the two metagenomes using KofamKOALA showed 171 ARGs in AB1 and 29 ARGs in 1S, respectively. Majority of the detected ARGs in AB1 (121; 70.8%) and 1S (16; 55.2%) using KofamKOALA are responsible for antibiotic efflux while ARGs for other resistance mechanisms were also detected. All the five major antibiotic efflux pump systems were detected in AB1 metagenome, though majority of the ARGs for antibiotic efflux belong to the RND (resistance-nodulation-cell division) and MFS (major facilitator superfamily) efflux systems. Significant differences observed in the ARGs recovered from 1S and AB1 metagenomes were statistically validated (P < 0.05). SEO contamination is believed to be responsible for ARGs increase in AB1 metagenome via mechanisms of cross-resistance especially with efflux pumps. The detection of these ARGs is of great public health concern in this era of multidrug resistant isolates resurgence.
Collapse
Affiliation(s)
- Lateef Babatunde Salam
- Department of Biological Sciences, Microbiology Unit, Summit University, Offa, Kwara, Nigeria.
| | | | | | | |
Collapse
|
22
|
Sanz-García F, Gil-Gil T, Laborda P, Ochoa-Sánchez LE, Martínez JL, Hernando-Amado S. Coming from the Wild: Multidrug Resistant Opportunistic Pathogens Presenting a Primary, Not Human-Linked, Environmental Habitat. Int J Mol Sci 2021; 22:8080. [PMID: 34360847 PMCID: PMC8347278 DOI: 10.3390/ijms22158080] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/22/2021] [Accepted: 07/24/2021] [Indexed: 12/24/2022] Open
Abstract
The use and misuse of antibiotics have made antibiotic-resistant bacteria widespread nowadays, constituting one of the most relevant challenges for human health at present. Among these bacteria, opportunistic pathogens with an environmental, non-clinical, primary habitat stand as an increasing matter of concern at hospitals. These organisms usually present low susceptibility to antibiotics currently used for therapy. They are also proficient in acquiring increased resistance levels, a situation that limits the therapeutic options for treating the infections they cause. In this article, we analyse the most predominant opportunistic pathogens with an environmental origin, focusing on the mechanisms of antibiotic resistance they present. Further, we discuss the functions, beyond antibiotic resistance, that these determinants may have in the natural ecosystems that these bacteria usually colonize. Given the capacity of these organisms for colonizing different habitats, from clinical settings to natural environments, and for infecting different hosts, from plants to humans, deciphering their population structure, their mechanisms of resistance and the role that these mechanisms may play in natural ecosystems is of relevance for understanding the dissemination of antibiotic resistance under a One-Health point of view.
Collapse
Affiliation(s)
| | | | | | | | - José L. Martínez
- Centro Nacional de Biotecnología, CSIC, 28049 Madrid, Spain; (F.S.-G.); (T.G.-G.); (P.L.); (L.E.O.-S.); (S.H.-A.)
| | | |
Collapse
|
23
|
Wahlig TA, Stanton E, Godfrey JJ, Stasic AJ, Wong ACL, Kaspar CW. A Single Nucleotide Polymorphism in lptG Increases Tolerance to Bile Salts, Acid, and Staining of Calcofluor-Binding Polysaccharides in Salmonella enterica Serovar Typhimurium E40. Front Microbiol 2021; 12:671453. [PMID: 34149657 PMCID: PMC8208086 DOI: 10.3389/fmicb.2021.671453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/12/2021] [Indexed: 11/13/2022] Open
Abstract
The outer membrane of Salmonella enterica plays an important role in combating stress encountered in the environment and hosts. The transport and insertion of lipopolysaccharides (LPS) into the outer membrane involves lipopolysaccharide transport proteins (LptA-F) and mutations in the genes encoding for these proteins are often lethal or result in the transport of atypical LPS that can alter stress tolerance in bacteria. During studies of heterogeneity in bile salts tolerance, S. enterica serovar Typhimurium E40 was segregated into bile salts tolerant and sensitive cells by screening for growth in TSB with 10% bile salts. An isolate (E40V) with a bile salts MIC >20% was selected for further characterization. Whole-genome sequencing of E40 and E40V using Illumina and PacBio SMRT technologies revealed a non-synonymous single nucleotide polymorphism (SNP) in lptG. Leucine at residue 26 in E40 was substituted with proline in E40V. In addition to growth in the presence of 10% bile salts, E40V was susceptible to novobiocin while E40 was not. Transcriptional analysis of E40 and E40V, in the absence of bile salts, revealed significantly greater (p < 0.05) levels of transcript in three genes in E40V; yjbE (encoding for an extracellular polymeric substance production protein), yciE (encoding for a putative stress response protein), and an uncharacterized gene annotated as an acid shock protein precursor (ASPP). No transcripts of genes were present at a greater level in E40 compared to E40V. Corresponding with the greater level of these transcripts, E40V had greater survival at pH 3.35 and staining of Calcofluor-binding polysaccharide (CBPS). To confirm the SNP in lptG was associated with these phenotypes, strain E40E was engineered from E40 to encode for the variant form of LptG (L26P). E40E exhibited the same differences in gene transcripts and phenotypes as E40V, including susceptibility to novobiocin, confirming the SNP was responsible for these differences.
Collapse
Affiliation(s)
- Taylor A Wahlig
- Department of Bacteriology, University of Wisconsin, Madison, WI, United States
| | - Eliot Stanton
- Department of Bacteriology, University of Wisconsin, Madison, WI, United States
| | - Jared J Godfrey
- Department of Bacteriology, University of Wisconsin, Madison, WI, United States
| | - Andrew J Stasic
- U. S. Food and Drug Administration, Center for Biologics Evaluation and Research, Washington, DC, United States
| | - Amy C L Wong
- Department of Bacteriology, University of Wisconsin, Madison, WI, United States
| | - Charles W Kaspar
- Department of Bacteriology, University of Wisconsin, Madison, WI, United States
| |
Collapse
|
24
|
Hahn MM, González JF, Gunn JS. Salmonella Biofilms Tolerate Hydrogen Peroxide by a Combination of Extracellular Polymeric Substance Barrier Function and Catalase Enzymes. Front Cell Infect Microbiol 2021; 11:683081. [PMID: 34095002 PMCID: PMC8171120 DOI: 10.3389/fcimb.2021.683081] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/04/2021] [Indexed: 11/17/2022] Open
Abstract
The ability of Salmonella enterica subspecies enterica serovar Typhi (S. Typhi) to cause chronic gallbladder infections is dependent on biofilm growth on cholesterol gallstones. Non-typhoidal Salmonella (e.g. S. Typhimurium) also utilize the biofilm state to persist in the host and the environment. How the pathogen maintains recalcitrance to the host response, and oxidative stress in particular, during chronic infection is poorly understood. Previous experiments demonstrated that S. Typhi and S. Typhimurium biofilms are tolerant to hydrogen peroxide (H2O2), but that mutations in the biofilm extracellular polymeric substances (EPSs) O antigen capsule, colanic acid, or Vi antigen reduce tolerance. Here, biofilm-mediated tolerance to oxidative stress was investigated using a combination of EPS and catalase mutants, as catalases are important detoxifiers of H2O2. Using co-cultured biofilms of wild-type (WT) bacteria with EPS mutants, it was demonstrated that colanic acid in S. Typhimurium and Vi antigen in S. Typhi have a community function and protect all biofilm-resident bacteria rather than to only protect the individual cells producing the EPSs. However, the H2O2 tolerance deficiency of a O antigen capsule mutant was unable to be compensated for by co-culture with WT bacteria. For curli fimbriae, both WT and mutant strains are tolerant to H2O2 though unexpectedly, co-cultured WT/mutant biofilms challenged with H2O2 resulted in sensitization of both strains, suggesting a more nuanced oxidative resistance alteration in these co-cultures. Three catalase mutant (katE, katG and a putative catalase) biofilms were also examined, demonstrating significant reductions in biofilm H2O2 tolerance for the katE and katG mutants. Biofilm co-culture experiments demonstrated that catalases exhibit a community function. We further hypothesized that biofilms are tolerant to H2O2 because the physical barrier formed by EPSs slows penetration of H2O2 into the biofilm to a rate that can be mitigated by intra-biofilm catalases. Compared to WT, EPS-deficient biofilms have a heighted response even to low-dose (2.5 mM) H2O2 challenge, confirming that resident bacteria of EPS-deficient biofilms are under greater stress and have limited protection from H2O2. Thus, these data provide an explanation for how Salmonella achieves tolerance to H2O2 by a combination of an EPS-mediated barrier and enzymatic detoxification.
Collapse
Affiliation(s)
- Mark M Hahn
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States.,Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States
| | - Juan F González
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States.,Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States
| | - John S Gunn
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States.,Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, United States
| |
Collapse
|
25
|
Interactions between Salmonella and host macrophages - Dissecting NF-κB signaling pathway responses. Microb Pathog 2021; 154:104846. [PMID: 33711426 DOI: 10.1016/j.micpath.2021.104846] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/18/2020] [Accepted: 02/22/2021] [Indexed: 01/07/2023]
Abstract
Salmonella not only invades host cells, but also replicates intracellularly to cause a range of diseases, including gastroenteritis and systemic infections such as typhoid fever. The body's first line of defense against pathogens is the innate immune response system that can protect against Salmonella invasion and replication. Nuclear factor κB (NF-κB) is an important transcriptional regulator that plays an important role in host inflammatory responses to pathogens. Both the canonical and non-canonical NF-κB signaling pathways are activated by Salmonella in many different ways through its virulence factors, leading to the release of inflammatory factors and the activation of inflammatory responses in mammalian hosts. Equally, Salmonella, as an enteropathogen, has accordingly evolved strategies to disturb NF-κB activation, such as secreting some effector proteins by type III secretion systems as well as inducing host cells to express NF-κB pathway inhibitors, allowing it to colonize and persistently infect the hosts. This review focuses on how Salmonella activates NF-κB signaling pathway and the strategies used by Salmonella to interfere with the NF-κB pathway activation.
Collapse
|
26
|
Liu H, Shiver AL, Price MN, Carlson HK, Trotter VV, Chen Y, Escalante V, Ray J, Hern KE, Petzold CJ, Turnbaugh PJ, Huang KC, Arkin AP, Deutschbauer AM. Functional genetics of human gut commensal Bacteroides thetaiotaomicron reveals metabolic requirements for growth across environments. Cell Rep 2021; 34:108789. [PMID: 33657378 PMCID: PMC8121099 DOI: 10.1016/j.celrep.2021.108789] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 11/30/2020] [Accepted: 02/03/2021] [Indexed: 12/12/2022] Open
Abstract
Harnessing the microbiota for beneficial outcomes is limited by our poor understanding of the constituent bacteria, as the functions of most of their genes are unknown. Here, we measure the growth of a barcoded transposon mutant library of the gut commensal Bacteroides thetaiotaomicron on 48 carbon sources, in the presence of 56 stress-inducing compounds, and during mono-colonization of gnotobiotic mice. We identify 516 genes with a specific phenotype under only one or a few conditions, enabling informed predictions of gene function. For example, we identify a glycoside hydrolase important for growth on type I rhamnogalacturonan, a DUF4861 protein for glycosaminoglycan utilization, a 3-keto-glucoside hydrolase for disaccharide utilization, and a tripartite multidrug resistance system specifically for bile salt tolerance. Furthermore, we show that B. thetaiotaomicron uses alternative enzymes for synthesizing nitrogen-containing metabolic precursors based on ammonium availability and that these enzymes are used differentially in vivo in a diet-dependent manner.
Collapse
Affiliation(s)
- Hualan Liu
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Anthony L Shiver
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Morgan N Price
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Hans K Carlson
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Valentine V Trotter
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Yan Chen
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Veronica Escalante
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jayashree Ray
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Kelsey E Hern
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Christopher J Petzold
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Peter J Turnbaugh
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Kerwyn Casey Huang
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Adam P Arkin
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Adam M Deutschbauer
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
27
|
Gadishaw-Lue C, Banaag A, Birstonas S, Francis AS, Barnett Foster D. Bile Salts Differentially Enhance Resistance of Enterohemorrhagic Escherichia coli O157:H7 to Host Defense Peptides. Infect Immun 2021; 89:e00719-20. [PMID: 33229368 PMCID: PMC7822141 DOI: 10.1128/iai.00719-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 11/13/2020] [Indexed: 12/28/2022] Open
Abstract
During passage through the human gastrointestinal tract, enterohemorrhagic Escherichia coli (EHEC) is exposed to membrane-damaging bile in the small intestine. We previously reported that EHEC treatment with a physiological bile salt mixture upregulates basRS, encoding a two-component system, and arnBCADTEF, encoding the aminoarabinose lipid A modification pathway (J. V. Kus, A. Gebremedhin, V. Dang, S. L. Tran, A. Serbanescu, and D. Barnett Foster, J Bacteriol 193: 4509-4515, 2011, https://doi.org/10.1128/JB.00200-11). The present study examined the effect of bile salt mix (BSM) treatment on EHEC resistance to three human gastrointestinal defense peptides-HD-5, HNP-1, and LL-37-as well as the role of basRS and arnT in the respective responses. After BSM treatment, EHEC resistance to HD-5 and HNP-1 was significantly increased in a BSM-, defensin dose-dependent manner. The resistance phenotype was dependent on both basRS and arnT However, the BSM treatment did not alter EHEC resistance to LL-37, even when the ompT gene, encoding an LL-37 cleavage protease, was disrupted. Interestingly, enteropathogenic E. coli, a related pathogen that infects the small intestine, showed a similar BSM-induced resistance phenotype. Using a model of EHEC infection in Galleria mellonella, we found significantly lower survival rates in wax moth larvae infected with BSM-treated wild-type EHEC than in those infected with a BSM-treated basS mutant, suggesting that treatment with a physiological BSM enhances virulence through a basS-mediated pathway. The results of this investigation provide persuasive evidence that bile salts typically encountered during transit through the small intestine can serve as an environmental cue for EHEC, enhancing resistance to several key host defense peptides.
Collapse
Affiliation(s)
- Crystal Gadishaw-Lue
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, Canada
| | - Alyssa Banaag
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, Canada
| | - Sarah Birstonas
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, Canada
| | - Aju-Sue Francis
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, Canada
| | - Debora Barnett Foster
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, Canada
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
28
|
Henríquez T, Stein NV, Jung H. Resistance to Bipyridyls Mediated by the TtgABC Efflux System in Pseudomonas putida KT2440. Front Microbiol 2020; 11:1974. [PMID: 32973714 PMCID: PMC7461776 DOI: 10.3389/fmicb.2020.01974] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 07/27/2020] [Indexed: 01/26/2023] Open
Abstract
Resistance-nodulation-division (RND) transporters are involved in antibiotic resistance and have a broad substrate specificity. However, the physiological significance of these efflux pumps is not fully understood. Here, we have investigated the role of the RND system TtgABC in resistance to metal ion chelators in the soil bacterium Pseudomonas putida KT2440. We observed that the combined action of an RND inhibitor and the chelator 2,2'-bipyridyl inhibited bacterial growth. In addition, the deletion of ttgB made the strain susceptible to 2,2'-bipyridyl and natural bipyridyl derivatives such as caerulomycin A, indicating that TtgABC is required for detoxification of compounds of the bipyridyl family. Searching for the basis of growth inhibition by bipyridyls, we found reduced adenosine triphosphate (ATP) levels in the ttgB mutant compared to the wild type. Furthermore, the expression of genes related to iron acquisition and the synthesis of the siderophore pyoverdine were reduced in the mutant compared to the wild type. Investigating the possibility that 2,2'-bipyridyl in the ttgB mutant mediates iron accumulation in cells (which would cause the upregulation of genes involved in oxidative stress via the Fenton reaction), we measured the expression of genes coding for proteins involved in intracellular iron storage and the response to oxidative stress. However, none of the genes was significantly upregulated. In a further search for a possible link between 2,2'-bipyridyl and the observed phenotypes, we considered the possibility that the ion chelator limits the intracellular availability of metabolically important metal ions. In this context, we found that the addition of copper restores the growth of the ttgB mutant and the production of pyoverdine, suggesting a relationship between copper availability and iron acquisition. Taken together, the results suggest that detoxification of metal chelating compounds of the bipyridyl family produced by other bacteria or higher ordered organisms is one of the native functions of the RND efflux pump TtgABC. Without the efflux pump, these compounds may interfere with cell ion homeostasis with adverse effects on cell metabolism, including siderophore production. Finally, our results suggest that TtgABC is involved in resistance to bile salts and deoxycholate.
Collapse
Affiliation(s)
- Tania Henríquez
- Mikrobiologie, Biozentrum, Ludwig-Maximilians-Universität München, Munich, Germany
| | | | - Heinrich Jung
- Mikrobiologie, Biozentrum, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
29
|
The Salmonella enterica Serovar Typhi ltrR Gene Encodes Two Proteins Whose Transcriptional Expression Is Upregulated by Alkaline pH and Repressed at Their Promoters and Coding Regions by H-NS and Lrp. J Bacteriol 2020; 202:JB.00783-19. [PMID: 32284321 DOI: 10.1128/jb.00783-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 04/03/2020] [Indexed: 11/20/2022] Open
Abstract
LtrR is a LysR-type regulator involved in the positive expression of ompR to promote ompC and ompF expression. This regulatory network is fundamental for the control of bacterial transformation and resistance to the bile salt sodium deoxycholate in Salmonella enterica serovar Typhi. In this work, the transcriptional regulation of ltrR was characterized, revealing that the use of alternative promoters results in two transcripts. The larger one, the ltrR2 mRNA, was repressed at promoter and coding regions by H-NS, whereas Lrp repressed its expression at the coding region. In the case of the second and shorter ltrR1 transcript, it was repressed only at the coding region by H-NS and Lrp. Remarkably, pH 7.5 is a positive signal involved in the transcriptional expression of both ltrR units. Translational fusions and Western blot experiments demonstrated that ltrR2 and ltrR1 mRNAs encode the LtrR2 and LtrR1 proteins. This study adds new data on the complex genetic and regulatory characteristics of one of the most predominant types of transcriptional factors in bacteria, the LysR-type transcriptional regulators.IMPORTANCE The LysR-type transcriptional regulators are present in viruses, archaea, bacteria, and eukaryotic cells. Furthermore, these proteins are the most abundant transcriptional factors in bacteria. Here, we demonstrate that two LysR-type proteins are generated from the ltrR gene. These proteins are genetically induced by pH and repressed at the promoter and coding regions by the global regulators H-NS and Lrp. Thus, novel basic aspects of the complex genetic regulation of the LysR-type transcriptional regulators are described.
Collapse
|
30
|
Hurley D, Hoffmann M, Muruvanda T, Allard MW, Brown EW, Martins M, Fanning S. Atypical Salmonella enterica Serovars in Murine and Human Macrophage Infection Models. Infect Immun 2020; 88:e00353-19. [PMID: 32014897 PMCID: PMC7093118 DOI: 10.1128/iai.00353-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 01/28/2020] [Indexed: 11/20/2022] Open
Abstract
Nontyphoidal Salmonella species are globally disseminated pathogens and are the predominant cause of gastroenteritis. The pathogenesis of salmonellosis has been extensively studied using in vivo murine models and cell lines, typically challenged with Salmonella enterica serovar Typhimurium. Although S. enterica serovars Enteritidis and Typhimurium are responsible for most of the human infections reported to the Centers for Disease Control and Prevention (CDC), several other serovars also contribute to clinical cases of salmonellosis. Despite their epidemiological importance, little is known about their infection phenotypes. Here, we report the virulence characteristics and genomes of 10 atypical S. enterica serovars linked to multistate foodborne outbreaks in the United States. We show that the murine RAW 264.7 macrophage model of infection is unsuitable for inferring human-relevant differences in nontyphoidal Salmonella infections, whereas differentiated human THP-1 macrophages allowed these isolates to be further characterized in a more human-relevant context.
Collapse
Affiliation(s)
- Daniel Hurley
- UCD Centre for Food Safety, School of Public Health, Physiotherapy and Sports Science, University College Dublin, Belfield, Dublin, Ireland
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | - Maria Hoffmann
- Center for Food Safety and Nutrition, Division of Microbiology, Office of Regulatory Science, U.S. Food and Drug Administration, College Park, Maryland, USA
| | - Tim Muruvanda
- Center for Food Safety and Nutrition, Division of Microbiology, Office of Regulatory Science, U.S. Food and Drug Administration, College Park, Maryland, USA
| | - Marc W Allard
- Center for Food Safety and Nutrition, Division of Microbiology, Office of Regulatory Science, U.S. Food and Drug Administration, College Park, Maryland, USA
| | - Eric W Brown
- Center for Food Safety and Nutrition, Division of Microbiology, Office of Regulatory Science, U.S. Food and Drug Administration, College Park, Maryland, USA
| | - Marta Martins
- UCD Centre for Food Safety, School of Public Health, Physiotherapy and Sports Science, University College Dublin, Belfield, Dublin, Ireland
| | - Séamus Fanning
- UCD Centre for Food Safety, School of Public Health, Physiotherapy and Sports Science, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
31
|
Multidrug Resistance Regulators MarA, SoxS, Rob, and RamA Repress Flagellar Gene Expression and Motility in Salmonella enterica Serovar Typhimurium. J Bacteriol 2019; 201:JB.00385-19. [PMID: 31501286 DOI: 10.1128/jb.00385-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 09/03/2019] [Indexed: 12/21/2022] Open
Abstract
Production of flagella is costly and subject to global multilayered regulation, which is reflected in the hierarchical control of flagellar production in many bacterial species. For Salmonella enterica serovar Typhimurium and its relatives, global regulation of flagellar production primarily occurs through the control of flhDC transcription and mRNA translation. In this study, the roles of the homologous multidrug resistance regulators MarA, SoxS, Rob, and RamA (constituting the mar-sox-rob regulon in S Typhimurium) in regulating flagellar gene expression were explored. Each of these regulators was found to inhibit flagellar gene expression, production of flagella, and motility. To different degrees, repression via these transcription factors occurred through direct interactions with the flhDC promoter, particularly for MarA and Rob. Additionally, SoxS repressed flagellar gene expression via a posttranscriptional pathway, reducing flhDC translation. The roles of these transcription factors in reducing motility in the presence of salicylic acid were also elucidated, adding a genetic regulatory element to the response of S Typhimurium to this well-characterized chemorepellent. Integration of flagellar gene expression into the mar-sox-rob regulon in S Typhimurium contrasts with findings for closely related species such as Escherichia coli, providing an example of plasticity in the mar-sox-rob regulon throughout the Enterobacteriaceae family.IMPORTANCE The mar-sox-rob regulon is a large and highly conserved stress response network in the Enterobacteriaceae family. Although it is well characterized in E. coli, the extent of this regulon in related species is unclear. Here, the control of costly flagellar gene expression is connected to the mar-sox-rob regulon of S Typhimurium, contrasting with the E. coli regulon model. These findings demonstrate the flexibility of the mar-sox-rob regulon to accommodate novel regulatory targets, and they provide evidence for its broader regulatory role within this family of diverse bacteria.
Collapse
|
32
|
Beggs GA, Zalucki YM, Brown NG, Rastegari S, Phillips RK, Palzkill T, Shafer WM, Kumaraswami M, Brennan RG. Structural, Biochemical, and In Vivo Characterization of MtrR-Mediated Resistance to Innate Antimicrobials by the Human Pathogen Neisseria gonorrhoeae. J Bacteriol 2019; 201:e00401-19. [PMID: 31331979 PMCID: PMC6755732 DOI: 10.1128/jb.00401-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 07/19/2019] [Indexed: 12/14/2022] Open
Abstract
Neisseria gonorrhoeae responds to host-derived antimicrobials by inducing the expression of the mtrCDE-encoded multidrug efflux pump, which expels microbicides, such as bile salts, fatty acids, and multiple extrinsically administered drugs, from the cell. In the absence of these cytotoxins, the TetR family member MtrR represses the mtrCDE genes. Although antimicrobial-dependent derepression of mtrCDE is clear, the physiological inducers of MtrR are unknown. Here, we report the crystal structure of an induced form of MtrR. In the binding pocket of MtrR, we observed electron density that we hypothesized was N-cyclohexyl-3-aminopropanesulfonic acid (CAPS), a component of the crystallization reagent. Using the MtrR-CAPS structure as an inducer-bound template, we hypothesized that bile salts, which bear significant chemical resemblance to CAPS, are physiologically relevant inducers. Indeed, characterization of MtrR-chenodeoxycholate and MtrR-taurodeoxycholate interactions, both in vitro and in vivo, revealed that these bile salts, but not glyocholate or taurocholate, bind MtrR tightly and can act as bona fide inducers. Furthermore, two residues, W136 and R176, were shown to be important in binding chenodeoxycholate but not taurodeoxycholate, suggesting different binding modes of the bile salts. These data provide insight into a crucial mechanism utilized by the pathogen to overcome innate human defenses.IMPORTANCENeisseria gonorrhoeae causes a significant disease burden worldwide, and a meteoric rise in its multidrug resistance has reduced the efficacy of antibiotics previously or currently approved for therapy of gonorrheal infections. The multidrug efflux pump MtrCDE transports multiple drugs and host-derived antimicrobials from the bacterial cell and confers survival advantage on the pathogen within the host. Transcription of the pump is repressed by MtrR but relieved by the cytosolic influx of antimicrobials. Here, we describe the structure of induced MtrR and use this structure to identify bile salts as physiological inducers of MtrR. These findings provide a mechanistic basis for antimicrobial sensing and gonococcal protection by MtrR through the derepression of mtrCDE expression after exposure to intrinsic and clinically applied antimicrobials.
Collapse
Affiliation(s)
- Grace A Beggs
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina, USA
| | - Yaramah M Zalucki
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Nicholas Gene Brown
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas, USA
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Sheila Rastegari
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Hospital Research Institute, Houston, Texas, USA
- Department of Biochemistry and Molecular Biology, University of Texas, MD Anderson Cancer Center, Houston, Texas, USA
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital System, Houston, Texas, USA
| | - Rebecca K Phillips
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Hospital Research Institute, Houston, Texas, USA
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital System, Houston, Texas, USA
| | - Timothy Palzkill
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas, USA
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - William M Shafer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
- Laboratories of Microbial Pathogenesis, VA Medical Research Service, Veterans Affairs Medical Center, Decatur, Georgia, USA
- Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Muthiah Kumaraswami
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Hospital Research Institute, Houston, Texas, USA
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital System, Houston, Texas, USA
| | - Richard G Brennan
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
33
|
Rehman T, Yin L, Latif MB, Chen J, Wang K, Geng Y, Huang X, Abaidullah M, Guo H, Ouyang P. Adhesive mechanism of different Salmonella fimbrial adhesins. Microb Pathog 2019; 137:103748. [PMID: 31521802 DOI: 10.1016/j.micpath.2019.103748] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 09/10/2019] [Accepted: 09/11/2019] [Indexed: 02/01/2023]
Abstract
Salmonellosis is a serious threat to human and animal health. Salmonella adhesion to the host cell is an initial and most crucial step in the pathogenesis of salmonellosis. Many factors are involved in the adhesion process of Salmonella infection. Fimbriae are one of the most important factors in the adhesion of Salmonella. The Salmonella fimbriae are assembled in three types of assembly pathways: chaperon-usher, nucleation-precipitation, and type IV fimbriae. These assembly pathways lead to multiple types of fimbriae. Salmonella fimbriae bind to host cell receptors to initiate adhesion. So far, many receptors have been identified, such as Toll-like receptors. However, several receptors that may be involved in the adhesive mechanism of Salmonella fimbriae are still un-identified. This review aimed to summarize the types of Salmonella fimbriae produced by different assembly pathways and their role in adhesion. It also enlisted previously discovered receptors involved in adhesion. This review might help readers to develop a comprehensive understanding of Salmonella fimbriae, their role in adhesion, and recently developed strategies to counter Salmonella infection.
Collapse
Affiliation(s)
- Tayyab Rehman
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Lizi Yin
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Muhammad Bilal Latif
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, 44195, Ohio, USA.
| | - Jiehao Chen
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Kaiyu Wang
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Yi Geng
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Xiaoli Huang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Muhammad Abaidullah
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Hongrui Guo
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Ping Ouyang
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
34
|
Human Bile-Mediated Regulation of Salmonella Curli Fimbriae. J Bacteriol 2019; 201:JB.00055-19. [PMID: 30936374 DOI: 10.1128/jb.00055-19] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 03/28/2019] [Indexed: 12/17/2022] Open
Abstract
Typhoid fever is caused primarily by Salmonella enterica serovar Typhi. Approximately 3% to 5% of individuals infected with S Typhi become chronic carriers with the gallbladder (GB) as the site of persistence, as gallstones within the GB are a platform on which the bacteria form a biofilm. S Typhi is a human-restricted pathogen; therefore, asymptomatic carriers represent a critical reservoir for further spread of disease. To examine the dynamics of the Salmonella biofilm during chronic carriage, the human gallstone (GS) environment was simulated by growing biofilms on cholesterol-coated surfaces in the presence of bile, and the transcriptional profile was determined. Some of the most highly activated genes corresponded to the curli fimbria operon, with the major structural component csgA upregulated >80-fold. The curli protein polymer is a major component of the extracellular matrix (ECM) in Salmonella biofilms. The upregulation of curli fimbriae by human bile was validated through reverse transcription-quantitative PCR (qRT-PCR), microscopy, and Western blotting. Interestingly, this activation appears human specific, as qRT-PCR showed repression of csgA in biofilms grown in mouse or ox bile. Comparative transcriptional studies of the two divergent csg operons suggest an early activation of both operons in minimal medium complemented with glucose that quickly diminishes as the biofilm matures. However, in the presence of human bile, there is a modest activation of both operons that steadily increases as the biofilm matures. Understanding the effect of the GB environment on key biofilm-associated factors can help target antibiofilm therapeutics or other preventative strategies to eradicate chronic carriage.IMPORTANCE Typhoid fever is caused by Salmonella enterica serovar Typhi, and 3% to 5% of patients become chronic gallbladder (GB) carriers (also known as "Typhoid Marys"). We have previously demonstrated a role for Salmonella biofilm formation on gallstones as a primary mechanism of carriage. In this study, we found that the important biofilm extracellular matrix component curli fimbria is induced in an in vitro human GB model system. This induction is specific to human bile and increases as the biofilm matures. We also found that the biofilm and curli regulator CsgD play a key role in this observed induction. This work further enhances our understanding biofilm-mediated chronic carriage and provides a potential target for eliminating persistent GB infection by S Typhi.
Collapse
|
35
|
Ray S, Da Costa R, Das M, Nandi D. Interplay of cold shock protein E with an uncharacterized protein, YciF, lowers porin expression and enhances bile resistance in Salmonella Typhimurium. J Biol Chem 2019; 294:9084-9099. [PMID: 30992363 DOI: 10.1074/jbc.ra119.008209] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/07/2019] [Indexed: 11/06/2022] Open
Abstract
Bacterial cold shock proteins (CSPs) function as RNA chaperones. To assess CSP's roles in the intracellular human pathogen Salmonella Typhimurium, we analyzed their expression in varied stress conditions. We found that cold shock protein E (cspE or STM14_0732) is up-regulated during bile salt-induced stress and that an S. Typhimurium strain lacking cspE (ΔcspE) displays dose-dependent sensitivity to bile salts, specifically to deoxycholate. We also found that an uncharacterized gene, yciF (STM14_2092), is up-regulated in response to bile stress in WT but not in the ΔcspE strain. Complementation with WT CspE, but not with a F30V CspE variant, abrogated the bile sensitivity of ΔcspE as did multicopy overexpression of yciF. Northern blotting experiments with rifampicin disclosed that the regulation of yciF expression is, most likely, due to the RNA-stabilizing activity of CspE. Importantly, electrophoretic mobility shift assays indicated that purified CspE, but not the F30V variant, directly binds yciF mRNA. We also observed that the extra-cytoplasmic stress-response (ESR) pathway is augmented in the bile-treated ΔcspE strain, as judged by induction of RpoE regulon genes (rpoE, degP, and rybB) and downstream ESR genes (hfq, rne, and PNPase). Moreover, the transcript levels of the porin genes, ompD, ompF, and ompC, were higher in bile salts-stressed ΔcspE and correlated with higher intracellular accumulation of the fluorescent DNA stain bisBenzimide H 33258, indicating greater cell permeability. In conclusion, our study has identified YciF, a CspE target involved in the regulation of porins and in countering bile stress in S. Typhimurium.
Collapse
Affiliation(s)
| | | | | | - Dipankar Nandi
- From the Department of Biochemistry, .,Center for Infectious Diseases Research, Indian Institute of Science, Bangalore-560012, India
| |
Collapse
|
36
|
Mutational and non mutational adaptation of Salmonella enterica to the gall bladder. Sci Rep 2019; 9:5203. [PMID: 30914708 PMCID: PMC6435676 DOI: 10.1038/s41598-019-41600-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/12/2019] [Indexed: 02/06/2023] Open
Abstract
During systemic infection of susceptible hosts, Salmonella enterica colonizes the gall bladder, which contains lethal concentrations of bile salts. Recovery of Salmonella cells from the gall bladder of infected mice yields two types of isolates: (i) bile-resistant mutants; (ii) isolates that survive lethal selection without mutation. Bile-resistant mutants are recovered at frequencies high enough to suggest that increased mutation rates may occur in the gall bladder, thus providing a tentative example of stress-induced mutation in a natural environment. However, most bile-resistant mutants characterized in this study show defects in traits that are relevant for Salmonella colonization of the animal host. Mutation may thus permit short-term adaptation to the gall bladder at the expense of losing fitness for transmission to new hosts. In contrast, non mutational adaptation may have evolved as a fitness-preserving strategy. Failure of RpoS− mutants to colonize the gall bladder supports the involvement of the general stress response in non mutational adaptation.
Collapse
|
37
|
Xu Q, Zhai Z, An H, Yang Y, Yin J, Wang G, Ren F, Hao Y. The MarR Family Regulator BmrR Is Involved in Bile Tolerance of Bifidobacterium longum BBMN68 via Controlling the Expression of an ABC Transporter. Appl Environ Microbiol 2019; 85:e02453-18. [PMID: 30478236 PMCID: PMC6344635 DOI: 10.1128/aem.02453-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 11/15/2018] [Indexed: 11/20/2022] Open
Abstract
In order to colonize the human gastrointestinal tract and exert their beneficial effects, bifidobacteria must effectively cope with toxic bile salts in the intestine; however, the molecular mechanism underlying bile tolerance is poorly understood. In this study, heterologous expression of a MarR family transcriptional regulator, BmrR, significantly reduced the ox bile resistance of Lactococcus lactis NZ9000, suggesting that BmrR might play a role in the bile stress response. In silico analysis combined with reverse transcription-PCR assays demonstrated that bmrR was cotranscribed with bmrA and bmrB, which encoded multidrug resistance (MDR) ABC transporters. Promoter prediction and electrophoretic mobility shift assays revealed that BmrR could autoregulate the bmrRAB operon by binding to the bmr box (ATTGTTG-6nt-CAACAAT) in the promoter region. Moreover, heterologous expression of bmrA and bmrB in L. lactis yielded 20.77-fold higher tolerance to 0.10% ox bile, compared to the wild-type strain. In addition, ox bile could disrupt the DNA binding activity of BmrR as a ligand. Taken together, our findings indicate that the bmrRAB operon is autoregulated by the transcriptional regulator BmrR and ox bile serves as an inducer to activate the bile efflux transporter BmrAB in response to bile stress in Bifidobacterium longum BBMN68.IMPORTANCE Bifidobacteria are natural inhabitants of the human intestinal tract. Some bifidobacterial strains are used as probiotics in fermented dairy production because of their health-promoting effects. Following consumption, bifidobacteria colonize the lower intestinal tract, where the concentrations of bile salts remain nearly 0.05% to 2.0%. Bile salts, as detergent-like antimicrobial compounds, can cause cellular membrane disruption, protein misfolding, and DNA damage. Therefore, tolerance to physiological bile stress is indeed essential for bifidobacteria to survive and to exert probiotic effects in the gastrointestinal tract. In B. longum BBMN68, the MarR-type regulator BmrR was involved in the bile stress response by autoregulating the bmrRAB operon, and ox bile as an inducer could increase the expression of the BmrAB transporter to enhance the bile tolerance of BBMN68. Our study represents a functional analysis of the bmrRAB operon in the bile stress response, which will provide new insights into bile tolerance mechanisms in Bifidobacterium and other bacteria.
Collapse
Affiliation(s)
- Qi Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Zhengyuan Zhai
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Department of Food Science and Technology, University of California, Davis, Davis, California, USA
| | - Haoran An
- Center for Infectious Disease Research, Tsinghua-Peking Joint Center for Life Science, School of Medicine, Tsinghua University, Beijing, China
| | - Yang Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Jia Yin
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Guohong Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Fazheng Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Functional Dairy, Beijing, China
| | - Yanling Hao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Functional Dairy, Beijing, China
| |
Collapse
|
38
|
Yamasaki S, Nakashima R, Sakurai K, Baucheron S, Giraud E, Doublet B, Cloeckaert A, Nishino K. Crystal structure of the multidrug resistance regulator RamR complexed with bile acids. Sci Rep 2019; 9:177. [PMID: 30655545 PMCID: PMC6336783 DOI: 10.1038/s41598-018-36025-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 11/12/2018] [Indexed: 02/06/2023] Open
Abstract
During infection, Salmonella senses and responds to harsh environments within the host. Persistence in a bile-rich environment is important for Salmonella to infect the small intestine or gallbladder and the multidrug efflux system AcrAB-TolC is required for bile resistance. The genes encoding this system are mainly regulated by the ramRA locus, which is composed of the divergently transcribed ramA and ramR genes. The acrAB and tolC genes are transcriptionally activated by RamA, whose encoding gene is itself transcriptionally repressed by RamR. RamR recognizes multiple drugs; however, the identity of the environmental signals to which it responds is unclear. Here, we describe the crystal structures of RamR in complexes with bile components, including cholic acid and chenodeoxycholic acid, determined at resolutions of 2.0 and 1.8 Å, respectively. Both cholic and chenodeoxycholic acids form four hydrogen bonds with Tyr59, Thr85, Ser137 and Asp152 of RamR, instead of π–π interactions with Phe155, a residue that is important for the recognition of multiple compounds including berberine, crystal violet, dequalinium, ethidium bromide and rhodamine 6 G. Binding of these compounds to RamR reduces its DNA-binding affinity, resulting in the increased transcription of ramA and acrAB-tolC. Our results reveal that Salmonella senses bile acid components through RamR and then upregulates the expression of RamA, which can lead to induction of acrAB-tolC expression with resulting tolerance to bile-rich environments.
Collapse
Affiliation(s)
- Suguru Yamasaki
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, 565-0871, Osaka, Japan
| | - Ryosuke Nakashima
- Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan
| | - Keisuke Sakurai
- Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan
| | - Sylvie Baucheron
- INRA, UMR1282 Infectiologie et Santé Publique, F-37380, Nouzilly, France.,Université François Rabelais de Tours, UMR1282 Infectiologie et Santé Publique, F-37000, Tours, France
| | - Etienne Giraud
- INRA, UMR1282 Infectiologie et Santé Publique, F-37380, Nouzilly, France.,Université François Rabelais de Tours, UMR1282 Infectiologie et Santé Publique, F-37000, Tours, France
| | - Benoît Doublet
- INRA, UMR1282 Infectiologie et Santé Publique, F-37380, Nouzilly, France.,Université François Rabelais de Tours, UMR1282 Infectiologie et Santé Publique, F-37000, Tours, France
| | - Axel Cloeckaert
- INRA, UMR1282 Infectiologie et Santé Publique, F-37380, Nouzilly, France.,Université François Rabelais de Tours, UMR1282 Infectiologie et Santé Publique, F-37000, Tours, France
| | - Kunihiko Nishino
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, 565-0871, Osaka, Japan. .,Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan.
| |
Collapse
|
39
|
Taheri N, Mahmud AKMF, Sandblad L, Fällman M, Wai SN, Fahlgren A. Campylobacter jejuni bile exposure influences outer membrane vesicles protein content and bacterial interaction with epithelial cells. Sci Rep 2018; 8:16996. [PMID: 30451931 PMCID: PMC6242867 DOI: 10.1038/s41598-018-35409-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 10/31/2018] [Indexed: 12/19/2022] Open
Abstract
Campylobacter jejuni is a prevalent human pathogen and a major cause of bacterial gastroenteritis in the world. In humans, C. jejuni colonizes the intestinal tract and its tolerance to bile is crucial for bacteria to survive and establish infection. C. jejuni produces outer membrane vesicles (OMVs) which have been suggested to be involved in virulence. In this study, the proteome composition of C. jejuni OMVs in response to low concentration of bile was investigated. We showed that exposure of C. jejuni to low concentrations of bile, similar to the concentration in cecum, induced significant changes in the protein profile of OMVs released during growth without affecting the protein profile of the bacteria. This suggests that bile influences a selective packing of the OMVs after bacterial exposure to low bile. A low concentration of bile was found to increase bacterial adhesion to intestinal epithelial cells, likely by an enhanced hydrophobicity of the cell membrane following exposure to bile. The increased bacterial adhesiveness was not associated with increased invasion, instead bile exposure decreased C. jejuni invasion. OMVs released from bacteria upon exposure to low bile showed to increase both adhesion and invasion of non-bile-exposed bacteria into intestinal epithelial cells. These findings suggest that C. jejuni in environments with low concentrations of bile produce OMVs that facilitates colonization of the bacteria, and this could potentially contribute to virulence of C. jejuni in the gut.
Collapse
Affiliation(s)
- Nayyer Taheri
- Department of Molecular Biology, Umeå University, 90187, Umea, Sweden.,Umeå Centre for Microbial Research (UCMR), Umeå University, 90187, Umea, Sweden
| | - A K M Firoj Mahmud
- Department of Molecular Biology, Umeå University, 90187, Umea, Sweden.,Umeå Centre for Microbial Research (UCMR), Umeå University, 90187, Umea, Sweden.,The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 90187, Umea, Sweden
| | - Linda Sandblad
- Department of Molecular Biology, Umeå University, 90187, Umea, Sweden.,Umeå Centre for Microbial Research (UCMR), Umeå University, 90187, Umea, Sweden.,The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 90187, Umea, Sweden
| | - Maria Fällman
- Department of Molecular Biology, Umeå University, 90187, Umea, Sweden.,Umeå Centre for Microbial Research (UCMR), Umeå University, 90187, Umea, Sweden.,The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 90187, Umea, Sweden
| | - Sun Nyunt Wai
- Department of Molecular Biology, Umeå University, 90187, Umea, Sweden.,Umeå Centre for Microbial Research (UCMR), Umeå University, 90187, Umea, Sweden.,The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 90187, Umea, Sweden
| | - Anna Fahlgren
- Department of Molecular Biology, Umeå University, 90187, Umea, Sweden. .,Umeå Centre for Microbial Research (UCMR), Umeå University, 90187, Umea, Sweden.
| |
Collapse
|
40
|
Kose SH, Grice K, Orsi WD, Ballal M, Coolen MJL. Metagenomics of pigmented and cholesterol gallstones: the putative role of bacteria. Sci Rep 2018; 8:11218. [PMID: 30046045 PMCID: PMC6060111 DOI: 10.1038/s41598-018-29571-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 07/13/2018] [Indexed: 01/10/2023] Open
Abstract
There is growing evidence for bacteria playing a role in the pathogenesis and formation of pigmented gallstones from humans. These studies mainly involved cultivation of gallstone-associated bacteria and 16S rRNA profiling, providing an indirect link between processes involved in gallstone formation by the bacteria in-situ. Here, we provide functional metagenomic evidence of a range of genes involved in bile stress response, biofilm formation, and anaerobic energy metabolism by Gram-negative Klebsiella in pigmented gallstones from a 76-year-old male patient. Klebsiella was also present in one cholesterol-type stone in a 30-year-old female patient who had additional cholesterol gallstones characterised by Gram-positive bacteria. Pigmented stones further revealed a predominance of genes involved in carbohydrate metabolism, whilst cholesterol stones indicated a profile dominanted by protein metabolism possibly reflecting known chemical differences between Gram-negative and Gram-positive biofilm matrices. Archaeal genes were not detected. Complementary carbon and hydrogen isotopic analyses of cholesterol within the patients’ stones revealed homogeneity, suggesting a common diet or cholesterol biosynthesis pathway that has little influence on microbial composition. This pilot study provides a framework to study microbial processes that play a potential role in gallstone formation across markedly different types of stones and patient backgrounds.
Collapse
Affiliation(s)
- S H Kose
- School of Molecular and Life Sciences, Curtin University, Perth, WA, 6102, Australia. .,WA-Organic and Isotope Geochemistry Centre, School of Earth and Planetary Science, Curtin University, Perth, WA, 6102, Australia.
| | - K Grice
- WA-Organic and Isotope Geochemistry Centre, School of Earth and Planetary Science, Curtin University, Perth, WA, 6102, Australia
| | - W D Orsi
- Department of Earth and Environmental Science, Paleontology and Geobiology, Ludwig-Maximilians-Universität München, 80333, Munich, Germany.,GeoBio Centre LMU, Ludwig-Maximilians-Universität München, 80333, Munich, Germany
| | - M Ballal
- Fiona Stanley Hospital, 11 Robin Warren Dr, Murdoch, 6150, WA, Australia.,St John of God Murdoch Hospital, Barry Marshall Parade, Murdoch, 6150, WA, Australia
| | - M J L Coolen
- WA-Organic and Isotope Geochemistry Centre, School of Earth and Planetary Science, Curtin University, Perth, WA, 6102, Australia
| |
Collapse
|
41
|
Novel Role of VisP and the Wzz System during O-Antigen Assembly in Salmonella enterica Serovar Typhimurium Pathogenesis. Infect Immun 2018; 86:IAI.00319-18. [PMID: 29866904 DOI: 10.1128/iai.00319-18] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 05/14/2018] [Indexed: 01/18/2023] Open
Abstract
Salmonella enterica serovars are associated with diarrhea and gastroenteritis and are a helpful model for understanding host-pathogen mechanisms. Salmonella enterica serovar Typhimurium regulates the distribution of O antigen (OAg) and presents a trimodal distribution based on Wzy polymerase and the WzzST (long-chain-length OAg [L-OAg]) and WzzfepE (very-long-chain-length OAg [VL-OAg]) copolymerases; however, several mechanisms regulating this process remain unclear. Here, we report that LPS modifications modulate the infectious process and that OAg chain length determination plays an essential role during infection. An increase in VL-OAg is dependent on Wzy polymerase, which is promoted by a growth condition resembling the environment of Salmonella-containing vacuoles (SCVs). The virulence- and stress-related periplasmic protein (VisP) participates in OAg synthesis, as a ΔvisP mutant presents a semirough OAg phenotype. The ΔvisP mutant has greatly decreased motility and J774 macrophage survival in a colitis model of infection. Interestingly, the phenotype is restored after mutation of the wzzST or wzzfepE gene in a ΔvisP background. Loss of both the visP and wzzST genes promotes an imbalance in flagellin secretion. L-OAg may function as a shield against host immune systems in the beginning of an infectious process, and VL-OAg protects bacteria during SCV maturation and facilitates intramacrophage replication. Taken together, these data highlight the roles of OAg length in generating phenotypes during S Typhimurium pathogenesis and show the periplasmic protein VisP as a novel protein in the OAg biosynthesis pathway.
Collapse
|
42
|
Urdaneta V, Casadesús J. Adaptation of Salmonella enterica to bile: essential role of AcrAB-mediated efflux. Environ Microbiol 2018; 20:1405-1418. [PMID: 29349886 DOI: 10.1111/1462-2920.14047] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 01/11/2018] [Accepted: 01/14/2018] [Indexed: 12/25/2022]
Abstract
Adaptation to bile is the ability to endure the lethal effects of bile salts after growth on sublethal concentrations. Surveys of adaptation to bile in Salmonella enterica ser. Tyhimurium reveal that active efflux is essential for adaptation while other bacterial functions involved in bile resistance are not. Among S. enterica mutants lacking one or more efflux systems, only strains lacking AcrAB are unable to adapt, thus revealing an essential role for AcrAB. Transcription of the acrAB operon is upregulated in the presence of a sublethal concentration of sodium deoxycholate (DOC) while other efflux loci are either weakly upregulated or irresponsive. Upregulation of acrAB transcription is strong during exponential growth, and weak in stationary cultures. Single cell analysis of ethidium bromide accumulation indicates that DOC-induced AcrAB-mediated efflux occurs in both exponential and stationary cultures. Upregulation of acrAB expression may thus be crucial at early stages of adaptation, while sustained AcrAB activity may be sufficient to confer bile resistance in nondividing cells.
Collapse
Affiliation(s)
- Verónica Urdaneta
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Apartado 1095, Sevilla, Spain
| | - Josep Casadesús
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Apartado 1095, Sevilla, Spain
| |
Collapse
|
43
|
Bernard AR, Jessop TC, Kumar P, Dickenson NE. Deoxycholate-Enhanced Shigella Virulence Is Regulated by a Rare π-Helix in the Type Three Secretion System Tip Protein IpaD. Biochemistry 2017; 56:6503-6514. [PMID: 29134812 PMCID: PMC5761661 DOI: 10.1021/acs.biochem.7b00836] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Type three secretion systems (T3SS) are specialized nanomachines that support infection by injecting bacterial proteins directly into host cells. The Shigella T3SS has uniquely evolved to sense environmental levels of the bile salt deoxycholate (DOC) and upregulate virulence in response to DOC. In this study, we describe a rare i + 5 hydrogen bonding secondary structure element (π-helix) within the type three secretion system tip protein IpaD that plays a critical role in DOC-enhanced virulence. Specifically, engineered mutations within the π-helix altered the pathogen's response to DOC, with one mutant construct in particular exhibiting an unprecedented reduction in virulence following DOC exposure. Fluorescence polarization binding assays showed that these altered DOC responses are not the result of differences in affinity between IpaD and DOC, but rather differences in the DOC-dependent T3SS tip maturation resulting from binding of IpaD to translocator/effector protein IpaB. Together, these findings begin to uncover the complex mechanism of DOC-enhanced Shigella virulence while identifying an uncommon structural element that may provide a much needed target for non-antibiotic treatment of Shigella infection.
Collapse
Affiliation(s)
- Abram R. Bernard
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT 84322, USA
| | - T. Carson Jessop
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT 84322, USA
| | - Prashant Kumar
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047, USA
| | - Nicholas E. Dickenson
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT 84322, USA
| |
Collapse
|
44
|
Kurenbach B, Gibson PS, Hill AM, Bitzer AS, Silby MW, Godsoe W, Heinemann JA. Herbicide ingredients change Salmonella enterica sv. Typhimurium and Escherichia coli antibiotic responses. MICROBIOLOGY-SGM 2017; 163:1791-1801. [PMID: 29139345 PMCID: PMC5845734 DOI: 10.1099/mic.0.000573] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Herbicides are frequently released into both rural and urban environments. Commercial herbicide formulations induce adaptive changes in the way bacteria respond to antibiotics. Salmonella enterica sv. Typhimurium and Escherichia coli were exposed to common co-formulants of formulations, and S. enterica sv. Typhimurium was exposed to active ingredients dicamba, 2,4-D and glyphosate to determine what ingredients of the commercial formulations caused this effect. Co-formulants Tween80 and carboxymethyl cellulose induced changes in response, but the pattern of the responses differed from the active ingredients, and effect sizes were smaller. A commercial wetting agent did not affect antibiotic responses. Active ingredients induced changes in antibiotic responses similar to those caused by complete formulations. This occurred at or below recommended application concentrations. Targeted deletion of efflux pump genes largely neutralized the adaptive response in the cases of increased survival in antibiotics, indicating that the biochemistry of induced resistance was the same for formulations and specific ingredients. We found that glyphosate, dicamba, and 2,4-D, as well as co-formulants in commercial herbicides, induced a change in susceptibility of the potentially pathogenic bacteria E. coli and S. enterica to multiple antibiotics. This was measured using the efficiency of plating (EOP), the relative survival of the bacteria when exposed to herbicide and antibiotic, or just antibiotic, compared to survival on permissive media. This work will help to inform the use of non-medicinal chemical agents that induce changes in antibiotic responses.
Collapse
Affiliation(s)
- Brigitta Kurenbach
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand.,Centre for Integrated Research in Biosafety and Centre for Integrative Ecology, University of Canterbury, Christchurch, New Zealand
| | - Paddy S Gibson
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Amy M Hill
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Adam S Bitzer
- Department of Biology, University of Massachusetts Dartmouth, Dartmouth, MA, USA
| | - Mark W Silby
- Centre for Integrated Research in Biosafety and Centre for Integrative Ecology, University of Canterbury, Christchurch, New Zealand.,Department of Biology, University of Massachusetts Dartmouth, Dartmouth, MA, USA
| | - William Godsoe
- Bio-Protection Centre, Lincoln University, Lincoln, New Zealand
| | - Jack A Heinemann
- Centre for Integrated Research in Biosafety and Centre for Integrative Ecology, University of Canterbury, Christchurch, New Zealand.,School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| |
Collapse
|
45
|
Urdaneta V, Casadesús J. Interactions between Bacteria and Bile Salts in the Gastrointestinal and Hepatobiliary Tracts. Front Med (Lausanne) 2017; 4:163. [PMID: 29043249 PMCID: PMC5632352 DOI: 10.3389/fmed.2017.00163] [Citation(s) in RCA: 270] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 09/19/2017] [Indexed: 12/25/2022] Open
Abstract
Bile salts and bacteria have intricate relationships. The composition of the intestinal pool of bile salts is shaped by bacterial metabolism. In turn, bile salts play a role in intestinal homeostasis by controlling the size and the composition of the intestinal microbiota. As a consequence, alteration of the microbiome-bile salt homeostasis can play a role in hepatic and gastrointestinal pathological conditions. Intestinal bacteria use bile salts as environmental signals and in certain cases as nutrients and electron acceptors. However, bile salts are antibacterial compounds that disrupt bacterial membranes, denature proteins, chelate iron and calcium, cause oxidative damage to DNA, and control the expression of eukaryotic genes involved in host defense and immunity. Bacterial species adapted to the mammalian gut are able to endure the antibacterial activities of bile salts by multiple physiological adjustments that include remodeling of the cell envelope and activation of efflux systems and stress responses. Resistance to bile salts permits that certain bile-resistant pathogens can colonize the hepatobiliary tract, and an outstanding example is the chronic infection of the gall bladder by Salmonella enterica. A better understanding of the interactions between bacteria and bile salts may inspire novel therapeutic strategies for gastrointestinal and hepatobiliary diseases that involve microbiome alteration, as well as novel schemes against bacterial infections.
Collapse
Affiliation(s)
- Verónica Urdaneta
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - Josep Casadesús
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
46
|
Di Domenico EG, Cavallo I, Pontone M, Toma L, Ensoli F. Biofilm Producing Salmonella Typhi: Chronic Colonization and Development of Gallbladder Cancer. Int J Mol Sci 2017; 18:ijms18091887. [PMID: 28858232 PMCID: PMC5618536 DOI: 10.3390/ijms18091887] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 08/29/2017] [Accepted: 08/30/2017] [Indexed: 01/05/2023] Open
Abstract
Salmonella enterica subspecies enterica serovar Typhi is the aetiological agent of typhoid or enteric fever. In a subset of individuals, S. Typhi colonizes the gallbladder causing an asymptomatic chronic infection. Nonetheless, these asymptomatic carriers provide a reservoir for further spreading of the disease. Epidemiological studies performed in regions where S. Typhi is endemic, revealed that the majority of chronically infected carriers also harbour gallstones, which in turn, have been indicated as a primary predisposing factor for the onset of gallbladder cancer (GC). It is now well recognised, that S. Typhi produces a typhoid toxin with a carcinogenic potential, that induces DNA damage and cell cycle alterations in intoxicated cells. In addition, biofilm production by S. Typhi may represent a key factor for the promotion of a persistent infection in the gallbladder, thus sustaining a chronic local inflammatory response and exposing the epithelium to repeated damage caused by carcinogenic toxins. This review aims to highlight the putative connection between the chronic colonization by highly pathogenic strains of S. Typhi capable of combining biofilm and toxin production and the onset of GC. Considering the high risk of GC associated with the asymptomatic carrier status, the rapid identification and profiling of biofilm production by S. Typhi strains would be key for effective therapeutic management and cancer prevention.
Collapse
Affiliation(s)
- Enea Gino Di Domenico
- Clinical Pathology and Microbiology, San Gallicano Institute, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00144 Rome, Italy.
| | - Ilaria Cavallo
- Clinical Pathology and Microbiology, San Gallicano Institute, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00144 Rome, Italy.
| | - Martina Pontone
- Clinical Pathology and Microbiology, San Gallicano Institute, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00144 Rome, Italy.
| | - Luigi Toma
- Infectious Disease Consultant, Regina Elena National Cancer Institute, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00144 Rome, Italy.
| | - Fabrizio Ensoli
- Clinical Pathology and Microbiology, San Gallicano Institute, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00144 Rome, Italy.
| |
Collapse
|
47
|
Zhang CZ, Ren SQ, Chang MX, Chen PX, Ding HZ, Jiang HX. Resistance mechanisms and fitness of Salmonella Typhimurium and Salmonella Enteritidis mutants evolved under selection with ciprofloxacin in vitro. Sci Rep 2017; 7:9113. [PMID: 28831084 PMCID: PMC5567280 DOI: 10.1038/s41598-017-09151-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 07/24/2017] [Indexed: 12/02/2022] Open
Abstract
The aim of this study was to investigate the difference in resistance mechanisms and fitness of Salmonella Typhimurium (ST) and Salmonella Enteritidis (SE) mutants selected during the evolution of resistance under exposure to increasing ciprofloxacin concentrations in vitro. Mutations in quinolone target genes were screened by PCR. Phenotypic characterization included susceptibility testing by the broth dilution method, investigation of efflux activity and growth rate, and determination of the invasion of human intestinal epithelium cells in vitro. The two Salmonella serotypes exhibited differences in target gene mutations and efflux pump gene expression during the development of resistance. In the parental strains, ST had a competitive advantage over SE. During the development of resistance, initially, the SE strain was more competitive. However, once ciprofloxacin resistance was acquired, ST once again became the more competitive strain. In the absence of bile salts or at 0.1% bile, the growth rate of SE was initially greater than that of ST, but once ciprofloxacin resistance was acquired, ST had higher growth rates. ST strains showed decreased invasion of epithelial cells in 0.1% bile. These data indicate that ciprofloxacin-resistant ST strains are more competitive than ciprofloxacin-resistant SE strains.
Collapse
Affiliation(s)
- Chuan-Zhen Zhang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University (SCAU), Guangzhou, 510642, China.,National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University (SCAU), Guangzhou, 510642, China
| | - Si-Qi Ren
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University (SCAU), Guangzhou, 510642, China.,National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University (SCAU), Guangzhou, 510642, China
| | - Man-Xia Chang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University (SCAU), Guangzhou, 510642, China.,National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University (SCAU), Guangzhou, 510642, China
| | - Pin-Xian Chen
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University (SCAU), Guangzhou, 510642, China.,National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University (SCAU), Guangzhou, 510642, China
| | - Huan-Zhong Ding
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University (SCAU), Guangzhou, 510642, China.,National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University (SCAU), Guangzhou, 510642, China
| | - Hong-Xia Jiang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University (SCAU), Guangzhou, 510642, China. .,National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University (SCAU), Guangzhou, 510642, China.
| |
Collapse
|
48
|
Silva CMG, Silva DNDS, Costa SBD, Almeida JSDS, Boente RF, Teixeira FL, Domingues RMCP, Lobo LA. Inactivation of MarR gene homologs increases susceptibility to antimicrobials in Bacteroides fragilis. Braz J Microbiol 2017; 49:200-206. [PMID: 28847541 PMCID: PMC5790583 DOI: 10.1016/j.bjm.2017.05.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 04/18/2017] [Accepted: 05/06/2017] [Indexed: 01/05/2023] Open
Abstract
Bacteroides fragilis is the strict anaerobic bacteria most commonly found in human infections, and has a high mortality rate. Among other virulence factors, the remarkable ability to acquire resistance to a variety of antimicrobial agents and to tolerate nanomolar concentrations of oxygen explains in part their success in causing infection and colonizing the mucosa. Much attention has been given to genes related to multiple drug resistance derived from plasmids, integrons or transposon, but such genes are also detected in chromosomal systems, like the mar (multiple antibiotic resistance) locus, that confer resistance to a range of drugs. Regulators like MarR, that control expression of the locus mar, also regulate resistance to organic solvents, disinfectants and oxygen reactive species are important players in these events. Strains derived from the parental strain 638R, with mutations in the genes hereby known as marRI (BF638R_3159) and marRII (BF638R_3706) were constructed by gene disruption using a suicide plasmid. Phenotypic response of the mutant strains to hydrogen peroxide, cell survival assay against exposure to oxygen, biofilm formation, resistance to bile salts and resistance to antibiotics was evaluated. The results showed that the mutant strains exhibit statistically significant differences in their response to oxygen stress, but no changes were observed in survival when exposed to bile salts. Biofilm formation was not affected by either gene disruption. Both mutant strains however, became more sensitive to multiple antimicrobial drugs tested. This indicates that as observed in other bacterial species, MarR are an important resistance mechanism in B. fragilis.
Collapse
Affiliation(s)
| | | | | | | | - Renata Ferreira Boente
- Universidade Federal do Rio de Janeiro, Medical Microbiology Department, Rio de Janeiro, RJ, Brazil
| | - Felipe Lopes Teixeira
- Universidade Federal do Rio de Janeiro, Medical Microbiology Department, Rio de Janeiro, RJ, Brazil
| | | | - Leandro Araujo Lobo
- Universidade Federal do Rio de Janeiro, Medical Microbiology Department, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
49
|
López M, Blasco L, Gato E, Perez A, Fernández-Garcia L, Martínez-Martinez L, Fernández-Cuenca F, Rodríguez-Baño J, Pascual A, Bou G, Tomás M. Response to Bile Salts in Clinical Strains of Acinetobacter baumannii Lacking the AdeABC Efflux Pump: Virulence Associated with Quorum Sensing. Front Cell Infect Microbiol 2017; 7:143. [PMID: 28536672 PMCID: PMC5423435 DOI: 10.3389/fcimb.2017.00143] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 04/06/2017] [Indexed: 11/17/2022] Open
Abstract
Introduction:Acinetobacter baumannii is an opportunistic nosocomial pathogen associated with multiple infections. This pathogen usually colonizes (first stage of microbial infection) host tissues that are in contact with the external environment. As one of the sites of entry in human hosts is the gastrointestinal tract, the pathogen must be capable of tolerating bile salts. However, studies analyzing the molecular characteristics involved in the response to bile salts in clinical strains of A. baumannii are scarce. Material and Methods: Microbiological and transcriptional studies (arrays and RT-PCR) in the response to bile salts were carried out in isogenic (A. baumanni ΔadeB ATCC 17978 and A. baumannii ΔadeL ATCC 17978) and clinical strains from clone ST79/PFGE-HUI-1 which is characterized by lacking the AdeABC efflux pump and by overexpression the AdeFGH efflux pump. Results and Discussion: In presence of bile salts, in addition to the glutamate/aspartate transporter were found overexpressed in A. baumannii ΔadeB ATCC 17978, the virulence factors (surface motility, biofilm, and Type VI Secretion System) which are associated with activation of the Quorum Sensing system. Overexpression of these factors was confirmed in clinical strains of clone ST79/PFGE-HUI-1. Conclusions: This the first study about the adaptive response to bile salts investigating the molecular and microbiological characteristics in response to bile salts of an isogenic model of A. baumannii ATCC 17978 and clinical isolates of A. baumannii (clinical strains of ST79/PFGE-HUI-1) lacking the main RND efflux pump (AdeABC). Clinical isolates of A. baumannii lacking the AdeABC efflux pump (clone ST79/PFGE-HUI-1) displayed a new clinical profile (increased invasiveness) possibly associated with the response to stress conditions (such as the presence of bile salts).
Collapse
Affiliation(s)
- Maria López
- Department of Microbiology, Complejo Hospitalario Universitario A Coruña-INIBICLa Coruña, Spain
- Spanish Network for Research in Infectious Diseases (REIPI RD12/0015), Hospital Virgen MacarenaSeville, Spain
| | - Lucia Blasco
- Department of Microbiology, Complejo Hospitalario Universitario A Coruña-INIBICLa Coruña, Spain
| | - Eva Gato
- Department of Microbiology, Complejo Hospitalario Universitario A Coruña-INIBICLa Coruña, Spain
- Spanish Network for Research in Infectious Diseases (REIPI RD12/0015), Hospital Virgen MacarenaSeville, Spain
| | - Astrid Perez
- Department of Microbiology, Complejo Hospitalario Universitario A Coruña-INIBICLa Coruña, Spain
- Spanish Network for Research in Infectious Diseases (REIPI RD12/0015), Hospital Virgen MacarenaSeville, Spain
| | - Laura Fernández-Garcia
- Department of Microbiology, Complejo Hospitalario Universitario A Coruña-INIBICLa Coruña, Spain
- Spanish Network for Research in Infectious Diseases (REIPI RD12/0015), Hospital Virgen MacarenaSeville, Spain
| | - Luis Martínez-Martinez
- Spanish Network for Research in Infectious Diseases (REIPI RD12/0015), Hospital Virgen MacarenaSeville, Spain
- Department of Clinical Microbiology, Hospital Universitario Marqués de Valdecilla-IFIMAVSantander, Spain
- Departament of Molecular Biology, University of CantabriaSantander, Spain
| | - Felipe Fernández-Cuenca
- Spanish Network for Research in Infectious Diseases (REIPI RD12/0015), Hospital Virgen MacarenaSeville, Spain
- Department of Microbiology and Infectious Diseases, Hospital Universitario Virgen MacarenaSeville, Spain
- Department of Medicine, Universidad de SevilleSeville, Spain
| | - Jesús Rodríguez-Baño
- Spanish Network for Research in Infectious Diseases (REIPI RD12/0015), Hospital Virgen MacarenaSeville, Spain
- Department of Microbiology and Infectious Diseases, Hospital Universitario Virgen MacarenaSeville, Spain
- Department of Medicine, Universidad de SevilleSeville, Spain
| | - Alvaro Pascual
- Spanish Network for Research in Infectious Diseases (REIPI RD12/0015), Hospital Virgen MacarenaSeville, Spain
- Department of Microbiology and Infectious Diseases, Hospital Universitario Virgen MacarenaSeville, Spain
- Department of Medicine, Universidad de SevilleSeville, Spain
| | - German Bou
- Department of Microbiology, Complejo Hospitalario Universitario A Coruña-INIBICLa Coruña, Spain
- Spanish Network for Research in Infectious Diseases (REIPI RD12/0015), Hospital Virgen MacarenaSeville, Spain
| | - Maria Tomás
- Department of Microbiology, Complejo Hospitalario Universitario A Coruña-INIBICLa Coruña, Spain
- Spanish Network for Research in Infectious Diseases (REIPI RD12/0015), Hospital Virgen MacarenaSeville, Spain
| |
Collapse
|
50
|
Survival of the Fittest: How Bacterial Pathogens Utilize Bile To Enhance Infection. Clin Microbiol Rev 2017; 29:819-36. [PMID: 27464994 DOI: 10.1128/cmr.00031-16] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Bacterial pathogens have coevolved with humans in order to efficiently infect, replicate within, and be transmitted to new hosts to ensure survival and a continual infection cycle. For enteric pathogens, the ability to adapt to numerous host factors under the harsh conditions of the gastrointestinal tract is critical for establishing infection. One such host factor readily encountered by enteric bacteria is bile, an innately antimicrobial detergent-like compound essential for digestion and nutrient absorption. Not only have enteric pathogens evolved to resist the bactericidal conditions of bile, but these bacteria also utilize bile as a signal to enhance virulence regulation for efficient infection. This review provides a comprehensive and up-to-date analysis of bile-related research with enteric pathogens. From common responses to the unique expression of specific virulence factors, each pathogen has overcome significant challenges to establish infection in the gastrointestinal tract. Utilization of bile as a signal to modulate virulence factor expression has led to important insights for our understanding of virulence mechanisms for many pathogens. Further research on enteric pathogens exposed to this in vivo signal will benefit therapeutic and vaccine development and ultimately enhance our success at combating such elite pathogens.
Collapse
|