1
|
Jiang Q, Xu M, Chen H, Zhang Y, Sun Y, Tao L, Wang Z, Yang D. V-ATPase contributes to the cariogenicity of Candida albicans- Streptococcus mutans biofilm. NPJ Biofilms Microbiomes 2025; 11:41. [PMID: 40057552 PMCID: PMC11890576 DOI: 10.1038/s41522-025-00660-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 01/22/2025] [Indexed: 05/13/2025] Open
Abstract
The interaction between Candida albicans and Streptococcus mutans plays an important role in the progression of dental caries. The vacuolar proton pump (V-ATPase) is a vital enzyme regulating the growth and virulence of C. albicans, which is a potential target for caries prevention. However, the effect of V-ATPase on the cariogenicity of C. albicans-S. mutans biofilm remains to be explored. In this study, the detection rate of C. albicans in caries-active (group CA) (22.03%) was significantly higher than that in caries-free (group CF) children (8.00%), and the expression of V-ATPase related genes were higher in group CA. Then, the higher expressed V-ATPase coding genes VMA3, VMA4 and VMA11 in CA group were knocked out. Compared with the wild type SC5314, the mutants showed slower growth rate, inhibited hyphal growth, and defective integrity of cell wall. The biofilm biomass and extracellular polysaccharide (EPS) production of dual biofilm were significantly reduced, and the biofilm structure was impacted. Transcriptome analysis indicated that V-ATPase participated in various metabolisms and biosynthesis pathways of C. albicans, and influenced EPS metabolism of S. mutans. Finally, compared with the positive control, the caries severity, the biomass and EPS production of dental plaque were significantly reduced after deletion of VMA3, VMA4 and VMA11 in vivo. This study revealed for the first time the regulating effect of V-ATPase on the cariogenicity of C. albicans-S. mutans biofilm and its potential mechanisms. The results may provide basis for new strategies of ecological prevention and treatment of dental caries.
Collapse
Affiliation(s)
- Qian Jiang
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases, 404100, Chongqing, China
- Department of Conservative Dentistry and Endodontics, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, China
- Department of Stomatology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Mengmeng Xu
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases, 404100, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
| | - Hong Chen
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases, 404100, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
| | - Yao Zhang
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases, 404100, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
| | - Yuting Sun
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases, 404100, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
| | - Li Tao
- Department of Infectious Diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China.
| | - Zheng Wang
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases, 404100, Chongqing, China.
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.
| | - Deqin Yang
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases, 404100, Chongqing, China.
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, China.
- Department of Conservative Dentistry and Endodontics, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, China.
| |
Collapse
|
2
|
Yuan C, Wang Y, Zhang L, Wang D. Procatechuic acid and protocatechuic aldehyde increase survival of Caenorhabditis elegans after fungal infection and inhibit fungal virulence. Front Pharmacol 2024; 15:1396733. [PMID: 38841375 PMCID: PMC11150623 DOI: 10.3389/fphar.2024.1396733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/30/2024] [Indexed: 06/07/2024] Open
Abstract
Protocatechuic acid (PCA) and protocatechuic aldehyde (PAL) are important phenolic compounds in plants. We here investigated their possible beneficial effect against fungal infection and the underlying mechanism. The model animal of Caenorhabditis elegans was used as host, and Candida albicans was used as fungal pathogen. The nematodes were first infected with C. albicans, and the PCA and PAL treatment were then performed. Post-treatment with 10-100 μM PCA and PAL suppressed toxicity of C. albicans infection in reducing lifespan. Accompanied with this beneficial effect, treatment with 10-100 μM PCA and PAL inhibited C. albicans accumulation in intestinal lumen. In addition, treatment with 10-100 μM PCA and PAL suppressed the increase in expressions of antimicrobial genes caused by C. albicans infection. The beneficial effect of PCA and PAL against C. albicans infection depended on p38 MAPK and insulin signals. Moreover, although treatment with 10-100 μM PCA and PAL could not exhibit noticeable antifungal activity, PCA and PAL treatment obviously suppressed biofilm formation, inhibited hyphal growth, and reduced expressions of virulence genes (ALS3, CaVps34, Vma7, Vac1, and/or HWP1) related to biofilm formation and hyphal growth in C. albicans. Therefore, our data demonstrated the potential of PCA and PAL post-treatment against fungal infection and fungal virulence.
Collapse
Affiliation(s)
- Chunyan Yuan
- Department of Gynaecology and Obstetrics, Zhongda Hospital, Southeast University, Nanjing, China
| | - Yuxing Wang
- Deaprtment of Biochemistry and Molecrla Biology, School of Medicine, Southeast University, Nanjing, China
| | - Le Zhang
- Deaprtment of Biochemistry and Molecrla Biology, School of Medicine, Southeast University, Nanjing, China
| | - Dayong Wang
- Deaprtment of Biochemistry and Molecrla Biology, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
3
|
Yang SZ, Peng LT. Significance of the plasma membrane H +-ATPase and V-ATPase for growth and pathogenicity in pathogenic fungi. ADVANCES IN APPLIED MICROBIOLOGY 2023; 124:31-53. [PMID: 37597947 DOI: 10.1016/bs.aambs.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2023]
Abstract
Pathogenic fungi are widespread and cause a variety of diseases in human beings and other organisms. At present, limited classes of antifungal agents are available to treat invasive fungal diseases. With the wide use of the commercial antifungal agents, drug resistance of pathogenic fungi are continuously increasing. Therefore, exploring effective antifungal agents with novel drug targets is urgently needed to cope with the challenges that the antifungal area faces. pH homeostasis is vital for multiple cellular processes, revealing the potential for defining novel drug targets. Fungi have evolved a number of strategies to maintain a stable pH internal environment in response to rapid metabolism and a dramatically changing extracellular environment. Among them, plasma membrane H+-ATPase (PMA) and vacuolar H+-ATPase (V-ATPase) play a central role in the regulation of pH homeostasis system. In this chapter, we will summarize the current knowledge about pH homeostasis and its regulation mechanisms in pathogenic fungi, especially for the recent advances in PMA and V-ATPase, which would help in revealing the regulating mechanism of pH on cell growth and pathogenicity, and further designing effective drugs and identify new targets for combating fungal diseases.
Collapse
Affiliation(s)
- S Z Yang
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, P.R. China.
| | - L T Peng
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, P.R. China
| |
Collapse
|
4
|
Soberanes-Gutiérrez CV, Castillo-Jiménez A, Pérez-Rueda E, Galán-Vásquez E. Construction and analysis of gene co-expression network in the pathogenic fungus Ustilago maydis. Front Microbiol 2022; 13:1048694. [PMID: 36569046 PMCID: PMC9767968 DOI: 10.3389/fmicb.2022.1048694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
Introduction Biological systems respond to environmental disturbances and a wide range of compounds through complex gene interaction networks. The enormous growth of experimental information obtained using large-scale genomic techniques such as microarrays and RNA sequencing led to the construction of a wide variety of gene co-expression networks in recent years. These networks allow the discovery of clusters of co-expressed genes that potentially work in the same process linking them to biological processes often of interest to industrial, medicinal, and academic research. Methods In this study, we built the gene co-expression network of Ustilago maydis from the gene expression data of 168 samples belonging to 19 series, which correspond to the GPL3681 platform deposited in the NCBI using WGCNA software. This network was analyzed to identify clusters of co-expressed genes, gene hubs and Gene Ontology terms. Additionally, we identified relevant modules through a hypergeometric approach based on a predicted set of transcription factors and virulence genes. Results and Discussion We identified 13 modules in the gene co-expression network of U. maydis. The TFs enriched in the modules of interest belong to the superfamilies of Nucleic acid-binding proteins, Winged helix DNA-binding, and Zn2/Cys6 DNA-binding. On the other hand, the modules enriched with virulence genes were classified into diseases related to corn smut, Invasive candidiasis, among others. Finally, a large number of hypothetical, a large number of hypothetical genes were identified as highly co-expressed with virulence genes, making them possible experimental targets.
Collapse
Affiliation(s)
- Cinthia V. Soberanes-Gutiérrez
- Laboratorio de Ciencias Agrogenómicas, de la Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México, León, Guanajuato, Mexico
| | - Alfredo Castillo-Jiménez
- Licenciatura en Biología, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| | - Ernesto Pérez-Rueda
- Unidad Académica Yucatán, Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Mérida, Mexico
| | - Edgardo Galán-Vásquez
- Departamento de Ingeniería de Sistemas Computacionales y Automatización, Instituto de Investigación en Matemáticas Aplicadas y en Sistemas. Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico,*Correspondence: Edgardo Galán-Vásquez,
| |
Collapse
|
5
|
Hossain S, Robbins N, Cowen LE. The GARP complex is required for filamentation in Candida albicans. Genetics 2022; 222:iyac152. [PMID: 36226807 PMCID: PMC9713427 DOI: 10.1093/genetics/iyac152] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/29/2022] [Indexed: 12/13/2022] Open
Abstract
Candida albicans is an opportunistic fungal pathogen that causes superficial infections in immunocompetent individuals, as well as life-threatening systemic disease in immunocompromised patients. A key virulence trait of this pathogen is its ability to transition between yeast and filamentous morphologies. A functional genomic screen to identify novel regulators of filamentation previously revealed VPS53 as being important for morphogenesis. Vps53 belongs to the Golgi-associated retrograde protein (GARP) complex, which mediates retrograde trafficking from the endosome to the trans-Golgi network. Here, we explored the role of the entire GARP complex in regulating morphogenesis. Deletion of any of the four genes encoding GARP complex subunits severely impaired filamentation in response to diverse filament-inducing cues, including upon internalization by macrophages. Genetic pathway analysis revealed that while hyperactivation of protein kinase A (PKA) signaling is insufficient to drive filamentation in GARP complex mutants, these strains are capable of filamentation upon overexpression of transcriptional activators or upon deletion of transcriptional repressors of hyphal morphogenesis. Finally, compromise of the GARP complex induced lipotoxicity, and pharmacological inhibition of sphingolipid biosynthesis phenocopied genetic compromise of the GARP complex by impairing filamentation. Together, this work identifies the GARP complex as an important mediator of filamentation in response to multiple inducing cues, maps genetic circuitry important for filamentation upon compromise of GARP function, and supports a model whereby GARP deficiency impairs lipid homeostasis, which is important for supporting filamentous growth in C. albicans.
Collapse
Affiliation(s)
- Saif Hossain
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
6
|
Sun C, Li X, Zhang Y, Lu L. Subunit C of V-ATPase-VmaC Is Required for Hyphal Growth and Conidiation in A. fumigatus by Affecting Vacuolar Calcium Homeostasis and Cell Wall Integration. J Fungi (Basel) 2022; 8:1219. [PMID: 36422040 PMCID: PMC9699406 DOI: 10.3390/jof8111219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 08/21/2023] Open
Abstract
Aspergillus fumigatus is a widespread airborne fungal pathogen in humans. However, the functional genes in A. fumigatus that may contribute to its pathogenesis have not yet been fully identified. Vacuolar H+-ATPase is universal in eukaryotic organisms but exhibits specific roles in various species. Here, we identified VmaC as a putative subunit of vacuolar H+-ATPase in A. fumigatus that is widely conserved through evolution. The C-terminal hydrophobic domain of VmaC plays a critical role in its vacuolar localization and growth and conidiation. Deletion or turn-off of VmaC encoding gene-AfvmaC expression is not lethal but leads to a very sick and tiny colony phenotype, which is different from that of yeast with conditional ScvmaC defects. Furthermore, we found that AfvmaC not only participates in maintaining calcium homeostasis and vacuolar acidity but is also involved in cell wall integration pathway regulation, highlighting the importance of the vacuole as a storage organelle associated with many aspects of cellular homeostasis. This study indicates that fungal VmaC is relatively conserved. When compared to that in model yeasts, VmaC in A. fumigatus is required for hyphal growth and conidiation, suggesting that specific motifs in VmaC might be functioned in Aspergilli.
Collapse
Affiliation(s)
| | | | - Yuanwei Zhang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Ling Lu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
7
|
Lv Q, Yan L, Jiang Y. The Importance of Vacuolar Ion Homeostasis and Trafficking in Hyphal Development and Virulence in Candida albicans. Front Microbiol 2021; 12:779176. [PMID: 34956142 PMCID: PMC8696117 DOI: 10.3389/fmicb.2021.779176] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 11/12/2021] [Indexed: 11/13/2022] Open
Abstract
The vacuole of Candida albicans plays a significant role in many processes including homeostasis control, cellular trafficking, dimorphic switching, and stress tolerance. Thus, understanding the factors affecting vacuole function is important for the identification of new drug targets needed in response to the world’s increasing levels of invasive infections and the growing issue of fungal drug resistance. Past studies have shown that vacuolar proton-translocating ATPases (V-ATPases) play a central role in pH homeostasis and filamentation. Vacuolar protein sorting components (VPS) regulate V-ATPases assembly and at the same time affect hyphal development. As well, vacuolar calcium exchange systems like Yvc1 and Pmc1 maintain cytosolic calcium levels while being affected by V-ATPases function. All these proteins play a role in the virulence and pathogenesis of C. albicans. This review highlights the relationships among V-ATPases, VPS, and vacuolar calcium exchange proteins while summarizing their importance in C. albicans infections.
Collapse
Affiliation(s)
- Quanzhen Lv
- School of Pharmacy, Naval Medical University, Shanghai, China
| | - Lan Yan
- School of Pharmacy, Naval Medical University, Shanghai, China
| | - Yuanying Jiang
- Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
A Fungal Transcription Regulator of Vacuolar Function Modulates Candida albicans Interactions with Host Epithelial Cells. mBio 2021; 12:e0302021. [PMID: 34781731 PMCID: PMC8593675 DOI: 10.1128/mbio.03020-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Microorganisms typically maintain cellular homeostasis despite facing large fluctuations in their surroundings. Microbes that reside on human mucosal surfaces may experience significant variations in nutrient and ion availability as well as pH. Whether the mechanisms employed by these microbial cells to sustain homeostasis directly impact on the interplay with the host’s mucosae remains unclear. Here, we report that the previously uncharacterized transcription regulator ZCF8 in the human-associated yeast Candida albicans maintains vacuole homeostasis when the fungus faces fluctuations in nitrogen. Genome-wide identification of genes directly regulated by Zcf8p followed by fluorescence microscopy to define their subcellular localization uncovered the fungal vacuole as a top target of Zcf8p regulation. Deletion and overexpression of ZCF8 resulted in alterations in vacuolar morphology and luminal pH and rendered the fungus resistant or susceptible to nigericin and brefeldin A, two drugs that impair vacuole and associated functions. Furthermore, we establish that the regulator modulates C. albicans attachment to epithelial cells in a manner that depends on the status of the fungal vacuole. Our findings, therefore, suggest that fungal vacuole physiology regulation is intrinsically linked to, and shapes to a significant extent, the physical interactions that Candida cells establish with mammalian mucosal surfaces.
Collapse
|
9
|
Hossain S, Lash E, Veri AO, Cowen LE. Functional connections between cell cycle and proteostasis in the regulation of Candida albicans morphogenesis. Cell Rep 2021; 34:108781. [PMID: 33626353 PMCID: PMC7971348 DOI: 10.1016/j.celrep.2021.108781] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/18/2020] [Accepted: 02/02/2021] [Indexed: 02/06/2023] Open
Abstract
Morphological plasticity is a key virulence trait for many fungal pathogens. For the opportunistic fungal pathogen Candida albicans, transitions among yeast, pseudohyphal, and hyphal forms are critical for virulence, because the morphotypes play distinct roles in the infection process. C. albicans morphogenesis is induced in response to many host-relevant conditions and is regulated by complex signaling pathways and cellular processes. Perturbation of either cell-cycle progression or protein homeostasis induces C. albicans filamentation, demonstrating that these processes play a key role in morphogenetic control. Regulators such as cyclin-dependent kinases, checkpoint proteins, the proteasome, the heat shock protein Hsp90, and the heat shock transcription factor Hsf1 all influence morphogenesis, often through interconnected effects on the cell cycle and proteostasis. This review highlights the major cell-cycle and proteostasis regulators that modulate morphogenesis and discusses how these two processes intersect to regulate this key virulence trait.
Collapse
Affiliation(s)
- Saif Hossain
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Emma Lash
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Amanda O Veri
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada.
| |
Collapse
|
10
|
The Role of Secretory Pathways in Candida albicans Pathogenesis. J Fungi (Basel) 2020; 6:jof6010026. [PMID: 32102426 PMCID: PMC7151058 DOI: 10.3390/jof6010026] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 12/17/2022] Open
Abstract
Candida albicans is a fungus that is a commensal organism and a member of the normal human microbiota. It has the ability to transition into an opportunistic invasive pathogen. Attributes that support pathogenesis include secretion of virulence-associated proteins, hyphal formation, and biofilm formation. These processes are supported by secretion, as defined in the broad context of membrane trafficking. In this review, we examine the role of secretory pathways in Candida virulence, with a focus on the model opportunistic fungal pathogen, Candida albicans.
Collapse
|
11
|
Kim SW, Park YK, Joo YJ, Chun YJ, Hwang JY, Baek JH, Kim J. Subunits of the vacuolar H+-ATPase complex, Vma4 and Vma10, are essential for virulence and represent potential drug targets in Candida albicans. Fungal Biol 2019; 123:709-722. [DOI: 10.1016/j.funbio.2019.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/20/2019] [Accepted: 06/03/2019] [Indexed: 01/26/2023]
|
12
|
Minematsu A, Miyazaki T, Shimamura S, Nishikawa H, Nakayama H, Takazono T, Saijo T, Yamamoto K, Imamura Y, Yanagihara K, Kohno S, Mukae H, Izumikawa K. Vacuolar proton-translocating ATPase is required for antifungal resistance and virulence of Candida glabrata. PLoS One 2019; 14:e0210883. [PMID: 30673768 PMCID: PMC6343876 DOI: 10.1371/journal.pone.0210883] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 01/03/2019] [Indexed: 12/04/2022] Open
Abstract
Vacuolar proton-translocating ATPase (V-ATPase) is located in fungal vacuolar membranes. It is involved in multiple cellular processes, including the maintenance of intracellular ion homeostasis by maintaining acidic pH within the cell. The importance of V-ATPase in virulence has been demonstrated in several pathogenic fungi, including Candida albicans. However, it remains to be determined in the clinically important fungal pathogen Candida glabrata. Increasing multidrug resistance of C. glabrata is becoming a critical issue in the clinical setting. In the current study, we demonstrated that the plecomacrolide V-ATPase inhibitor bafilomycin B1 exerts a synergistic effect with azole antifungal agents, including fluconazole and voriconazole, against a C. glabrata wild-type strain. Furthermore, the deletion of the VPH2 gene encoding an assembly factor of V-ATPase was sufficient to interfere with V-ATPase function in C. glabrata, resulting in impaired pH homeostasis in the vacuole and increased sensitivity to a variety of environmental stresses, such as alkaline conditions (pH 7.4), ion stress (Na+, Ca2+, Mn2+, and Zn2+ stress), exposure to the calcineurin inhibitor FK506 and antifungal agents (azoles and amphotericin B), and iron limitation. In addition, virulence of C. glabrata Δvph2 mutant in a mouse model of disseminated candidiasis was reduced in comparison with that of the wild-type and VPH2-reconstituted strains. These findings support the notion that V-ATPase is a potential attractive target for the development of effective antifungal strategies.
Collapse
Affiliation(s)
- Asuka Minematsu
- Department of Infectious Diseases, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - Taiga Miyazaki
- Department of Infectious Diseases, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
- * E-mail:
| | - Shintaro Shimamura
- Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - Hiroshi Nishikawa
- Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - Hironobu Nakayama
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Sciences, Mie, Japan
| | - Takahiro Takazono
- Department of Infectious Diseases, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - Tomomi Saijo
- Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - Kazuko Yamamoto
- Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - Yoshifumi Imamura
- Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - Katsunori Yanagihara
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Shigeru Kohno
- Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - Hiroshi Mukae
- Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - Koichi Izumikawa
- Department of Infectious Diseases, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
13
|
Li Y, Sun L, Lu C, Gong Y, Li M, Sun S. Promising Antifungal Targets Against Candida albicans Based on Ion Homeostasis. Front Cell Infect Microbiol 2018; 8:286. [PMID: 30234023 PMCID: PMC6131588 DOI: 10.3389/fcimb.2018.00286] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 07/27/2018] [Indexed: 11/13/2022] Open
Abstract
In recent decades, invasive fungal infections have been increasing significantly, contributing to high incidences and mortality in immunosuppressed patients. Candida albicans (C. albicans) is the most prevalent opportunistic fungal pathogen in humans that can cause severe and often fatal bloodstream infections. Current antifungal agents have several limitations, including that only a small number of classes of antifungals are available, certain of which have severe toxicity and high cost. Moreover, the emergence of drug resistance is a new limitation to successful patient outcomes. Therefore, the development of antifungals with novel targets is an essential strategy for the efficient management of C. albicans infections. It is widely recognized that ion homeostasis is crucial for all living cells. Many studies have identified that ion-signaling and transduction networks are central to fungal survival by regulating gene expression, morphological transition, host invasion, stress response, and drug resistance. Dysregulation of ion homeostasis rapidly mediates cell death, forming the mechanistic basis of a growing number of compounds that elicit antifungal activity. Most of the potent antifungals have been widely used in the clinic, and certain of them have low toxicity, meaning that they may be expected to be used as antifungal drugs in the future. Hence, we briefly summarize the homeostasis regulation of several important ions, potential antifungal targets based on these ion-signaling networks, and antifungal compounds based on the disruption of ion homeostasis. This summary will help in designing effective drugs and identifying new targets for combating fungal diseases.
Collapse
Affiliation(s)
- Yiman Li
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Licui Sun
- Department of Pharmacy, Feicheng Mining Central Hospital, Feicheng, China
| | - Chunyan Lu
- Department of Pharmacy, Qianfoshan Hospital Affiliated to Shandong University, Jinan, China
| | - Ying Gong
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Min Li
- Department of Pharmacy, Qianfoshan Hospital Affiliated to Shandong University, Jinan, China
| | - Shujuan Sun
- Department of Pharmacy, Qianfoshan Hospital Affiliated to Shandong University, Jinan, China
| |
Collapse
|
14
|
Roles of VPH2 and VMA6 in localization of V-ATPase subunits, cell wall functions and filamentous development in Candida albicans. Fungal Genet Biol 2018. [PMID: 29522815 DOI: 10.1016/j.fgb.2018.03.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The vacuolar-type H+-ATPase (V-ATPase) is known to be associated with various cellular processes. Several V-ATPase subunits have been identified in C. albicans. However, there are still a few V-ATPase subunits and assembly factors that remain uncharacterized. In this study, we identified one of putative V-ATPase assembly factors, Vph2, and V0 subunit, Vma6, and explored their potential functions in C. albicans. Our results revealed that Vph2 and Vma6 were required for the correct distribution of V0 subunit Vph1 and V1 subunit Tfp1. Furthermore, Vph2 and Vma6 played an important role in endocytosis and vacuolar acidification. Disruption of VPH2 or VMA6 affected cell wall stress resistance and composition, accompanying induction of cell wall integrity (CWI) pathway. Besides, deletion of VPH2 or VMA6 led to weakened hyphal development in Spider medium that was not dependent on Hog1 activation. Moreover, the vph2Δ/Δ and vma6Δ/Δ mutants displayed attenuated virulence in a mouse model of systemic candidiasis. Taken together, our data indicated that Vph2 and Vma6 were essential for the proper localization of V-ATPase subunits, cell wall functions, filamentous growth and C. albicans pathogenesis, and provided the potential to better exploit V-ATPase-related proteins as antifungal targets.
Collapse
|
15
|
Effects of Disruption of PMC1 in the tfp1∆/∆ Mutant on Calcium Homeostasis, Oxidative and Osmotic Stress Resistance in Candida albicans. Mycopathologia 2017; 183:315-327. [PMID: 29086141 DOI: 10.1007/s11046-017-0216-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 10/17/2017] [Indexed: 10/18/2022]
Abstract
The vacuolar-type H+-ATPase (V-ATPase) is essential for many cell processes. Our previous study has demonstrated that Tfp1 is a putative subunit of V-ATPase, loss of which causes disorders in calcium homeostasis and decreased resistance to oxidative stress. In this study, we found that further deletion of PMC1, a vacuolar calcium pump, in tfp1∆/∆ mutant led to more severe dysregulation of calcium homeostasis. Besides, the tfp1∆/∆pmc1∆/∆ mutant was more sensitive to H2O2 and had a higher ROS level. As is known, V-ATPase mutants are sensitive to NaCl, and PMC1 mutant is resistant against NaCl. However, the tfp1∆/∆pmc1∆/∆ mutant exhibited sensitivity to NaCl. Mechanism study demonstrated that their sensitivity was associated with reduced osmotic resistance caused by relatively low expression of GPD1. In addition, we first found that NaCl addition significantly declined ROS levels in tfp1∆/∆ and tfp1∆/∆pmc1∆/∆ mutants. In tfp1∆/∆ mutant, decreased ROS levels were relevant to enhanced antioxidant activities. However, in tfp1∆/∆pmc1∆/∆ mutant, reduced ROS resulted from decreased total calcium content, revealing that NaCl affected ROS levels in the two mutants through different mechanisms. Taken together, our data indicated that loss of both TFP1 and PMC1 further affected calcium homeostasis and other cellular processes in Candida albicans and provides a potential antifungal target.
Collapse
|
16
|
Ku TSN, Bernardo S, Walraven CJ, Lee SA. Candidiasis and the impact of flow cytometry on antifungal drug discovery. Expert Opin Drug Discov 2017; 12:1127-1137. [PMID: 28876963 DOI: 10.1080/17460441.2017.1377179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Invasive candidiasis continues to be associated with significant morbidity and mortality as well as substantial health care costs nationally and globally. One of the contributing factors is the development of resistance to antifungal agents that are already in clinical use. Moreover, there are known treatment limitations with all of the available antifungal agents. Since traditional techniques in novel drug discovery are time consuming, high-throughput screening using flow cytometry presents as a potential tool to identify new antifungal agents that would be useful in the management of these patients. Areas covered: In this review, the authors discuss the use of automated high-throughput screening assays based upon flow cytometry to identify potential antifungals from a library comprised of a large number of bioactive compounds. They also review studies that employed the use of this research methodology that has identified compounds with antifungal activity. Expert opinion: High-throughput screening using flow cytometry has substantially decreased the processing time necessary for screening thousands of compounds, and has helped enhance our understanding of fungal pathogenesis. Indeed, the authors see this technology as a powerful tool to help scientists identify new antifungal agents that can be added to the clinician's arsenal in their fight against invasive candidiasis.
Collapse
Affiliation(s)
- Tsun Sheng N Ku
- a Section of Infectious Diseases , New Mexico VA Health Care System , Albuquerque , NM , USA.,b Division of Infectious Diseases , University of New Mexico Health Science Center , Albuquerque , NM , USA
| | - Stella Bernardo
- a Section of Infectious Diseases , New Mexico VA Health Care System , Albuquerque , NM , USA.,b Division of Infectious Diseases , University of New Mexico Health Science Center , Albuquerque , NM , USA
| | - Carla J Walraven
- c Department of Pharmaceutical Services , University of New Mexico Hospital , Albuquerque , NM , USA
| | - Samuel A Lee
- a Section of Infectious Diseases , New Mexico VA Health Care System , Albuquerque , NM , USA.,b Division of Infectious Diseases , University of New Mexico Health Science Center , Albuquerque , NM , USA
| |
Collapse
|
17
|
Zhang K, Jia C, Yu Q, Xiao C, Dong Y, Zhang M, Zhang D, Zhao Q, Zhang B, Li M. Contribution of VMA5 to vacuolar function, stress response, ion homeostasis and autophagy in Candida albicans. Future Microbiol 2017; 12:1147-1166. [PMID: 28879785 DOI: 10.2217/fmb-2017-0029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
AIM V-ATPase is a conservative multi-subunit enzyme in eukaryotes and modulates several cellular responses. This study aimed to illustrate the roles of Vma5 in vacuolar function, oxidative stress response, calcium homeostasis, autophagy and virulence. MATERIALS & METHODS The vma5Δ/Δ mutant was obtained using PCR-mediated homologous recombination. The functions of Vma5 were investigated by a series of biochemical and systemic infection methods. RESULTS Disruption of VMA5 led to growth inhibition, vacuolar dysfunction, disturbance of calcium homeostasis and inhibition of calcium-related oxidative stress response. Furthermore, its deletion caused defects in autophagy completion and hyphal development, and resulted in attenuated Candida albicans virulence. CONCLUSION Our findings provide new insights into V-ATPase functions in C. albicans, and reveal a potential candidate for development of antifungal drugs.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Microbiology, Key Laboratory of Molecular Microbiology & Technology, College of Life Sciences, Nankai University, Ministry of Education, Tianjin 300071, China
| | - Chang Jia
- Department of Microbiology, Key Laboratory of Molecular Microbiology & Technology, College of Life Sciences, Nankai University, Ministry of Education, Tianjin 300071, China
| | - Qilin Yu
- Department of Microbiology, Key Laboratory of Molecular Microbiology & Technology, College of Life Sciences, Nankai University, Ministry of Education, Tianjin 300071, China
| | - Chenpeng Xiao
- Department of Microbiology, Key Laboratory of Molecular Microbiology & Technology, College of Life Sciences, Nankai University, Ministry of Education, Tianjin 300071, China
| | - Yijie Dong
- Department of Microbiology, Key Laboratory of Molecular Microbiology & Technology, College of Life Sciences, Nankai University, Ministry of Education, Tianjin 300071, China.,The State Key Laboratory for Biology of Plant Disease & Insect Pests, Institute of Plant protection, Chinese Academy of Agricultural Sciences, Beijing 100871, China
| | - Meng Zhang
- Department of Microbiology, Key Laboratory of Molecular Microbiology & Technology, College of Life Sciences, Nankai University, Ministry of Education, Tianjin 300071, China
| | - Dan Zhang
- Department of Microbiology, Key Laboratory of Molecular Microbiology & Technology, College of Life Sciences, Nankai University, Ministry of Education, Tianjin 300071, China
| | - Qiang Zhao
- Department of Zoology & Developmental Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Biao Zhang
- College of Language & Culture, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Mingchun Li
- Department of Microbiology, Key Laboratory of Molecular Microbiology & Technology, College of Life Sciences, Nankai University, Ministry of Education, Tianjin 300071, China
| |
Collapse
|
18
|
Bar-Yosef H, Vivanco Gonzalez N, Ben-Aroya S, Kron SJ, Kornitzer D. Chemical inhibitors of Candida albicans hyphal morphogenesis target endocytosis. Sci Rep 2017; 7:5692. [PMID: 28720834 PMCID: PMC5515890 DOI: 10.1038/s41598-017-05741-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 06/01/2017] [Indexed: 01/12/2023] Open
Abstract
Candida albicans is an opportunistic pathogen, typically found as a benign commensal yeast living on skin and mucosa, but poised to invade injured tissue to cause local infections. In debilitated and immunocompromised individuals, C. albicans may spread to cause life-threatening systemic infections. Upon contact with serum and at body temperature, C. albicans performs a regulated switch to filamentous morphology, characterized by emergence of a germ tube from the yeast cell followed by mold-like growth of branching hyphae. The ability to switch between growth morphologies is an important virulence factor of C. albicans. To identify compounds able to inhibit hyphal morphogenesis, we screened libraries of existing drugs for inhibition of the hyphal switch under stringent conditions. Several compounds that specifically inhibited hyphal morphogenesis were identified. Chemogenomic analysis suggested an interaction with the endocytic pathway, which was confirmed by direct measurement of fluid-phase endocytosis in the presence of these compounds. These results suggest that the activity of the endocytic pathway, which is known to be particularly important for hyphal growth, represents an effective target for hyphae-inhibiting drugs.
Collapse
Affiliation(s)
- Hagit Bar-Yosef
- Department of Molecular Microbiology, B. Rappaport Faculty of Medicine, Technion - I.I.T. and the Rappaport Institute for Research in the Medical Sciences, Haifa, 31096, Israel
| | - Nora Vivanco Gonzalez
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, 60637, USA
| | - Shay Ben-Aroya
- Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Stephen J Kron
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, 60637, USA.
| | - Daniel Kornitzer
- Department of Molecular Microbiology, B. Rappaport Faculty of Medicine, Technion - I.I.T. and the Rappaport Institute for Research in the Medical Sciences, Haifa, 31096, Israel.
| |
Collapse
|
19
|
Abstract
Despite diverse and changing extracellular environments, fungi maintain a relatively constant cytosolic pH and numerous organelles of distinct lumenal pH. Key players in fungal pH control are V-ATPases and the P-type proton pump Pma1. These two proton pumps act in concert with a large array of other transporters and are highly regulated. The activities of Pma1 and the V-ATPase are coordinated under some conditions, suggesting that pH in the cytosol and organelles is not controlled independently. Genomic studies, particularly in the highly tractable S. cerevisiae, are beginning to provide a systems-level view of pH control, including transcriptional responses to acid or alkaline ambient pH and definition of the full set of regulators required to maintain pH homeostasis. Genetically encoded pH sensors have provided new insights into localized mechanisms of pH control, as well as highlighting the dynamic nature of pH responses to the extracellular environment. Recent studies indicate that cellular pH plays a genuine signaling role that connects nutrient availability and growth rate through a number of mechanisms. Many of the pH control mechanisms found in S. cerevisiae are shared with other fungi, with adaptations for their individual physiological contexts. Fungi deploy certain proton transport and pH control mechanisms not shared with other eukaryotes; these regulators of cellular pH are potential antifungal targets. This review describes current and emerging knowledge proton transport and pH control mechanisms in S. cerevisiae and briefly discusses how these mechanisms vary among fungi.
Collapse
|
20
|
Funk J, Schaarschmidt B, Slesiona S, Hallström T, Horn U, Brock M. The glycolytic enzyme enolase represents a plasminogen-binding protein on the surface of a wide variety of medically important fungal species. Int J Med Microbiol 2015; 306:59-68. [PMID: 26679571 DOI: 10.1016/j.ijmm.2015.11.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 10/27/2015] [Accepted: 11/29/2015] [Indexed: 11/26/2022] Open
Abstract
Allergies are an increasing issue in human health and can, eventually, cause severe anaphylactic shock. Aspergillus fumigatus and Candida albicans are leading causes of life-threatening invasive fungal infections in immunocompromised patients, but can also cause severe allergic responses in otherwise healthy individuals. The glycolytic enzyme enolase is known as a major allergen despite its function in intracellular metabolism. Therefore, its presentation on surfaces of different fungal species was investigated by using antibodies raised against recombinant enolases from A. fumigatus and C. albicans. Examination of antibody specificity revealed cross-reactivity to cell-free extracts from Aspergillus terreus, Aspergillus flavus, Aspergillus nidulans and Candida glabrata, but not against any of the three human enolases. Antibody specificity was further confirmed by hybridization with other recombinant fungal enolases, where the antibodies recognized different subsets of fungal enolases. When surface presentation of enolase was tested on intact fungal cells, a positive staining was obtained with those antibodies that also recognized the enzyme from the respective cell-free extract. This implies a general surface presentation of this glycolytic enzyme among fungal species and provides hints for its predominant recognition as an allergen. Additionally, A. fumigatus and C. albicans enolase bound to human plasminogen, which remained accessible for the plasminogen activator uPA. This implies a potential role of enolase in the invasion and dissemination process during fungal infections.
Collapse
Affiliation(s)
- Jana Funk
- Bio Pilot Plant, Leibniz-Institute for Natural Product Research and Infection Biology-Hans-Knöll-Institute (HKI), Beutenbergstr. 11a, 07745, Jena, Germany
| | - Barbara Schaarschmidt
- Bio Pilot Plant, Leibniz-Institute for Natural Product Research and Infection Biology-Hans-Knöll-Institute (HKI), Beutenbergstr. 11a, 07745, Jena, Germany
| | - Silvia Slesiona
- Microbial Immunology, Leibniz-Institute for Natural Product Research and Infection Biology-Hans-Knöll-Institute (HKI), Beutenbergstr. 11a, 07745, Jena, Germany
| | - Teresia Hallström
- Infection Biology, Leibniz-Institute for Natural Product Research and Infection Biology-Hans-Knöll-Institute (HKI), Beutenbergstr. 11a, 07745, Jena, Germany
| | - Uwe Horn
- Bio Pilot Plant, Leibniz-Institute for Natural Product Research and Infection Biology-Hans-Knöll-Institute (HKI), Beutenbergstr. 11a, 07745, Jena, Germany
| | - Matthias Brock
- Microbial Biochemistry and Physiology, Leibniz-Institute for Natural Product Research and Infection Biology-Hans-Knöll-Institute (HKI), Beutenbergstr. 11a, 07745, Jena, Germany; Institute for Microbiology, Friedrich-Schiller-University Jena, 07743, Jena, Germany; Fungal Genetics and Biology Group, School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK.
| |
Collapse
|
21
|
ERG2 and ERG24 Are Required for Normal Vacuolar Physiology as Well as Candida albicans Pathogenicity in a Murine Model of Disseminated but Not Vaginal Candidiasis. EUKARYOTIC CELL 2015; 14:1006-16. [PMID: 26231054 DOI: 10.1128/ec.00116-15] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 07/29/2015] [Indexed: 01/21/2023]
Abstract
Several important classes of antifungal agents, including the azoles, act by blocking ergosterol biosynthesis. It was recently reported that the azoles cause massive disruption of the fungal vacuole in the prevalent human pathogen Candida albicans. This is significant because normal vacuolar function is required to support C. albicans pathogenicity. This study examined the impact of the morpholine antifungals, which inhibit later steps of ergosterol biosynthesis, on C. albicans vacuolar integrity. It was found that overexpression of either the ERG2 or ERG24 gene, encoding C-8 sterol isomerase or C-14 sterol reductase, respectively, suppressed C. albicans sensitivity to the morpholines. In addition, both erg2Δ/Δ and erg24Δ/Δ mutants were hypersensitive to the morpholines. These data are consistent with the antifungal activity of the morpholines depending upon the simultaneous inhibition of both Erg2p and Erg24p. The vacuoles within both erg2Δ/Δ and erg24Δ/Δ C. albicans strains exhibited an aberrant morphology and accumulated large quantities of the weak base quinacrine, indicating enhanced vacuolar acidification compared with that of control strains. Both erg mutants exhibited significant defects in polarized hyphal growth and were avirulent in a mouse model of disseminated candidiasis. Surprisingly, in a mouse model of vaginal candidiasis, both mutants colonized mice at high levels and induced a pathogenic response similar to that with the controls. Thus, while targeting Erg2p or Erg24p alone could provide a potentially efficacious therapy for disseminated candidiasis, it may not be an effective strategy to treat vaginal infections. The potential value of drugs targeting these enzymes as adjunctive therapies is discussed.
Collapse
|
22
|
Watanabe T, Ito T, Goda HM, Ishibashi Y, Miyamoto T, Ikeda K, Taguchi R, Okino N, Ito M. Sterylglucoside catabolism in Cryptococcus neoformans with endoglycoceramidase-related protein 2 (EGCrP2), the first steryl-β-glucosidase identified in fungi. J Biol Chem 2014; 290:1005-19. [PMID: 25361768 DOI: 10.1074/jbc.m114.616300] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cryptococcosis is an infectious disease caused by pathogenic fungi, such as Cryptococcus neoformans and Cryptococcus gattii. The ceramide structure (methyl-d18:2/h18:0) of C. neoformans glucosylceramide (GlcCer) is characteristic and strongly related to its pathogenicity. We recently identified endoglycoceramidase-related protein 1 (EGCrP1) as a glucocerebrosidase in C. neoformans and showed that it was involved in the quality control of GlcCer by eliminating immature GlcCer during the synthesis of GlcCer (Ishibashi, Y., Ikeda, K., Sakaguchi, K., Okino, N., Taguchi, R., and Ito, M. (2012) Quality control of fungus-specific glucosylceramide in Cryptococcus neoformans by endoglycoceramidase-related protein 1 (EGCrP1). J. Biol. Chem. 287, 368-381). We herein identified and characterized EGCrP2, a homologue of EGCrP1, as the enzyme responsible for sterylglucoside catabolism in C. neoformans. In contrast to EGCrP1, which is specific to GlcCer, EGCrP2 hydrolyzed various β-glucosides, including GlcCer, cholesteryl-β-glucoside, ergosteryl-β-glucoside, sitosteryl-β-glucoside, and para-nitrophenyl-β-glucoside, but not α-glucosides or β-galactosides, under acidic conditions. Disruption of the EGCrP2 gene (egcrp2) resulted in the accumulation of a glycolipid, the structure of which was determined following purification to ergosteryl-3β-glucoside, a major sterylglucoside in fungi, by mass spectrometric and two-dimensional nuclear magnetic resonance analyses. This glycolipid accumulated in vacuoles and EGCrP2 was detected in vacuole-enriched fraction. These results indicated that EGCrP2 was involved in the catabolism of ergosteryl-β-glucoside in the vacuoles of C. neoformans. Distinct growth arrest, a dysfunction in cell budding, and an abnormal vacuole morphology were detected in the egcrp2-disrupted mutants, suggesting that EGCrP2 may be a promising target for anti-cryptococcal drugs. EGCrP2, classified into glycohydrolase family 5, is the first steryl-β-glucosidase identified as well as a missing link in sterylglucoside metabolism in fungi.
Collapse
Affiliation(s)
- Takashi Watanabe
- From the Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Tomoharu Ito
- From the Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Hatsumi M Goda
- From the Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Yohei Ishibashi
- From the Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Tomofumi Miyamoto
- the Graduate School of Pharmaceutical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kazutaka Ikeda
- the Institute for Advanced Biosciences, Keio University, 246-2 Mizukami, Kakuganji, Tsuruoka, Yamagata 997-0052, Japan, and
| | - Ryo Taguchi
- the Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, 1200 Matsumoto-cho, Kasugai-shi, Aichi 487-8501, Japan
| | - Nozomu Okino
- From the Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Makoto Ito
- From the Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan,
| |
Collapse
|
23
|
Jia C, Yu Q, Xu N, Zhang B, Dong Y, Ding X, Chen Y, Zhang B, Xing L, Li M. Role of TFP1 in vacuolar acidification, oxidative stress and filamentous development in Candida albicans. Fungal Genet Biol 2014; 71:58-67. [PMID: 25220074 DOI: 10.1016/j.fgb.2014.08.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 08/21/2014] [Accepted: 08/25/2014] [Indexed: 10/24/2022]
Abstract
The vacuolar-type H(+)-ATPase (V-ATPase) is a multiprotein complex consisting of the V0 and V1 sectors, and is required for vacuolar acidification and virulence in the opportunistic fungal pathogen Candida albicans. In this study, we identified C. albicans Tfp1 as a putative subunit of V-ATPase, and explored its importance in multiple cellular processes. Our results revealed that Tfp1 played an essential role in vacuolar acidification and endocytic trafficking. In addition, the tfp1Δ/Δ mutant was sensitive to alkaline pH and elevated calcium concentrations, which is characteristic of loss of V-ATPase activity. The mutant also showed hypersensitivity to metal ions which might be attributed to a defect in sequestration of toxic ions to the vacuole through proton gradient produced by V-ATPase. Interestingly, deletion of TFP1 triggered endogenous oxidative stress even without exogenous oxidants. Compared with the wild-type strain, the tfp1Δ/Δ mutant showed significantly higher ROS levels and lower expression levels of redox-related genes with the addition of hydrogen peroxide (H2O2). Western blotting analysis showed that deletion of TFP1 significantly reduced the expression of Cap1 under H2O2 treatment, which contributes to the regulation of genes involved in the oxidative stress response. Furthermore, the tfp1Δ/Δ mutant showed significantly impaired filamentous development in hyphal induction media, and was avirulent in a mouse model of systemic candidiasis. Taken together, our results suggested that the putative V1 subunit Tfp1 is essential for vacuolar function and C. albicans pathogenesis, and provided a promising candidate for antifungal drugs.
Collapse
Affiliation(s)
- Chang Jia
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, PR China
| | - Qilin Yu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, PR China
| | - Ning Xu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, PR China
| | - Bing Zhang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, PR China
| | - Yijie Dong
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, PR China
| | - Xiaohui Ding
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, PR China
| | - Yulu Chen
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, PR China
| | - Biao Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Laijun Xing
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, PR China
| | - Mingchun Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, PR China.
| |
Collapse
|
24
|
The contribution of Candida albicans vacuolar ATPase subunit V₁B, encoded by VMA2, to stress response, autophagy, and virulence is independent of environmental pH. EUKARYOTIC CELL 2014; 13:1207-21. [PMID: 25038082 DOI: 10.1128/ec.00135-14] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Candida albicans vacuoles are central to many critical biological processes, including filamentation and in vivo virulence. The V-ATPase proton pump is a multisubunit complex responsible for organellar acidification and is essential for vacuolar biogenesis and function. To study the function of the V₁B subunit of C. albicans V-ATPase, we constructed a tetracycline-regulatable VMA2 mutant, tetR-VMA2. Inhibition of VMA2 expression resulted in the inability to grow at alkaline pH and altered resistance to calcium, cold temperature, antifungal drugs, and growth on nonfermentable carbon sources. Furthermore, V-ATPase was unable to fully assemble at the vacuolar membrane and was impaired in proton transport and ATPase-specific activity. VMA2 repression led to vacuolar alkalinization in addition to abnormal vacuolar morphology and biogenesis. Key virulence-related traits, including filamentation and secretion of degradative enzymes, were markedly inhibited. These results are consistent with previous studies of C. albicans V-ATPase; however, differential contributions of the V-ATPase Vo and V₁ subunits to filamentation and secretion are observed. We also make the novel observation that inhibition of C. albicans V-ATPase results in increased susceptibility to osmotic stress. Notably, V-ATPase inhibition under conditions of nitrogen starvation results in defects in autophagy. Lastly, we show the first evidence that V-ATPase contributes to virulence in an acidic in vivo system by demonstrating that the tetR-VMA2 mutant is avirulent in a Caenorhabditis elegans infection model. This study illustrates the fundamental requirement of V-ATPase for numerous key virulence-related traits in C. albicans and demonstrates that the contribution of V-ATPase to virulence is independent of host pH.
Collapse
|
25
|
GPI (glycosylphosphatidylinositol)-linked aspartyl proteases regulate vacuole homoeostasis in Candida glabrata. Biochem J 2014; 458:323-34. [PMID: 24341558 DOI: 10.1042/bj20130757] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A family of 11 GPI (glycosylphosphatidylinositol)-linked cell surface-associated aspartyl proteases (yapsins) in the human opportunistic fungal pathogen Candida glabrata is required for cell wall remodelling, pH homoeostasis, survival in macrophages and virulence in a murine model of disseminated candidiasis. In the present paper, we report new roles for yapsins in C. glabrata physiology and implicate them for the first time in the regulation of vacuole homoeostasis. In the present study we show that a C. glabrata mutant lacking all 11 yapsins, Cgyps1-11∆, possesses an enlarged vacuole and displays vma- (vacuolar membrane ATPase)-like phenotypes with elevated metal ion susceptibility in an alkaline pH medium and diminished Vma activity. The results of the present study also demonstrate a singular role for CgYps1 (C. glabrata yapsin 1) in the maintenance of ion homoeostasis under normal and calcineurin-inhibited conditions. Elevated polyphosphate levels and diminished cellular CPY (carboxypeptidase Y) activity in the Cgyps1-11∆ mutant highlight the yapsin requirement for a properly functioning vacuole. Lastly, a gross perturbation of cellular homoeostasis in the Cgyps1-11∆ mutant, even in the absence of external stressors, characterized by reduced levels of ATP and stress metabolites, elevated ROS (reactive oxygen species) levels, cell surface abnormalities, and a constitutively activated PKC (protein kinase C) signalling pathway underscore diverse physiological functions of yapsins in C. glabrata.
Collapse
|
26
|
Olsen I. Attenuation of Candida albicans virulence with focus on disruption of its vacuole functions. J Oral Microbiol 2014; 6:23898. [PMID: 24765242 PMCID: PMC3974176 DOI: 10.3402/jom.v6.23898] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 03/03/2014] [Accepted: 03/12/2014] [Indexed: 12/03/2022] Open
Abstract
The objective of the present review is to discuss if the yeast vacuole can be used as a target for attenuation of Candida albicans virulence. Literature searches were made electronically using predetermined inclusion criteria. The main searches were made through a systematic strategy in PubMed and authoritative journals in microbiology. It appeared that C. albicans virulence may be reduced by inhibiting vacuolar proton-translocating ATPase (V-ATPase) functions and acidification of the yeast vacuole by V-ATPase inhibitors, by seeking the synergistic effect of antifungals and non-antifungals affecting yeast vacuolar functions, and by inhibiting filament production – also regulated by the vacuole. Accordingly, we may impair C. albicans virulence by inhibiting functions of its vacuole, which plays essential roles during colonization and invasion of the host. Except for drugs where indications for clinical use can be redefined, such interventions may be closer to theory than to reality at the moment. But since the yeast is so difficult to eradicate by antifungal treatment, it could be rewarding to seek new strategies for reducing its virulence rather than trying to eradicate it completely from the microbiota, which often turns out to be impossible.
Collapse
Affiliation(s)
- Ingar Olsen
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| |
Collapse
|
27
|
Hayek SR, Lee SA, Parra KJ. Advances in targeting the vacuolar proton-translocating ATPase (V-ATPase) for anti-fungal therapy. Front Pharmacol 2014; 5:4. [PMID: 24478704 PMCID: PMC3902353 DOI: 10.3389/fphar.2014.00004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Accepted: 01/06/2014] [Indexed: 11/13/2022] Open
Abstract
Vacuolar proton-translocating ATPase (V-ATPase) is a membrane-bound, multi-subunit enzyme that uses the energy of ATP hydrolysis to pump protons across membranes. V-ATPase activity is critical for pH homeostasis and organelle acidification as well as for generation of the membrane potential that drives secondary transporters and cellular metabolism. V-ATPase is highly conserved across species and is best characterized in the model fungus Saccharomyces cerevisiae. However, recent studies in mammals have identified significant alterations from fungi, particularly in the isoform composition of the 14 subunits and in the regulation of complex disassembly. These differences could be exploited for selectivity between fungi and humans and highlight the potential for V-ATPase as an anti-fungal drug target. Candida albicans is a major human fungal pathogen and causes fatality in 35% of systemic infections, even with anti-fungal treatment. The pathogenicity of C. albicans correlates with environmental, vacuolar, and cytoplasmic pH regulation, and V-ATPase appears to play a fundamental role in each of these processes. Genetic loss of V-ATPase in pathogenic fungi leads to defective virulence, and a comprehensive picture of the mechanisms involved is emerging. Recent studies have explored the practical utility of V-ATPase as an anti-fungal drug target in C. albicans, including pharmacological inhibition, azole therapy, and targeting of downstream pathways. This overview will discuss these studies as well as hypothetical ways to target V-ATPase and novel high-throughput methods for use in future drug discovery screens.
Collapse
Affiliation(s)
- Summer R Hayek
- Department of Biochemistry and Molecular Biology, School of Medicine, University of New Mexico Health Sciences Center Albuquerque, NM, USA
| | - Samuel A Lee
- Department of Internal Medicine, School of Medicine, University of New Mexico Health Sciences Center Albuquerque, NM, USA ; Section of Infectious Diseases, New Mexico Veterans Healthcare System Albuquerque, NM, USA
| | - Karlett J Parra
- Department of Biochemistry and Molecular Biology, School of Medicine, University of New Mexico Health Sciences Center Albuquerque, NM, USA
| |
Collapse
|
28
|
Newman SL, Smulian AG. Iron uptake and virulence in Histoplasma capsulatum. Curr Opin Microbiol 2013; 16:700-7. [DOI: 10.1016/j.mib.2013.09.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 08/28/2013] [Accepted: 09/04/2013] [Indexed: 10/26/2022]
|
29
|
Candida albicans VMA3 is necessary for V-ATPase assembly and function and contributes to secretion and filamentation. EUKARYOTIC CELL 2013; 12:1369-82. [PMID: 23913543 DOI: 10.1128/ec.00118-13] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The vacuolar membrane ATPase (V-ATPase) is a protein complex that utilizes ATP hydrolysis to drive protons from the cytosol into the vacuolar lumen, acidifying the vacuole and modulating several key cellular response systems in Saccharomyces cerevisiae. To study the contribution of V-ATPase to the biology and virulence attributes of the opportunistic fungal pathogen Candida albicans, we created a conditional mutant in which VMA3 was placed under the control of a tetracycline-regulated promoter (tetR-VMA3 strain). Repression of VMA3 in the tetR-VMA3 strain prevents V-ATPase assembly at the vacuolar membrane and reduces concanamycin A-sensitive ATPase-specific activity and proton transport by more than 90%. Loss of C. albicans V-ATPase activity alkalinizes the vacuolar lumen and has pleiotropic effects, including pH-dependent growth, calcium sensitivity, and cold sensitivity. The tetR-VMA3 strain also displays abnormal vacuolar morphology, indicative of defective vacuolar membrane fission. The tetR-VMA3 strain has impaired aspartyl protease and lipase secretion, as well as attenuated virulence in an in vitro macrophage killing model. Repression of VMA3 suppresses filamentation, and V-ATPase-dependent filamentation defects are not rescued by overexpression of RIM8, MDS3, EFG1, CST20, or UME6, which encode positive regulators of filamentation. Specific chemical inhibition of Vma3p function also results in defective filamentation. These findings suggest either that V-ATPase functions downstream of these transcriptional regulators or that V-ATPase function during filamentation involves independent mechanisms and alternative signaling pathways. Taken together, these data indicate that V-ATPase activity is a fundamental requirement for several key virulence-associated traits in C. albicans.
Collapse
|
30
|
Patenaude C, Zhang Y, Cormack B, Köhler J, Rao R. Essential role for vacuolar acidification in Candida albicans virulence. J Biol Chem 2013; 288:26256-26264. [PMID: 23884420 DOI: 10.1074/jbc.m113.494815] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fungal infections are on the rise, with mortality above 30% in patients with septic Candida infections. Mutants lacking V-ATPase activity are avirulent and fail to acidify endomembrane compartments, exhibiting pleiotropic defects in secretory, endosomal, and vacuolar pathways. However, the individual contribution of organellar acidification to virulence and its associated traits is not known. To dissect their separate roles in Candida albicans pathogenicity we generated knock-out strains for the V0 subunit a genes VPH1 and STV1, which target the vacuole and secretory pathway, respectively. While the two subunits were redundant in many vma phenotypes, such as alkaline pH sensitivity, calcium homeostasis, respiratory defects, and cell wall integrity, we observed a unique contribution of VPH1. Specifically, vph1Δ was defective in acidification of the vacuole and its dependent functions, such as metal ion sequestration as evidenced by hypersensitivity to Zn(2+) toxicity, whereas stv1Δ resembled wild type. In growth conditions that elicit morphogenic switching, vph1Δ was defective in forming hyphae whereas stv1Δ was normal or only modestly impaired. Host cell interactions were evaluated in vitro using the Caco-2 model of intestinal epithelial cells, and murine macrophages. Like wild type, stv1Δ was able to inflict cellular damage in Caco-2 and macrophage cells, as assayed by LDH release, and escape by filamentation. In contrast, vph1Δ resembled a vma7Δ mutant, with significant attenuation in host cell damage. Finally, we show that VPH1 is required for fungal virulence in a murine model of systemic infection. Our results suggest that vacuolar acidification has an essential function in the ability of C. albicans to form hyphae and establish infection.
Collapse
Affiliation(s)
| | | | - Brendan Cormack
- Molecular Biology and Genetics, The Johns Hopkins School of Medicine, Baltimore, Maryland 21205 and
| | - Julia Köhler
- the Division of Infectious Diseases, Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | | |
Collapse
|
31
|
Johnston DA, Tapia AL, Eberle KE, Palmer GE. Three prevacuolar compartment Rab GTPases impact Candida albicans hyphal growth. EUKARYOTIC CELL 2013; 12:1039-50. [PMID: 23709183 PMCID: PMC3697461 DOI: 10.1128/ec.00359-12] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 05/20/2013] [Indexed: 11/20/2022]
Abstract
Disruption of vacuolar biogenesis in the pathogenic yeast Candida albicans causes profound defects in polarized hyphal growth. However, the precise vacuolar pathways involved in yeast-hypha differentiation have not been determined. Previously we focused on Vps21p, a Rab GTPase involved in directing vacuolar trafficking through the late endosomal prevacuolar compartment (PVC). Herein, we identify two additional Vps21p-related GTPases, Ypt52p and Ypt53p, that colocalize with Vps21p and can suppress the hyphal defects of the vps21Δ/Δ mutant. Phenotypic analysis of gene deletion strains revealed that loss of both VPS21 and YPT52 causes synthetic defects in endocytic trafficking to the vacuole, as well as delivery of the virulence-associated vacuolar membrane protein Mlt1p from the Golgi compartment. Transcription of all three GTPase-encoding genes is increased under hyphal growth conditions, and overexpression of the transcription factor Ume6p is sufficient to increase the transcription of these genes. While only the vps21Δ/Δ single mutant has hyphal growth defects, these were greatly exacerbated in a vps21Δ/Δ ypt52Δ/Δ double mutant. On the basis of relative expression levels and phenotypic analysis of gene deletion strains, Vps21p is the most important of the three GTPases, followed by Ypt52p, while Ypt53p has an only marginal impact on C. albicans physiology. Finally, disruption of a nonendosomal AP-3-dependent vacuolar trafficking pathway in the vps21Δ/Δ ypt52Δ/Δ mutant, further exacerbated the stress and hyphal growth defects. These findings underscore the importance of membrane trafficking through the PVC in sustaining the invasive hyphal growth form of C. albicans.
Collapse
Affiliation(s)
- Douglas A Johnston
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, School of Medicine, New Orleans, Louisiana, USA
| | | | | | | |
Collapse
|
32
|
Chen G, Liu X, Zhang L, Cao H, Lu J, Lin F. Involvement of MoVMA11, a Putative Vacuolar ATPase c' Subunit, in Vacuolar Acidification and Infection-Related Morphogenesis of Magnaporthe oryzae. PLoS One 2013; 8:e67804. [PMID: 23826342 PMCID: PMC3694887 DOI: 10.1371/journal.pone.0067804] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 05/27/2013] [Indexed: 11/18/2022] Open
Abstract
Many functions of vacuole depend on the activity of vacuolar ATPase which is essential to maintain an acidic lumen and create the driving forces for massive fluxes of ions and metabolites through vacuolar membrane. In filamentous fungus Magnaportheoryzae, subcellular colocalization and quinacrine staining suggested that the V1V0 domains of V-ATPase were fully assembled and the vacuoles were kept acidic during infection-related developments. Targeted gene disruption of MoVMA11 gene, encoding the putative c' subunit of V-ATPase, impaired vacuolar acidification and mimicked the phenotypes of yeast V-ATPase mutants in the poor colony morphology, abolished asexual and sexual reproductions, selective carbon source utilization, and increased calcium and heavy metals sensitivities, however, not in the typical pH conditional lethality. Strikingly, aerial hyphae of the MoVMA11 null mutant intertwined with each other to form extremely thick filamentous structures. The results also implicated that MoVMA11 was involved in cell wall integrity and appressorium formation. Abundant non-melanized swollen structures and rare, small appressoria without penetration ability were produced at the hyphal tips of the ΔMovma11 mutant on onion epidermal cells. Finally, the MoVMA11 null mutant lost pathogenicity on both intact and wounded host leaves. Overall, our data indicated that MoVMA11, like other fungal VMA genes, is associated with numerous cellular functions and highlighted that V-ATPase is essential for infection-related morphogenesis and pathogenesis in M. oryzae.
Collapse
Affiliation(s)
- Guoqing Chen
- State Key Laboratory for Rice Biology, Biotechnology Institute, Zhejiang University, Hangzhou, China
| | - Xiaohong Liu
- State Key Laboratory for Rice Biology, Biotechnology Institute, Zhejiang University, Hangzhou, China
| | - Lilin Zhang
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Huijuan Cao
- State Key Laboratory for Rice Biology, Biotechnology Institute, Zhejiang University, Hangzhou, China
| | - Jianping Lu
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Fucheng Lin
- State Key Laboratory for Rice Biology, Biotechnology Institute, Zhejiang University, Hangzhou, China
- China Tobacco Gene Research Center, Zhengzhou Tobacco Institute of CNTC, Zhengzhou, China
| |
Collapse
|
33
|
Li D, Zhao Z, Huang Y, Lu Z, Yao M, Hao Y, Zhai C, Wang Y. PsVPS1, a dynamin-related protein, is involved in cyst germination and soybean infection of Phytophthora sojae. PLoS One 2013; 8:e58623. [PMID: 23516518 PMCID: PMC3597732 DOI: 10.1371/journal.pone.0058623] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 02/05/2013] [Indexed: 12/12/2022] Open
Abstract
Plant pathogens secrete effector proteins to suppress plant immunity. However, the mechanism by which oomycete pathogens deliver effector proteins during plant infection remains unknown. In this report, we characterized a Phytophthora sojae vps1 gene. This gene encodes a homolog of the Saccharomyces cerevisiae vacuolar protein sorting gene vps1 that mediates budding of clathrin-coated vesicles from the late Golgi, which are diverted from the general secretory pathway to the vacuole. PsVPS1-silenced mutants were generated using polyethylene glycol-mediated protoplast stable transformation and were viable but had reduced extracellular protein activity. The PsVPS1-silenced mutants showed impaired hyphal growth, and the shapes of the vacuoles were highly fragmented. Silencing of PsVPS1 affected cyst germination as well as the polarized growth of germinated cysts. Silenced mutants showed impaired invasion of susceptible soybean plants regardless of wounding. These results suggest that PsVPS1 is involved in vacuole morphology and cyst development. Moreover, it is essential for the virulence of P. sojae and extracellular protein secretion.
Collapse
Affiliation(s)
- Delong Li
- Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, and Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Zhijian Zhao
- Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, and Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yidan Huang
- Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, and Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Zhaojun Lu
- Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, and Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Meng Yao
- Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, and Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yujuan Hao
- Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, and Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Chunhua Zhai
- Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, and Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yuanchao Wang
- Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, and Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
34
|
Raines SM, Rane HS, Bernardo SM, Binder JL, Lee SA, Parra KJ. Deletion of vacuolar proton-translocating ATPase V(o)a isoforms clarifies the role of vacuolar pH as a determinant of virulence-associated traits in Candida albicans. J Biol Chem 2013; 288:6190-201. [PMID: 23316054 DOI: 10.1074/jbc.m112.426197] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Vacuolar proton-translocating ATPase (V-ATPase) is a central regulator of cellular pH homeostasis, and inactivation of all V-ATPase function has been shown to prevent infectivity in Candida albicans. V-ATPase subunit a of the Vo domain (Voa) is present as two fungal isoforms: Stv1p (Golgi) and Vph1p (vacuole). To delineate the individual contribution of Stv1p and Vph1p to C. albicans physiology, we created stv1Δ/Δ and vph1Δ/Δ mutants and compared them to the corresponding reintegrant strains (stv1Δ/ΔR and vph1Δ/ΔR). V-ATPase activity, vacuolar physiology, and in vitro virulence-related phenotypes were unaffected in the stv1Δ/Δ mutant. The vph1Δ/Δ mutant exhibited defective V1Vo assembly and a 90% reduction in concanamycin A-sensitive ATPase activity and proton transport in purified vacuolar membranes, suggesting that the Vph1p isoform is essential for vacuolar V-ATPase activity in C. albicans. The vph1Δ/Δ cells also had abnormal endocytosis and vacuolar morphology and an alkalinized vacuolar lumen (pHvph1Δ/Δ = 6.8 versus pHvph1Δ/ΔR = 5.8) in both yeast cells and hyphae. Secreted protease and lipase activities were significantly reduced, and M199-induced filamentation was impaired in the vph1Δ/Δ mutant. However, the vph1Δ/Δ cells remained competent for filamentation induced by Spider media and YPD, 10% FCS, and biofilm formation and macrophage killing were unaffected in vitro. These studies suggest that different virulence mechanisms differentially rely on acidified vacuoles and that the loss of both vacuolar (Vph1p) and non-vacuolar (Stv1p) V-ATPase activity is necessary to affect in vitro virulence-related phenotypes. As a determinant of C. albicans pathogenesis, vacuolar pH alone may prove less critical than originally assumed.
Collapse
Affiliation(s)
- Summer M Raines
- Department of Biochemistry and Molecular Biology, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131, USA
| | | | | | | | | | | |
Collapse
|
35
|
Richards A, Gow NAR, Veses V. Identification of vacuole defects in fungi. J Microbiol Methods 2012; 91:155-63. [PMID: 22902527 DOI: 10.1016/j.mimet.2012.08.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2012] [Revised: 07/30/2012] [Accepted: 08/02/2012] [Indexed: 11/25/2022]
Abstract
Fungal vacuoles are involved in a diverse range of cellular functions, participating in cellular homeostasis, degradation of intracellular components, and storage of ions and molecules. In recent years there has been a significant increase in the number of studies linking these organelles with the regulation of growth and control of cellular morphology, particularly in those fungal species able to undergo yeast-hypha morphogenetic transitions. This has contributed to the refinement of previously published protocols and the development of new techniques, particularly in the area of live-cell imaging of membrane trafficking events and vacuolar dynamics. The current review outlines recent advances in the imaging of fungal vacuoles and assays for characterization of trafficking pathways, and other physiological activities of this important cell organelle.
Collapse
Affiliation(s)
- Andrea Richards
- The Aberdeen Fungal Group, School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, United Kingdom
| | | | | |
Collapse
|
36
|
Vacuolar H+-ATPase plays a key role in cell wall biosynthesis of Aspergillus niger. Fungal Genet Biol 2012; 49:284-93. [DOI: 10.1016/j.fgb.2011.12.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 12/15/2011] [Accepted: 12/16/2011] [Indexed: 11/21/2022]
|
37
|
Chan CY, Prudom C, Raines SM, Charkhzarrin S, Melman SD, De Haro LP, Allen C, Lee SA, Sklar LA, Parra KJ. Inhibitors of V-ATPase proton transport reveal uncoupling functions of tether linking cytosolic and membrane domains of V0 subunit a (Vph1p). J Biol Chem 2012; 287:10236-10250. [PMID: 22215674 DOI: 10.1074/jbc.m111.321133] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Vacuolar ATPases (V-ATPases) are important for many cellular processes, as they regulate pH by pumping cytosolic protons into intracellular organelles. The cytoplasm is acidified when V-ATPase is inhibited; thus we conducted a high-throughput screen of a chemical library to search for compounds that acidify the yeast cytosol in vivo using pHluorin-based flow cytometry. Two inhibitors, alexidine dihydrochloride (EC(50) = 39 μM) and thonzonium bromide (EC(50) = 69 μM), prevented ATP-dependent proton transport in purified vacuolar membranes. They acidified the yeast cytosol and caused pH-sensitive growth defects typical of V-ATPase mutants (vma phenotype). At concentrations greater than 10 μM the inhibitors were cytotoxic, even at the permissive pH (pH 5.0). Membrane fractions treated with alexidine dihydrochloride and thonzonium bromide fully retained concanamycin A-sensitive ATPase activity despite the fact that proton translocation was inhibited by 80-90%, indicating that V-ATPases were uncoupled. Mutant V-ATPase membranes lacking residues 362-407 of the tether of Vph1p subunit a of V(0) were resistant to thonzonium bromide but not to alexidine dihydrochloride, suggesting that this conserved sequence confers uncoupling potential to V(1)V(0) complexes and that alexidine dihydrochloride uncouples the enzyme by a different mechanism. The inhibitors also uncoupled the Candida albicans enzyme and prevented cell growth, showing further specificity for V-ATPases. Thus, a new class of V-ATPase inhibitors (uncouplers), which are not simply ionophores, provided new insights into the enzyme mechanism and original evidence supporting the hypothesis that V-ATPases may not be optimally coupled in vivo. The consequences of uncoupling V-ATPases in vivo as potential drug targets are discussed.
Collapse
Affiliation(s)
- Chun-Yuan Chan
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131
| | - Catherine Prudom
- Center for Molecular Discovery, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131
| | - Summer M Raines
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131
| | - Sahba Charkhzarrin
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131
| | - Sandra D Melman
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131
| | - Leyma P De Haro
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131
| | - Chris Allen
- Center for Molecular Discovery, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131
| | - Samuel A Lee
- Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131
| | - Larry A Sklar
- Center for Molecular Discovery, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131; Department of Pathology and Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131
| | - Karlett J Parra
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131.
| |
Collapse
|
38
|
Plant KP, Lapatra SE, Call DR, Cain KD. Immunization of rainbow trout, Oncorhynchus mykiss (Walbaum), with Flavobacterium psychrophilum proteins elongation factor-Tu, SufB Fe-S assembly protein and ATP synthaseβ. JOURNAL OF FISH DISEASES 2011; 34:247-250. [PMID: 21306591 DOI: 10.1111/j.1365-2761.2010.01235.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Affiliation(s)
- K P Plant
- Hagerman Fish Culture Experiment Station, University of Idaho, Hagerman, ID 83844-1136, USA
| | | | | | | |
Collapse
|
39
|
Wang P, Shen G. The endocytic adaptor proteins of pathogenic fungi: charting new and familiar pathways. Med Mycol 2011; 49:449-57. [PMID: 21254965 DOI: 10.3109/13693786.2011.553246] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Intracellular transport is an essential biological process that is highly conserved throughout the eukaryotic organisms. In fungi, adaptor proteins implicated in the endocytic cycle of endocytosis and exocytosis were found to be important for growth, differentiation, and/or virulence. For example, Saccharomyces cerevisiae Pan1 is an endocytic protein that regulates membrane trafficking, the actin cytoskeleton, and signaling. In Cryptococcus neoformans, a multi-modular endocytic protein, Cin1, was recently found to have pleiotropic functions in morphogenesis, endocytosis, exocytosis, and virulence. Interestingly, Cin1 is homologous to human intersectin ITSN1, but homologs of Cin1/ITSN1 were not found in ascomycetous S. cerevisiae and Candida albicans, or zygomycetous fungi. Moreover, an Eps15 protein homologous to S. cerevisiae Pan1/Ede1 and additional relevant protein homologs were identified in C. neoformans, suggesting the existence of either a distinct endocytic pathway mediated by Cin1 or pathways by either Cin1 or/and Pan1/Ede1 homologs. Whether and how the Cin1-mediated endocytic pathway represents a unique role in pathogenesis or reflects a redundancy of a transport apparatus remains an open and challenging question. This review discusses recent findings of endocytic adaptor proteins from pathogenic fungi and provides a perspective for novel endocytic machinery operating in C. neoformans. An understanding of intracellular trafficking mechanisms as they relate to pathogenesis will likely reveal the identity of novel antifungal targets.
Collapse
Affiliation(s)
- Ping Wang
- The Research Institute for Children, New Orleans, Louisiana, USA.
| | | |
Collapse
|
40
|
Endosomal and AP-3-dependent vacuolar trafficking routes make additive contributions to Candida albicans hyphal growth and pathogenesis. EUKARYOTIC CELL 2010; 9:1755-65. [PMID: 20870878 DOI: 10.1128/ec.00029-10] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Candida albicans mutants deficient in vacuolar biogenesis are defective in polarized hyphal growth and virulence. However, the specific vacuolar trafficking routes required for hyphal growth and virulence are unknown. In Saccharomyces cerevisiae, two trafficking routes deliver material from the Golgi apparatus to the vacuole. One occurs via the late endosome and is dependent upon Vps21p, while the second bypasses the endosome and requires the AP-3 complex, including Aps3p. To determine the significance of these pathways in C. albicans hyphal growth and virulence, aps3Δ/Δ, vps21Δ/Δ, and aps3Δ/Δ vps21Δ/Δ mutant strains were constructed. Analysis of vacuolar morphology and localization of the vacuolar protein Mlt1p suggests that C. albicans Aps3p and Vps21p mediate two distinct transport pathways. The vps21Δ/Δ mutant has a minor reduction in hyphal elongation, while the aps3Δ/Δ mutant has no defect in hyphal growth. Interestingly, the aps3Δ/Δ vps21Δ/Δ double mutant has dramatically reduced hyphal growth. Overexpression of the Ume6p transcriptional activator resulted in constitutive hyphal growth of wild-type, aps3Δ/Δ, and vps21Δ/Δ strains and formation of highly vacuolated subapical compartments. Thus, Ume6p-dependent transcriptional responses are sufficient to induce subapical vacuolation. However, the aps3Δ/Δ vps21Δ/Δ mutant formed mainly pseudohyphae that lacked vacuolated compartments. The aps3Δ/Δ strain was virulent in a mouse model of disseminated infection; the vps21Δ/Δ mutant failed to kill mice but persisted within kidney tissue, while the double mutant was avirulent and cleared from the kidneys. These results suggest that while the AP-3 pathway alone has little impact on hyphal growth or virulence, it is much more significant when endosomal trafficking is disrupted.
Collapse
|
41
|
Zhang YQ, Gamarra S, Garcia-Effron G, Park S, Perlin DS, Rao R. Requirement for ergosterol in V-ATPase function underlies antifungal activity of azole drugs. PLoS Pathog 2010; 6:e1000939. [PMID: 20532216 PMCID: PMC2880581 DOI: 10.1371/journal.ppat.1000939] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Accepted: 05/05/2010] [Indexed: 11/19/2022] Open
Abstract
Ergosterol is an important constituent of fungal membranes. Azoles inhibit ergosterol biosynthesis, although the cellular basis for their antifungal activity is not understood. We used multiple approaches to demonstrate a critical requirement for ergosterol in vacuolar H(+)-ATPase function, which is known to be essential for fungal virulence. Ergosterol biosynthesis mutants of S. cerevisiae failed to acidify the vacuole and exhibited multiple vma(-) phenotypes. Extraction of ergosterol from vacuolar membranes also inactivated V-ATPase without disrupting membrane association of its subdomains. In both S. cerevisiae and the fungal pathogen C. albicans, fluconazole impaired vacuolar acidification, whereas concomitant ergosterol feeding restored V-ATPase function and cell growth. Furthermore, fluconazole exacerbated cytosolic Ca(2+) and H(+) surges triggered by the antimicrobial agent amiodarone, and impaired Ca(2+) sequestration in purified vacuolar vesicles. These findings provide a mechanistic basis for the synergy between azoles and amiodarone observed in vitro. Moreover, we show the clinical potential of this synergy in treatment of systemic fungal infections using a murine model of Candidiasis. In summary, we demonstrate a new regulatory component in fungal V-ATPase function, a novel role for ergosterol in vacuolar ion homeostasis, a plausible cellular mechanism for azole toxicity in fungi, and preliminary in vivo evidence for synergism between two antifungal agents. New insights into the cellular basis of azole toxicity in fungi may broaden therapeutic regimens for patient populations afflicted with systemic fungal infections.
Collapse
Affiliation(s)
- Yong-Qiang Zhang
- The Johns Hopkins University School of Medicine of Baltimore, Maryland, United States of America
| | - Soledad Gamarra
- Public Health Research Institute, New Jersey Medical School-UMDNJ, Newark, New Jersey, United States of America
| | - Guillermo Garcia-Effron
- Public Health Research Institute, New Jersey Medical School-UMDNJ, Newark, New Jersey, United States of America
| | - Steven Park
- Public Health Research Institute, New Jersey Medical School-UMDNJ, Newark, New Jersey, United States of America
| | - David S. Perlin
- Public Health Research Institute, New Jersey Medical School-UMDNJ, Newark, New Jersey, United States of America
| | - Rajini Rao
- The Johns Hopkins University School of Medicine of Baltimore, Maryland, United States of America
| |
Collapse
|
42
|
Rishikesan S, Thaker YR, Priya R, Gayen S, Manimekalai MSS, Hunke C, Grüber G. Spectroscopical identification of residues of subunit G of the yeast V-ATPase in its connection with subunit E. Mol Membr Biol 2009; 25:400-10. [DOI: 10.1080/09687680802183434] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
43
|
Veses V, Richards A, Gow NAR. Vacuoles and fungal biology. Curr Opin Microbiol 2008; 11:503-10. [PMID: 18935977 DOI: 10.1016/j.mib.2008.09.017] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2008] [Revised: 09/19/2008] [Accepted: 09/22/2008] [Indexed: 10/21/2022]
Abstract
Fungal vacuoles have long been recognised as versatile organelles, involved in many aspects of protein turnover, cellular homeostasis, membrane trafficking, signalling and nutrition. Recent research has also revealed an expanding repertoire of physiological functions for fungal vacuoles that are vital for fungal growth, differentiation, symbiosis and pathogenesis. Vacuole-mediated long-distance nutrient transporting systems have been shown to facilitate mycelial foraging and long-distance communication in saprophytes and mycorrhizal fungi. Some hyphae of plant and human fungal pathogens can grow under severely nutrient-limited conditions by expanding the vacuolar space rather than synthesising new cytoplasm and organelles. Autophagy has been recognised as a crucial process in plant pathogens for the initiation of appressorium formation. These studies demonstrate the importance of fungal vacuoles as organelles that are essential for many of the attributes that define the activities and roles of fungi in their natural environments.
Collapse
Affiliation(s)
- Veronica Veses
- The Aberdeen Fungal Group, School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, United Kingdom.
| | | | | |
Collapse
|
44
|
Hilty J, Smulian AG, Newman SL. The Histoplasma capsulatum vacuolar ATPase is required for iron homeostasis, intracellular replication in macrophages and virulence in a murine model of histoplasmosis. Mol Microbiol 2008; 70:127-39. [PMID: 18699866 PMCID: PMC2570752 DOI: 10.1111/j.1365-2958.2008.06395.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Histoplasma capsulatum is a dimorphic fungal pathogen that survives and replicates within macrophages (Mphi). To identify specific genes required for intracellular survival, we utilized Agrobacterium tumefaciens-mediated mutagenesis, and screened for H. capsulatum insertional mutants that were unable to survive in human Mphi. One colony was identified that had an insertion within VMA1, the catalytic subunit A of the vacuolar ATPase (V-ATPase). The vma1 mutant (vma1::HPH) grew normally on iron-replete medium, but not on iron-deficient media. On iron-deficient medium, the growth of the vma1 mutant was restored in the presence of wild-type (WT) H. capsulatum yeasts, or the hydroxamate siderophore, rhodotorulic acid. However, the inability to replicate within Mphi was only partially restored by the addition of exogenous iron. The vma1::HPH mutant also did not grow as a mold at 28 degrees C. Complementation of the mutant (vma/VMA1) restored its ability to replicate in Mphi, grow on iron-poor medium and grow as a mold at 28 degrees C. The vma1::HPH mutant was avirulent in a mouse model of histoplasmosis, whereas the vma1/VMA1 strain was as pathogenic as WT yeasts. These studies demonstrate the importance of V-ATPase function in the pathogenicity of H. capsulatum, in iron homeostasis and in fungal dimorphism.
Collapse
Affiliation(s)
- Jeremy Hilty
- Department of Internal Medicine, Division of Infectious Diseases, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | | | | |
Collapse
|
45
|
Rosa e Silva LK, Staats CC, Goulart LS, Morello LG, Pelegrinelli Fungaro MH, Schrank A, Vainstein MH. Identification of novel temperature-regulated genes in the human pathogen Cryptococcus neoformans using representational difference analysis. Res Microbiol 2008; 159:221-9. [PMID: 18280708 DOI: 10.1016/j.resmic.2007.12.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2007] [Revised: 11/26/2007] [Accepted: 12/15/2007] [Indexed: 11/30/2022]
Abstract
Cryptococcus neoformans is a basidiomycetous fungus and an opportunistic human pathogen that causes infections in both immunocompromised and immunocompetent hosts. The ability to survive and proliferate at the human body temperature is an essential virulence attribute of this microorganism. Representational difference analysis (RDA) was used to profile gene expression in C. neoformans grown at 37 degrees C or 25 degrees C. Contig assembly of 300 high-quality sequenced cDNAs and comparison analysis to the GenBank database led to the identification of transcripts that may be critical for both pathogen-host interactions and responses to either low or high temperature growth. Gene products involved in cell wall integrity, stress response, filamentation, oxidative metabolism, protein targeting and fatty acids metabolism were induced at 37 degrees C. In addition, genes related to chromatin silencing and phospholipid transport were upregulated at 25 degrees C. Therefore, our RDA analysis, comparing saprophytic and host temperature conditions, revealed new genes with potential involvement in C. neoformans virulence.
Collapse
Affiliation(s)
- Lívia Kmetzsch Rosa e Silva
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 43421, Caixa Postal 15005, Porto Alegre, RS 91501-970, Brazil
| | | | | | | | | | | | | |
Collapse
|
46
|
Jezewski S, von der Heide M, Poltermann S, Härtl A, Künkel W, Zipfel PF, Eck R. Role of the Vps34p-interacting protein Ade5,7p in hyphal growth and virulence of Candida albicans. Microbiology (Reading) 2007; 153:2351-2362. [PMID: 17600079 DOI: 10.1099/mic.0.2006/004028-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The phosphatidylinositol (PtdIns) 3-kinase Vps34p of the human pathogenic yeast Candida albicans participates in virulence and in protein transport. In order to dissect these two functions, a search for proteins interacting with C. albicans Vps34p was performed using a yeast two-hybrid system. This study demonstrates the physical interaction between Vps34p and Ade5,7p, which is the bifunctional enzyme of the de novo purine nucleotide biosynthetic pathway. The interaction initially observed in a yeast two-hybrid system was confirmed in vitro with recombinant proteins. Given the complex formation between Ade5,7p and the virulence-regulating Vps34p, it was of interest to characterize the function of Ade5,7p in C. albicans. To this end, ade5,7 null mutants were generated. The resulting mutants were adenine deficient, and sensitive to the presence of metal ions. In addition, the ade5,7 null mutants were avirulent in a mouse model of systemic candidiasis, and showed reduced hyphal growth in an agar matrix under embedded conditions. In summary, Ade5,7p interacts with the multifunctional virulence regulator PtdIns 3-kinase Vps34p, and ade5,7 and vps34 null mutant strains show similar phenotypes regarding sensitivity to metal ions, hyphal growth and virulence.
Collapse
Affiliation(s)
- Susann Jezewski
- Leibniz Institute for Natural Products Research and Infection Biology/Hans Knöll Institute, Beutenbergstrasse 11, D-07745 Jena, Germany
| | - Monika von der Heide
- Leibniz Institute for Natural Products Research and Infection Biology/Hans Knöll Institute, Beutenbergstrasse 11, D-07745 Jena, Germany
| | - Sophia Poltermann
- Leibniz Institute for Natural Products Research and Infection Biology/Hans Knöll Institute, Beutenbergstrasse 11, D-07745 Jena, Germany
| | - Albert Härtl
- Leibniz Institute for Natural Products Research and Infection Biology/Hans Knöll Institute, Beutenbergstrasse 11, D-07745 Jena, Germany
| | - Waldemar Künkel
- University of Applied Sciences, Carl-Zeiss-Promenade 2, D-07745 Jena, Germany
| | - Peter F Zipfel
- Leibniz Institute for Natural Products Research and Infection Biology/Hans Knöll Institute, Beutenbergstrasse 11, D-07745 Jena, Germany
| | - Raimund Eck
- University of Applied Sciences, Carl-Zeiss-Promenade 2, D-07745 Jena, Germany
| |
Collapse
|
47
|
Franke K, Nguyen M, Härtl A, Dahse HM, Vogl G, Würzner R, Zipfel PF, Künkel W, Eck R. The vesicle transport protein Vac1p is required for virulence of Candida albicans. MICROBIOLOGY-SGM 2007; 152:3111-3121. [PMID: 17005990 DOI: 10.1099/mic.0.29115-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The putative vesicle transport protein Vac1p of the human pathogenic yeast Candida albicans plays an important role in virulence. To determine the cellular functions of Vac1p, a null mutant was generated by sequential disruption of both alleles. The vac1 null mutant strain showed defective endosomal vesicle transport, demonstrating a role of Vac1p in protein transport to the vacuole. Vac1p also contributes to resistance to metal ions, as the null mutant strain was hypersensitive to Cu(2+), Zn(2+) and Ni(2+). In addition, the loss of Vac1p affected several virulence factors of C. albicans. In particular, the vac1 null mutant strain showed defective hyphal growth, even when hyphal formation was induced via different pathways. Furthermore, Vac1p affects chlamydospore formation, adherence to human vaginal epithelial cells, and the secretion of aspartyl proteinases (Saps). Avirulence in a mouse model of systemic infection of the vac1 null mutant strongly suggests that Vac1p of C. albicans is essential for pathogenicity. In summary, the Vac1p protein is required for several cellular pathways, in particular those that control virulence and pathogenicity. Consequently, Vac1p is a novel and interesting target for antifungal drugs.
Collapse
Affiliation(s)
- Kathrin Franke
- University of Applied Sciences, Department of Medical Engineering, Carl-Zeiss-Promenade 2, D-07745 Jena, Germany
| | - Monika Nguyen
- Leibniz-Institute for Natural Products Research and Infection Biology/Hans-Knöll-Institute, Department of Infection Biology, Beutenbergstrasse 11, D-07745 Jena, Germany
| | - Albert Härtl
- Leibniz-Institute for Natural Products Research and Infection Biology/Hans-Knöll-Institute, Department of Infection Biology, Beutenbergstrasse 11, D-07745 Jena, Germany
| | - Hans-Martin Dahse
- Leibniz-Institute for Natural Products Research and Infection Biology/Hans-Knöll-Institute, Department of Infection Biology, Beutenbergstrasse 11, D-07745 Jena, Germany
| | - Georgia Vogl
- Department of Hygiene, Microbiology and Social Medicine, Fritz-Pregl-Strasse 3, A-6020 Innsbruck, Austria
| | - Reinhard Würzner
- Department of Hygiene, Microbiology and Social Medicine, Fritz-Pregl-Strasse 3, A-6020 Innsbruck, Austria
| | - Peter F Zipfel
- Leibniz-Institute for Natural Products Research and Infection Biology/Hans-Knöll-Institute, Department of Infection Biology, Beutenbergstrasse 11, D-07745 Jena, Germany
| | - Waldemar Künkel
- University of Applied Sciences, Department of Medical Engineering, Carl-Zeiss-Promenade 2, D-07745 Jena, Germany
| | - Raimund Eck
- University of Applied Sciences, Department of Medical Engineering, Carl-Zeiss-Promenade 2, D-07745 Jena, Germany
| |
Collapse
|
48
|
Abstract
All eukaryotic cells contain multiple acidic organelles, and V-ATPases are central players in organelle acidification. Not only is the structure of V-ATPases highly conserved among eukaryotes, but there are also many regulatory mechanisms that are similar between fungi and higher eukaryotes. These mechanisms allow cells both to regulate the pHs of different compartments and to respond to changing extracellular conditions. The Saccharomyces cerevisiae V-ATPase has emerged as an important model for V-ATPase structure and function in all eukaryotic cells. This review discusses current knowledge of the structure, function, and regulation of the V-ATPase in S. cerevisiae and also examines the relationship between biosynthesis and transport of V-ATPase and compartment-specific regulation of acidification.
Collapse
Affiliation(s)
- Patricia M Kane
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 East Adams St., Syracuse, NY 13210, USA.
| |
Collapse
|
49
|
Current awareness on yeast. Yeast 2005; 22:1249-56. [PMID: 16320446 DOI: 10.1002/yea.1170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|