1
|
Liu M, Zhang Y, Gu C, Luo J, Shen Y, Huang X, Xu X, Ahmed T, Alodaini HA, Hatamleh AA, Wang Y, Li B. Strain-Specific Infection of Phage AP1 to Rice Bacterial Brown Stripe Pathogen Acidovorax oryzae. PLANTS (BASEL, SWITZERLAND) 2024; 13:3182. [PMID: 39599390 PMCID: PMC11597636 DOI: 10.3390/plants13223182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024]
Abstract
Bacteriophage (phage) AP1 has been reported to effectively lyse Acidovorax oryzae, the causative agent of bacterial brown stripe in rice. However, phage AP1 exhibits strain-specific lysis patterns. In order to enhance the potential of phages for biological control of rice bacterial brown stripe, this study investigated the possible mechanism of strain-specific infection by characterizing phage AP1 and its susceptible (RS-2) and resistant (RS-1) strains. Based on the current classification standards and available database information, phage AP1 was classified into the class Caudoviricetes, and it is a kind of podophage. Comparative analysis of the susceptible and resistant strains showed no significant differences in growth kinetics, motility, biofilm formation, or effector Hcp production. Interestingly, the resistant strain demonstrated enhanced virulence compared to the susceptible strain. Prokaryotic expression studies indicated that six putative structural proteins of phage AP1 exhibited varying degrees of binding affinity (1.90-9.15%) to lipopolysaccharide (LPS). However, pull-down assays and bacterial two-hybrid analyses revealed that only gp66 can interact with four host proteins, which were identified as glycosyltransferase, RcnB, ClpB, and ImpB through immunoprecipitation and mass spectrometry analyses. The role of LPS in the specific infection mechanism of phage AP1 was further elucidated through the construction of knockout mutant strains and complementary strains targeting a unique gene cluster (wbzB, wbzC, wbzE, and wbzF) involved in LPS precursor biosynthesis. These findings provide novel insights into the mechanisms of phage-host specificity, which are crucial for the effective application of phage AP1 in controlling rice bacterial brown stripe.
Collapse
Affiliation(s)
- Mengju Liu
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.L.); (Y.Z.); (X.H.); (X.X.); (T.A.)
| | - Yang Zhang
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.L.); (Y.Z.); (X.H.); (X.X.); (T.A.)
- Key Laboratory of Plant Genetic Engineering Center of Hebei Province, Institute of Biotechnology and Food Science, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang 050070, China
| | - Chunyan Gu
- Institute of Plant Protection and Agricultural Product Quality and Safety, Anhui Academy of Agricultural Sciences, Hefei 230001, China
| | - Jinyan Luo
- Department of Plant Quarantine, Shanghai Extension and Service Center of Agriculture Technology, Shanghai 201103, China;
| | - Ying Shen
- Station for the Plant Protection & Quarantine and Control of Agrochemicals of Zhejiang Province, Hangzhou 310004, China;
| | - Xuefang Huang
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.L.); (Y.Z.); (X.H.); (X.X.); (T.A.)
| | - Xinyan Xu
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.L.); (Y.Z.); (X.H.); (X.X.); (T.A.)
| | - Temoor Ahmed
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.L.); (Y.Z.); (X.H.); (X.X.); (T.A.)
- Department of Life Sciences, Western Caspian University, Baku 1001, Azerbaijan
| | - Hissah Abdulrahman Alodaini
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (H.A.A.); (A.A.H.)
| | - Ashraf Atef Hatamleh
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (H.A.A.); (A.A.H.)
| | - Yanli Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Bin Li
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.L.); (Y.Z.); (X.H.); (X.X.); (T.A.)
| |
Collapse
|
2
|
Goladze S, Patpatia S, Tuomala H, Ylänne M, Gachechiladze N, de Oliveira Patricio D, Skurnik M, Sundberg LR. Isolation and characterization of Yersinia phage fMtkYen3-01. Arch Virol 2024; 169:226. [PMID: 39425798 PMCID: PMC11490452 DOI: 10.1007/s00705-024-06149-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/29/2024] [Indexed: 10/21/2024]
Abstract
Yersinia enterocolitica causes yersiniosis, the third most common gastrointestinal infection in humans throughout Europe. The emergence of multidrug resistance and the lack of effective new antibiotics have drawn attention to phage therapy as a treatment option. Here, we report the complete genome sequence of phage fMtkYen3-01, which infects Y. enterocolitica serotype O:3 strains. This phage has a genome 40,415 bp in length with 45.1% GC content and 49 predicted genes. fMtkYen3-01 infected 9.5% of the 42 Y. enterocolitica strains tested and showed stability at 25-40 °C, as well as pH 5.0-10.0. These results suggest the therapeutic potential of this phage.
Collapse
Affiliation(s)
- Sophia Goladze
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
- Human Microbiome Research Program, Department of Bacteriology and Immunology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Faculty of Exact and Natural Sciences, Ivane Javakhishvili Tbilisi State University, Tbilisi, Georgia
| | - Sheetal Patpatia
- Human Microbiome Research Program, Department of Bacteriology and Immunology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Henni Tuomala
- Human Microbiome Research Program, Department of Bacteriology and Immunology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Matti Ylänne
- Human Microbiome Research Program, Department of Bacteriology and Immunology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Nino Gachechiladze
- Faculty of Exact and Natural Sciences, Ivane Javakhishvili Tbilisi State University, Tbilisi, Georgia
| | - Daniel de Oliveira Patricio
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Mikael Skurnik
- Human Microbiome Research Program, Department of Bacteriology and Immunology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Lotta-Riina Sundberg
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland.
| |
Collapse
|
3
|
Juszczuk-Kubiak E. Molecular Aspects of the Functioning of Pathogenic Bacteria Biofilm Based on Quorum Sensing (QS) Signal-Response System and Innovative Non-Antibiotic Strategies for Their Elimination. Int J Mol Sci 2024; 25:2655. [PMID: 38473900 DOI: 10.3390/ijms25052655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
One of the key mechanisms enabling bacterial cells to create biofilms and regulate crucial life functions in a global and highly synchronized way is a bacterial communication system called quorum sensing (QS). QS is a bacterial cell-to-cell communication process that depends on the bacterial population density and is mediated by small signalling molecules called autoinducers (AIs). In bacteria, QS controls the biofilm formation through the global regulation of gene expression involved in the extracellular polymeric matrix (EPS) synthesis, virulence factor production, stress tolerance and metabolic adaptation. Forming biofilm is one of the crucial mechanisms of bacterial antimicrobial resistance (AMR). A common feature of human pathogens is the ability to form biofilm, which poses a serious medical issue due to their high susceptibility to traditional antibiotics. Because QS is associated with virulence and biofilm formation, there is a belief that inhibition of QS activity called quorum quenching (QQ) may provide alternative therapeutic methods for treating microbial infections. This review summarises recent progress in biofilm research, focusing on the mechanisms by which biofilms, especially those formed by pathogenic bacteria, become resistant to antibiotic treatment. Subsequently, a potential alternative approach to QS inhibition highlighting innovative non-antibiotic strategies to control AMR and biofilm formation of pathogenic bacteria has been discussed.
Collapse
Affiliation(s)
- Edyta Juszczuk-Kubiak
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology-State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland
| |
Collapse
|
4
|
Antonova D, Belousova VV, Zhivkoplias E, Sobinina M, Artamonova T, Vishnyakov IE, Kurdyumova I, Arseniev A, Morozova N, Severinov K, Khodorkovskii M, Yakunina MV. The Dynamics of Synthesis and Localization of Jumbo Phage RNA Polymerases inside Infected Cells. Viruses 2023; 15:2096. [PMID: 37896872 PMCID: PMC10612078 DOI: 10.3390/v15102096] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
A nucleus-like structure composed of phage-encoded proteins and containing replicating viral DNA is formed in Pseudomonas aeruginosa cells infected by jumbo bacteriophage phiKZ. The PhiKZ genes are transcribed independently from host RNA polymerase (RNAP) by two RNAPs encoded by the phage. The virion RNAP (vRNAP) transcribes early viral genes and must be injected into the cell with phage DNA. The non-virion RNAP (nvRNAP) is composed of early gene products and transcribes late viral genes. In this work, the dynamics of phage RNAPs localization during phage phiKZ infection were studied. We provide direct evidence of PhiKZ vRNAP injection in infected cells and show that it is excluded from the phage nucleus. The nvRNAP is synthesized shortly after the onset of infection and localizes in the nucleus. We propose that spatial separation of two phage RNAPs allows coordinated expression of phage genes belonging to different temporal classes.
Collapse
Affiliation(s)
- Daria Antonova
- Research Center of Nanobiotechnologies, Peter the Great St. Petersburg Polytechnic University, St. Petersburg 195251, Russia
| | - Viktoriia V. Belousova
- Research Center of Nanobiotechnologies, Peter the Great St. Petersburg Polytechnic University, St. Petersburg 195251, Russia
| | - Erik Zhivkoplias
- Research Center of Nanobiotechnologies, Peter the Great St. Petersburg Polytechnic University, St. Petersburg 195251, Russia
| | - Mariia Sobinina
- Research Center of Nanobiotechnologies, Peter the Great St. Petersburg Polytechnic University, St. Petersburg 195251, Russia
| | - Tatyana Artamonova
- Research Center of Nanobiotechnologies, Peter the Great St. Petersburg Polytechnic University, St. Petersburg 195251, Russia
| | - Innokentii E. Vishnyakov
- Group of Molecular Cytology of Prokaryotes and Bacterial Invasion, Institute of Cytology of the Russian Academy of Science, St. Petersburg 194064, Russia;
| | - Inna Kurdyumova
- Research Center of Nanobiotechnologies, Peter the Great St. Petersburg Polytechnic University, St. Petersburg 195251, Russia
| | - Anatoly Arseniev
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology Russian Academy of Sciences, Moscow 119334, Russia
| | - Natalia Morozova
- Research Center of Nanobiotechnologies, Peter the Great St. Petersburg Polytechnic University, St. Petersburg 195251, Russia
| | - Konstantin Severinov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology Russian Academy of Sciences, Moscow 119334, Russia
- Institute of Molecular Genetics National Kurchatov Center, Moscow 123182, Russia
- Waksman Institute for Microbiology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Mikhail Khodorkovskii
- Research Center of Nanobiotechnologies, Peter the Great St. Petersburg Polytechnic University, St. Petersburg 195251, Russia
| | - Maria V. Yakunina
- Research Center of Nanobiotechnologies, Peter the Great St. Petersburg Polytechnic University, St. Petersburg 195251, Russia
| |
Collapse
|
5
|
Muselmani W, Kashif-Khan N, Bagnéris C, Santangelo R, Williams MA, Savva R. A Multimodal Approach towards Genomic Identification of Protein Inhibitors of Uracil-DNA Glycosylase. Viruses 2023; 15:1348. [PMID: 37376646 DOI: 10.3390/v15061348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
DNA-mimicking proteins encoded by viruses can modulate processes such as innate cellular immunity. An example is Ung-family uracil-DNA glycosylase inhibition, which prevents Ung-mediated degradation via the stoichiometric protein blockade of the Ung DNA-binding cleft. This is significant where uracil-DNA is a key determinant in the replication and distribution of virus genomes. Unrelated protein folds support a common physicochemical spatial strategy for Ung inhibition, characterised by pronounced sequence plasticity within the diverse fold families. That, and the fact that relatively few template sequences are biochemically verified to encode Ung inhibitor proteins, presents a barrier to the straightforward identification of Ung inhibitors in genomic sequences. In this study, distant homologs of known Ung inhibitors were characterised via structural biology and structure prediction methods. A recombinant cellular survival assay and in vitro biochemical assay were used to screen distant variants and mutants to further explore tolerated sequence plasticity in motifs supporting Ung inhibition. The resulting validated sequence repertoire defines an expanded set of heuristic sequence and biophysical signatures shared by known Ung inhibitor proteins. A computational search of genome database sequences and the results of recombinant tests of selected output sequences obtained are presented here.
Collapse
Affiliation(s)
- Wael Muselmani
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| | - Naail Kashif-Khan
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| | - Claire Bagnéris
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| | - Rosalia Santangelo
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| | - Mark A Williams
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| | - Renos Savva
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| |
Collapse
|
6
|
Uchiyama J, Takemura-Uchiyama I, Gotoh K, Kato SI, Sakaguchi Y, Murakami H, Fukuyama T, Kaneki M, Matsushita O, Matsuzaki S. Phylogenic analysis of new viral cluster of large phages with unusual DNA genomes containing uracil in place of thymine in gene-sharing network, using phages S6 and PBS1 and relevant uncultured phages derived from sewage metagenomics. Virus Res 2022; 319:198881. [PMID: 35934259 DOI: 10.1016/j.virusres.2022.198881] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/28/2022] [Accepted: 07/28/2022] [Indexed: 11/19/2022]
Abstract
Bacteriophages (phages) are the most diverse and abundant life-form on Earth. Jumbophages are phages with double-stranded DNA genomes longer than 200 kbp. Among these, some jumbophages with uracil in place of thymine as a nucleic acid base, which we have tentatively termed "dU jumbophages" in this study, have been reported. Because the dU jumbophages are considered to be a living fossil from the RNA world, the evolutionary traits of dU jumbophages are of interest. In this study, we examined the phylogeny of dU jumbophages. First, tBLASTx analysis of newly sequenced dU jumbophages such as Bacillus phage PBS1 and previously isolated Staphylococcus phage S6 showed similarity to the other dU jumbophages. Second, we detected the two partial genome sequences of uncultured phages possibly relevant to dU jumbophages, scaffold_002 and scaffold_007, from wastewater metagenomics. Third, according to the gene-sharing network analysis, the dU jumbophages, including phages PBS1 and S6, and uncultured phage scaffold_002 formed a cluster, which suggested a new viral subfamily/family. Finally, analyses of the phylogenetic relationship with other phages showed that the dU jumbophage cluster, which had two clades of phages infecting Gram-negative and Gram-positive bacteria, diverged from the single ancestral phage. These findings together with previous reports may imply that dU jumbophages evolved from the same origin before divergence of Gram-negative and Gram-positive bacteria.
Collapse
Affiliation(s)
- Jumpei Uchiyama
- Department of Bacteriology, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan.
| | - Iyo Takemura-Uchiyama
- Department of Bacteriology, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan
| | - Kazuyoshi Gotoh
- Department of Bacteriology, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan
| | - Shin-Ichiro Kato
- Research Institute of Molecular Genetics, Kochi University, Kochi 783-0093, Japan
| | - Yoshihiko Sakaguchi
- Department of Microbiology, Kitasato University School of Medicine, Kanagawa 252-0374, Japan
| | - Hironobu Murakami
- School of Veterinary Medicine, Azabu University, Kanagawa 252-5201, Japan
| | - Tomoki Fukuyama
- School of Veterinary Medicine, Azabu University, Kanagawa 252-5201, Japan
| | - Mao Kaneki
- School of Veterinary Medicine, Azabu University, Kanagawa 252-5201, Japan
| | - Osamu Matsushita
- Department of Bacteriology, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan
| | - Shigenobu Matsuzaki
- Department of Medical Laboratory Science, Faculty of Health Sciences, Kochi Gakuen University, Kochi 780-0955, Japan
| |
Collapse
|
7
|
Sokolova OS, Pichkur EB, Maslova ES, Kurochkina LP, Semenyuk PI, Konarev PV, Samygina VR, Stanishneva-Konovalova TB. Local Flexibility of a New Single-Ring Chaperonin Encoded by Bacteriophage AR9 Bacillus subtilis. Biomedicines 2022; 10:biomedicines10102347. [PMID: 36289609 PMCID: PMC9598537 DOI: 10.3390/biomedicines10102347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/13/2022] [Accepted: 09/19/2022] [Indexed: 11/25/2022] Open
Abstract
Chaperonins, a family of molecular chaperones, assist protein folding in all domains of life. They are classified into two groups: bacterial variants and those present in endosymbiotic organelles of eukaryotes belong to group I, while group II includes chaperonins from the cytosol of archaea and eukaryotes. Recently, chaperonins of a prospective new group were discovered in giant bacteriophages; however, structures have been determined for only two of them. Here, using cryo-EM, we resolved a structure of a new chaperonin encoded by gene 228 of phage AR9 B. subtilis. This structure has similarities and differences with members of both groups, as well as with other known phage chaperonins, which further proves their diversity.
Collapse
Affiliation(s)
- Olga S. Sokolova
- Faculty of Biology, MSU-BIT Shenzhen University, Shenzhen 518172, China
| | - Evgeny B. Pichkur
- Complex of NBICS Technologies, National Research Center “Kurchatov Institute”, 123098 Moscow, Russia
| | | | - Lidia P. Kurochkina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Pavel I. Semenyuk
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Petr V. Konarev
- Complex of NBICS Technologies, National Research Center “Kurchatov Institute”, 123098 Moscow, Russia
- Shubnikov Institute of Crystallography of FSRC “Crystallography and Photonics”, RAS, 119333 Moscow, Russia
| | - Valeriya R. Samygina
- Complex of NBICS Technologies, National Research Center “Kurchatov Institute”, 123098 Moscow, Russia
- Shubnikov Institute of Crystallography of FSRC “Crystallography and Photonics”, RAS, 119333 Moscow, Russia
| | | |
Collapse
|
8
|
Zhang B, Sun H, Zhao F, Wang Q, Pan Q, Tong Y, Ren H. Characterization and Genomic Analysis of a Novel Jumbo Bacteriophage vB_StaM_SA1 Infecting Staphylococcus aureus With Two Lysins. Front Microbiol 2022; 13:856473. [PMID: 35572667 PMCID: PMC9096886 DOI: 10.3389/fmicb.2022.856473] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/04/2022] [Indexed: 11/30/2022] Open
Abstract
The development of new antimicrobial agents is critically needed due to the alarming increase in antibiotic resistance in bacterial pathogens. Phages have been widely considered as effective alternatives to antibiotics. A novel phage vB_StaM_SA1 (hereinafter as SA1) that can infect multiple Staphylococcus strains was isolated from untreated sewage of a pig farm, which belonged to Myoviridae family. At MOI of 0.1, the latent period of phage SA1 was 55 min, and the final titer reached about 109 PFU/mL. The genome of phage SA1 was 260,727 bp, indicating that it can be classified as a jumbo phage. The genome of SA1 had 258 ORFs and a serine tRNA, while only 53 ORFs were annotated with functions. Phage SA1 contained a group of core genes that was characterized by multiple RNA polymerase subunits and also found in phiKZ-related jumbo phages. The phylogenetic tree showed that phage SA1 was a phiKZ-related phage and was closer to jumbo phages compared with Staphylococcus phages with small genome. Three proteins (lys4, lys210, and lys211) were predicted to be associated with lysins, and two proteins with lytic function were verified by recombinant expression and bacterial survival test. Both lys210 and lys211 possessed efficient bactericidal ability, and lys210 could lyse all test strains. The results show that phage SA1 and lys210/lys211 could be potentially used as antibiotic agents to treat Staphylococcus infection.
Collapse
Affiliation(s)
- Bingyan Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China.,College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Huzhi Sun
- Qingdao Phagepharm Bio-tech Co., Ltd., Qingdao, China
| | - Feiyang Zhao
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Qian Wang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Qiang Pan
- Qingdao Phagepharm Bio-tech Co., Ltd., Qingdao, China
| | - Yigang Tong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Huiying Ren
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
9
|
A novel method to create efficient phage cocktails via use of phage-resistant bacteria. Appl Environ Microbiol 2022; 88:e0232321. [PMID: 35080902 DOI: 10.1128/aem.02323-21] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The rapid anti-phage mutation of pathogens is a big challenge often encountered in the application of phages in aquaculture, animal husbandry and human disease prevention. A cocktail composed of phages with different infection strategies can better suppress the anti-phage resistance of pathogens. However, randomly selecting phages with different infection strategies is time-consuming and labor-intensive. Here, we verified that using a resistant pathogen quickly-evolved under single phage infection as the new host can easily obtain phages with different infection strategies. We randomly isolated two lytic phages (i.e., Va1 and Va2) that infect the opportunistic pathogen Vibrio alginolyticus. Whether they were used alone or in combination, the pathogen easily gained resistance. Using a mutated pathogen resistant to Va1 as a new host, a third lytic phage Va3 was isolated. These three phages have a similar infection cycle and lytic ability, but quite different morphologies and genome information. Notably, phage Va3 is a jumbo phage containing a larger and more complex genome (240 kb) than Va1 and Va2. Furthermore, the 34 tRNAs and multiple genes encoding receptor binding proteins and NAD+ synthesis proteins in the Va3 genome implicated its quite different infection strategy compared to Va1 and Va2. Although the wild-type pathogen could still readily evolve resistance under single phage infection by Va3, when Va3 was used in combination with Va1 and Va2, pathogen resistance was strongly suppressed. This study provides a novel approach for rapid isolation of phages with different infection strategies, which will be highly beneficial when designing effective phage cocktails. Importance The rapid anti-phage mutation of pathogens is a big challenge often encountered in phage therapy. Using a cocktail composed of phages with different infection strategies can better overcome this problem. However, randomly selecting phages with different infection strategies is time-consuming and labor-intensive. To address this problem, we developed a method to efficiently obtain phages with disparate infection strategies. The trick is to use the characteristics of the pathogenic bacteria that are prone to develop resistance to single phage infection, to rapidly obtain the anti-phage variant of the pathogen. Using this anti-phage variant as the host results in other phages with different infection strategies being efficiently isolated. We also verified the reliability of this method by demonstrating the ideal phage control effects on two pathogens, and thus revealed its potential importance in the development of phage therapies.
Collapse
|
10
|
Olson EG, Micciche AC, Rothrock MJ, Yang Y, Ricke SC. Application of Bacteriophages to Limit Campylobacter in Poultry Production. Front Microbiol 2022; 12:458721. [PMID: 35069459 PMCID: PMC8766974 DOI: 10.3389/fmicb.2021.458721] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 11/29/2021] [Indexed: 12/22/2022] Open
Abstract
Campylobacter is a major foodborne pathogen with over a million United States cases a year and is typically acquired through the consumption of poultry products. The common occurrence of Campylobacter as a member of the poultry gastrointestinal tract microbial community remains a challenge for optimizing intervention strategies. Simultaneously, increasing demand for antibiotic-free products has led to the development of several alternative control measures both at the farm and in processing operations. Bacteriophages administered to reduce foodborne pathogens are one of the alternatives that have received renewed interest. Campylobacter phages have been isolated from both conventionally and organically raised poultry. Isolated and cultivated Campylobacter bacteriophages have been used as an intervention in live birds to target colonized Campylobacter in the gastrointestinal tract. Application of Campylobacter phages to poultry carcasses has also been explored as a strategy to reduce Campylobacter levels during poultry processing. This review will focus on the biology and ecology of Campylobacter bacteriophages in poultry production followed by discussion on current and potential applications as an intervention strategy to reduce Campylobacter occurrence in poultry production.
Collapse
Affiliation(s)
- Elena G. Olson
- Meat Science and Animal Biologics Discovery Program, Department of Animal and Dairy Sciences, University of Wisconsin–Madison, Madison, WI, United States
| | - Andrew C. Micciche
- Center for Food Safety, Department of Food Science, University of Arkansas, Fayetteville, AR, United States
| | - Michael J. Rothrock
- Agricultural Research Service, United States Department of Agriculture, Athens, GA, United States
| | - Yichao Yang
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Steven C. Ricke
- Meat Science and Animal Biologics Discovery Program, Department of Animal and Dairy Sciences, University of Wisconsin–Madison, Madison, WI, United States
| |
Collapse
|
11
|
Kurochkina LP, Semenyuk PI, Sokolova OS. Structural and Functional Features of Viral Chaperonins. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:1-9. [PMID: 35491019 DOI: 10.1134/s0006297922010011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Chaperonins provide proper folding of proteins in vivo and in vitro and, as was thought until recently, are characteristic of prokaryotes, eukaryotes, and archaea. However, it turned out that some bacteria viruses (bacteriophages) encode their own chaperonins. This review presents results of the investigations of the first representatives of this new chaperonin group: the double-ring EL chaperonin and the single-ring OBP and AR9 chaperonins. Biochemical properties and structure of the phage chaperonins were compared within the group and with other known group I and group II chaperonins.
Collapse
Affiliation(s)
- Lidia P Kurochkina
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | - Pavel I Semenyuk
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Olga S Sokolova
- Department of Bioengineering, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
12
|
Pasin F, Daròs JA, Tzanetakis IE. OUP accepted manuscript. FEMS Microbiol Rev 2022; 46:6534904. [PMID: 35195244 PMCID: PMC9249622 DOI: 10.1093/femsre/fuac011] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 02/02/2022] [Accepted: 02/08/2022] [Indexed: 11/17/2022] Open
Abstract
Potyviridae, the largest family of known RNA viruses (realm Riboviria), belongs to the picorna-like supergroup and has important agricultural and ecological impacts. Potyvirid genomes are translated into polyproteins, which are in turn hydrolyzed to release mature products. Recent sequencing efforts revealed an unprecedented number of potyvirids with a rich variability in gene content and genomic layouts. Here, we review the heterogeneity of non-core modules that expand the structural and functional diversity of the potyvirid proteomes. We provide a family-wide classification of P1 proteinases into the functional Types A and B, and discuss pretty interesting sweet potato potyviral ORF (PISPO), putative zinc fingers, and alkylation B (AlkB)—non-core modules found within P1 cistrons. The atypical inosine triphosphate pyrophosphatase (ITPase/HAM1), as well as the pseudo tobacco mosaic virus-like coat protein (TMV-like CP) are discussed alongside homologs of unrelated virus taxa. Family-wide abundance of the multitasking helper component proteinase (HC-pro) is revised. Functional connections between non-core modules are highlighted to support host niche adaptation and immune evasion as main drivers of the Potyviridae evolutionary radiation. Potential biotechnological and synthetic biology applications of potyvirid leader proteinases and non-core modules are finally explored.
Collapse
Affiliation(s)
- Fabio Pasin
- Corresponding author: Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València (CSIC-UPV), UPV Building 8E, Ingeniero Fausto Elio, 46011 Valencia, Spain. E-mail:
| | - José-Antonio Daròs
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València (CSIC-UPV), 46011 Valencia, Spain
| | - Ioannis E Tzanetakis
- Department of Entomology and Plant Pathology, Division of Agriculture, University of Arkansas System, 72701 Fayetteville, AR, USA
| |
Collapse
|
13
|
Nazir A, Ali A, Qing H, Tong Y. Emerging Aspects of Jumbo Bacteriophages. Infect Drug Resist 2021; 14:5041-5055. [PMID: 34876823 PMCID: PMC8643167 DOI: 10.2147/idr.s330560] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/30/2021] [Indexed: 01/21/2023] Open
Abstract
The bacteriophages have been explored at a huge scale as a model system for their applications in many biological-related fields. Jumbo phages with a large genome size from 200 to 500 kbp were not previously assigned a great value, and characterized by complex structures coupled with large virions with a wide variety of hosts. The origin of most of the jumbo phages was not well understood; however, many other prominent features have been discovered recently. In the current review, we strive to unearth the most advanced characteristics of jumbo phages, particularly their significance and structural organization that holds immense value to the viral life cycle. The unique characteristics of jumbo phages are the basis of variations in different types of phages concerning their organization at the genomic level, virion structure, evolution, and progeny propagation. The presence of tRNA and additional translation-related genes along with chaperonin genes mark the ability of these phages for being independent of host molecular machinery enabling them to have wide host options. A large number of jumbo phages have been isolated from various sources through advanced standard screening methods. The current review has summarized the available data on jumbo phages and discussed the genome orientation of jumbo phages, translational machinery, diversity and evolution of jumbo phages. In the studies conducted, jumbo phages possessed special additional genes that helps to reduce the dependence of jumbo phages on their hosts. Furthermore, their genomes might have evolved from smaller genome phages.
Collapse
Affiliation(s)
- Amina Nazir
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, Department of Biology, School of Life Sciences, Beijing Institute of Technology, Beijing, People’s Republic of China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, People’s Republic of China
| | - Azam Ali
- Centre for Applied Molecular Biology (CAMB), University of the Punjab, Lahore, Pakistan
| | - Hong Qing
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, Department of Biology, School of Life Sciences, Beijing Institute of Technology, Beijing, People’s Republic of China
| | - Yigang Tong
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, People’s Republic of China
| |
Collapse
|
14
|
BtuB-Dependent Infection of the T5-like Yersinia Phage ϕR2-01. Viruses 2021; 13:v13112171. [PMID: 34834977 PMCID: PMC8624392 DOI: 10.3390/v13112171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/25/2021] [Accepted: 10/25/2021] [Indexed: 12/15/2022] Open
Abstract
Yersinia enterocolitica is a food-borne Gram-negative pathogen responsible for several gastrointestinal disorders. Host-specific lytic bacteriophages have been increasingly used recently as an alternative or complementary treatment to combat bacterial infections, especially when antibiotics fail. Here, we describe the proteogenomic characterization and host receptor identification of the siphovirus vB_YenS_ϕR2-01 (in short, ϕR2-01) that infects strains of several Yersinia enterocolitica serotypes. The ϕR2-01 genome contains 154 predicted genes, 117 of which encode products that are homologous to those of Escherichia bacteriophage T5. The ϕR2-01 and T5 genomes are largely syntenic, with the major differences residing in areas encoding hypothetical ϕR2-01 proteins. Label-free mass-spectrometry-based proteomics confirmed the expression of 90 of the ϕR2-01 genes, with 88 of these being either phage particle structural or phage-particle-associated proteins. In vitro transposon-based host mutagenesis and ϕR2-01 adsorption experiments identified the outer membrane vitamin B12 receptor BtuB as the host receptor. This study provides a proteogenomic characterization of a T5-type bacteriophage and identifies specific Y. enterocolitica strains sensitive to infection with possible future applications of ϕR2-01 as a food biocontrol or phage therapy agent.
Collapse
|
15
|
Ramos-Vivas J, Superio J, Galindo-Villegas J, Acosta F. Phage Therapy as a Focused Management Strategy in Aquaculture. Int J Mol Sci 2021; 22:10436. [PMID: 34638776 PMCID: PMC8508683 DOI: 10.3390/ijms221910436] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 12/12/2022] Open
Abstract
Therapeutic bacteriophages, commonly called as phages, are a promising potential alternative to antibiotics in the management of bacterial infections of a wide range of organisms including cultured fish. Their natural immunogenicity often induces the modulation of a variated collection of immune responses within several types of immunocytes while promoting specific mechanisms of bacterial clearance. However, to achieve standardized treatments at the practical level and avoid possible side effects in cultivated fish, several improvements in the understanding of their biology and the associated genomes are required. Interestingly, a particular feature with therapeutic potential among all phages is the production of lytic enzymes. The use of such enzymes against human and livestock pathogens has already provided in vitro and in vivo promissory results. So far, the best-understood phages utilized to fight against either Gram-negative or Gram-positive bacterial species in fish culture are mainly restricted to the Myoviridae and Podoviridae, and the Siphoviridae, respectively. However, the current functional use of phages against bacterial pathogens of cultured fish is still in its infancy. Based on the available data, in this review, we summarize the current knowledge about phage, identify gaps, and provide insights into the possible bacterial control strategies they might represent for managing aquaculture-related bacterial diseases.
Collapse
Affiliation(s)
- José Ramos-Vivas
- Grupo de Investigación en Acuicultura, Universidad de Las Palmas de Gran Canaria, 35214 Las Palmas de Gran Canaria, Spain; (J.R.-V.); (F.A.)
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, 39011 Santander, Spain
- Department of Project Management, Universidad Internacional Iberoamericana, Campeche 24560, Mexico
| | - Joshua Superio
- Faculty of Biosciences and Aquaculture, Nord University, 8049 Bodø, Norway;
| | | | - Félix Acosta
- Grupo de Investigación en Acuicultura, Universidad de Las Palmas de Gran Canaria, 35214 Las Palmas de Gran Canaria, Spain; (J.R.-V.); (F.A.)
| |
Collapse
|
16
|
Erickson S, Paulson J, Brown M, Hahn W, Gil J, Barron-Montenegro R, Moreno-Switt AI, Eisenberg M, Nguyen MM. Isolation and engineering of a Listeria grayi bacteriophage. Sci Rep 2021; 11:18947. [PMID: 34556683 PMCID: PMC8460666 DOI: 10.1038/s41598-021-98134-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 09/03/2021] [Indexed: 01/02/2023] Open
Abstract
The lack of bacteriophages capable of infecting the Listeria species, Listeria grayi, is academically intriguing and presents an obstacle to the development of bacteriophage-based technologies for Listeria. We describe the isolation and engineering of a novel L. grayi bacteriophage, LPJP1, isolated from farm silage. With a genome over 200,000 base pairs, LPJP1 is the first and only reported jumbo bacteriophage infecting the Listeria genus. Similar to other Gram-positive jumbo phages, LPJP1 appeared to contain modified base pairs, which complicated initial attempts to obtain genomic sequence using standard methods. Following successful sequencing with a modified approach, a recombinant of LPJP1 encoding the NanoLuc luciferase was engineered using homologous recombination. This luciferase reporter bacteriophage successfully detected 100 stationary phase colony forming units of both subspecies of L. grayi in four hours. A single log phase colony forming unit was also sufficient for positive detection in the same time period. The recombinant demonstrated complete specificity for this particular Listeria species and did not infect 150 non-L. grayi Listeria strains nor any other bacterial genus. LPJP1 is believed to be the first reported lytic bacteriophage of L. grayi as well as the only jumbo bacteriophage to be successfully engineered into a luciferase reporter.
Collapse
Affiliation(s)
- Stephen Erickson
- Laboratory Corporation of America Holdings, New Brighton, MN, 55112, USA.
| | - John Paulson
- Laboratory Corporation of America Holdings, New Brighton, MN, 55112, USA
| | - Matthew Brown
- Laboratory Corporation of America Holdings, Burlington, NC, 27215, USA
| | - Wendy Hahn
- Laboratory Corporation of America Holdings, New Brighton, MN, 55112, USA
| | - Jose Gil
- Laboratory Corporation of America Holdings, Los Angeles, CA, 90062, USA
| | - Rocío Barron-Montenegro
- Escuela de Medicina Veterinaria, Facultad de Agronomía e Ingeniería Forestal, Facultad de Ciencias Biológicas, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.,Millennium Initiative for Collaborative Research on Bacteria Resistance (MICROB-R), Santiago, Chile
| | - Andrea I Moreno-Switt
- Escuela de Medicina Veterinaria, Facultad de Agronomía e Ingeniería Forestal, Facultad de Ciencias Biológicas, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.,Millennium Initiative for Collaborative Research on Bacteria Resistance (MICROB-R), Santiago, Chile
| | - Marcia Eisenberg
- Laboratory Corporation of America Holdings, Burlington, NC, 27215, USA
| | - Minh M Nguyen
- Laboratory Corporation of America Holdings, New Brighton, MN, 55112, USA
| |
Collapse
|
17
|
Comparative Genomics of Three Novel Jumbo Bacteriophages Infecting Staphylococcus aureus. J Virol 2021; 95:e0239120. [PMID: 34287047 DOI: 10.1128/jvi.02391-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The majority of previously described Staphylococcus aureus bacteriophages belong to three major groups: P68-like podophages, Twort-like or K-like myophages, and a more diverse group of temperate siphophages. Here we present three novel S. aureus "jumbo" phages: MarsHill, Madawaska, and Machias. These phages were isolated from swine production environments in the United States and represent a novel clade of S. aureus myophage. The average genome size for these phages is ∼269 kb with each genome encoding ∼263 predicted protein-coding genes. Phage genome organization and content is similar to known jumbo phages of Bacillus, including AR9 and vB_BpuM-BpSp. All three phages possess genes encoding complete virion and non-virion RNA polymerases, multiple homing endonucleases, and a retron-like reverse transcriptase. Like AR9, all of these phages are presumed to have uracil-substituted DNA which interferes with DNA sequencing. These phages are also able to transduce host plasmids, which is significant as these phages were found circulating in swine production environments and can also infect human S. aureus isolates. Importance of work: This study describes the comparative genomics of three novel S. aureus jumbo phages: MarsHill, Madawaska, and Machias. These three S. aureus myophages represent an emerging class of S. aureus phage. These genomes contain abundant introns which show a pattern consistent with repeated acquisition rather than vertical inheritance, suggesting intron acquisition and loss is an active process in the evolution of these phages. These phages have presumably hypermodified DNA which inhibits sequencing by several different common platforms. Therefore, these phages also represent potential genomic diversity that has been missed due to the limitations of standard sequencing techniques. In particular, such hypermodified genomes may be missed by metagenomic studies due to their resistance to standard sequencing techniques. Phage MarsHill was found to be able to transduce host DNA at levels comparable to that found for other transducing S. aureus phages, making them a potential vector for horizontal gene transfer in the environment.
Collapse
|
18
|
Dudina LG, Novikova OD, Portnyagina OY, Khomenko VA, Konyshev IV, Byvalov AA. Role of Lipopolysaccharide and Nonspecific Porins of Yersinia pseudotuberculosis in the Reception of Pseudotuberculous Diagnostic Bacteriophage. APPL BIOCHEM MICRO+ 2021. [DOI: 10.1134/s0003683821040049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Rihtman B, Puxty RJ, Hapeshi A, Lee YJ, Zhan Y, Michniewski S, Waterfield NR, Chen F, Weigele P, Millard AD, Scanlan DJ, Chen Y. A new family of globally distributed lytic roseophages with unusual deoxythymidine to deoxyuridine substitution. Curr Biol 2021; 31:3199-3206.e4. [PMID: 34033748 PMCID: PMC8323127 DOI: 10.1016/j.cub.2021.05.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/19/2021] [Accepted: 05/10/2021] [Indexed: 01/27/2023]
Abstract
Marine bacterial viruses (bacteriophages) are abundant biological entities that are vital for shaping microbial diversity, impacting marine ecosystem function, and driving host evolution.1, 2, 3 The marine roseobacter clade (MRC) is a ubiquitous group of heterotrophic bacteria4,5 that are important in the elemental cycling of various nitrogen, sulfur, carbon, and phosphorus compounds.6, 7, 8, 9, 10 Bacteriophages infecting MRC (roseophages) have thus attracted much attention and more than 30 roseophages have been isolated,11, 12, 13 the majority of which belong to the N4-like group (Podoviridae family) or the Chi-like group (Siphoviridae family), although ssDNA-containing roseophages are also known.14 In our attempts to isolate lytic roseophages, we obtained two new phages (DSS3_VP1 and DSS3_PM1) infecting the model MRC strain Ruegeria pomeroyi DSS-3. Here, we show that not only do these phages have unusual substitution of deoxythymidine with deoxyuridine (dU) in their DNA, but they are also phylogenetically distinct from any currently known double-stranded DNA bacteriophages, supporting the establishment of a novel family (“Naomiviridae”). These dU-containing phages possess DNA that is resistant to the commonly used library preparation method for metagenome sequencing, which may have caused significant underestimation of their presence in the environment. Nevertheless, our analysis of Tara Ocean metagenome datasets suggests that these unusual bacteriophages are of global importance and more diverse than other well-known bacteriophages, e.g., the Podoviridae in the oceans, pointing to an overlooked role for these novel phages in the environment. Two new roseophages isolated from the marine environment They have an unusual deoxythymidine to deoxyuridine substitution in their genomes These dU genomes are resistant to a common method of metagenome library preparation These phages represent a new family and are globally distributed in the oceans
Collapse
Affiliation(s)
- Branko Rihtman
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK.
| | - Richard J Puxty
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Alexia Hapeshi
- Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Yan-Jiun Lee
- Research Department, New England Biolabs, 240 County Road, Ipswich, MA 01938, USA
| | - Yuanchao Zhan
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, 701 E. Pratt Street, Baltimore, MD 21202, USA
| | - Slawomir Michniewski
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Nicholas R Waterfield
- Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Feng Chen
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, 701 E. Pratt Street, Baltimore, MD 21202, USA
| | - Peter Weigele
- Research Department, New England Biolabs, 240 County Road, Ipswich, MA 01938, USA
| | - Andrew D Millard
- Department of Genetics and Genome Biology, College of Life Sciences, University of Leicester, University Road, Leicester LE1 7RH, UK
| | - David J Scanlan
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Yin Chen
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK.
| |
Collapse
|
20
|
Viruses with U-DNA: New Avenues for Biotechnology. Viruses 2021; 13:v13050875. [PMID: 34068736 PMCID: PMC8150378 DOI: 10.3390/v13050875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 02/07/2023] Open
Abstract
Deoxyuridine in DNA has recently been in the focus of research due to its intriguing roles in several physiological and pathophysiological situations. Although not an orthodox DNA base, uracil may appear in DNA via either cytosine deamination or thymine-replacing incorporations. Since these alterations may induce mutation or may perturb DNA–protein interactions, free living organisms from bacteria to human contain several pathways to counteract uracilation. These efficient and highly specific repair routes uracil-directed excision repair initiated by representative of uracil-DNA glycosylase families. Interestingly, some bacteriophages exist with thymine-lacking uracil-DNA genome. A detailed understanding of the strategy by which such phages can replicate in bacteria where an efficient repair pathway functions for uracil-excision from DNA is expected to reveal novel inhibitors that can also be used for biotechnological applications. Here, we also review the several potential biotechnological applications already implemented based on inhibitors of uracil-excision repair, such as Crispr-base-editing and detection of nascent uracil distribution pattern in complex genomes.
Collapse
|
21
|
Wang B, Chen Y, Zhang X, Jiang Z, Wang Y, Chen K, Wang F, Weng X, Zhou X. A far-red emissive two-photon fluorescent probe for quantification of uracil in genomic DNA. Chem Commun (Camb) 2021; 57:2784-2787. [PMID: 33599665 DOI: 10.1039/d1cc00016k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a new method for dU detection in genomic DNA combined with UNG excision and fluorescent probe labeling. UNG can remove uracil bases to introduce abasic sites, which can react with NRNO to produce intense fluorescence because of the inhibition of the PET effect. It can also cause the polymerase extension to stop to provide details of dU site information.
Collapse
Affiliation(s)
- Bingyao Wang
- The Institute of Advanced Studies, College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei 430072, China.
| | - Yi Chen
- The Institute of Advanced Studies, College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei 430072, China.
| | - Xiong Zhang
- The Institute of Advanced Studies, College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei 430072, China.
| | - Zhuoran Jiang
- The Institute of Advanced Studies, College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei 430072, China.
| | - Yafen Wang
- The Institute of Advanced Studies, College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei 430072, China.
| | - Kun Chen
- The Institute of Advanced Studies, College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei 430072, China.
| | - Fang Wang
- Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, China
| | - Xiaocheng Weng
- The Institute of Advanced Studies, College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei 430072, China.
| | - Xiang Zhou
- The Institute of Advanced Studies, College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei 430072, China.
| |
Collapse
|
22
|
Krylov V, Bourkaltseva M, Pleteneva E, Shaburova O, Krylov S, Karaulov A, Zhavoronok S, Svitich O, Zverev V. Phage phiKZ-The First of Giants. Viruses 2021; 13:149. [PMID: 33498475 PMCID: PMC7909554 DOI: 10.3390/v13020149] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 01/13/2023] Open
Abstract
The paper covers the history of the discovery and description of phiKZ, the first known giant bacteriophage active on Pseudomonas aeruginosa. It also describes its unique features, especially the characteristic manner of DNA packing in the head around a cylinder-shaped structure ("inner body"), which probably governs an ordered and tight packaging of the phage genome. Important properties of phiKZ-like phages include a wide range of lytic activity and the blue opalescence of their negative colonies, and provide a background for the search and discovery of new P. aeruginosa giant phages. The importance of the phiKZ species and of other giant phage species in practical phage therapy is noted given their broad use in commercial phage preparations.
Collapse
Affiliation(s)
- Victor Krylov
- I.I. Mechnikov Research Institute of Vaccines & Sera, 105064 Moscow, Russia; (M.B.); (E.P.); (O.S.); (S.K.); (O.S.); (V.Z.)
| | - Maria Bourkaltseva
- I.I. Mechnikov Research Institute of Vaccines & Sera, 105064 Moscow, Russia; (M.B.); (E.P.); (O.S.); (S.K.); (O.S.); (V.Z.)
| | - Elena Pleteneva
- I.I. Mechnikov Research Institute of Vaccines & Sera, 105064 Moscow, Russia; (M.B.); (E.P.); (O.S.); (S.K.); (O.S.); (V.Z.)
| | - Olga Shaburova
- I.I. Mechnikov Research Institute of Vaccines & Sera, 105064 Moscow, Russia; (M.B.); (E.P.); (O.S.); (S.K.); (O.S.); (V.Z.)
| | - Sergey Krylov
- I.I. Mechnikov Research Institute of Vaccines & Sera, 105064 Moscow, Russia; (M.B.); (E.P.); (O.S.); (S.K.); (O.S.); (V.Z.)
| | - Alexander Karaulov
- Department of Clinical Immunology and Allergy, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, 119146 Moscow, Russia;
| | - Sergey Zhavoronok
- Department of Infectious Diseases, Belarusian State Medical University, 220116 Minsk, Belarus;
| | - Oxana Svitich
- I.I. Mechnikov Research Institute of Vaccines & Sera, 105064 Moscow, Russia; (M.B.); (E.P.); (O.S.); (S.K.); (O.S.); (V.Z.)
- Faculty of Preventive Medicine, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, 119146 Moscow, Russia
| | - Vitaly Zverev
- I.I. Mechnikov Research Institute of Vaccines & Sera, 105064 Moscow, Russia; (M.B.); (E.P.); (O.S.); (S.K.); (O.S.); (V.Z.)
- Faculty of Preventive Medicine, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, 119146 Moscow, Russia
| |
Collapse
|
23
|
Filik K, Szermer-Olearnik B, Wernecki M, Happonen LJ, Pajunen MI, Nawaz A, Qasim MS, Jun JW, Mattinen L, Skurnik M, Brzozowska E. The Podovirus ϕ80-18 Targets the Pathogenic American Biotype 1B Strains of Yersinia enterocolitica. Front Microbiol 2020; 11:1356. [PMID: 32636826 PMCID: PMC7316996 DOI: 10.3389/fmicb.2020.01356] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 05/27/2020] [Indexed: 01/31/2023] Open
Abstract
We report here the complete genome sequence and characterization of Yersinia bacteriophage vB_YenP_ϕ80-18. ϕ80-18 was isolated in 1991 using a Y. enterocolitica serotype O:8 strain 8081 as a host from a sewage sample in Turku, Finland, and based on its morphological and genomic features is classified as a podovirus. The genome is 42 kb in size and has 325 bp direct terminal repeats characteristic for podoviruses. The genome contains 57 predicted genes, all encoded in the forward strand, of which 29 showed no similarity to any known genes. Phage particle proteome analysis identified altogether 24 phage particle-associated proteins (PPAPs) including those identified as structural proteins such as major capsid, scaffolding and tail component proteins. In addition, also the DNA helicase, DNA ligase, DNA polymerase, 5'-exonuclease, and the lytic glycosylase proteins were identified as PPAPs, suggesting that they might be injected together with the phage genome into the host cell to facilitate the take-over of the host metabolism. The phage-encoded RNA-polymerase and DNA-primase were not among the PPAPs. Promoter search predicted the presence of four phage and eleven host RNA polymerase -specific promoters in the genome, suggesting that early transcription of the phage is host RNA-polymerase dependent and that the phage RNA polymerase takes over later. The phage tolerates pH values between 2 and 12, and is stable at 50°C but is inactivated at 60°C. It grows slowly with a 50 min latent period and has apparently a low burst size. Electron microscopy revealed that the phage has a head diameter of about 60 nm, and a short tail of 20 nm. Whole-genome phylogenetic analysis confirmed that ϕ80-18 belongs to the Autographivirinae subfamily of the Podoviridae family, that it is 93.2% identical to Yersinia phage fHe-Yen3-01. Host range analysis showed that ϕ80-18 can infect in addition to Y. enterocolitica serotype O:8 strains also strains of serotypes O:4, O:4,32, O:20 and O:21, the latter ones representing similar to Y. enterocolitica serotype O:8, the American pathogenic biotype 1B strains. In conclusion, the phage ϕ80-18 is a promising candidate for the biocontrol of the American biotype 1B Y. enterocolitica.
Collapse
Affiliation(s)
- Karolina Filik
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Bożena Szermer-Olearnik
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Maciej Wernecki
- Department of Microbiology, Institute of Genetics and Microbiology, Faculty of Biological Sciences, University of Wrocław, Wrocław, Poland
| | - Lotta J Happonen
- Department of Biosciences, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Maria I Pajunen
- Research Programme Unit Immunobiology, Department of Bacteriology and Immunology, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Ayesha Nawaz
- Research Programme Unit Immunobiology, Department of Bacteriology and Immunology, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Muhammad Suleman Qasim
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Jin Woo Jun
- Department of Aquaculture, The Korea National College of Agriculture and Fisheries, Jeonju, South Korea
| | - Laura Mattinen
- Research Programme Unit Immunobiology, Department of Bacteriology and Immunology, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Mikael Skurnik
- Research Programme Unit Immunobiology, Department of Bacteriology and Immunology, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Division of Clinical Microbiology, Helsinki University Hospital, HUSLAB, Helsinki, Finland
| | - Ewa Brzozowska
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| |
Collapse
|
24
|
Leskinen K, Pajunen MI, Vilanova MVGR, Kiljunen S, Nelson A, Smith D, Skurnik M. YerA41, a Yersinia ruckeri Bacteriophage: Determination of a Non-Sequencable DNA Bacteriophage Genome via RNA-Sequencing. Viruses 2020; 12:E620. [PMID: 32517038 PMCID: PMC7354516 DOI: 10.3390/v12060620] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 05/25/2020] [Accepted: 06/04/2020] [Indexed: 12/19/2022] Open
Abstract
YerA41 is a Myoviridae bacteriophage that was originally isolated due its ability to infect Yersinia ruckeri bacteria, the causative agent of enteric redmouth disease of salmonid fish. Several attempts to determine its genomic DNA sequence using traditional and next generation sequencing technologies failed, indicating that the phage genome is modified in such a way that it is an unsuitable template for PCR amplification and for conventional sequencing. To determine the YerA41 genome sequence, we performed RNA-sequencing from phage-infected Y. ruckeri cells at different time points post-infection. The host-genome specific reads were subtracted and de novo assembly was performed on the remaining unaligned reads. This resulted in nine phage-specific scaffolds with a total length of 143 kb that shared only low level and scattered identity to known sequences deposited in DNA databases. Annotation of the sequences revealed 201 predicted genes, most of which found no homologs in the databases. Proteome studies identified altogether 63 phage particle-associated proteins. The RNA-sequencing data were used to characterize the transcriptional control of YerA41 and to investigate its impact on the bacterial gene expression. Overall, our results indicate that RNA-sequencing can be successfully used to obtain the genomic sequence of non-sequencable phages, providing simultaneous information about the phage-host interactions during the process of infection.
Collapse
Affiliation(s)
- Katarzyna Leskinen
- Department of Bacteriology and Immunology, Medicum, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00014 UH Helsinki, Finland; (K.L.); (M.I.P.); (M.V.G.-R.V.); (S.K.)
| | - Maria I. Pajunen
- Department of Bacteriology and Immunology, Medicum, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00014 UH Helsinki, Finland; (K.L.); (M.I.P.); (M.V.G.-R.V.); (S.K.)
| | - Miguel Vincente Gomez-Raya Vilanova
- Department of Bacteriology and Immunology, Medicum, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00014 UH Helsinki, Finland; (K.L.); (M.I.P.); (M.V.G.-R.V.); (S.K.)
| | - Saija Kiljunen
- Department of Bacteriology and Immunology, Medicum, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00014 UH Helsinki, Finland; (K.L.); (M.I.P.); (M.V.G.-R.V.); (S.K.)
| | - Andrew Nelson
- Applied Sciences, University of Northumbria, Newcastle upon Tyne NE1 8ST, UK; (A.N.); (D.S.)
| | - Darren Smith
- Applied Sciences, University of Northumbria, Newcastle upon Tyne NE1 8ST, UK; (A.N.); (D.S.)
| | - Mikael Skurnik
- Department of Bacteriology and Immunology, Medicum, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00014 UH Helsinki, Finland; (K.L.); (M.I.P.); (M.V.G.-R.V.); (S.K.)
- Division of Clinical Microbiology, Helsinki University Hospital, HUSLAB, 00290 Helsinki, Finland
| |
Collapse
|
25
|
Lood C, Danis‐Wlodarczyk K, Blasdel BG, Jang HB, Vandenheuvel D, Briers Y, Noben J, van Noort V, Drulis‐Kawa Z, Lavigne R. Integrative omics analysis of Pseudomonas aeruginosa virus PA5oct highlights the molecular complexity of jumbo phages. Environ Microbiol 2020; 22:2165-2181. [PMID: 32154616 PMCID: PMC7318152 DOI: 10.1111/1462-2920.14979] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 03/06/2020] [Indexed: 11/28/2022]
Abstract
Pseudomonas virus vB_PaeM_PA5oct is proposed as a model jumbo bacteriophage to investigate phage-bacteria interactions and is a candidate for phage therapy applications. Combining hybrid sequencing, RNA-Seq and mass spectrometry allowed us to accurately annotate its 286,783 bp genome with 461 coding regions including four non-coding RNAs (ncRNAs) and 93 virion-associated proteins. PA5oct relies on the host RNA polymerase for the infection cycle and RNA-Seq revealed a gradual take-over of the total cell transcriptome from 21% in early infection to 93% in late infection. PA5oct is not organized into strictly contiguous regions of temporal transcription, but some genomic regions transcribed in early, middle and late phases of infection can be discriminated. Interestingly, we observe regions showing limited transcription activity throughout the infection cycle. We show that PA5oct upregulates specific bacterial operons during infection including operons pncA-pncB1-nadE involved in NAD biosynthesis, psl for exopolysaccharide biosynthesis and nap for periplasmic nitrate reductase production. We also observe a downregulation of T4P gene products suggesting mechanisms of superinfection exclusion. We used the proteome of PA5oct to position our isolate amongst other phages using a gene-sharing network. This integrative omics study illustrates the molecular diversity of jumbo viruses and raises new questions towards cellular regulation and phage-encoded hijacking mechanisms.
Collapse
Affiliation(s)
- Cédric Lood
- Department of Biosystems, Laboratory of Gene Technology, KU LeuvenLeuvenBelgium
- Department of Microbial and Molecular Systems, Laboratory of Computational Systems Biology, KU LeuvenLeuvenBelgium
| | - Katarzyna Danis‐Wlodarczyk
- Department of Biosystems, Laboratory of Gene Technology, KU LeuvenLeuvenBelgium
- Department of Pathogen Biology and ImmunologyInstitute of Genetics and Microbiology, University of WroclawWroclawPoland
| | - Bob G. Blasdel
- Department of Biosystems, Laboratory of Gene Technology, KU LeuvenLeuvenBelgium
| | - Ho Bin Jang
- Department of Biosystems, Laboratory of Gene Technology, KU LeuvenLeuvenBelgium
| | - Dieter Vandenheuvel
- Department of Biosystems, Laboratory of Gene Technology, KU LeuvenLeuvenBelgium
| | - Yves Briers
- Department of Biosystems, Laboratory of Gene Technology, KU LeuvenLeuvenBelgium
| | - Jean‐Paul Noben
- Biomedical Research Institute and Transnational University LimburgHasselt UniversityDiepenbeekBelgium
| | - Vera van Noort
- Department of Microbial and Molecular Systems, Laboratory of Computational Systems Biology, KU LeuvenLeuvenBelgium
- Institute of Biology, Leiden UniversityLeidenThe Netherlands
| | - Zuzanna Drulis‐Kawa
- Department of Pathogen Biology and ImmunologyInstitute of Genetics and Microbiology, University of WroclawWroclawPoland
| | - Rob Lavigne
- Department of Biosystems, Laboratory of Gene Technology, KU LeuvenLeuvenBelgium
| |
Collapse
|
26
|
Semenyuk PI, Moiseenko AV, Sokolova OS, Muronetz VI, Kurochkina LP. Structural and functional diversity of novel and known bacteriophage-encoded chaperonins. Int J Biol Macromol 2020; 157:544-552. [PMID: 32344079 DOI: 10.1016/j.ijbiomac.2020.04.189] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 11/26/2022]
Abstract
A bioinformatics analysis of the currently predicted GroEL-like proteins encoded by bacteriophage genomes was carried out in comparison with the phage double-ring EL and single-ring OBP chaperonins, previously described by us, as well as with the known chaperonins of group I and group II. A novel GroEL-like protein predicted in the genome of phage AR9 Bacillus subtilis was expressed in E. coli cells, purified and characterised by various physicochemical methods. As shown by native electrophoresis, analytical ultracentrifugation and single-particle electron microscopy analysis, the putative AR9 chaperonin is a single-ring heptamer. Like the EL and OBP chaperonins, the new AR9 chaperonin possesses chaperone activity and does not require co-chaperonin to function. It was shown to prevent aggregation and provide refolding of the denatured substrate protein, endolysin, in an ATP-dependent manner. A comparison of its structural and biochemical properties with those of the EL and OBP chaperonins suggests outstanding diversity in this group of phage chaperonins.
Collapse
Affiliation(s)
- Pavel I Semenyuk
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1, Bld 40, Moscow 119234, Russia
| | - Andrey V Moiseenko
- Department of Bioengineering, Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory 1, Bld 12, Moscow 119234, Russia
| | - Olga S Sokolova
- Department of Bioengineering, Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory 1, Bld 12, Moscow 119234, Russia
| | - Vladimir I Muronetz
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1, Bld 40, Moscow 119234, Russia
| | - Lidia P Kurochkina
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1, Bld 40, Moscow 119234, Russia.
| |
Collapse
|
27
|
Savva R. The Essential Co-Option of Uracil-DNA Glycosylases by Herpesviruses Invites Novel Antiviral Design. Microorganisms 2020; 8:microorganisms8030461. [PMID: 32214054 PMCID: PMC7143999 DOI: 10.3390/microorganisms8030461] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/20/2020] [Accepted: 03/21/2020] [Indexed: 01/10/2023] Open
Abstract
Vast evolutionary distances separate the known herpesviruses, adapted to colonise specialised cells in predominantly vertebrate hosts. Nevertheless, the distinct herpesvirus families share recognisably related genomic attributes. The taxonomic Family Herpesviridae includes many important human and animal pathogens. Successful antiviral drugs targeting Herpesviridae are available, but the need for reduced toxicity and improved efficacy in critical healthcare interventions invites novel solutions: immunocompromised patients presenting particular challenges. A conserved enzyme required for viral fitness is Ung, a uracil-DNA glycosylase, which is encoded ubiquitously in Herpesviridae genomes and also host cells. Research investigating Ung in Herpesviridae dynamics has uncovered an unexpected combination of viral co-option of host Ung, along with remarkable Subfamily-specific exaptation of the virus-encoded Ung. These enzymes apparently play essential roles, both in the maintenance of viral latency and during initiation of lytic replication. The ubiquitously conserved Ung active site has previously been explored as a therapeutic target. However, exquisite selectivity and better drug-like characteristics might instead be obtained via targeting structural variations within another motif of catalytic importance in Ung. The motif structure is unique within each Subfamily and essential for viral survival. This unique signature in highly conserved Ung constitutes an attractive exploratory target for the development of novel beneficial therapeutics.
Collapse
Affiliation(s)
- Renos Savva
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| |
Collapse
|
28
|
Leon-Velarde CG, Jun JW, Skurnik M. Yersinia Phages and Food Safety. Viruses 2019; 11:E1105. [PMID: 31795231 PMCID: PMC6950378 DOI: 10.3390/v11121105] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 11/26/2019] [Accepted: 11/26/2019] [Indexed: 12/31/2022] Open
Abstract
One of the human- and animal-pathogenic species in genus Yersinia is Yersinia enterocolitica, a food-borne zoonotic pathogen that causes enteric infections, mesenteric lymphadenitis, and sometimes sequelae such as reactive arthritis and erythema nodosum. Y. enterocolitica is able to proliferate at 4 C, making it dangerous if contaminated food products are stored under refrigeration. The most common source of Y. enterocolitica is raw pork meat. Microbiological detection of the bacteria from food products is hampered by its slow growth rate as other bacteria overgrow it. Bacteriophages can be exploited in several ways to increase food safety with regards to contamination by Y. enterocolitica. For example, Yersinia phages could be useful in keeping the contamination of food products under control, or, alternatively, the specificity of the phages could be exploited in developing rapid and sensitive diagnostic tools for the identification of the bacteria in food products. In this review, we will discuss the present state of the research on these topics.
Collapse
Affiliation(s)
- Carlos G. Leon-Velarde
- Agriculture and Food Laboratory, Laboratory Services Division, University of Guelph, Guelph, ON N1H 8J7, Canada;
| | - Jin Woo Jun
- Department of Aquaculture, Korea National College of Agriculture and Fisheries, Jeonju 54874, Korea;
| | - Mikael Skurnik
- Department of Bacteriology and Immunology, Medicum, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00014 HY Helsinki, Finland
- Division of Clinical Microbiology, HUSLAB, Helsinki University Hospital, 00029 HUS Helsinki, Finland
| |
Collapse
|
29
|
Datta M, Aroli S, Karmakar K, Dutta S, Chakravortty D, Varshney U. Development of mCherry tagged UdgX as a highly sensitive molecular probe for specific detection of uracils in DNA. Biochem Biophys Res Commun 2019; 518:38-43. [PMID: 31402116 DOI: 10.1016/j.bbrc.2019.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 08/01/2019] [Indexed: 02/07/2023]
Abstract
Uracil is not always a mistakenly occurring base in DNA. Uracils in DNA genomes are known to be important in the life cycles of Bacillus subtilis phages (PBS1/2) and the malarial parasite, Plasmodium falciparum; and have been implicated in the development of fruit fly and antibody maturation in B-lymphocytes. Availability of a sensitive, specific and robust technique for the detection uracils in genes/genomes is essential to understand its varied biological roles. Mycobacterium smegmatis UdgX (MsmUdgX), identified and characterised in our laboratory, forms covalent complexes with the uracil sites in DNA in a specific manner. MsmUdgX cleaves the glycosidic bond between uracil and the deoxyribose sugar in DNA to produce uracilate and oxocarbenium ions. The oxocarbenium ion is then captured into a covalent complex by the nucleophilic attack of a histidine side chain of MsmUdgX. Here, we describe the use of a fusion protein, mCherry tagged MsmUdgX (mChUdgX), which combines the property of MsmUdgX to covalently and specifically bind the uracil sites in the genome, with the sensitivity of fluorescent detection of mCherry as a reporter. We show that both the purified mChUdgX and the Escherichia coli cell-extracts overexpressing mChUdgX provide high sensitivity and specificity of detecting uracils in DNA.
Collapse
Affiliation(s)
- Madhurima Datta
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India
| | - Shashanka Aroli
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India
| | - Kapudeep Karmakar
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India
| | - Somnath Dutta
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India
| | - Umesh Varshney
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India; Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, 560064, India.
| |
Collapse
|
30
|
Targeting uracil-DNA glycosylases for therapeutic outcomes using insights from virus evolution. Future Med Chem 2019; 11:1323-1344. [PMID: 31161802 DOI: 10.4155/fmc-2018-0319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Ung-type uracil-DNA glycosylases are frontline defenders of DNA sequence fidelity in bacteria, plants and animals; Ungs also directly assist both innate and humoral immunity. Critically important in viral pathogenesis, whether acting for or against viral DNA persistence, Ungs also have therapeutic relevance to cancer, microbial and parasitic diseases. Ung catalytic specificity is uniquely conserved, yet selective antiviral drugging of the Ung catalytic pocket is tractable. However, more promising precision therapy approaches present themselves via insights from viral strategies, including sequestration or adaptation of Ung for noncanonical roles. A universal Ung inhibition mechanism, converged upon by unrelated viruses, could also inform design of compounds to inhibit specific distinct Ungs. Extrapolating current developments, the character of such novel chemical entities is proposed.
Collapse
|
31
|
Liang J, Kou Z, Qin S, Chen Y, Li Z, Li C, Duan R, Hao H, Zha T, Gu W, Huang Y, Xiao M, Jing H, Wang X. Novel Yersinia enterocolitica Prophages and a Comparative Analysis of Genomic Diversity. Front Microbiol 2019; 10:1184. [PMID: 31191498 PMCID: PMC6548840 DOI: 10.3389/fmicb.2019.01184] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 05/09/2019] [Indexed: 12/18/2022] Open
Abstract
Yersinia enterocolitica is a major agent of foodborne diseases worldwide. Prophage plays an important role in the genetic evolution of the bacterial genome. Little is known about the genetic information about prophages in the genome of Y. enterocolitica, and no pathogenic Y. enterocolitica prophages have been described. In this study, we induced and described the genomes of six prophages from pathogenic Y. enterocolitica for the first time. Phylogenetic analysis based on whole genome sequencing revealed that these novel Yersinia phages are genetically distinct from the previously reported phages, showing considerable genetic diversity. Interestingly, the prophages induced from O:3 and O:9 Y. enterocolitica showed different genomic sequences and morphology but highly conserved among the same serotype strains, which classified into two diverse clusters. The three long-tailed Myoviridae prophages induced from serotype O:3 Y. enterocolitica were highly conserved, shared ≥99.99% identity and forming genotypic cluster A; the three Podoviridae prophages induced from the serotype O:9 strains formed cluster B, also shared more than 99.90% identity with one another. Cluster A was most closely related to O:5 non-pathogenic Y. enterocolitica prophage PY54 (61.72% identity). The genetic polymorphism of these two kinds of prophages and highly conserved among the same serotype strains, suggested a possible shared evolutionary past for these phages: originated from distinct ancestors, and entered pathogenic Y. enterocolitica as extrachromosomal genetic components during evolution when facing selective pressure. These results are critically important for further understanding of phage roles in host physiology and the pathology of disease.
Collapse
Affiliation(s)
- Junrong Liang
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases - Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China
| | - Zengqiang Kou
- Shandong Provincial Centre for Disease Control and Prevention, Jinan, China
| | - Shuai Qin
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases - Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China
| | - Yuhuang Chen
- Shenzhen Nanshan Maternity and Child Heath Care Hospital, Shenzhen, China
| | - Zhenpeng Li
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases - Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China
| | - Chuchu Li
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases - Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China.,Department of Pathogenic Biology, School of Medical Science, Jiangsu University, Zhenjiang, China
| | - Ran Duan
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases - Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China
| | - Huijing Hao
- Chang Ping Women and Children Health Care Hospital, Beijing, China
| | - Tao Zha
- Wuhu Municipal Centre for Disease Control and Prevention, Wuhu, China
| | - Wenpeng Gu
- Yunnan Provincial Centre for Disease Control and Prevention, Kunming, China
| | - Yuanming Huang
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases - Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China
| | - Meng Xiao
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases - Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China
| | - Huaiqi Jing
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases - Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China
| | - Xin Wang
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases - Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China
| |
Collapse
|
32
|
The Sequence of Two Bacteriophages with Hypermodified Bases Reveals Novel Phage-Host Interactions. Viruses 2018; 10:v10050217. [PMID: 29695085 PMCID: PMC5977210 DOI: 10.3390/v10050217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 04/19/2018] [Accepted: 04/20/2018] [Indexed: 01/21/2023] Open
Abstract
Bacteriophages SP-15 and ΦW-14 are members of the Myoviridae infecting Bacillus subtilis and Delftia (formerly Pseudomonas) acidovorans, respectively. What links them is that in both cases, approximately 50% of the thymine residues are replaced by hypermodified bases. The consequence of this is that the physico-chemical properties of the DNA are radically altered (melting temperature (Tm), buoyant density and susceptibility to restriction endonucleases). Using 454 pyrosequencing technology, we sequenced the genomes of both viruses. Phage ΦW-14 possesses a 157-kb genome (56.3% GC) specifying 236 proteins, while SP-15 is larger at 222 kb (38.6 mol % G + C) and encodes 318 proteins. In both cases, the phages can be considered genomic singletons since they do not possess BLASTn homologs. While no obvious genes were identified as being responsible for the modified base in ΦW-14, SP-15 contains a cluster of genes obviously involved in carbohydrate metabolism.
Collapse
|
33
|
Salem M, Skurnik M. Genomic Characterization of Sixteen Yersinia enterocolitica-Infecting Podoviruses of Pig Origin. Viruses 2018; 10:v10040174. [PMID: 29614052 PMCID: PMC5923468 DOI: 10.3390/v10040174] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/23/2018] [Accepted: 03/29/2018] [Indexed: 11/16/2022] Open
Abstract
Yersinia enterocolitica causes enteric infections in humans and animals. Human infections are often caused by contaminated pork meat. Y. enterocolitica colonizes pig tonsils and pigs secrete both the human pathogen and its specific bacteriophages into the stools. In this work, sixteen Y. enterocolitica—infecting lytic bacteriophages isolated from pig stools originating from several pig farms were characterized. All phages belong to the Podoviridae family and their genomes range between 38,391–40,451 bp in size. The overall genome organization of all the phages resembled that of T7-like phages, having 3–6 host RNA polymerase (RNAP)-specific promoters at the beginning of the genomes and 11–13 phage RNAP-specific promoters as well as 3–5 rho-independent terminators, scattered throughout the genomes. Using a ligation-based approach, the physical termini of the genomes containing direct terminal repeats of 190–224 bp were established. No genes associated with lysogeny nor any toxin, virulence factor or antibiotic resistance genes were present in the genomes. Even though the phages had been isolated from different pig farms the nucleotide sequences of their genomes were 90–97% identical suggesting that the phages were undergoing microevolution within and between the farms. Lipopolysaccharide was found to be the surface receptor of all but one of the phages. The phages are classified as new species within the T7virus genus of Autographivirinae subfamily.
Collapse
Affiliation(s)
- Mabruka Salem
- Department of Bacteriology and Immunology, Medicum, Research Programs Unit, Immunobiology, University of Helsinki, 00014 Helsinki, Finland.
- Department of Microbiology, Faculty of Medicine, University of Benghazi, Benghazi 16063, Libya.
| | - Mikael Skurnik
- Department of Bacteriology and Immunology, Medicum, Research Programs Unit, Immunobiology, University of Helsinki, 00014 Helsinki, Finland.
- Division of Clinical Microbiology, Helsinki University Hospital, HUSLAB, 00029 Helsinki, Finland.
| |
Collapse
|
34
|
Jun JW, Park SC, Wicklund A, Skurnik M. Bacteriophages reduce Yersinia enterocolitica contamination of food and kitchenware. Int J Food Microbiol 2018; 271:33-47. [DOI: 10.1016/j.ijfoodmicro.2018.02.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 02/01/2018] [Accepted: 02/05/2018] [Indexed: 01/12/2023]
|
35
|
Sokolova M, Borukhov S, Lavysh D, Artamonova T, Khodorkovskii M, Severinov K. A non-canonical multisubunit RNA polymerase encoded by the AR9 phage recognizes the template strand of its uracil-containing promoters. Nucleic Acids Res 2017; 45:5958-5967. [PMID: 28402520 PMCID: PMC5449584 DOI: 10.1093/nar/gkx264] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 04/04/2017] [Indexed: 12/22/2022] Open
Abstract
AR9 is a giant Bacillus subtilis phage whose uracil-containing double-stranded DNA genome encodes distant homologs of β and β’ subunits of bacterial RNA polymerase (RNAP). The products of these genes are thought to assemble into two non-canonical multisubunit RNAPs - a virion RNAP (vRNAP) that is injected into the host along with phage DNA to transcribe early phage genes, and a non-virion RNAP (nvRNAP), which is synthesized during the infection and transcribes late phage genes. We purified the AR9 nvRNAP from infected B. subtilis cells and characterized its transcription activity in vitro. The AR9 nvRNAP requires uracils rather than thymines at specific conserved positions of late viral promoters. Uniquely, the nvRNAP recognizes the template strand of its promoters and is capable of specific initiation of transcription from both double- and single-stranded DNA. While the AR9 nvRNAP does not contain homologs of bacterial RNAP α subunits, it contains, in addition to the β and β’-like subunits, a phage protein gp226. The AR9 nvRNAP lacking gp226 is catalytically active but unable to bind to promoter DNA. Thus, gp226 is required for promoter recognition by the AR9 nvRNAP and may represent a new group of transcription initiation factors.
Collapse
Affiliation(s)
- Maria Sokolova
- Skolkovo Institute of Science and Technology, Skolkovo, 143025, Russia.,Peter the Great St.Petersburg Polytechnic University, Saint-Petersburg, 195251, Russia
| | - Sergei Borukhov
- Department of Cell Biology, Rowan University School of Osteopathic Medicine at Stratford, Stratford, NJ 08084-1489, USA
| | - Daria Lavysh
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182, Russia.,Institute of Antimicrobial Chemotherapy, Smolensk State Medical University, Smolensk, 214019, Russia
| | - Tatjana Artamonova
- Peter the Great St.Petersburg Polytechnic University, Saint-Petersburg, 195251, Russia
| | - Mikhail Khodorkovskii
- Peter the Great St.Petersburg Polytechnic University, Saint-Petersburg, 195251, Russia
| | - Konstantin Severinov
- Skolkovo Institute of Science and Technology, Skolkovo, 143025, Russia.,Peter the Great St.Petersburg Polytechnic University, Saint-Petersburg, 195251, Russia.,Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182, Russia.,Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
36
|
Matsui T, Yoshikawa G, Mihara T, Chatchawankanphanich O, Kawasaki T, Nakano M, Fujie M, Ogata H, Yamada T. Replications of Two Closely Related Groups of Jumbo Phages Show Different Level of Dependence on Host-encoded RNA Polymerase. Front Microbiol 2017; 8:1010. [PMID: 28659872 PMCID: PMC5468394 DOI: 10.3389/fmicb.2017.01010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 05/22/2017] [Indexed: 11/13/2022] Open
Abstract
Ralstonia solanacearum phages ΦRP12 and ΦRP31 are jumbo phages isolated in Thailand. Here we show that they exhibit similar virion morphology, genome organization and host range. Genome comparisons as well as phylogenetic and proteomic tree analyses support that they belong to the group of ΦKZ-related phages, with their closest relatives being R. solanacearum phages ΦRSL2 and ΦRSF1. Compared with ΦRSL2 and ΦRSF1, ΦRP12 and ΦRP31 possess larger genomes (ca. 280 kbp, 25% larger). The replication of ΦRP12 and ΦRP31 was not affected by rifampicin treatment (20 μg/ml), suggesting that phage-encoded RNAPs function to start and complete the infection cycle of these phages without the need of host-encoded RNAPs. In contrast, ΦRSL2 and ΦRSF1, encoding the same set of RNAPs, did not produce progeny phages in the presence of rifampicin (5 μg/ml). This observation opens the possibility that some ΦRP12/ΦRP31 factors that are absent in ΦRSL2 and ΦRSF1 are involved in their host-independent transcription.
Collapse
Affiliation(s)
- Takeru Matsui
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima UniversityHigashi-Hiroshima, Japan
| | - Genki Yoshikawa
- Bioinformatics Center, Institute for Chemical Research, Kyoto UniversityKyoto, Japan
| | - Tomoko Mihara
- Bioinformatics Center, Institute for Chemical Research, Kyoto UniversityKyoto, Japan
| | - Orawan Chatchawankanphanich
- Plant Research Laboratory, National Center for Genetic Engineering and Biotechnology, NSTDAPathum Thani, Thailand.,Center for Agricultural Biotechnology, Kasetsart UniversityNakhon Pathom, Thailand
| | - Takeru Kawasaki
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima UniversityHigashi-Hiroshima, Japan
| | - Miyako Nakano
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima UniversityHigashi-Hiroshima, Japan
| | - Makoto Fujie
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima UniversityHigashi-Hiroshima, Japan
| | - Hiroyuki Ogata
- Bioinformatics Center, Institute for Chemical Research, Kyoto UniversityKyoto, Japan
| | - Takashi Yamada
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima UniversityHigashi-Hiroshima, Japan
| |
Collapse
|
37
|
Abstract
Tailed bacteriophages with genomes larger than 200 kbp are classified as Jumbo phages, and are rarely isolated by conventional methods. These phages are designated “jumbo” owing to their most notable features of a large phage virion and large genome size. However, in addition to these, jumbo phages also exhibit several novel characteristics that have not been observed for phages with smaller genomes, which differentiate jumbo phages in terms of genome organization, virion structure, progeny propagation, and evolution. In this review, we summarize available reports on jumbo phages and discuss the differences between jumbo phages and small-genome phages. We also discuss data suggesting that jumbo phages might have evolved from phages with smaller genomes by acquiring additional functional genes, and that these additional genes reduce the dependence of the jumbo phages on the host bacteria.
Collapse
Affiliation(s)
- Yihui Yuan
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences Wuhan, PR, China
| | - Meiying Gao
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences Wuhan, PR, China
| |
Collapse
|
38
|
Yuan Y, Gao M. Characteristics and complete genome analysis of a novel jumbo phage infecting pathogenic Bacillus pumilus causing ginger rhizome rot disease. Arch Virol 2016; 161:3597-3600. [PMID: 27619796 DOI: 10.1007/s00705-016-3053-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 09/05/2016] [Indexed: 01/22/2023]
Abstract
Tailed phages with genomes larger than 200 kbp are classified as jumbo phage and exhibit extremely high diversity. In this study, a novel jumbo phage, vB_BpuM_BpSp, infecting pathogenic Bacillus pumilus, the cause of ginger rhizome rot disease, was isolated. Notable features of phage vB_BpuM_BpSp are the large phage capsid of 137 nm and baseplate-attached curly tail fibers. The genome of the phage is 255,569 bp in size with G+C content of 25.9 %, and it shows low similarity to known biological entities. The phage genome contains 318 predicted coding sequences. Among these predicted coding sequences, 26 genes responsible for nucleotide metabolism were found, and seven structural genes could be identified. The findings of this study provide new understanding of the genetic diversity of phages.
Collapse
Affiliation(s)
- Yihui Yuan
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, People's Republic of China
| | - Meiying Gao
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, People's Republic of China.
| |
Collapse
|
39
|
Kerepesi C, Szabó JE, Papp-Kádár V, Dobay O, Szabó D, Grolmusz V, Vértessy BG. Life without dUTPase. Front Microbiol 2016; 7:1768. [PMID: 27933035 PMCID: PMC5122711 DOI: 10.3389/fmicb.2016.01768] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 10/21/2016] [Indexed: 11/22/2022] Open
Abstract
Fine-tuned regulation of the cellular nucleotide pools is indispensable for faithful replication of Deoxyribonucleic Acid (DNA). The genetic information is also safeguarded by DNA damage recognition and repair processes. Uracil is one of the most frequently occurring erroneous bases in DNA; it can arise from cytosine deamination or thymine-replacing incorporation. Two enzyme activities are primarily involved in keeping DNA uracil-free: dUTPase (dUTP pyrophosphatase) activity that prevent thymine-replacing incorporation and uracil-DNA glycosylase activity that excise uracil from DNA and initiate uracil-excision repair. Both dUTPase and the most efficient uracil-DNA glycosylase (UNG) is thought to be ubiquitous in free-living organisms. In the present work, we have systematically investigated the genotype of deposited fully sequenced bacterial and Archaeal genomes. We have performed bioinformatic searches in these genomes using the already well described dUTPase and UNG gene sequences. For dUTPases, we have included the trimeric all-beta and the dimeric all-alpha families and also, the bifunctional dCTP (deoxycytidine triphosphate) deaminase-dUTPase sequences. Surprisingly, we have found that in contrast to the generally held opinion, a wide number of bacterial and Archaeal species lack all of the previously described dUTPase gene(s). The dut– genotype is present in diverse bacterial phyla indicating that loss of this (or these) gene(s) has occurred multiple times during evolution. We discuss potential survival strategies in lack of dUTPases, such as simultaneous lack or inhibition of UNG and possession of exogenous or alternate metabolic enzymes involved in uracil-DNA metabolism. The potential that genes previously not associated with dUTPase activity may still encode enzymes capable of hydrolyzing dUTP is also discussed. Our data indicate that several unicellular microorganisms may efficiently cope with a dut– genotype lacking all of the previously described dUTPase genes, and potentially leading to an unusual uracil-enrichment in their genomic DNA.
Collapse
Affiliation(s)
- Csaba Kerepesi
- PIT Bioinformatics Group, Institute of Mathematics, Eötvös Loránd University Budapest, Hungary
| | - Judit E Szabó
- Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and EconomicsBudapest, Hungary; Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of SciencesBudapest, Hungary
| | - Veronika Papp-Kádár
- Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and EconomicsBudapest, Hungary; Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of SciencesBudapest, Hungary
| | - Orsolya Dobay
- Institute of Medical Microbiology, Semmelweis University Budapest, Hungary
| | - Dóra Szabó
- Institute of Medical Microbiology, Semmelweis University Budapest, Hungary
| | - Vince Grolmusz
- PIT Bioinformatics Group, Institute of Mathematics, Eötvös Loránd UniversityBudapest, Hungary; Uratim Ltd.,Budapest, Hungary
| | - Beáta G Vértessy
- Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and EconomicsBudapest, Hungary; Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of SciencesBudapest, Hungary
| |
Collapse
|
40
|
Leon-Velarde CG, Happonen L, Pajunen M, Leskinen K, Kropinski AM, Mattinen L, Rajtor M, Zur J, Smith D, Chen S, Nawaz A, Johnson RP, Odumeru JA, Griffiths MW, Skurnik M. Yersinia enterocolitica-Specific Infection by Bacteriophages TG1 and ϕR1-RT Is Dependent on Temperature-Regulated Expression of the Phage Host Receptor OmpF. Appl Environ Microbiol 2016; 82:5340-53. [PMID: 27342557 PMCID: PMC4988191 DOI: 10.1128/aem.01594-16] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 06/17/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Bacteriophages present huge potential both as a resource for developing novel tools for bacterial diagnostics and for use in phage therapy. This potential is also valid for bacteriophages specific for Yersinia enterocolitica To increase our knowledge of Y. enterocolitica-specific phages, we characterized two novel yersiniophages. The genomes of the bacteriophages vB_YenM_TG1 (TG1) and vB_YenM_ϕR1-RT (ϕR1-RT), isolated from pig manure in Canada and from sewage in Finland, consist of linear double-stranded DNA of 162,101 and 168,809 bp, respectively. Their genomes comprise 262 putative coding sequences and 4 tRNA genes and share 91% overall nucleotide identity. Based on phylogenetic analyses of their whole-genome sequences and large terminase subunit protein sequences, a genus named Tg1virus within the family Myoviridae is proposed, with TG1 and ϕR1-RT (R1RT in the ICTV database) as member species. These bacteriophages exhibit a host range restricted to Y. enterocolitica and display lytic activity against the epidemiologically significant serotypes O:3, O:5,27, and O:9 at and below 25°C. Adsorption analyses of lipopolysaccharide (LPS) and OmpF mutants demonstrate that these phages use both the LPS inner core heptosyl residues and the outer membrane protein OmpF as phage receptors. Based on RNA sequencing and quantitative proteomics, we also demonstrate that temperature-dependent infection is due to strong repression of OmpF at 37°C. In addition, ϕR1-RT was shown to be able to enter into a pseudolysogenic state. Together, this work provides further insight into phage-host cell interactions by highlighting the importance of understanding underlying factors which may affect the abundance of phage host receptors on the cell surface. IMPORTANCE Only a small number of bacteriophages infecting Y. enterocolitica, the predominant causative agent of yersiniosis, have been previously described. Here, two newly isolated Y. enterocolitica phages were studied in detail, with the aim of elucidating the host cell receptors required for infection. Our research further expands the repertoire of phages available for consideration as potential antimicrobial agents or as diagnostic tools for this important bacterial pathogen.
Collapse
Affiliation(s)
- Carlos G Leon-Velarde
- Laboratory Services Division, University of Guelph, Guelph, Ontario, Canada Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| | - Lotta Happonen
- Department of Clinical Sciences Lund, Infection Medicine, Lund University, Lund, Sweden Institute of Biotechnology and Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Maria Pajunen
- Department of Bacteriology and Immunology, Medicum, and Research Programs Unit, Immunobiology, University of Helsinki, Helsinki, Finland
| | - Katarzyna Leskinen
- Department of Bacteriology and Immunology, Medicum, and Research Programs Unit, Immunobiology, University of Helsinki, Helsinki, Finland
| | - Andrew M Kropinski
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Laura Mattinen
- Department of Bacteriology and Immunology, Medicum, and Research Programs Unit, Immunobiology, University of Helsinki, Helsinki, Finland
| | - Monika Rajtor
- Department of Bacteriology and Immunology, Medicum, and Research Programs Unit, Immunobiology, University of Helsinki, Helsinki, Finland
| | - Joanna Zur
- Department of Bacteriology and Immunology, Medicum, and Research Programs Unit, Immunobiology, University of Helsinki, Helsinki, Finland
| | - Darren Smith
- Applied Sciences, University of Northumbria, Newcastle upon Tyne, United Kingdom
| | - Shu Chen
- Laboratory Services Division, University of Guelph, Guelph, Ontario, Canada
| | - Ayesha Nawaz
- Department of Bacteriology and Immunology, Medicum, and Research Programs Unit, Immunobiology, University of Helsinki, Helsinki, Finland
| | - Roger P Johnson
- National Microbiology Laboratory at Guelph, Public Health Agency of Canada, Guelph, Ontario, Canada
| | - Joseph A Odumeru
- Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| | - Mansel W Griffiths
- Canadian Research Institute for Food Safety, University of Guelph, Guelph, Ontario, Canada Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| | - Mikael Skurnik
- Department of Bacteriology and Immunology, Medicum, and Research Programs Unit, Immunobiology, University of Helsinki, Helsinki, Finland Division of Clinical Microbiology, Helsinki University Hospital, HUSLAB, Helsinki, Finland
| |
Collapse
|
41
|
New GroEL-like chaperonin of bacteriophage OBP Pseudomonas fluorescens suppresses thermal protein aggregation in an ATP-dependent manner. Biochem J 2016; 473:2383-93. [DOI: 10.1042/bcj20160367] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 05/31/2016] [Indexed: 11/17/2022]
Abstract
Recently, we discovered and studied the first virus-encoded chaperonin of bacteriophage EL Pseudomonas aeruginosa, gene product (gp) 146. In the present study, we performed bioinformatics analysis of currently predicted GroEL-like proteins encoded by phage genomes in comparison with cellular and mitochondrial chaperonins. Putative phage chaperonins share a low similarity and do not form a monophyletic group; nevertheless, they are closer to bacterial chaperonins in the phylogenetic tree. Experimental investigation of putative GroEL-like chaperonin proteins has been continued by physicochemical and functional characterization of gp246 encoded by the genome of Pseudomonas fluorescens bacteriophage OBP. Unlike the more usual double-ring architecture of chaperonins, including the EL gp146, the recombinant gp246 produced by Escherichia coli cells has been purified as a single heptameric ring. It possesses ATPase activity and does not require a co-chaperonin for its function. In vitro experiments demonstrated that gp246 is able to suppress the thermal protein inactivation and aggregation in an ATP-dependent manner, thus indicating chaperonin function. Single-particle electron microscopy analysis revealed the different conformational states of OBP chaperonin, depending on the bound nucleotide.
Collapse
|
42
|
Lavysh D, Sokolova M, Minakhin L, Yakunina M, Artamonova T, Kozyavkin S, Makarova KS, Koonin EV, Severinov K. The genome of AR9, a giant transducing Bacillus phage encoding two multisubunit RNA polymerases. Virology 2016; 495:185-96. [PMID: 27236306 DOI: 10.1016/j.virol.2016.04.030] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 04/27/2016] [Accepted: 04/29/2016] [Indexed: 11/17/2022]
Abstract
Bacteriophage AR9 and its close relative PBS1 have been extensively used to construct early Bacillus subtilis genetic maps. Here, we present the 251,042bp AR9 genome, a linear, terminally redundant double-stranded DNA containing deoxyuridine instead of thymine. Multiple AR9 genes are interrupted by non-coding sequences or sequences encoding putative endonucleases. We show that these sequences are group I and group II self-splicing introns. Eight AR9 proteins are homologous to fragments of bacterial RNA polymerase (RNAP) subunits β/β'. These proteins comprise two sets of paralogs of RNAP largest subunits, with each paralog encoded by two disjoint phage genes. Thus, AR9 is a phiKZ-related giant phage that relies on two multisubunit viral RNAPs to transcribe its genome independently of host transcription apparatus. Purification of one of PBS1/AR9 RNAPs has been reported previously, which makes AR9 a promising object for further studies of RNAP evolution, assembly and mechanism.
Collapse
Affiliation(s)
- Daria Lavysh
- Institute of Molecular Genetics and Gene Biology, Russian Academy of Sciences, Moscow, Russia.
| | - Maria Sokolova
- Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia; Skolkovo Institute of Science and Technology, Skolkovo, Russia.
| | - Leonid Minakhin
- Waksman Institute, Rutgers, the State University of New Jersey, Piscataway, NJ, USA.
| | - Maria Yakunina
- Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia.
| | - Tatjana Artamonova
- Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia.
| | | | - Kira S Makarova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| | - Konstantin Severinov
- Institute of Molecular Genetics and Gene Biology, Russian Academy of Sciences, Moscow, Russia; Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia; Skolkovo Institute of Science and Technology, Skolkovo, Russia; Waksman Institute, Rutgers, the State University of New Jersey, Piscataway, NJ, USA.
| |
Collapse
|
43
|
Leskinen K, Blasdel BG, Lavigne R, Skurnik M. RNA-Sequencing Reveals the Progression of Phage-Host Interactions between φR1-37 and Yersinia enterocolitica. Viruses 2016; 8:111. [PMID: 27110815 PMCID: PMC4848604 DOI: 10.3390/v8040111] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 04/05/2016] [Accepted: 04/13/2016] [Indexed: 01/05/2023] Open
Abstract
Despite the expanding interest in bacterial viruses (bacteriophages), insights into the intracellular development of bacteriophage and its impact on bacterial physiology are still scarce. Here we investigate during lytic infection the whole-genome transcription of the giant phage vB_YecM_φR1-37 (φR1-37) and its host, the gastroenteritis causing bacterium Yersinia enterocolitica. RNA sequencing reveals that the gene expression of φR1-37 does not follow a pattern typical observed in other lytic bacteriophages, as only selected genes could be classified as typically early, middle or late genes. The majority of the genes appear to be expressed constitutively throughout infection. Additionally, our study demonstrates that transcription occurs mainly from the positive strand, while the negative strand encodes only genes with low to medium expression levels. Interestingly, we also detected the presence of antisense RNA species, as well as one non-coding intragenic RNA species. Gene expression in the phage-infected cell is characterized by the broad replacement of host transcripts with phage transcripts. However, the host response in the late phase of infection was also characterized by up-regulation of several specific bacterial gene products known to be involved in stress response and membrane stability, including the Cpx pathway regulators, ATP-binding cassette (ABC) transporters, phage- and cold-shock proteins.
Collapse
Affiliation(s)
- Katarzyna Leskinen
- Department of Bacteriology and Immunology, Medicum, and Research Programs Unit, Immunobiology, University of Helsinki, P.O.Box 21 (Haartmaninkatu 3), FIN-00014 HY Helsinki, Finland.
| | - Bob G Blasdel
- Laboratory of Gene Technology, KU Leuven, BE-3001 Leuven, Belgium.
| | - Rob Lavigne
- Laboratory of Gene Technology, KU Leuven, BE-3001 Leuven, Belgium.
| | - Mikael Skurnik
- Department of Bacteriology and Immunology, Medicum, and Research Programs Unit, Immunobiology, University of Helsinki, P.O.Box 21 (Haartmaninkatu 3), FIN-00014 HY Helsinki, Finland.
- Division of Clinical Microbiology, Helsinki University Hospital, HUSLAB, FIN-00270 Helsinki, Finland.
| |
Collapse
|
44
|
Bhunchoth A, Blanc-Mathieu R, Mihara T, Nishimura Y, Askora A, Phironrit N, Leksomboon C, Chatchawankanphanich O, Kawasaki T, Nakano M, Fujie M, Ogata H, Yamada T. Two asian jumbo phages, ϕRSL2 and ϕRSF1, infect Ralstonia solanacearum and show common features of ϕKZ-related phages. Virology 2016; 494:56-66. [PMID: 27081857 DOI: 10.1016/j.virol.2016.03.028] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 03/28/2016] [Accepted: 03/31/2016] [Indexed: 11/26/2022]
Abstract
Jumbo phages infecting Ralstonia solanacearum were isolated in Thailand (ϕRSL2) and Japan (ϕRSF1). They were similar regarding virion morphology, genomic arrangement, and host range. Phylogenetic and proteomic tree analyses demonstrate that the ϕRSL2 and ϕRSF1 belong to a group of evolutionary related phages, including Pseudomonas phages ϕKZ, 201ϕ2-1 and all previously described ϕKZ-related phages. Despite conserved genomic co-linearity between the ϕRSL2 and ϕRSF1, they differ in protein separation patterns. A major difference was seen in the detection of virion-associated-RNA polymerase subunits. All β- and β'-subunits were detected in ϕRSF1, but one β'-subunit was undetected in ϕRSL2. Furthermore, ϕRSF1 infected host cells faster (latent period: 60 and 150min for ϕRSF1 and ϕRSL2, respectively) and more efficiently than ϕRSL2. Therefore, the difference in virion-associated-RNA polymerase may affect infection efficiency. Finally, we show that ϕRSF1 is able to inhibit bacterial wilt progression in tomato plants.
Collapse
Affiliation(s)
- Anjana Bhunchoth
- Plant Research Laboratory, National Center for Genetic Engineering and Biotechnology, NSTDA, Pathum Thani 12120, Thailand; Center for Agricultural Biotechnology, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand; Center of Excellence on Agricultural Biotechnology: (AG-BIO/PERDO-CHE), Bangkok 10900, Thailand
| | - Romain Blanc-Mathieu
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Tomoko Mihara
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Yosuke Nishimura
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Ahmed Askora
- Department of Microbiology and Botany, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Namthip Phironrit
- Plant Research Laboratory, National Center for Genetic Engineering and Biotechnology, NSTDA, Pathum Thani 12120, Thailand
| | - Chalida Leksomboon
- Department of Plant Pathology, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
| | - Orawan Chatchawankanphanich
- Plant Research Laboratory, National Center for Genetic Engineering and Biotechnology, NSTDA, Pathum Thani 12120, Thailand
| | - Takeru Kawasaki
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima 739-8530, Japan
| | - Miyako Nakano
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima 739-8530, Japan
| | - Makoto Fujie
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima 739-8530, Japan
| | - Hiroyuki Ogata
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan.
| | - Takashi Yamada
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima 739-8530, Japan.
| |
Collapse
|
45
|
Byvalov AA, Dudina LG, Konyshev IV, Litvinets SG, Martinson EA. Immunochemical Nature of Receptors of Pseudotuberculosis Diagnostic Bacteriophage. Bull Exp Biol Med 2016; 160:672-4. [PMID: 27021089 DOI: 10.1007/s10517-016-3246-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Indexed: 10/22/2022]
Abstract
The effect of treatment of Yersinia pseudotuberculosis cells with antibodies of various specificities on adhesiveness of pseudotuberculosis bacteriophage was analyzed by competitive inhibition technique. Bacteriophage adsorption to bacteria was sterically inhibited by monoclonal antibodies to protein epitopes of Y. pseudotuberculosis outer membrane. These results suggest that receptors of pseudotuberculosis diagnostic bacteriophage are localized on the LPS core of microbial cell.
Collapse
Affiliation(s)
- A A Byvalov
- Vyatka State University, Kirov, Russia. .,Institute of Physiology of Komi Research Center, Ural Division of the Russian Academy of Sciences, Syktyvkar, Russia.
| | - L G Dudina
- Vyatka State University, Kirov, Russia.,Institute of Physiology of Komi Research Center, Ural Division of the Russian Academy of Sciences, Syktyvkar, Russia
| | - I V Konyshev
- Vyatka State University, Kirov, Russia.,Institute of Physiology of Komi Research Center, Ural Division of the Russian Academy of Sciences, Syktyvkar, Russia
| | | | | |
Collapse
|
46
|
Liang J, Li X, Zha T, Chen Y, Hao H, Liu C, Duan R, Xiao Y, Su M, Wang X, Jing H. DTDP-rhamnosyl transferase RfbF, is a newfound receptor-related regulatory protein for phage phiYe-F10 specific for Yersinia enterocolitica serotype O:3. Sci Rep 2016; 6:22905. [PMID: 26965493 PMCID: PMC4786787 DOI: 10.1038/srep22905] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 02/24/2016] [Indexed: 01/21/2023] Open
Abstract
Bacteriophages and their hosts are continuously engaged in evolutionary competition. Here we isolated a lytic phage phiYe-F10 specific for Yersinia enterocolitica serotype O:3. We firstly described the phage receptor was regulated by DTDP-rhamnosyl transferase RfbF, encoded within the rfb cluster that was responsible for the biosynthesis of the O antigens. The deletion of DTDP-rhamnosyl transferase RfbF of wild type O:3 strain caused failure in phiYe-F10 adsorption; however, the mutation strain retained agglutination with O:3 antiserum; and complementation of its mutant converted its sensitivity to phiYe-F10. Therefore, DTDP-rhamnosyl transferase RfbF was responsible for the phage infection but did not affect recognition of Y. enterocolitica O:3 antiserum. Further, the deletions in the putative O-antigen biosynthesis protein precursor and outer membrane protein had no effect on sensitivity to phiYe-F10 infection. However, adsorption of phages onto mutant HNF10-ΔO-antigen took longer time than onto the WT, suggesting that deletion of the putative O-antigen biosynthesis protein precursor reduced the infection efficiency.
Collapse
Affiliation(s)
- Junrong Liang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, No.155, Changbai Road, Changping, Beijing, 102206, China
| | - Xu Li
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, No.155, Changbai Road, Changping, Beijing, 102206, China
| | - Tao Zha
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, No.155, Changbai Road, Changping, Beijing, 102206, China.,Wuhu Municipal Centre for Disease Control and Prevention, No. 178, Jiuhua central Road, Wuhu, Anhui Province, 241000, China
| | - Yuhuang Chen
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, No.155, Changbai Road, Changping, Beijing, 102206, China
| | - Huijing Hao
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, No.155, Changbai Road, Changping, Beijing, 102206, China
| | - Chang Liu
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, No.155, Changbai Road, Changping, Beijing, 102206, China.,Department of Pathogenic Biology, School of Medical Science, Jiangsu University, Xuefu Road, Zhenjiang, Jiangsu Province, 212013, China
| | - Ran Duan
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, No.155, Changbai Road, Changping, Beijing, 102206, China
| | - Yuchun Xiao
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, No.155, Changbai Road, Changping, Beijing, 102206, China
| | - Mingming Su
- Institute of Biophysics, Chinese Academy of Sciences, No. 15, Datun Road, Chaoyang, Beijing, 100101, China
| | - Xin Wang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, No.155, Changbai Road, Changping, Beijing, 102206, China
| | - Huaiqi Jing
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, No.155, Changbai Road, Changping, Beijing, 102206, China
| |
Collapse
|
47
|
Róna G, Scheer I, Nagy K, Pálinkás HL, Tihanyi G, Borsos M, Békési A, Vértessy BG. Detection of uracil within DNA using a sensitive labeling method for in vitro and cellular applications. Nucleic Acids Res 2016; 44:e28. [PMID: 26429970 PMCID: PMC4756853 DOI: 10.1093/nar/gkv977] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Revised: 09/10/2015] [Accepted: 09/15/2015] [Indexed: 11/14/2022] Open
Abstract
The role of uracil in genomic DNA has been recently re-evaluated. It is now widely accepted to be a physiologically important DNA element in diverse systems from specific phages to antibody maturation and Drosophila development. Further relevant investigations would largely benefit from a novel reliable and fast method to gain quantitative and qualitative information on uracil levels in DNA both in vitro and in situ, especially since current techniques does not allow in situ cellular detection. Here, starting from a catalytically inactive uracil-DNA glycosylase protein, we have designed several uracil sensor fusion proteins. The designed constructs can be applied as molecular recognition tools that can be detected with conventional antibodies in dot-blot applications and may also serve as in situ uracil-DNA sensors in cellular techniques. Our method is verified on numerous prokaryotic and eukaryotic cellular systems. The method is easy to use and can be applied in a high-throughput manner. It does not require expensive equipment or complex know-how, facilitating its easy implementation in any basic molecular biology laboratory. Elevated genomic uracil levels from cells of diverse genetic backgrounds and/or treated with different drugs can be demonstrated also in situ, within the cell.
Collapse
Affiliation(s)
- Gergely Róna
- Institute of Enzymology, RCNS, Hungarian Academy of Sciences, Magyar Tudósok Str. 2, H-1117 Budapest, Hungary Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and Economics, Szt Gellért Square 4, H-1111 Budapest, Hungary
| | - Ildikó Scheer
- Institute of Enzymology, RCNS, Hungarian Academy of Sciences, Magyar Tudósok Str. 2, H-1117 Budapest, Hungary Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and Economics, Szt Gellért Square 4, H-1111 Budapest, Hungary
| | - Kinga Nagy
- Institute of Enzymology, RCNS, Hungarian Academy of Sciences, Magyar Tudósok Str. 2, H-1117 Budapest, Hungary Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and Economics, Szt Gellért Square 4, H-1111 Budapest, Hungary
| | - Hajnalka L Pálinkás
- Institute of Enzymology, RCNS, Hungarian Academy of Sciences, Magyar Tudósok Str. 2, H-1117 Budapest, Hungary Doctoral School of Multidisciplinary Medical Science, University of Szeged, H-6720 Szeged, Hungary
| | - Gergely Tihanyi
- Institute of Enzymology, RCNS, Hungarian Academy of Sciences, Magyar Tudósok Str. 2, H-1117 Budapest, Hungary Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and Economics, Szt Gellért Square 4, H-1111 Budapest, Hungary
| | - Máté Borsos
- Institute of Enzymology, RCNS, Hungarian Academy of Sciences, Magyar Tudósok Str. 2, H-1117 Budapest, Hungary
| | - Angéla Békési
- Institute of Enzymology, RCNS, Hungarian Academy of Sciences, Magyar Tudósok Str. 2, H-1117 Budapest, Hungary
| | - Beáta G Vértessy
- Institute of Enzymology, RCNS, Hungarian Academy of Sciences, Magyar Tudósok Str. 2, H-1117 Budapest, Hungary Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and Economics, Szt Gellért Square 4, H-1111 Budapest, Hungary
| |
Collapse
|
48
|
Yakunina M, Artamonova T, Borukhov S, Makarova KS, Severinov K, Minakhin L. A non-canonical multisubunit RNA polymerase encoded by a giant bacteriophage. Nucleic Acids Res 2015; 43:10411-20. [PMID: 26490960 PMCID: PMC4666361 DOI: 10.1093/nar/gkv1095] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 10/10/2015] [Indexed: 11/21/2022] Open
Abstract
The infection of Pseudomonas aeruginosa by the giant bacteriophage phiKZ is resistant to host RNA polymerase (RNAP) inhibitor rifampicin. phiKZ encodes two sets of polypeptides that are distantly related to fragments of the two largest subunits of cellular multisubunit RNAPs. Polypeptides of one set are encoded by middle phage genes and are found in the phiKZ virions. Polypeptides of the second set are encoded by early phage genes and are absent from virions. Here, we report isolation of a five-subunit RNAP from phiKZ-infected cells. Four subunits of this enzyme are cellular RNAP subunits homologs of the non-virion set; the fifth subunit is a protein of unknown function. In vitro, this complex initiates transcription from late phiKZ promoters in rifampicin-resistant manner. Thus, this enzyme is a non-virion phiKZ RNAP responsible for transcription of late phage genes. The phiKZ RNAP lacks identifiable assembly and promoter specificity subunits/factors characteristic for eukaryal, archaeal and bacterial RNAPs and thus provides a unique model for comparative analysis of the mechanism, regulation and evolution of this important class of enzymes.
Collapse
Affiliation(s)
- Maria Yakunina
- Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 195251, Russia Department of Molecular Biology and Biochemistry, Waksman Institute, Rutgers, The State University of New Jersey, Piscataway, NJ 08854-8020, USA
| | - Tatyana Artamonova
- Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 195251, Russia
| | - Sergei Borukhov
- Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 195251, Russia Rowan University School of Osteopathic Medicine, Stratford, NJ 08084-1501, USA
| | - Kira S Makarova
- National Center for Biotechnology Information NLM, National Institutes of Health Bethesda, MD 20894, USA
| | - Konstantin Severinov
- Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 195251, Russia Department of Molecular Biology and Biochemistry, Waksman Institute, Rutgers, The State University of New Jersey, Piscataway, NJ 08854-8020, USA Skolkovo Institute of Science and Technology, Skolkovo, 143026, Russia
| | - Leonid Minakhin
- Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 195251, Russia Department of Molecular Biology and Biochemistry, Waksman Institute, Rutgers, The State University of New Jersey, Piscataway, NJ 08854-8020, USA
| |
Collapse
|
49
|
Semenyuk PI, Orlov VN, Kurochkina LP. Effect of chaperonin encoded by gene 146 on thermal aggregation of lytic proteins of bacteriophage EL Pseudomonas aeruginosa. BIOCHEMISTRY (MOSCOW) 2015; 80:172-9. [DOI: 10.1134/s0006297915020042] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
50
|
Leon-Velarde CG, Kropinski AM, Chen S, Abbasifar A, Griffiths MW, Odumeru JA. Complete genome sequence of bacteriophage vB_YenP_AP5 which infects Yersinia enterocolitica of serotype O:3. Virol J 2014; 11:188. [PMID: 25347934 PMCID: PMC4283147 DOI: 10.1186/1743-422x-11-188] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 10/19/2014] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Bacteriophage vB_YenP_AP5 is a lytic bacteriophage capable of infecting Yersinia enterocolitica strains of serotype O:3, an epidemiologically significant serotype within this bacterial species that causes yersiniosis in humans. This work describes the complete genome sequence of this phage. RESULTS The genome consists of linear double-stranded DNA of 38,646 bp, with direct terminal repeats of 235 bp in length, and a GC content of 50.7%. There are 45 open reading frames which occupy 89.9% of the genome. Most of the proteins encoded by this virus exhibit sequence similarity to Yersinia phage φYeO3-12 and Salmonella phage φSG-JL2 proteins. CONCLUSIONS Genomic and morphological analyses place the bacteriophage vB_YenP_AP5 in the T7likevirus genus of the subfamily Autographivirinae within the family Podoviridae.
Collapse
Affiliation(s)
- Carlos G Leon-Velarde
- />Laboratory Services Division, University of Guelph, Guelph, ON N1H 8J7 Canada
- />Department of Food Science, University of Guelph, Guelph, ON N1G 2W1 Canada
| | - Andrew M Kropinski
- />Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1 Canada
- />Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1 Canada
| | - Shu Chen
- />Laboratory Services Division, University of Guelph, Guelph, ON N1H 8J7 Canada
| | - Arash Abbasifar
- />Canadian Research Institute for Food Safety, University of Guelph, Guelph, ON N1G 2W1 Canada
| | - Mansel W Griffiths
- />Canadian Research Institute for Food Safety, University of Guelph, Guelph, ON N1G 2W1 Canada
- />Department of Food Science, University of Guelph, Guelph, ON N1G 2W1 Canada
| | - Joseph A Odumeru
- />Department of Food Science, University of Guelph, Guelph, ON N1G 2W1 Canada
| |
Collapse
|