1
|
Davies JF, Daab A, Massouh N, Kirkland C, Strongitharm B, Leech A, Farré M, Thomas GH, Mulligan C. Structure and selectivity of a glutamate-specific TAXI TRAP binding protein from Vibrio cholerae. J Gen Physiol 2024; 156:e202413584. [PMID: 39556531 PMCID: PMC11574862 DOI: 10.1085/jgp.202413584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/28/2024] [Accepted: 10/17/2024] [Indexed: 11/20/2024] Open
Abstract
Tripartite ATP-independent periplasmic (TRAP) transporters are widespread in prokaryotes and are responsible for the transport of a variety of different ligands, primarily organic acids. TRAP transporters can be divided into two subclasses; DctP-type and TAXI type, which share the same overall architecture and substrate-binding protein requirement. DctP-type transporters are very well studied and have been shown to transport a range of compounds including dicarboxylates, keto acids, and sugar acids. However, TAXI-type transporters are relatively poorly understood. To address this gap in our understanding, we have structurally and biochemically characterized VC0430 from Vibrio cholerae. We show it is a monomeric, high affinity glutamate-binding protein, which we thus rename VcGluP. VcGluP is stereoselective, binding the L-isomer preferentially, and can also bind L-glutamine and L-pyroglutamate with lower affinity. Structural characterization of ligand-bound VcGluP revealed details of its binding site and biophysical characterization of binding site mutants revealed the substrate binding determinants, which differ substantially from those of DctP-type TRAPs. Finally, we have analyzed the interaction between VcGluP and its cognate membrane component, VcGluQM (formerly VC0429) in silico, revealing an architecture hitherto unseen. To our knowledge, this is the first transporter in V. cholerae to be identified as specific to glutamate, which plays a key role in the osmoadaptation of V. cholerae, making this transporter a potential therapeutic target.
Collapse
Affiliation(s)
- Joseph F.S. Davies
- School of Biosciences, Division of Natural Sciences, University of Kent, Canterbury, UK
| | - Andrew Daab
- School of Biosciences, Division of Natural Sciences, University of Kent, Canterbury, UK
| | - Nicholas Massouh
- School of Biosciences, Division of Natural Sciences, University of Kent, Canterbury, UK
| | - Corey Kirkland
- School of Biosciences, Division of Natural Sciences, University of Kent, Canterbury, UK
| | | | - Andrew Leech
- Technology Facility, Department of Biology, University of York, York, UK
| | - Marta Farré
- School of Biosciences, Division of Natural Sciences, University of Kent, Canterbury, UK
| | - Gavin H. Thomas
- Department of Biology and York Biomedical Research Institute (YBRI), University of York, York, UK
| | - Christopher Mulligan
- School of Biosciences, Division of Natural Sciences, University of Kent, Canterbury, UK
| |
Collapse
|
2
|
Oggerin M, Viver T, Brüwer J, Voß D, García-Llorca M, Zielinski O, Orellana LH, Fuchs BM. Niche differentiation within bacterial key-taxa in stratified surface waters of the Southern Pacific Gyre. THE ISME JOURNAL 2024; 18:wrae155. [PMID: 39096506 PMCID: PMC11366302 DOI: 10.1093/ismejo/wrae155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/17/2024] [Accepted: 08/02/2024] [Indexed: 08/05/2024]
Abstract
One of the most hostile marine habitats on Earth is the surface of the South Pacific Gyre (SPG), characterized by high solar radiation, extreme nutrient depletion, and low productivity. During the SO-245 "UltraPac" cruise through the center of the ultra-oligotrophic SPG, the marine alphaproteobacterial group AEGEAN169 was detected by fluorescence in situ hybridization at relative abundances up to 6% of the total microbial community in the uppermost water layer, with two distinct populations (Candidatus Nemonibacter and Ca. Indicimonas). The high frequency of dividing cells combined with high transcript levels suggests that both clades may be highly metabolically active. Comparative metagenomic and metatranscriptomic analyses of AEGEAN169 revealed that they encoded subtle but distinct metabolic adaptions to this extreme environment in comparison to their competitors SAR11, SAR86, SAR116, and Prochlorococcus. Both AEGEAN169 clades had the highest percentage of transporters per predicted proteins (9.5% and 10.6%, respectively). In particular, the high expression of ABC transporters in combination with proteorhodopsins and the catabolic pathways detected suggest a potential scavenging lifestyle for both AEGEAN169 clades. Although both AEGEAN169 clades may share the genomic potential to utilize phosphonates as a phosphorus source, they differ in their metabolic pathways for carbon and nitrogen. Ca. Nemonibacter potentially use glycine-betaine, whereas Ca. Indicimonas may catabolize urea, creatine, and fucose. In conclusion, the different potential metabolic strategies of both clades suggest that both are well adapted to thrive resource-limited conditions and compete well with other dominant microbial clades in the uppermost layers of SPG surface waters.
Collapse
Affiliation(s)
- Monike Oggerin
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Bremen D-28359, Germany
| | - Tomeu Viver
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Bremen D-28359, Germany
| | - Jan Brüwer
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Bremen D-28359, Germany
| | - Daniela Voß
- Institute of Chemistry and Biology of the Marine Environment, University of Oldenburg, Wilhelmshafen, Germany
| | - Marina García-Llorca
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Bremen D-28359, Germany
| | - Oliver Zielinski
- Institute of Chemistry and Biology of the Marine Environment, University of Oldenburg, Wilhelmshafen, Germany
- Leibniz Institute for Baltic Sea Research Warnemünde, D-18119 Rostock, Germany
| | - Luis H Orellana
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Bremen D-28359, Germany
| | - Bernhard M Fuchs
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Bremen D-28359, Germany
| |
Collapse
|
3
|
Felice AG, Santos LNQ, Kolossowski I, Zen FL, Alves LG, Rodrigues TCV, Prado LCS, Jaiswal AK, Tiwari S, Miranda FM, Ramos RTJ, Azevedo V, Oliveira CJF, Benevides LJ, Soares SC. Comparative genomics of Bordetella pertussis and prediction of new vaccines and drug targets. J Biomol Struct Dyn 2022; 40:10136-10152. [PMID: 34155952 DOI: 10.1080/07391102.2021.1940279] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Pertussis is a highly contagious respiratory disease caused by Bordetella pertussis, a Gram-negative bacterium described over a century ago. Despite broad vaccine coverage and treatment options, the disease is remerging as a public health problem especially in infants and older children. Recent data indicate re-emergence of the disease is related to bacterial resistance to immune defences and decreased vaccine effectiveness, which obviously suggests the need of new effective vaccines and drugs. In an attempt to contribute with solutions to this great challenge, bioinformatics tools were used to genetically comprehend the species of these bacteria and predict new vaccines and drug targets. In fact, approaches were used to analysis genomic plasticity, gene synteny and species similarities between the 20 genomes of Bordetella pertussis already available. Furthermore, it was conducted reverse vaccinology and docking analysis to identify proteins with potential to become vaccine and drug targets, respectively. The analyses showed the 20 genomes belongs to a homogeneous group that has preserved most of the genes over time. Besides that, were found genomics islands and good proteins to be candidates for vaccine and drugs. Taken together, these results suggests new possibilities that may be useful to develop new vaccines and drugs that will help the prevention and treatment strategies of pertussis disease caused by these Bordetella strains. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Andrei G Felice
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba, MG, Brazil
| | - Leonardo N Q Santos
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba, MG, Brazil
| | - Ian Kolossowski
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba, MG, Brazil
| | - Felipe L Zen
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba, MG, Brazil
| | - Leandro G Alves
- Department of General Biology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Thaís C V Rodrigues
- Department of General Biology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ligia C S Prado
- Department of General Biology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Arun K Jaiswal
- Department of General Biology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Sandeep Tiwari
- Department of General Biology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Fábio M Miranda
- Department of General Biology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.,Department of Genetics, Ecology and Evolution, Federal University of Minas Gerais, Minas Gerais, Brazil
| | - Rommel T J Ramos
- Department of General Biology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.,Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Vasco Azevedo
- Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Carlo J F Oliveira
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba, MG, Brazil
| | - Leandro J Benevides
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba, MG, Brazil
| | - Siomar C Soares
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba, MG, Brazil
| |
Collapse
|
4
|
Herman R, Bennett-Ness C, Maqbool A, Afzal A, Leech A, Thomas GH. The Salmonella enterica serovar Typhimurium virulence factor STM3169 is a hexuronic acid binding protein component of a TRAP transporter. MICROBIOLOGY-SGM 2020; 166:981-987. [PMID: 32894213 PMCID: PMC7660916 DOI: 10.1099/mic.0.000967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The intracellular pathogen S. Typhimurium is a leading cause of foodborne illness across the world and is known to rely on a range of virulence factors to colonize the human host and cause disease. The gene coding for one such factor, stm3169, was determined to be upregulated upon macrophage entry and its disruption reduces survival in the macrophage. In this study we characterize the STM3169 protein, which forms the substrate binding protein (SBP) of an uncharacterized tripartite ATP-independent periplasmic (TRAP) transporter. Genome context analysis of the genes encoding this system in related bacteria suggests a function in sugar acid transport. We demonstrate that purified STM3169 binds d-glucuronic acid with high affinity and specificity. S. Typhimurium LT2 can use this sugar acid as a sole carbon source and the genes for a probable catabolic pathway are present in the genome. As this gene was previously implicated in macrophage survival, it suggests a role for d-glucuronate as an important carbon source for S. Typhimurium in this environment.
Collapse
Affiliation(s)
- Reyme Herman
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| | - Cavan Bennett-Ness
- Present address: Institute of Genetics and Molecular Medicine, University of Edinburgh WGH, Crewe Road South, Edinburgh EH4 2XU, UK
| | - Abbas Maqbool
- Present address: The Sainsbury Laboratory, Norwich NR4 7UH, UK
| | - Amna Afzal
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| | - Andrew Leech
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| | - Gavin H. Thomas
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
- *Correspondence: Gavin H. Thomas,
| |
Collapse
|
5
|
Kohlmeier MG, White CE, Fowler JE, Finan TM, Oresnik IJ. Galactitol catabolism in Sinorhizobium meliloti is dependent on a chromosomally encoded sorbitol dehydrogenase and a pSymB-encoded operon necessary for tagatose catabolism. Mol Genet Genomics 2019; 294:739-755. [DOI: 10.1007/s00438-019-01545-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 03/08/2019] [Indexed: 01/22/2023]
|
6
|
Shimada T, Momiyama E, Yamanaka Y, Watanabe H, Yamamoto K, Ishihama A. Regulatory role of XynR (YagI) in catabolism of xylonate in Escherichia coli K-12. FEMS Microbiol Lett 2018; 364:4566516. [PMID: 29087459 DOI: 10.1093/femsle/fnx220] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Accepted: 10/24/2017] [Indexed: 01/02/2023] Open
Abstract
The genome of Escherichia coli K-12 contains ten cryptic phages, altogether constituting about 3.6% of the genome in sequence. Among more than 200 predicted genes in these cryptic phages, 14 putative transcription factor (TF) genes exist, but their regulatory functions remain unidentified. As an initial attempt to make a breakthrough for understanding the regulatory roles of cryptic phage-encoded TFs, we tried to identify the regulatory function of CP4-6 cryptic prophage-encoded YagI with unknown function. After SELEX screening, YagI was found to bind mainly at a single site within the spacer of bidirectional transcription units, yagA (encoding another uncharacterized TF) and yagEF (encoding 2-keto-3-deoxy gluconate aldolase, and dehydratase, respectively) within this prophage region. YagEF enzymes are involved in the catabolism of xylose downstream from xylonate. We then designated YagI as XynR (regulator of xylonate catabolism), one of the rare single-target TFs. In agreement with this predicted regulatory function, the activity of XynR was suggested to be controlled by xylonate. Even though low-affinity binding sites of XynR were identified in the E. coli K-12 genome, they all were inside open reading frames, implying that the regulation network of XynR is still fixed within the CR4-6 prophage without significant influence over the host E. coli K-12.
Collapse
Affiliation(s)
- Tomohiro Shimada
- Research Center for Micro-Nano Technology, Hosei University, Kajino-cho 3-7-2, Koganei, Tokyo 184-0003, Japan.,School of Agriculture, Meiji University, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Eri Momiyama
- Department of Frontier Bioscience, Hosei University, Kajino-cho 3-7-2, Koganei, Tokyo 184-0003, Japan
| | - Yuki Yamanaka
- Research Center for Micro-Nano Technology, Hosei University, Kajino-cho 3-7-2, Koganei, Tokyo 184-0003, Japan.,Department of Frontier Bioscience, Hosei University, Kajino-cho 3-7-2, Koganei, Tokyo 184-0003, Japan
| | - Hiroki Watanabe
- Department of Frontier Bioscience, Hosei University, Kajino-cho 3-7-2, Koganei, Tokyo 184-0003, Japan
| | - Kaneyoshi Yamamoto
- Research Center for Micro-Nano Technology, Hosei University, Kajino-cho 3-7-2, Koganei, Tokyo 184-0003, Japan.,Department of Frontier Bioscience, Hosei University, Kajino-cho 3-7-2, Koganei, Tokyo 184-0003, Japan
| | - Akira Ishihama
- Research Center for Micro-Nano Technology, Hosei University, Kajino-cho 3-7-2, Koganei, Tokyo 184-0003, Japan.,Department of Frontier Bioscience, Hosei University, Kajino-cho 3-7-2, Koganei, Tokyo 184-0003, Japan
| |
Collapse
|
7
|
Rosa LT, Bianconi ME, Thomas GH, Kelly DJ. Tripartite ATP-Independent Periplasmic (TRAP) Transporters and Tripartite Tricarboxylate Transporters (TTT): From Uptake to Pathogenicity. Front Cell Infect Microbiol 2018; 8:33. [PMID: 29479520 PMCID: PMC5812351 DOI: 10.3389/fcimb.2018.00033] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 01/25/2018] [Indexed: 11/18/2022] Open
Abstract
The ability to efficiently scavenge nutrients in the host is essential for the viability of any pathogen. All catabolic pathways must begin with the transport of substrate from the environment through the cytoplasmic membrane, a role executed by membrane transporters. Although several classes of cytoplasmic membrane transporters are described, high-affinity uptake of substrates occurs through Solute Binding-Protein (SBP) dependent systems. Three families of SBP dependant transporters are known; the primary ATP-binding cassette (ABC) transporters, and the secondary Tripartite ATP-independent periplasmic (TRAP) transporters and Tripartite Tricarboxylate Transporters (TTT). Far less well understood than the ABC family, the TRAP transporters are found to be abundant among bacteria from marine environments, and the TTT transporters are the most abundant family of proteins in many species of β-proteobacteria. In this review, recent knowledge about these families is covered, with emphasis on their physiological and structural mechanisms, relating to several examples of relevant uptake systems in pathogenicity and colonization, using the SiaPQM sialic acid uptake system from Haemophilus influenzae and the TctCBA citrate uptake system of Salmonella typhimurium as the prototypes for the TRAP and TTT transporters, respectively. High-throughput analysis of SBPs has recently expanded considerably the range of putative substrates known for TRAP transporters, while the repertoire for the TTT family has yet to be fully explored but both types of systems most commonly transport carboxylates. Specialized spectroscopic techniques and site-directed mutagenesis have enriched our knowledge of the way TRAP binding proteins capture their substrate, while structural comparisons show conserved regions for substrate coordination in both families. Genomic and protein sequence analyses show TTT SBP genes are strikingly overrepresented in some bacteria, especially in the β-proteobacteria and some α-proteobacteria. The reasons for this are not clear but might be related to a role for these proteins in signaling rather than transport.
Collapse
Affiliation(s)
- Leonardo T Rosa
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| | - Matheus E Bianconi
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Gavin H Thomas
- Department of Biology, University of York, York, United Kingdom
| | - David J Kelly
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
8
|
Nasher F, Heller M, Hathaway LJ. Streptococcus pneumoniae Proteins AmiA, AliA, and AliB Bind Peptides Found in Ribosomal Proteins of Other Bacterial Species. Front Microbiol 2018; 8:2688. [PMID: 29379482 PMCID: PMC5775242 DOI: 10.3389/fmicb.2017.02688] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 12/26/2017] [Indexed: 11/13/2022] Open
Abstract
The nasopharynx is frequently colonized by both commensal and pathogenic bacteria including Streptococcus pneumoniae (pneumococcus). Pneumococcus is an important pathogen responsible for bacterial meningitis and community acquired pneumonia but is also commonly an asymptomatic colonizer of the nasopharynx. Understanding interactions between microbes may provide insights into pathogenesis. Here, we investigated the ability of the three oligopeptide-binding proteins AmiA, AliA, and AliB of an ATP-binding cassette transporter of pneumococcus to detect short peptides found in other bacterial species. We found three possible peptide ligands for AmiA and four each for AliA and AliB of which two for each protein matched ribosomal proteins of other bacterial species. Using synthetic peptides we confirmed the following binding: AmiA binds peptide AKTIKITQTR, matching 50S ribosomal subunit protein L30, AliA binds peptide FNEMQPIVDRQ, matching 30S ribosomal protein S20, and AliB binds peptide AIQSEKARKHN, matching 30S ribosomal protein S20, without excluding the possibility of binding of the other peptides. These Ami-AliA/AliB peptide ligands are found in multiple species in the class of Gammaproteobacteria which includes common colonizers of the nostrils and nasopharynx. Binding such peptides may enable pneumococcus to detect and respond to neighboring species in its environment and is a potential mechanism for interspecies communication and environmental surveillance.
Collapse
Affiliation(s)
- Fauzy Nasher
- Institute for Infectious Diseases, Faculty of Medicine, University of Bern, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Manfred Heller
- Department of Clinical Research, Proteomics and Mass Spectrometry Core Facility, University of Bern, Bern, Switzerland
| | - Lucy J Hathaway
- Institute for Infectious Diseases, Faculty of Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
9
|
Glaenzer J, Peter MF, Thomas GH, Hagelueken G. PELDOR Spectroscopy Reveals Two Defined States of a Sialic Acid TRAP Transporter SBP in Solution. Biophys J 2017; 112:109-120. [PMID: 28076802 DOI: 10.1016/j.bpj.2016.12.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 11/29/2016] [Accepted: 12/08/2016] [Indexed: 10/20/2022] Open
Abstract
The tripartite ATP-independent periplasmic (TRAP) transporters are a widespread class of membrane transporters in bacteria and archaea. Typical substrates for TRAP transporters are organic acids including the sialic acid N-acetylneuraminic acid. The substrate binding proteins (SBP) of TRAP transporters are the best studied component and are responsible for initial high-affinity substrate binding. To better understand the dynamics of the ligand binding process, pulsed electron-electron double resonance (PELDOR, also known as DEER) spectroscopy was applied to study the conformational changes in the N-acetylneuraminic acid-specific SBP VcSiaP. The protein is the SBP of VcSiaPQM, a sialic acid TRAP transporter from Vibrio cholerae. Spin-labeled double-cysteine mutants of VcSiaP were analyzed in the substrate-bound and -free state and the measured distances were compared to available crystal structures. The data were compatible with two clear states only, which are consistent with the open and closed forms seen in TRAP SBP crystal structures. Substrate titration experiments demonstrated the transition of the population from one state to the other with no other observed forms. Mutants of key residues involved in ligand binding and/or proposed to be involved in domain closure were produced and the corresponding PELDOR experiments reveal important insights into the open-closed transition. The results are in excellent agreement with previous in vivo sialylation experiments. The structure of the spin-labeled Q54R1/L173R1 R125A mutant was solved at 2.1 Å resolution, revealing no significant changes in the protein structure. Thus, the loss of domain closure appears to be solely due to loss of binding. In conclusion, these data are consistent with TRAP SBPs undergoing a simple two-state transition from an open-unliganded to closed-liganded state during the transport cycle.
Collapse
Affiliation(s)
- Janin Glaenzer
- Institute for Physical & Theoretical Chemistry, University of Bonn, Bonn, Germany
| | - Martin F Peter
- Institute for Physical & Theoretical Chemistry, University of Bonn, Bonn, Germany
| | | | - Gregor Hagelueken
- Institute for Physical & Theoretical Chemistry, University of Bonn, Bonn, Germany.
| |
Collapse
|
10
|
Adnan F, Weber L, Klug G. The sRNA SorY confers resistance during photooxidative stress by affecting a metabolite transporter in Rhodobacter sphaeroides. RNA Biol 2016; 12:569-77. [PMID: 25833751 PMCID: PMC4615379 DOI: 10.1080/15476286.2015.1031948] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Exposure to oxygen and light generates photooxidative stress by the bacteriochlorophyll a mediated formation of singlet oxygen (1O2) in the facultative photosynthetic bacterium Rhodobacter sphaeroides. We have identified SorY as an sRNA, which is induced under several stress conditions and confers increased resistance against 1O2. SorY by direct interaction affects the takP mRNA, encoding a TRAP-T transporter. We present a model in which SorY reduces the metabolite flux into the tricarboxylic acid cycle (TCA cycle) by reducing malate import through TakP. It was previously shown that oxidative stress in bacteria leads to switch from glycolysis to the pentose phosphate pathway and to reduced activity of the TCA cycle. As a consequence the production of the prooxidant NADH is reduced and production of the protective NADPH is enhanced. In R. sphaeroides enzymes for glycolysis, pentose phosphate pathway, Entner–Doudoroff pathway and gluconeogenesis are induced in response to 1O2 by the alternative sigma factor RpoHII. The same is true for the sRNA SorY. By limiting malate import SorY thus contributes to the balance of the metabolic fluxes under photooxidative stress conditions. This assigns a so far unknown function to an sRNA in oxidative stress response.
Collapse
Affiliation(s)
- Fazal Adnan
- a Institute of Microbiology and Molecular Biology ; IFZ ; Giessen University ; Giessen , Germany
| | | | | |
Collapse
|
11
|
Involvement of Agrobacterium tumefaciens Galacturonate Tripartite ATP-Independent Periplasmic (TRAP) Transporter GaaPQM in Virulence Gene Expression. Appl Environ Microbiol 2015; 82:1136-1146. [PMID: 26637603 DOI: 10.1128/aem.02891-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 12/01/2015] [Indexed: 11/20/2022] Open
Abstract
Monosaccharides capable of serving as nutrients for the soil bacterium Agrobacterium tumefaciens are also inducers of the vir regulon present in the tumor-inducing (Ti) plasmid of this plant pathogen. One such monosaccharide is galacturonate, the predominant monomer of pectin found in plant cell walls. This ligand is recognized by the periplasmic sugar binding protein ChvE, which interacts with the VirA histidine kinase that controls vir gene expression. Although ChvE is also a member of the ChvE-MmsAB ABC transporter involved in the utilization of many neutral sugars, it is not involved in galacturonate utilization. In this study, a putative tripartite ATP-independent periplasmic (TRAP) transporter, GaaPQM, is shown to be essential for the utilization of galacturonic acid; we show that residue R169 in the predicted sugar binding site of the GaaP is required for activity. The gene upstream of gaaPQM (gaaR) encodes a member of the GntR family of regulators. GaaR is shown to repress the expression of gaaPQM, and the repression is relieved in the presence of the substrate for GaaPQM. Moreover, GaaR is shown to bind putative promoter regions in the sequences required for galacturonic acid utilization. Finally, A. tumefaciens strains carrying a deletion of gaaPQM are more sensitive to galacturonate as an inducer of vir gene expression, while the overexpression of gaaPQM results in strains being less sensitive to this vir inducer. This supports a model in which transporter activity is crucial in ensuring that vir gene expression occurs only at sites of high ligand concentration, such as those at a plant wound site.
Collapse
|
12
|
Rudrappa D, Yao AI, White D, Pavlik BJ, Singh R, Facciotti MT, Blum P. Identification of an archaeal mercury regulon by chromatin immunoprecipitation. MICROBIOLOGY-SGM 2015; 161:2423-33. [PMID: 26408318 DOI: 10.1099/mic.0.000189] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Mercury is a heavy metal and toxic to all forms of life. Metal exposure can invoke a response to improve survival. In archaea, several components of a mercury response system have been identified, but it is not known whether metal transport is a member of this system. To identify such missing components, a peptide-tagged MerR transcription factor was used to localize enriched chromosome regions by chromosome immunoprecipitation combined with DNA sequence analysis. Such regions could serve as secondary regulatory binding sites to control the expression of additional genes associated with mercury detoxification. Among the 31 highly enriched loci, a subset of five was pursued as potential candidates based on their current annotations. Quantitative reverse transcription-PCR analysis of these regions with and without mercury treatment in WT and mutant strains lacking merR indicated significant regulatory responses under these conditions. Of these, a Family 5 extracellular solute-binding protein and the MarR transcription factor shown previously to control responses to oxidation were most strongly affected. Inactivation of the solute-binding protein by gene disruption increased the resistance of mutant cells to mercury challenge. Inductively coupled plasma-MS analysis of the mutant cell line following metal challenge indicated there was less intracellular mercury compared with the isogenic WT strain. Together, these regulated genes comprise new members of the archaeal MerR regulon and reveal a cascade of transcriptional control not previously demonstrated in this model organism.
Collapse
Affiliation(s)
- Deepak Rudrappa
- 1 School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Andrew I Yao
- 3 Department of Biomedical Engineering and Genome Center, University of California-Davis, Davis, California, USA
| | - Derrick White
- 1 School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Benjamin J Pavlik
- 2 Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Raghuveer Singh
- 1 School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Marc T Facciotti
- 3 Department of Biomedical Engineering and Genome Center, University of California-Davis, Davis, California, USA
| | - Paul Blum
- 1 School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| |
Collapse
|
13
|
Afzal M, Shafeeq S, Kuipers OP. Ascorbic acid-dependent gene expression in Streptococcus pneumoniae and the activator function of the transcriptional regulator UlaR2. Front Microbiol 2015; 6:72. [PMID: 25717320 PMCID: PMC4324149 DOI: 10.3389/fmicb.2015.00072] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 01/20/2015] [Indexed: 12/19/2022] Open
Abstract
In this study, we have explored the impact of ascorbic acid on the transcriptome of Streptococcus pneumoniae D39. The expression of several genes and operons, including the ula operon (which has been previously shown to be involved in ascorbic acid utilization), the AdcR regulon (which has been previously shown to be involved in zinc transport and virulence) and a PTS operon (which we denote here as ula2 operon) were altered in the presence of ascorbic acid. The ula2 operon consists of five genes, including the transcriptional activator ulaR2. Our β-galactosidase assay data and transcriptome comparison of the ulaR2 mutant with the wild-type demonstrated that the transcriptional activator UlaR2 in the presence of ascorbic acid activates the expression of the ula2 operon. We further predict a 16-bp regulatory site (5′-ATATTGTGCTCAAATA-3′) for UlaR2 in the Pula2. Furthermore, we have explored the effect of ascorbic acid on the expression of the AdcR regulon. Our ICP-MS analysis showed that addition of ascorbic acid to the medium causes zinc starvation in the cell which leads to the activation of the AdcR regulon.
Collapse
Affiliation(s)
- Muhammad Afzal
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen Groningen, Netherlands ; Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Pakistan
| | - Sulman Shafeeq
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen Groningen, Netherlands ; Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet Stockholm, Sweden
| | - Oscar P Kuipers
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen Groningen, Netherlands
| |
Collapse
|
14
|
Hathaway LJ, Bättig P, Reber S, Rotzetter JU, Aebi S, Hauser C, Heller M, Kadioglu A, Mühlemann K. Streptococcus pneumoniae detects and responds to foreign bacterial peptide fragments in its environment. Open Biol 2014; 4:130224. [PMID: 24718598 PMCID: PMC4043112 DOI: 10.1098/rsob.130224] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Streptococcus pneumoniae is an important cause of bacterial meningitis and pneumonia but usually colonizes the human nasopharynx harmlessly. As this niche is simultaneously populated by other bacterial species, we looked for a role and pathway of communication between pneumococci and other species. This paper shows that two proteins of non-encapsulated S. pneumoniae, AliB-like ORF 1 and ORF 2, bind specifically to peptides matching other species resulting in changes in the pneumococci. AliB-like ORF 1 binds specifically peptide SETTFGRDFN, matching 50S ribosomal subunit protein L4 of Enterobacteriaceae, and facilitates upregulation of competence for genetic transformation. AliB-like ORF 2 binds specifically peptides containing sequence FPPQS, matching proteins of Prevotella species common in healthy human nasopharyngeal microbiota. We found that AliB-like ORF 2 mediates the early phase of nasopharyngeal colonization in vivo. The ability of S. pneumoniae to bind and respond to peptides of other bacterial species occupying the same host niche may play a key role in adaptation to its environment and in interspecies communication. These findings reveal a completely new concept of pneumococcal interspecies communication which may have implications for communication between other bacterial species and for future interventional therapeutics.
Collapse
Affiliation(s)
- Lucy J Hathaway
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
The sensor kinase DctS forms a tripartite sensor unit with DctB and DctA for sensing C4-dicarboxylates in Bacillus subtilis. J Bacteriol 2013; 196:1084-93. [PMID: 24375102 DOI: 10.1128/jb.01154-13] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The DctSR two-component system of Bacillus subtilis controls the expression of the aerobic C4-dicarboxylate transporter DctA. Deletion of DctA leads to an increased dctA expression. The inactivation of DctB, an extracellular binding protein, is known to inhibit the expression of dctA. Here, interaction between the sensor kinase DctS and the transporter DctA as well as the binding protein DctB was demonstrated in vivo using streptavidin (Strep) or His protein interaction experiments (mSPINE or mHPINE), and the data suggest that DctA and DctB act as cosensors for DctS. The interaction between DctS and DctB was also confirmed by the bacterial two-hybrid system (BACTH). In contrast, no indication was obtained for a direct interaction between the transporter DctA and the binding protein DctB. Activity levels of uptake of [(14)C]succinate by bacteria that expressed DctA from a plasmid were similar in the absence and the presence of DctB, demonstrating that the binding protein DctB is not required for transport. Thus, DctB is involved not in transport but in cosensing with DctS, highlighting DctB as the first example of a TRAP-type binding protein that acts as a cosensor. The simultaneous presence of DctS/DctB and DctS/DctA sensor pairs and the lack of direct interaction between the cosensors DctA and DctB indicate the formation of a tripartite complex via DctS. It is suggested that the DctS/DctA/DctB complex forms the functional unit for C4-dicarboxylate sensing in B. subtilis.
Collapse
|
16
|
Salmon RC, Cliff MJ, Rafferty JB, Kelly DJ. The CouPSTU and TarPQM transporters in Rhodopseudomonas palustris: redundant, promiscuous uptake systems for lignin-derived aromatic substrates. PLoS One 2013; 8:e59844. [PMID: 23555803 PMCID: PMC3610893 DOI: 10.1371/journal.pone.0059844] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 02/21/2013] [Indexed: 11/18/2022] Open
Abstract
The biodegradation of lignin, one of the most abundant carbon compounds on Earth, has important biotechnological applications in the derivation of useful products from lignocellulosic wastes. The purple photosynthetic bacterium Rhodopseudomonas palustris is able to grow photoheterotrophically under anaerobic conditions on a range of phenylpropeneoid lignin monomers, including coumarate, ferulate, caffeate, and cinnamate. RPA1789 (CouP) is the periplasmic binding-protein component of an ABC system (CouPSTU; RPA1789, RPA1791–1793), which has previously been implicated in the active transport of this class of aromatic substrate. Here, we show using both intrinsic tryptophan fluorescence and isothermal titration calorimetry that CouP binds a range of phenylpropeneoid ligands with Kd values in the nanomolar range. The crystal structure of CouP with ferulate as the bound ligand shows H-bond interactions between the 4-OH group of the aromatic ring with His309 and Gln305. H-bonds are also made between the carboxyl group on the ferulate side chain and Arg197, Ser222, and Thr102. An additional transport system (TarPQM; RPA1782–1784), a member of the tripartite ATP-independent periplasmic (TRAP) transporter family, is encoded at the same locus as rpa1789 and several other genes involved in coumarate metabolism. We show that the periplasmic binding-protein of this system (TarP; RPA1782) also binds coumarate, ferulate, caffeate, and cinnamate with nanomolar Kd values. Thus, we conclude that R. palustris uses two redundant but energetically distinct primary and secondary transporters that both employ high-affinity periplasmic binding-proteins to maximise the uptake of lignin-derived aromatic substrates from the environment. Our data provide a detailed thermodynamic and structural basis for understanding the interaction of lignin-derived aromatic substrates with proteins and will be of use in the further exploitation of the flexible metabolism of R. palustris for anaerobic aromatic biotransformations.
Collapse
Affiliation(s)
- Robert C. Salmon
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, United Kingdom
| | - Matthew J. Cliff
- Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
| | - John B. Rafferty
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, United Kingdom
- * E-mail: (JR); (DJK)
| | - David J. Kelly
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, United Kingdom
- * E-mail: (JR); (DJK)
| |
Collapse
|
17
|
Basavanna S, Chimalapati S, Maqbool A, Rubbo B, Yuste J, Wilson RJ, Hosie A, Ogunniyi AD, Paton JC, Thomas G, Brown JS. The effects of methionine acquisition and synthesis on Streptococcus pneumoniae growth and virulence. PLoS One 2013; 8:e49638. [PMID: 23349662 PMCID: PMC3551916 DOI: 10.1371/journal.pone.0049638] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 10/16/2012] [Indexed: 11/19/2022] Open
Abstract
Bacterial pathogens need to acquire nutrients from the host, but for many nutrients their importance during infection remain poorly understood. We have investigated the importance of methionine acquisition and synthesis for Streptococcus pneumoniae growth and virulence using strains with gene deletions affecting a putative methionine ABC transporter lipoprotein (Sp_0149, metQ) and/or methionine biosynthesis enzymes (Sp_0585 - Sp_0586, metE and metF). Immunoblot analysis confirmed MetQ was a lipoprotein and present in all S. pneumoniae strains investigated. However, vaccination with MetQ did not prevent fatal S. pneumoniae infection in mice despite stimulating a strong specific IgG response. Tryptophan fluorescence spectroscopy and isothermal titration calorimetry demonstrated that MetQ has both a high affinity and specificity for L-methionine with a KD of ∼25 nM, and a ΔmetQ strain had reduced uptake of C14-methionine. Growth of the ΔmetQ/ΔmetEF strain was greatly impaired in chemically defined medium containing low concentrations of methionine and in blood but was partially restored by addition of high concentrations of exogenous methionine. Mixed infection models showed no attenuation of the ΔmetQ, ΔmetEF and ΔmetQ/ΔmetEF strains in their ability to colonise the mouse nasopharnyx. In a mouse model of systemic infection although significant infection was established in all mice, there were reduced spleen bacterial CFU after infection with the ΔmetQ/ΔmetEF strain compared to the wild-type strain. These data demonstrate that Sp_0149 encodes a high affinity methionine ABC transporter lipoprotein and that Sp_0585 – Sp_0586 are likely to be required for methionine synthesis. Although Sp_0149 and Sp_0585-Sp_0586 make a contribution towards full virulence, neither was essential for S. pneumoniae survival during infection.
Collapse
Affiliation(s)
- Shilpa Basavanna
- Department of Microbiology and Molecular Genetics, University of Texas-Houston Medical School, Houston, Texas, United States of America
| | - Suneeta Chimalapati
- Department of Medicine, Centre for Inflammation and Tissue Repair, University College Medical School, Rayne Institute, London, United Kingdom
| | - Abbas Maqbool
- Department of Biology (Area 10), University of York, York, United Kingdom
| | - Bruna Rubbo
- Department of Medicine, Centre for Inflammation and Tissue Repair, University College Medical School, Rayne Institute, London, United Kingdom
| | - Jose Yuste
- Centro de Investigaciones Biologicas, CSIC and CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Robert J. Wilson
- Department of Medicine, Centre for Inflammation and Tissue Repair, University College Medical School, Rayne Institute, London, United Kingdom
| | - Arthur Hosie
- Division of Science, University of Bedfordshire, Park Square, Luton, Bedfordshire, United Kingdom
| | - Abiodun D. Ogunniyi
- Research Centre for Infectious Diseases, School of Molecular and Biomedical Science, The University of Adelaide, Adelaide, South Australia, Australia
| | - James C. Paton
- Research Centre for Infectious Diseases, School of Molecular and Biomedical Science, The University of Adelaide, Adelaide, South Australia, Australia
| | - Gavin Thomas
- Department of Biology (Area 10), University of York, York, United Kingdom
| | - Jeremy S. Brown
- Department of Medicine, Centre for Inflammation and Tissue Repair, University College Medical School, Rayne Institute, London, United Kingdom
- * E-mail:
| |
Collapse
|
18
|
MpaA is a murein-tripeptide-specific zinc carboxypeptidase that functions as part of a catabolic pathway for peptidoglycan-derived peptides in γ-proteobacteria. Biochem J 2013; 448:329-41. [PMID: 22970852 DOI: 10.1042/bj20121164] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The murein peptide amidase MpaA is a cytoplasmic enzyme that processes peptides derived from the turnover of murein. We have purified the enzyme from Escherichia coli and demonstrated that it efficiently hydrolyses the γ-D-glutamyl-diaminopimelic acid bond in the murein tripeptide (L-Ala-γ-D-Glu-meso-Dap), with Km and kcat values of 0.41±0.05 mM and 38.3±10 s-1. However, it is unable to act on the murein tetrapeptide (L-Ala-γ-D-Glu-meso-Dap-D-Ala). E. coli MpaA is a homodimer containing one bound zinc ion per chain, as judged by mass spectrometric analysis and size-exclusion chromatography. To investigate the structure of MpaA we solved the crystal structure of the orthologous protein from Vibrio harveyi to 2.17 Å (1Å=0.1 nm). Vh_MpaA, which has identical enzymatic and biophysical properties to the E. coli enzyme, has high structural similarity to eukaryotic zinc carboxypeptidases. The structure confirms that MpaA is a dimeric zinc metalloprotein. Comparison of the structure of MpaA with those of other carboxypeptidases reveals additional structure that partially occludes the substrate-binding groove, perhaps explaining the narrower substrate specificity of the enzyme compared with other zinc carboxypeptidases. In γ-proteobacteria mpaA is often located adjacent to mppA which encodes a periplasmic transporter protein previously shown to bind murein tripeptide. We demonstrate that MppA can also bind murein tetrapeptide with high affinity. The genetic coupling of these genes and their related biochemical functions suggest that MpaA amidase and MppA transporter form part of a catabolic pathway for utilization of murein-derived peptides that operates in γ-proteobacteria in addition to the established murein recycling pathways.
Collapse
|
19
|
Chowdhury N, Norris J, McAlister E, Lau SYK, Thomas GH, Boyd EF. The VC1777-VC1779 proteins are members of a sialic acid-specific subfamily of TRAP transporters (SiaPQM) and constitute the sole route of sialic acid uptake in the human pathogen Vibrio cholerae. MICROBIOLOGY-SGM 2012; 158:2158-2167. [PMID: 22556361 DOI: 10.1099/mic.0.059659-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Sialic acids are nine-carbon amino sugars that are present on all mucous membranes and are often used by bacteria as nutrients. In pathogenic Vibrio the genes for sialic acid catabolism (SAC) are known to be important for host colonization, yet the route for sialic acid uptake is not proven. Vibrio cholerae contains a tripartite ATP-independent periplasmic (TRAP) transporter, SiaPQM (VC1777-VC1779), encoded by genes within the Vibrio pathogenicity island-2 (VPI-2), which are adjacent to the SAC genes nanA, nanE and nanK. We demonstrate a correlation of the occurrence of VPI-2 and the ability of Vibrio to grow on the common sialic acid N-acetylneuraminic acid (Neu5Ac), and that a V. cholerae N16961 mutant defective in vc1777, encoding the large membrane protein component of the TRAP transporter, SiaM, is unable to grow on Neu5Ac as the sole carbon source. Using the genome context and known structures of the SiaP protein component of the TRAP transporter, we define a subfamily of Neu5Ac-specific TRAP transporters, of which the vc1777-vc1779 genes are the only representatives in V. cholerae. A recent report has suggested that an entirely different TRAP transporter (VC1927-VC1929) is the Neu5Ac transporter in V. cholerae. Bioinformatics and genomic analysis suggest strongly that this is a C(4)-dicarboxylate-specific TRAP transporter, and indeed disruption of vc1929 results in a defect in growth on C(4)-dicarboxylates but not Neu5Ac. Together these data demonstrate unequivocally that the siaPQM-encoded TRAP transporter within VPI-2 is the sole sialic acid transporter in V. cholerae.
Collapse
Affiliation(s)
- Nityananda Chowdhury
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Jessica Norris
- Department of Biology (Area 10), University of York, York YO10 5YW, UK
| | - Erin McAlister
- Department of Biology (Area 10), University of York, York YO10 5YW, UK
| | - S Y Kathy Lau
- Department of Biology (Area 10), University of York, York YO10 5YW, UK
| | - Gavin H Thomas
- Department of Biology (Area 10), University of York, York YO10 5YW, UK
| | - E Fidelma Boyd
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
20
|
Regulation and evolution of malonate and propionate catabolism in proteobacteria. J Bacteriol 2012; 194:3234-40. [PMID: 22505679 DOI: 10.1128/jb.00163-12] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacteria catabolize malonate via two pathways, encoded by the mdc and mat genes. In various bacteria, transcription of these genes is controlled by the GntR family transcription factors (TFs) MatR/MdcY and/or the LysR family transcription factor MdcR. Propionate is metabolized via the methylcitrate pathway, comprising enzymes encoded by the prp and acn genes. PrpR, the Fis family sigma 54-dependent transcription factor, is known to be a transcriptional activator of the prp genes. Here, we report a detailed comparative genomic analysis of malonate and propionate metabolism and its regulation in proteobacteria. We characterize genomic loci and gene regulation and identify binding motifs for four new TFs and also new regulon members, in particular, tripartite ATP-independent periplasmic (TRAP) transporters. We describe restructuring of the genomic loci and regulatory interactions during the evolution of proteobacteria.
Collapse
|
21
|
Thomas GH, Boyd EF. On sialic acid transport and utilization by Vibrio cholerae. Microbiology (Reading) 2011; 157:3253-3254. [DOI: 10.1099/mic.0.054692-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Gavin H. Thomas
- Department of Biology, University of York, Heslington, York YO10 5YW, UK
| | - E. Fidelma Boyd
- Department of Biological Sciences, Wolf Hall, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
22
|
Evidence for an allosteric mechanism of substrate release from membrane-transporter accessory binding proteins. Proc Natl Acad Sci U S A 2011; 108:E1285-92. [PMID: 22084072 DOI: 10.1073/pnas.1112534108] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Numerous membrane importers rely on accessory water-soluble proteins to capture their substrates. These substrate-binding proteins (SBP) have a strong affinity for their ligands; yet, substrate release onto the low-affinity membrane transporter must occur for uptake to proceed. It is generally accepted that release is facilitated by the association of SBP and transporter, upon which the SBP adopts a conformation similar to the unliganded state, whose affinity is sufficiently reduced. Despite the appeal of this mechanism, however, direct supporting evidence is lacking. Here, we use experimental and theoretical methods to demonstrate that an allosteric mechanism of enhanced substrate release is indeed plausible. First, we report the atomic-resolution structure of apo TeaA, the SBP of the Na(+)-coupled ectoine TRAP transporter TeaBC from Halomonas elongata DSM2581(T), and compare it with the substrate-bound structure previously reported. Conformational free-energy landscape calculations based upon molecular dynamics simulations are then used to dissect the mechanism that couples ectoine binding to structural change in TeaA. These insights allow us to design a triple mutation that biases TeaA toward apo-like conformations without directly perturbing the binding cleft, thus mimicking the influence of the membrane transporter. Calorimetric measurements demonstrate that the ectoine affinity of the conformationally biased triple mutant is 100-fold weaker than that of the wild type. By contrast, a control mutant predicted to be conformationally unbiased displays wild-type affinity. This work thus demonstrates that substrate release from SBPs onto their membrane transporters can be facilitated by the latter through a mechanism of allosteric modulation of the former.
Collapse
|
23
|
Rinta-Kanto JM, Sun S, Sharma S, Kiene RP, Moran MA. Bacterial community transcription patterns during a marine phytoplankton bloom. Environ Microbiol 2011; 14:228-39. [PMID: 21985473 DOI: 10.1111/j.1462-2920.2011.02602.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Bacterioplankton consume a large proportion of photosynthetically fixed carbon in the ocean and control its biogeochemical fate. We used an experimental metatranscriptomics approach to compare bacterial activities that route energy and nutrients during a phytoplankton bloom compared with non-bloom conditions. mRNAs were sequenced from duplicate bloom and control microcosms 1 day after a phytoplankton biomass peak, and transcript copies per litre of seawater were calculated using an internal mRNA standard. Transcriptome analysis revealed a potential novel mechanism for enhanced efficiency during carbon-limited growth, mediated through membrane-bound pyrophosphatases [V-type H(+)-translocating; hppA]; bloom bacterioplankton participated less in this metabolic energy scavenging than non-bloom bacterioplankton, with possible implications for differences in growth yields on organic substrates. Bloom bacterioplankton transcribed more copies of genes predicted to increase cell surface adhesiveness, mediated by changes in bacterial signalling molecules related to biofilm formation and motility; these may be important in microbial aggregate formation. Bloom bacterioplankton also transcribed more copies of genes for organic acid utilization, suggesting an increased importance of this compound class in the bioreactive organic matter released during phytoplankton blooms. Transcription patterns were surprisingly faithful within a taxon regardless of treatment, suggesting that phylogeny broadly predicts the ecological roles of bacterial groups across 'boom' and 'bust' environmental backgrounds.
Collapse
|
24
|
Maqbool A, Levdikov VM, Blagova EV, Hervé M, Horler RSP, Wilkinson AJ, Thomas GH. Compensating stereochemical changes allow murein tripeptide to be accommodated in a conventional peptide-binding protein. J Biol Chem 2011; 286:31512-21. [PMID: 21705338 PMCID: PMC3173086 DOI: 10.1074/jbc.m111.267179] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The oligopeptide permease (Opp) of Escherichia coli is an ATP-binding cassette transporter that uses the substrate-binding protein (SBP) OppA to bind peptides and deliver them to the membrane components (OppBCDF) for transport. OppA binds conventional peptides 2-5 residues in length regardless of their sequence, but does not facilitate transport of the cell wall component murein tripeptide (Mtp, L-Ala-γ-D-Glu-meso-Dap), which contains a D-amino acid and a γ-peptide linkage. Instead, MppA, a homologous substrate-binding protein, forms a functional transporter with OppBCDF for uptake of this unusual tripeptide. Here we have purified MppA and demonstrated biochemically that it binds Mtp with high affinity (K(D) ∼ 250 nM). The crystal structure of MppA in complex with Mtp has revealed that Mtp is bound in a relatively extended conformation with its three carboxylates projecting from one side of the molecule and its two amino groups projecting from the opposite face. Specificity for Mtp is conferred by charge-charge and dipole-charge interactions with ionic and polar residues of MppA. Comparison of the structure of MppA-Mtp with structures of conventional tripeptides bound to OppA, reveals that the peptide ligands superimpose remarkably closely given the profound differences in their structures. Strikingly, the effect of the D-stereochemistry, which projects the side chain of the D-Glu residue at position 2 in the direction of the main chain in a conventional tripeptide, is compensated by the formation of a γ-linkage to the amino group of diaminopimelic acid, mimicking the peptide bond between residues 2 and 3 of a conventional tripeptide.
Collapse
Affiliation(s)
- Abbas Maqbool
- Department of Biology (Area 10), University of York, York YO10 5YW, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
25
|
Comparative genomic analysis of the hexuronate metabolism genes and their regulation in gammaproteobacteria. J Bacteriol 2011; 193:3956-63. [PMID: 21622752 DOI: 10.1128/jb.00277-11] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The hexuronate metabolism in Escherichia coli is regulated by two related transcription factors from the FadR subfamily of the GntR family, UxuR and ExuR. UxuR controls the d-glucuronate metabolism, while ExuR represses genes involved in the metabolism of all hexuronates. We use a comparative genomics approach to reconstruct the hexuronate metabolic pathways and transcriptional regulons in gammaproteobacteria. We demonstrate differences in the binding motifs of UxuR and ExuR, identify new candidate members of the UxuR/ExuR regulons, and describe the links between the UxuR/ExuR regulons and the adjacent regulons UidR, KdgR, and YjjM. We provide experimental evidence that two predicted members of the UxuR regulon, yjjM and yjjN, are the subject of complex regulation by this transcription factor in E. coli.
Collapse
|
26
|
Mulligan C, Fischer M, Thomas GH. Tripartite ATP-independent periplasmic (TRAP) transporters in bacteria and archaea. FEMS Microbiol Rev 2011; 35:68-86. [PMID: 20584082 DOI: 10.1111/j.1574-6976.2010.00236.x] [Citation(s) in RCA: 144] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The tripartite ATP-independent periplasmic (TRAP) transporters are the best-studied family of substrate-binding protein (SBP)-dependent secondary transporters and are ubiquitous in prokaryotes, but absent from eukaryotes. They are comprised of an SBP of the DctP or TAXI families and two integral membrane proteins of unequal sizes that form the DctQ and DctM protein families, respectively. The SBP component has a structure comprised of two domains connected by a hinge that closes upon substrate binding. In DctP-TRAP transporters, substrate binding is mediated through a conserved and specific arginine/carboxylate interaction in the SBP. While the SBP component has now been relatively well characterized, the membrane components of TRAP transporters are still poorly understood both in terms of their structure and function. We review the expanding repertoire of substrates and physiological roles for experimentally characterized TRAP transporters in bacteria and discuss mechanistic aspects of these transporters using data primarily from the sialic acid-specific TRAP transporter SiaPQM from Haemophilus influenzae, which suggest that TRAP transporters are high-affinity, Na(+)-dependent unidirectional secondary transporters.
Collapse
|
27
|
Fischer M, Zhang QY, Hubbard RE, Thomas GH. Caught in a TRAP: substrate-binding proteins in secondary transport. Trends Microbiol 2010; 18:471-8. [PMID: 20656493 DOI: 10.1016/j.tim.2010.06.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Revised: 06/22/2010] [Accepted: 06/25/2010] [Indexed: 11/19/2022]
Abstract
Substrate-binding protein (SBP)-dependent secondary transporters are ubiquitous in prokaryotes yet poorly characterised. Recently, the structures of over 10 prokaryotic SBPs have been solved, which we compare here to consider their impact on our understanding of transporter function and evolution. Seven structures are from tripartite ATP-independent periplasmic (TRAP) transporters of the DctP-type, which have similar overall structures distinct from SBPs used by ATP-binding cassette (ABC) transporters, despite recognising a range of substrates. A defining feature of substrate recognition in the DctP-TRAP SBPs is the formation of a salt bridge between a highly conserved arginine and a carboxylate group in the substrate, suggesting that these transporters might have evolved specifically for uptake of diverse organic acids. Remarkably, two of the DctP-TRAP SBPs are clearly dimers and the potential impact of this on transporter function will be discussed. Other SBPs used in secondary transporters are structurally similar to ABC SBPs, demonstrating that multiple families of SBPs have evolved to function with secondary transporters.
Collapse
Affiliation(s)
- Marcus Fischer
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, YO10 5DD, UK
| | | | | | | |
Collapse
|
28
|
A TRAP transporter for pyruvate and other monocarboxylate 2-oxoacids in the cyanobacterium Anabaena sp. strain PCC 7120. J Bacteriol 2010; 192:6089-92. [PMID: 20851902 DOI: 10.1128/jb.00982-10] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the cyanobacterium Anabaena sp. strain PCC 7120, open reading frames (ORFs) alr3026, alr3027, and all3028 encode a tripartite ATP-independent periplasmic transporter (TRAP-T). Wild-type filaments showed significant uptake of [(14)C]pyruvate, which was impaired in the alr3027 and all3028 mutants and was inhibited by several monocarboxylate 2-oxoacids, identifying this TRAP-T system as a pyruvate/monocarboxylate 2-oxoacid transporter.
Collapse
|
29
|
Campos E, Aguilera L, Giménez R, Aguilar J, Baldoma L, Badia J. Role of YiaX2 in L-ascorbate transport in Klebsiella pneumoniae 13882. Can J Microbiol 2009; 55:1319-22. [PMID: 19940941 DOI: 10.1139/w09-090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The yiaK-S operon is required for aerobic growth on L-ascorbate in several Enterobacteriaceae. Here we present evidence that the yiaX2 gene belonging to the yiaK-S operon of Klebsiella pneumoniae 13882, which encodes a protein similar to the putative transporters classified as the major facilitator superfamily, is involved in the uptake of L-ascorbate. Concentration kinetic analysis yielded an apparent K(m) of YiaX2 for L-ascorbate of 161.38 +/-8.28 micromol x L(-1) and a Vmax of 3.81 +/- 0.60 nmol x mg(-1) x min(-1). This carrier uses the energy from electrochemical gradients, since it was inhibited by carbonyl cyanide m-chlorophenylhydrazone, a hydrophobic proton conductor that dissipates proton motive force.
Collapse
Affiliation(s)
- Evangelina Campos
- Department of Biochemistry and Molecular Biology, Biomedicine Institute University of Barcelona (IBUB), Faculty of Pharmacy, University of Barcelona, Av. Diagonal 643, Barcelona 08028, Spain
| | | | | | | | | | | |
Collapse
|
30
|
Horler RSP, Müller A, Williamson DC, Potts JR, Wilson KS, Thomas GH. Furanose-specific sugar transport: characterization of a bacterial galactofuranose-binding protein. J Biol Chem 2009; 284:31156-63. [PMID: 19744923 PMCID: PMC2781514 DOI: 10.1074/jbc.m109.054296] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Revised: 09/06/2009] [Indexed: 12/31/2022] Open
Abstract
The widespread utilization of sugars by microbes is reflected in the diversity and multiplicity of cellular transporters used to acquire these compounds from the environment. The model bacterium Escherichia coli has numerous transporters that allow it to take up hexoses and pentoses, which recognize the more abundant pyranose forms of these sugars. Here we report the biochemical and structural characterization of a transporter protein YtfQ from E. coli that forms part of an uncharacterized ABC transporter system. Remarkably the crystal structure of this protein, solved to 1.2 A using x-ray crystallography, revealed that YtfQ binds a single molecule of galactofuranose in its ligand binding pocket. Selective binding of galactofuranose over galactopyranose was also observed using NMR methods that determined the form of the sugar released from the protein. The pattern of expression of the ytfQRTyjfF operon encoding this transporter mirrors that of the high affinity galactopyranose transporter of E. coli, suggesting that this bacterium has evolved complementary transporters that enable it to use all the available galactose present during carbon limiting conditions.
Collapse
Affiliation(s)
| | - Axel Müller
- From the Department of Biology
- York Structural Biology Laboratory,and
| | | | - Jennifer R. Potts
- From the Department of Biology
- Department of Chemistry, University of York, York YO10 5YW, United Kingdom
| | | | | |
Collapse
|
31
|
Smart JP, Cliff MJ, Kelly DJ. A role for tungsten in the biology of Campylobacter jejuni: tungstate stimulates formate dehydrogenase activity and is transported via an ultra-high affinity ABC system distinct from the molybdate transporter. Mol Microbiol 2009; 74:742-57. [PMID: 19818021 DOI: 10.1111/j.1365-2958.2009.06902.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The food-borne pathogen Campylobacter jejuni possesses no known tungstoenzymes, yet encodes two ABC transporters (Cj0300-0303 and Cj1538-1540) homologous to bacterial molybdate (ModABC) uptake systems and the tungstate transporter (TupABC) of Eubacterium acidaminophilum respectively. The actual substrates and physiological role of these transporters were investigated. Tryptophan fluorescence spectroscopy and isothermal titration calorimetry of the purified periplasmic binding proteins of each system revealed that while Cj0303 is unable to discriminate between molybdate and tungstate (K(D) values for both ligands of 4-8 nM), Cj1540 binds tungstate with a K(D) of 1.0 +/- 0.2 pM; 50 000-fold more tightly than molybdate. Induction-coupled plasma mass spectroscopy of single and double mutants showed that this large difference in affinity is reflected in a lower cellular tungsten content in a cj1540 (tupA) mutant compared with a cj0303c (modA) mutant. Surprisingly, formate dehydrogenase (FDH) activity was decreased approximately 50% in the tupA strain, and supplementation of the growth medium with tungstate significantly increased FDH activity in the wild type, while inhibiting known molybdoenzymes. Our data suggest that C. jejuni possesses a specific, ultra-high affinity tungstate transporter that supplies tungsten for incorporation into FDH. Furthermore, possession of two MoeA paralogues may explain the formation of both molybdopterin and tungstopterin in this bacterium.
Collapse
Affiliation(s)
- Jonathan P Smart
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | | | | |
Collapse
|
32
|
Basavanna S, Khandavilli S, Yuste J, Cohen JM, Hosie AHF, Webb AJ, Thomas GH, Brown JS. Screening of Streptococcus pneumoniae ABC transporter mutants demonstrates that LivJHMGF, a branched-chain amino acid ABC transporter, is necessary for disease pathogenesis. Infect Immun 2009; 77:3412-23. [PMID: 19470745 PMCID: PMC2715661 DOI: 10.1128/iai.01543-08] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Revised: 01/28/2009] [Accepted: 05/05/2009] [Indexed: 11/20/2022] Open
Abstract
Bacterial ABC transporters are an important class of transmembrane transporters that have a wide variety of substrates and are important for the virulence of several bacterial pathogens, including Streptococcus pneumoniae. However, many S. pneumoniae ABC transporters have yet to be investigated for their role in virulence. Using insertional duplication mutagenesis mutants, we investigated the effects on virulence and in vitro growth of disruption of 9 S. pneumoniae ABC transporters. Several were partially attenuated in virulence compared to the wild-type parental strain in mouse models of infection. For one ABC transporter, required for full virulence and termed LivJHMGF due to its similarity to branched-chain amino acid (BCAA) transporters, a deletion mutant (DeltalivHMGF) was constructed to investigate its phenotype in more detail. When tested by competitive infection, the DeltalivHMGF strain had reduced virulence in models of both pneumonia and septicemia but was fully virulent when tested using noncompetitive experiments. The DeltalivHMGF strain had no detectable growth defect in defined or complete laboratory media. Recombinant LivJ, the substrate binding component of the LivJHMGF, was shown by both radioactive binding experiments and tryptophan fluorescence spectroscopy to specifically bind to leucine, isoleucine, and valine, confirming that the LivJHMGF substrates are BCAAs. These data demonstrate a previously unsuspected role for BCAA transport during infection for S. pneumoniae and provide more evidence that functioning ABC transporters are required for the full virulence of bacterial pathogens.
Collapse
Affiliation(s)
- Shilpa Basavanna
- Centre for Respiratory Research, Department of Medicine, University College Medical School, Rayne Institute, London, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Cuneo MJ, Changela A, Beese LS, Hellinga HW. Structural Adaptations that Modulate Monosaccharide, Disaccharide, and Trisaccharide Specificities in Periplasmic Maltose-Binding Proteins. J Mol Biol 2009; 389:157-66. [DOI: 10.1016/j.jmb.2009.04.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Revised: 04/02/2009] [Accepted: 04/03/2009] [Indexed: 11/25/2022]
|
34
|
Mulligan C, Geertsma ER, Severi E, Kelly DJ, Poolman B, Thomas GH. The substrate-binding protein imposes directionality on an electrochemical sodium gradient-driven TRAP transporter. Proc Natl Acad Sci U S A 2009; 106:1778-83. [PMID: 19179287 PMCID: PMC2644114 DOI: 10.1073/pnas.0809979106] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Indexed: 11/18/2022] Open
Abstract
Substrate-binding protein-dependent secondary transporters are widespread in prokaryotes and are represented most frequently by members of the tripartite ATP-independent periplasmic (TRAP) transporter family. Here, we report the membrane reconstitution of a TRAP transporter, the sialic acid-specific SiaPQM system from Haemophilus influenzae, and elucidate its mechanism of energy coupling. Uptake of sialic acid via membrane-reconstituted SiaQM depends on the presence of the sialic acid-binding protein, SiaP, and is driven by the electrochemical sodium gradient. The interaction between SiaP and SiaQM is specific as transport is not reconstituted using the orthologous sialic acid-binding protein VC1779. Importantly, the binding protein also confers directionality on the transporter, and reversal of sialic acid transport from import to export is only possible in the presence of an excess of unliganded SiaP.
Collapse
Affiliation(s)
- Christopher Mulligan
- Department of Biology (Area 10), University of York, P.O. Box 373, York YO10 5YW, United Kingdom
| | - Eric R. Geertsma
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands; and
| | - Emmanuele Severi
- Department of Biology (Area 10), University of York, P.O. Box 373, York YO10 5YW, United Kingdom
| | - David J. Kelly
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, United Kingdom
| | - Bert Poolman
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands; and
| | - Gavin H. Thomas
- Department of Biology (Area 10), University of York, P.O. Box 373, York YO10 5YW, United Kingdom
| |
Collapse
|
35
|
Cuneo MJ, Changela A, Miklos AE, Beese LS, Krueger JK, Hellinga HW. Structural analysis of a periplasmic binding protein in the tripartite ATP-independent transporter family reveals a tetrameric assembly that may have a role in ligand transport. J Biol Chem 2008; 283:32812-20. [PMID: 18723845 DOI: 10.1074/jbc.m803595200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Several bacterial solute transport mechanisms involve members of the periplasmic binding protein (PBP) superfamily that bind and deliver ligand to integral membrane transport proteins in the ATP-binding cassette, tripartite tricarboxylate transporter, or tripartite ATP-independent (TRAP) families. PBPs involved in ATP-binding cassette transport systems have been well characterized, but only a few PBPs involved in TRAP transport have been studied. We have measured the thermal stability, determined the oligomerization state by small angle x-ray scattering, and solved the x-ray crystal structure to 1.9 A resolution of a TRAP-PBP (open reading frame tm0322) from the hyperthermophilic bacterium Thermotoga maritima (TM0322). The overall fold of TM0322 is similar to other TRAP transport related PBPs, although the structural similarity of backbone atoms (2.5-3.1 A root mean square deviation) is unusually low for PBPs within the same group. Individual monomers within the tetrameric asymmetric unit of TM0322 exhibit high root mean square deviation (0.9 A) to each other as a consequence of conformational heterogeneity in their binding pockets. The gel filtration elution profile and the small angle x-ray scattering analysis indicate that TM0322 assembles as dimers in solution that in turn assemble into a dimer of dimers in the crystallographic asymmetric unit. Tetramerization has been previously observed in another TRAP-PBP (the Rhodobacter sphaeroides alpha-keto acid-binding protein) where quaternary structure formation is postulated to be an important requisite for the transmembrane transport process.
Collapse
Affiliation(s)
- Matthew J Cuneo
- Department of Biochemistry, Duke University, Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | |
Collapse
|
36
|
The yiaKLX1X2PQRS and ulaABCDEFG gene systems are required for the aerobic utilization of L-ascorbate in Klebsiella pneumoniae strain 13882 with L-ascorbate-6-phosphate as the inducer. J Bacteriol 2008; 190:6615-24. [PMID: 18708499 DOI: 10.1128/jb.00815-08] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The capacity to both ferment and oxidize L-ascorbate has been widely documented for a number of enteric bacteria. Here we present evidence that all the strains of Klebsiella pneumoniae tested in this study ferment L-ascorbate using the ula regulon-encoded proteins. Under aerobic conditions, several phenotypes were observed for the strains. Our results showed that the yiaK-S system is required for this aerobic metabolic process. Gel shift experiments performed with UlaR and YiaJ and probes corresponding to the specific promoters indicated that L-ascorbate-6-phosphate is the effector molecule recognized by both regulators, since binding of the repressors to their recognition sites was impaired by the presence of this compound. We demonstrated that in K. pneumoniae cells L-ascorbate-6-phosphate is formed only by the action of the UlaABC phosphotransferase system. This finding explains why strains that lack the ula genetic system and therefore are unable to form the inducer intracellularly cannot efficiently use this vitamin as a carbon source under either anaerobic or aerobic conditions. Thus, efficient aerobic metabolism of L-ascorbate in K. pneumoniae is dependent on the presence of both the yiaK-S and ula systems. The expression of the yiaK-S operon, but not the expression of the ula regulon, is controlled by oxygen availability. Both systems are regulated by the cyclic AMP (cAMP)-cAMP receptor protein (CRP) complex and by IHF.
Collapse
|
37
|
Campos E, Montella C, Garces F, Baldoma L, Aguilar J, Badia J. Aerobic l-ascorbate metabolism and associated oxidative stress in Escherichia coli. Microbiology (Reading) 2007; 153:3399-3408. [PMID: 17906139 DOI: 10.1099/mic.0.2007/009613-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The anaerobic utilization of L-ascorbate by gene products of the ula regulon in Escherichia coli has been widely documented. Under aerobic conditions, we have shown that this metabolism is only functional in the presence of casein acid hydrolysate. Transcriptional fusions and proteomic analysis indicated that both the ula regulon and the yiaK-S operon are required for the aerobic utilization of this compound. The aerobic dissimilation of l-ascorbate shares the function of three paralogous proteins, UlaD/YiaQ, UlaE/YiaR and UlaF/YiaS, which encode a decarboxylase, a 3-epimerase and a 4-epimerase, respectively. In contrast, l-ascorbate enters the cells through the ula-encoded phosphotransferase transport system, but it is not carried by the yiaMNO-encoded ABC transporter. Proteomic analysis also indicated enhanced expression of the alkyl hydroperoxide reductase encoded by the ahpC gene, suggesting a response to oxidative stress generated during the aerobic metabolism of l-ascorbate. Control of ahpC expression by the OxyR global regulator in response to l-ascorbate concentration is consistent with the formation of hydrogen peroxide under our experimental conditions. The presence of certain amino acids such as proline, threonine or glutamine in the culture medium allowed aerobic l-ascorbate utilization by Escherichia coli cells. This effect could be explained by the ability of these amino acids to allow yiaK-S operon induction by l-ascorbate, thus increasing the metabolic flux of l-ascorbate dissimilation. Alternatively, these amino acids may slow the rate of L-ascorbate oxidation.
Collapse
Affiliation(s)
- Evangelina Campos
- Department of Biochemistry, School of Pharmacy, University of Barcelona, Avda Diagonal 643, E-08028 Barcelona, Spain
| | - Cristina Montella
- Department of Biochemistry, School of Pharmacy, University of Barcelona, Avda Diagonal 643, E-08028 Barcelona, Spain
| | - Fernando Garces
- Department of Biochemistry, School of Pharmacy, University of Barcelona, Avda Diagonal 643, E-08028 Barcelona, Spain
| | - Laura Baldoma
- Department of Biochemistry, School of Pharmacy, University of Barcelona, Avda Diagonal 643, E-08028 Barcelona, Spain
| | - Juan Aguilar
- Department of Biochemistry, School of Pharmacy, University of Barcelona, Avda Diagonal 643, E-08028 Barcelona, Spain
| | - Josefa Badia
- Department of Biochemistry, School of Pharmacy, University of Barcelona, Avda Diagonal 643, E-08028 Barcelona, Spain
| |
Collapse
|
38
|
Müller A, León-Kempis MDR, Dodson E, Wilson KS, Wilkinson AJ, Kelly DJ. A bacterial virulence factor with a dual role as an adhesin and a solute-binding protein: the crystal structure at 1.5 A resolution of the PEB1a protein from the food-borne human pathogen Campylobacter jejuni. J Mol Biol 2007; 372:160-71. [PMID: 17631313 DOI: 10.1016/j.jmb.2007.06.041] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Revised: 06/13/2007] [Accepted: 06/14/2007] [Indexed: 12/20/2022]
Abstract
The PEB1a protein is an antigenic factor exposed on the surface of the food-borne human pathogen Campylobacter jejuni, which has a major role in adherence and host colonisation. PEB1a is also the periplasmic binding protein component of an aspartate/glutamate ABC transporter essential for optimal microaerobic growth on these dicarboxylic amino acids. Here, we report the crystal structure of PEB1a at 1.5 A resolution. The protein has a typical two-domain alpha/beta structure, characteristic of periplasmic extracytoplasmic solute receptors and a chain topology related to the type II subfamily. An aspartate ligand, clearly defined by electron density in the interdomain cleft, forms extensive polar interactions with the protein, the majority of which are made with the larger domain. Arg89 and Asp174 form ion-pairing interactions with the main chain alpha-carboxyl and alpha-amino-groups, respectively, of the ligand, while Arg67, Thr82, Lys19 and Tyr156 co-ordinate the ligand side-chain carboxyl group. Lys19 and Arg67 line a positively charged groove, which favours binding of Asp over the neutral Asn. The ligand-binding cleft is of sufficient depth to accommodate a glutamate. This is the first structure of an ABC-type aspartate-binding protein, and explains the high affinity of the protein for aspartate and glutamate, and its much weaker binding of asparagine and glutamine. Stopped-flow fluorescence spectroscopy indicates a simple bimolecular mechanism of ligand binding, with high association rate constants. Sequence alignments and phylogenetic analyses revealed PEB1a homologues in some Gram-positive bacteria. The alignments suggest a more distant homology with GltI from Escherichia coli, a known glutamate and aspartate-binding protein, but Lys19 and Tyr156 are not conserved in GltI. Our results provide a structural basis for understanding both the solute transport and adhesin/virulence functions of PEB1a.
Collapse
Affiliation(s)
- Axel Müller
- Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10 5YW, UK
| | | | | | | | | | | |
Collapse
|
39
|
Mulligan C, Kelly DJ, Thomas GH. Tripartite ATP-independent periplasmic transporters: application of a relational database for genome-wide analysis of transporter gene frequency and organization. J Mol Microbiol Biotechnol 2007; 12:218-26. [PMID: 17587870 DOI: 10.1159/000099643] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Tripartite ATP-independent periplasmic (TRAP) transporters are a family of extracytoplasmic solute receptor-dependent secondary transporters that are widespread in the prokaryotic world but which have not been extensively studied. Here, we present results of a genome-wide analysis of TRAP sequences and genome organization from application of TRAPDb, a relational database created for the collection, curation and analysis of TRAP sequences. This has revealed a specific enrichment in the number of TRAP transporters in several bacteria which is consistent with increased use of TRAP transporters in saline environments. Additionally, we report a number of new organizations of TRAP transporter genes and proteins which suggest the recruitment of TRAP transporter components for use in other biological contexts.
Collapse
|
40
|
Jung H, Pirch T, Hilger D. Secondary transport of amino acids in prokaryotes. J Membr Biol 2007; 213:119-33. [PMID: 17417701 DOI: 10.1007/s00232-006-0880-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2006] [Indexed: 01/09/2023]
Abstract
Amino acid transport is a ubiquitous phenomenon and serves a variety of functions in prokaryotes, including supply of carbon and nitrogen for catabolic and anabolic processes, pH homeostasis, osmoprotection, virulence, detoxification, signal transduction and generation of electrochemical ion gradients. Many of the participating proteins have eukaryotic relatives and are successfully used as model systems for exploration of transporter structure and function. Distribution, physiological roles, functional properties, and structure-function relationships of prokaryotic alpha-amino acid transporters are discussed.
Collapse
Affiliation(s)
- H Jung
- Bereich Mikrobiologie, Department Biologie I, Ludwig-Maximilians-Universität München, D-80638, München, Germany.
| | | | | |
Collapse
|
41
|
Crystal structures of an Extracytoplasmic Solute Receptor from a TRAP transporter in its open and closed forms reveal a helix-swapped dimer requiring a cation for alpha-keto acid binding. BMC STRUCTURAL BIOLOGY 2007; 7:11. [PMID: 17362499 PMCID: PMC1839085 DOI: 10.1186/1472-6807-7-11] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2006] [Accepted: 03/15/2007] [Indexed: 11/10/2022]
Abstract
BACKGROUND The import of solutes into the bacterial cytoplasm involves several types of membrane transporters, which may be driven by ATP hydrolysis (ABC transporters) or by an ion or H+ electrochemical membrane potential, as in the tripartite ATP-independent periplasmic system (TRAP). In both the ABC and TRAP systems, a specific periplasmic protein from the ESR family (Extracytoplasmic Solute Receptors) is often involved for the recruitment of the solute and its presentation to the membrane complex. In Rhodobacter sphaeroides, TakP (previously named SmoM) is an ESR from a TRAP transporter and binds alpha-keto acids in vitro. RESULTS We describe the high-resolution crystal structures of TakP in its unliganded form and as a complex with sodium-pyruvate. The results show a limited "Venus flytrap" conformational change induced by substrate binding. In the liganded structure, a cation (most probably a sodium ion) is present and plays a key role in the association of the pyruvate to the protein. The structure of the binding pocket gives a rationale for the relative affinities of various ligands that were tested from a fluorescence assay. The protein appears to be dimeric in solution and in the crystals, with a helix-swapping structure largely participating in the dimer formation. A 30 A-long water channel buried at the dimer interface connects the two ligand binding cavities of the dimer. CONCLUSION The concerted recruitment by TakP of the substrate group with a cation could represent a first step in the coupled transport of both partners, providing the driving force for solute import. Furthermore, the unexpected dimeric structure of TakP suggests a molecular mechanism of solute uptake by the dimeric ESR via a channel that connects the binding sites of the two monomers.
Collapse
|
42
|
Mauchline TH, Fowler JE, East AK, Sartor AL, Zaheer R, Hosie AHF, Poole PS, Finan TM. Mapping the Sinorhizobium meliloti 1021 solute-binding protein-dependent transportome. Proc Natl Acad Sci U S A 2006; 103:17933-8. [PMID: 17101990 PMCID: PMC1635973 DOI: 10.1073/pnas.0606673103] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The number of solute-binding protein-dependent transporters in rhizobia is dramatically increased compared with the majority of other bacteria so far sequenced. This increase may be due to the high affinity of solute-binding proteins for solutes, permitting the acquisition of a broad range of growth-limiting nutrients from soil and the rhizosphere. The transcriptional induction of these transporters was studied by creating a suite of plasmid and integrated fusions to nearly all ATP-binding cassette (ABC) and tripartite ATP-independent periplasmic (TRAP) transporters of Sinorhizobium meliloti. In total, specific inducers were identified for 76 transport systems, amounting to approximately 47% of the ABC uptake systems and 53% of the TRAP transporters in S. meliloti. Of these transport systems, 64 are previously uncharacterized in Rhizobia and 24 were induced by solutes not known to be transported by ABC- or TRAP-uptake systems in any organism. This study provides a global expression map of one of the largest transporter families (transportome) and an invaluable tool to both understand their solute specificity and the relationships between members of large paralogous families.
Collapse
Affiliation(s)
- T. H. Mauchline
- *School of Biological Sciences, University of Reading, Reading RG6 6AJ, United Kingdom; and
| | - J. E. Fowler
- Center for Environmental Genomics, Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON, Canada L8S 4K1
| | - A. K. East
- *School of Biological Sciences, University of Reading, Reading RG6 6AJ, United Kingdom; and
| | - A. L. Sartor
- Center for Environmental Genomics, Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON, Canada L8S 4K1
| | - R. Zaheer
- Center for Environmental Genomics, Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON, Canada L8S 4K1
| | - A. H. F. Hosie
- *School of Biological Sciences, University of Reading, Reading RG6 6AJ, United Kingdom; and
| | - P. S. Poole
- *School of Biological Sciences, University of Reading, Reading RG6 6AJ, United Kingdom; and
- To whom correspondence may be addressed. E-mail:
or
| | - T. M. Finan
- Center for Environmental Genomics, Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON, Canada L8S 4K1
- To whom correspondence may be addressed. E-mail:
or
| |
Collapse
|
43
|
Zaunmüller T, Kelly DJ, Glöckner FO, Unden G. Succinate dehydrogenase functioning by a reverse redox loop mechanism and fumarate reductase in sulphate-reducing bacteria. MICROBIOLOGY-SGM 2006; 152:2443-2453. [PMID: 16849807 DOI: 10.1099/mic.0.28849-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Sulphate- or sulphur-reducing bacteria with known or draft genome sequences (Desulfovibrio vulgaris, Desulfovibrio desulfuricans G20, Desulfobacterium autotrophicum [draft], Desulfotalea psychrophila and Geobacter sulfurreducens) all contain sdhCAB or frdCAB gene clusters encoding succinate : quinone oxidoreductases. frdD or sdhD genes are missing. The presence and function of succinate dehydrogenase versus fumarate reductase was studied. Desulfovibrio desulfuricans (strain Essex 6) grew by fumarate respiration or by fumarate disproportionation, and contained fumarate reductase activity. Desulfovibrio vulgaris lacked fumarate respiration and contained succinate dehydrogenase activity. Succinate oxidation by the menaquinone analogue 2,3-dimethyl-1,4-naphthoquinone depended on a proton potential, and the activity was lost after degradation of the proton potential. The membrane anchor SdhC contains four conserved His residues which are known as the ligands for two haem B residues. The properties are very similar to succinate dehydrogenase of the Gram-positive (menaquinone-containing) Bacillus subtilis, which uses a reverse redox loop mechanism in succinate : menaquinone reduction. It is concluded that succinate dehydrogenases from menaquinone-containing bacteria generally require a proton potential to drive the endergonic succinate oxidation. Sequence comparison shows that the SdhC subunit of this type lacks a Glu residue in transmembrane helix IV, which is part of the uncoupling E-pathway in most non-electrogenic FrdABC enzymes.
Collapse
Affiliation(s)
- Tanja Zaunmüller
- Institut für Mikrobiologie und Weinforschung, Johannes Gutenberg Universität Mainz, 55 099 Mainz, Germany
| | - David J Kelly
- Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Frank O Glöckner
- MPI für Marine Mikrobiologie, Celsiusstr. 1, 28359 Bremen, Germany
| | - Gottfried Unden
- Institut für Mikrobiologie und Weinforschung, Johannes Gutenberg Universität Mainz, 55 099 Mainz, Germany
| |
Collapse
|
44
|
Ewann F, Hoffman PS. Cysteine metabolism in Legionella pneumophila: characterization of an L-cystine-utilizing mutant. Appl Environ Microbiol 2006; 72:3993-4000. [PMID: 16751507 PMCID: PMC1489648 DOI: 10.1128/aem.00684-06] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Growth of Legionella pneumophila on buffered charcoal-yeast extract (BCYE) medium is dependent on L-cysteine (but not L-cystine), which is added in excess over what is required for nutrition. We investigated the biochemical and genetic bases for this unusual requirement and determined that much of the L-cysteine in BCYE medium is rapidly oxidized to L-cystine and is unavailable to the bacteria. Analysis of cysteine consumption during bacterial growth indicated that of the 11% consumed, 3.85% (approximately 0.1 mM) was incorporated into biomass. The activities of two key cysteine biosynthetic enzymes (serine acetyltransferase and cysteine synthase) were not detected in cell extracts of L. pneumophila, and the respective genes were not present in the genome sequences, confirming cysteine auxotrophy. Kinetic studies identified two energy-dependent cysteine transporters, one with high affinity (apparent Km, 3.29 microM) and the other with low affinity (apparent Km, 93 microM), each of which was inhibited by the uncoupling agent carbonyl cyanide m-chlorophenylhydrazone. Cystine was not transported by L. pneumophila; however, a mutant strain capable of growth on L-cystine (CYS1 mutant) transported L-cystine with similar kinetics (Km, 4.4 microM and 90 microM). Based on the bipartite kinetics, requirement for proton motive force, and inhibitor studies, we suggest that a high-affinity periplasmic binding protein and a major facilitator/symporter (low affinity) mediate uptake. The latter most likely is functional at high cysteine concentrations and most likely displays altered substrate specificity in the CYS-1 mutant. Our studies provide biochemical evidence to support a general view that L. pneumophila is restricted to an intracellular lifestyle in natural environments by an inability to utilize cystine, which most likely ensures that the dormant cyst-like transmissible forms do not germinate outside suitable protozoan hosts.
Collapse
Affiliation(s)
- Fanny Ewann
- Division of Infectious Diseases, University of Virginia Health Systems, MR-4 Building, Room 2146, 409 Lane Road, Charlottesville, VA 22908, USA
| | | |
Collapse
|
45
|
Müller A, Severi E, Mulligan C, Watts AG, Kelly DJ, Wilson KS, Wilkinson AJ, Thomas GH. Conservation of structure and mechanism in primary and secondary transporters exemplified by SiaP, a sialic acid binding virulence factor from Haemophilus influenzae. J Biol Chem 2006; 281:22212-22222. [PMID: 16702222 DOI: 10.1074/jbc.m603463200] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Extracytoplasmic solute receptors (ESRs) are important components of solute uptake systems in bacteria, having been studied extensively as parts of ATP binding cassette transporters. Herein we report the first crystal structure of an ESR protein from a functionally characterized electrochemical ion gradient dependent secondary transporter. This protein, SiaP, forms part of a tripartite ATP-independent periplasmic transporter specific for sialic acid in Haemophilus influenzae. Surprisingly, the structure reveals an overall topology similar to ATP binding cassette ESR proteins, which is not apparent from the sequence, demonstrating that primary and secondary transporters can share a common structural component. The structure of SiaP in the presence of the sialic acid analogue 2,3-didehydro-2-deoxy-N-acetylneuraminic acid reveals the ligand bound in a deep cavity with its carboxylate group forming a salt bridge with a highly conserved Arg residue. Sialic acid binding, which obeys simple bimolecular association kinetics as determined by stopped-flow fluorescence spectroscopy, is accompanied by domain closure about a hinge region and the kinking of an alpha-helix hinge component. The structure provides insight into the evolution, mechanism, and substrate specificity of ESR-dependent secondary transporters that are widespread in prokaryotes.
Collapse
Affiliation(s)
- Axel Müller
- Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5YW, United Kingdom
| | - Emmanuele Severi
- Department of Biology, University of York, York YO10 5YW, United Kingdom
| | | | - Andrew G Watts
- Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5YW, United Kingdom
| | - David J Kelly
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, United Kingdom
| | - Keith S Wilson
- Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5YW, United Kingdom
| | - Anthony J Wilkinson
- Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5YW, United Kingdom.
| | - Gavin H Thomas
- Department of Biology, University of York, York YO10 5YW, United Kingdom.
| |
Collapse
|
46
|
Leon-Kempis MDR, Guccione E, Mulholland F, Williamson MP, Kelly DJ. The Campylobacter jejuni PEB1a adhesin is an aspartate/glutamate-binding protein of an ABC transporter essential for microaerobic growth on dicarboxylic amino acids. Mol Microbiol 2006; 60:1262-75. [PMID: 16689801 DOI: 10.1111/j.1365-2958.2006.05168.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The PEB1a protein of the gastrointestinal pathogen Campylobacter jejuni mediates interactions with epithelial cells and is an important factor in host colonization. Cell fractionation and immunoblotting showed that PEB1a is most abundant in the periplasm of C. jejuni, and is detectable in the culture supernatant but not in the inner or outer membrane. The protein is homologous with periplasmic-binding proteins associated with ABC transporters and we show by fluorescence spectroscopy that purified recombinant PEB1a binds L-aspartate and L-glutamate with sub microM K(d) values. Binding of L-14C-aspartate or L-14C-glutamate was strongly out-competed by excess unlabelled aspartate or glutamate but only poorly by asparagine and glutamine. A mutant in the Cj0921c gene, encoding PEB1a, was completely unable to transport 5 microM L-14C-glutamate and showed a large reduction (approximately 20-fold) in the rate of L-14C-aspartate transport compared with the wild type. Although microaerobic growth of this mutant was little affected in complex media, growth on aspartate or glutamate in defined media was completely prevented, whereas growth with serine was similar to wild type. 1H-NMR analysis of the culture supernatants of the Cj0921c mutant showed some utilization of aspartate but not glutamate, consistent with the transport data. It is concluded that in addition to the established role of PEB1a as an adhesin, the PEB1 transport system plays a key role in the utilization of aspartate and glutamate, which may be important in vivo carbon sources for this pathogen.
Collapse
Affiliation(s)
- Maria del Rocio Leon-Kempis
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | | | | | | | | |
Collapse
|