1
|
Miao C, Zhao Q, Zhang YT, Luo SQ, Han X, Wen Y, Wu R, Yan QG, Huang X, Wang Y, Zhao S, Lang YF, Zheng Y, Zhao F, Du S, Cao SJ. RAB4B and Japanese encephalitis virus E protein interaction is essential for viral entry in early endosomes. Int J Biol Macromol 2025; 306:141452. [PMID: 40020812 DOI: 10.1016/j.ijbiomac.2025.141452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/17/2025] [Accepted: 02/23/2025] [Indexed: 03/03/2025]
Abstract
RAB4B (Ras-Related GTP-Binding Protein 4b) is essential for intracellular trafficking and endosomal recycling processes. Our previous study, we demonstrated that RAB4B promotes Japanese encephalitis virus (JEV) replication in PK15 cells. However, the exact mechanisms underlying the role of RAB4B in JEV internalization remain unclear. Here, a genome-wide CRISPR/Cas9 library screen was performed, which identified RAB4B, along with other significant hits like ST8SIA4 and ELAVL1, as essential mediators of JEV replication. In vitro validation using RAB4B knockout in U251 and BV2 cells showed a significant reduction in JEV genome copies and viral titers, which were restored upon reintroducing RAB4B, confirming its pivotal role in viral propagation. Further mechanistic investigation revealed that RAB4B is required for JEV internalization into early endosomes. Co-immunoprecipitation and in vitro binding assays demonstrated a direct interaction between RAB4B and the JEV E protein, highlighting the functional importance of this interaction. In vivo experiments with RAB4B knockout mice showed a reduction in viral load in the brain and improved survival rates compared to wild-type mice. Taken together, these findings provide compelling evidence that RAB4B is indispensable for JEV entry and replication.
Collapse
Affiliation(s)
- Chang Miao
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Qin Zhao
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Sichuan Science-Observation Experimental Station of Veterinary Drugs and Veterinary Biotechnology, Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan, China; International Joint Research Center of Animal Disease Control and Prevention, Science & Technology Department of Sichuan Province, Chengdu, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Science & Technology Department of Sichuan Province, Chengdu, Sichuan, China
| | - Ya-Ting Zhang
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Sai-Qi Luo
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xinfeng Han
- Sichuan Science-Observation Experimental Station of Veterinary Drugs and Veterinary Biotechnology, Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan, China; International Joint Research Center of Animal Disease Control and Prevention, Science & Technology Department of Sichuan Province, Chengdu, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Science & Technology Department of Sichuan Province, Chengdu, Sichuan, China
| | - Yiping Wen
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Sichuan Science-Observation Experimental Station of Veterinary Drugs and Veterinary Biotechnology, Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan, China; International Joint Research Center of Animal Disease Control and Prevention, Science & Technology Department of Sichuan Province, Chengdu, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Science & Technology Department of Sichuan Province, Chengdu, Sichuan, China
| | - Rui Wu
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Sichuan Science-Observation Experimental Station of Veterinary Drugs and Veterinary Biotechnology, Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan, China; International Joint Research Center of Animal Disease Control and Prevention, Science & Technology Department of Sichuan Province, Chengdu, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Science & Technology Department of Sichuan Province, Chengdu, Sichuan, China
| | - Qi-Gui Yan
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Sichuan Science-Observation Experimental Station of Veterinary Drugs and Veterinary Biotechnology, Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan, China; International Joint Research Center of Animal Disease Control and Prevention, Science & Technology Department of Sichuan Province, Chengdu, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Science & Technology Department of Sichuan Province, Chengdu, Sichuan, China
| | - Xiaobo Huang
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Sichuan Science-Observation Experimental Station of Veterinary Drugs and Veterinary Biotechnology, Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan, China; International Joint Research Center of Animal Disease Control and Prevention, Science & Technology Department of Sichuan Province, Chengdu, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Science & Technology Department of Sichuan Province, Chengdu, Sichuan, China
| | - Yiping Wang
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Sichuan Science-Observation Experimental Station of Veterinary Drugs and Veterinary Biotechnology, Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan, China; International Joint Research Center of Animal Disease Control and Prevention, Science & Technology Department of Sichuan Province, Chengdu, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Science & Technology Department of Sichuan Province, Chengdu, Sichuan, China
| | - Shan Zhao
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Sichuan Science-Observation Experimental Station of Veterinary Drugs and Veterinary Biotechnology, Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan, China; International Joint Research Center of Animal Disease Control and Prevention, Science & Technology Department of Sichuan Province, Chengdu, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Science & Technology Department of Sichuan Province, Chengdu, Sichuan, China
| | - Yi-Fei Lang
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Sichuan Science-Observation Experimental Station of Veterinary Drugs and Veterinary Biotechnology, Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan, China; International Joint Research Center of Animal Disease Control and Prevention, Science & Technology Department of Sichuan Province, Chengdu, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Science & Technology Department of Sichuan Province, Chengdu, Sichuan, China
| | - Yi Zheng
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Sichuan Science-Observation Experimental Station of Veterinary Drugs and Veterinary Biotechnology, Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan, China; International Joint Research Center of Animal Disease Control and Prevention, Science & Technology Department of Sichuan Province, Chengdu, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Science & Technology Department of Sichuan Province, Chengdu, Sichuan, China
| | - Fei Zhao
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Sichuan Science-Observation Experimental Station of Veterinary Drugs and Veterinary Biotechnology, Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan, China; International Joint Research Center of Animal Disease Control and Prevention, Science & Technology Department of Sichuan Province, Chengdu, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Science & Technology Department of Sichuan Province, Chengdu, Sichuan, China
| | - Senyan Du
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Sichuan Science-Observation Experimental Station of Veterinary Drugs and Veterinary Biotechnology, Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan, China; International Joint Research Center of Animal Disease Control and Prevention, Science & Technology Department of Sichuan Province, Chengdu, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Science & Technology Department of Sichuan Province, Chengdu, Sichuan, China.
| | - San-Jie Cao
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Sichuan Science-Observation Experimental Station of Veterinary Drugs and Veterinary Biotechnology, Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan, China; International Joint Research Center of Animal Disease Control and Prevention, Science & Technology Department of Sichuan Province, Chengdu, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Science & Technology Department of Sichuan Province, Chengdu, Sichuan, China.
| |
Collapse
|
2
|
Mishra S, Chakraborty H. Dengue Virus Fusion Peptide Promotes Hemifusion Formation by Disordering the Interfacial Region of the Membrane. J Membr Biol 2025; 258:161-171. [PMID: 39825135 DOI: 10.1007/s00232-025-00336-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 01/03/2025] [Indexed: 01/20/2025]
Abstract
Membrane fusion is the first step in the infection process of the enveloped viruses. Enveloped viruses fuse either at the cell surface or enter the cell through endocytosis and transfer their internal genetic materials by fusing with the endosomal membrane at acidic pH. In this work, we have evaluated the effect of the Dengue virus fusion peptide (DENV FP) on the polyethylene glycol (PEG)-mediated lipid mixing of vesicles (hemifusion formation) at pH 5 and pH 7.4 with varying cholesterol concentrations. We have demonstrated that the DENV FP promotes hemifusion formation during the fusion of small unilamellar vesicles (SUVs) mainly at pH 5.0. Moreover, the fusion process demonstrates a strong correlation between fusogenicity and the amount of membrane cholesterol. We have further evaluated the partitioning ability of the peptide in three different membranes at pH 5.0 and pH 7.4. The fusogenic ability of the peptide at pH 5.0 is associated with the composition-dependent binding affinity of the peptide to the membrane. The depth-dependent fluorescence probes are used to evaluate membrane organization and dynamics utilizing steady-state and time-resolved fluorescence spectroscopic techniques. Our results show that the DENV FP promotes hemifusion formation by fluidizing the interfacial region of the membrane.
Collapse
Affiliation(s)
- Smruti Mishra
- School of Chemistry, Sambalpur University, Jyoti Vihar, Burla, Odisha, 768 109, India
| | - Hirak Chakraborty
- School of Chemistry, Sambalpur University, Jyoti Vihar, Burla, Odisha, 768 109, India.
| |
Collapse
|
3
|
Villalaín J. Membrane fusion by dengue virus: The first step. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2025; 1867:184400. [PMID: 39522596 DOI: 10.1016/j.bbamem.2024.184400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/03/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Flaviviruses include important human pathogens such as Dengue, Zika, West Nile, Yellow fever, Japanese encephalitis, and Tick-borne encephalitis viruses as well as some emerging viruses that affect millions of people worldwide. They fuse their membrane with the late endosomal one in a pH-dependent way and therefore the merging of the membranes is one of the main goals for obtaining new antivirals. The envelope E protein, a membrane fusion protein, is accountable for fusion and encompasses different domains involved in the fusion mechanism, including the fusion peptide segment. In this work we have used molecular dynamics to study the interaction of the distal end of domain II of the DENV envelope E protein with a membrane like the late endosomal membrane in order to observe the initiation of membrane fusion carried out by a number of trimers of the DENV envelope E protein interacting with a complex biomembrane and demonstrate its feasibility. Our results demonstrate the likelihood of membrane disorganization and pore formation by trimer complex organization, the amino acids responsible for such condition and the secondary structure arrangements needed for such fundamental process. At the same time, we define new targets of the envelope E protein sequence which could permit designing potent antiviral bioactive molecules.
Collapse
Affiliation(s)
- José Villalaín
- Institute of Research, Development, and Innovation in Healthcare Biotechnology (IDiBE), Universitas "Miguel Hernández", E-03202 Elche-Alicante, Spain.
| |
Collapse
|
4
|
Villalaín J. Localization, aggregation, and interaction of glycyrrhizic acid with the plasma membrane. J Biomol Struct Dyn 2024:1-11. [PMID: 39601256 DOI: 10.1080/07391102.2024.2434037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/07/2024] [Indexed: 11/29/2024]
Abstract
Glycyrrhizic acid (GLA) is the most important bioactive constituent of licorize root and exhibits antiviral, antimicrobial, anti-oxidant, anti-inflammatory, anti-allergic, and antitumor activities. GLA has an amphiphilic nature consisting of two hydrophilic and one hydrophobic part, and its mechanism of action could be mediated by its incorporation into the membrane. Furthermore, GLA presents two different forms, protonated (GLA) and deprotonated (GLAD), and has been suggested that their location inside the membrane could be different. Since GLA could be a source against many types of diseases, we have localized the GLA molecule in the presence of a complex membrane and established the detailed interactions of GLA with lipids using all-atom molecular dynamics. Our outcomes sustain that GLA/GLAD tend to locate amid the CHOL oxygen atom and the phospholipid phosphates, preferably perpendicular to the membrane surface, increasing membrane fluidity. Interestingly, GLA and GLAD tend to be surrounded by specific phospholipids, different for each type of molecule. Outstandingly, both GLA and GLAD tend to spontaneously associate in solution forming aggregates, precluding them from inserting into the membrane and, therefore, interacting with it. Consequently, some of the biological properties of GLA/GLAD could be credited to the alteration of the membrane biophysical properties by interacting with specific lipids. However, the formation of an aggregate in solution could hinder its bioactive properties and should be considered a suited vehicle when prepared to be used in biological or clinical assays.
Collapse
Affiliation(s)
- José Villalaín
- Institute of Research, Development, and Innovation in Healthcare Biotechnology (IDiBE), Universidad 'Miguel Hernández', Elche-Alicante, Spain
| |
Collapse
|
5
|
Villalaín J. Bisphenol F and Bisphenol S in a Complex Biomembrane: Comparison with Bisphenol A. J Xenobiot 2024; 14:1201-1220. [PMID: 39311147 PMCID: PMC11417855 DOI: 10.3390/jox14030068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/24/2024] [Accepted: 09/01/2024] [Indexed: 09/26/2024] Open
Abstract
Bisphenols are a group of endocrine-disrupting chemicals used worldwide for the production of plastics and resins. Bisphenol A (BPA), the main bisphenol, exhibits many unwanted effects. BPA has, currently, been replaced with bisphenol F (BPF) and bisphenol S (BPS) in many applications in the hope that these molecules have a lesser effect on metabolism than BPA. Since bisphenols tend to partition into the lipid phase, their place of choice would be the cellular membrane. In this paper, I carried out molecular dynamics simulations to compare the localization and interactions of BPA, BPF, and BPS in a complex membrane. This study suggests that bisphenols tend to be placed at the membrane interface, they have no preferred orientation inside the membrane, they can be in the monomer or aggregated state, and they affect the biophysical properties of the membrane lipids. The properties of bisphenols can be attributed, at least in part, to their membranotropic effects and to the modulation of the biophysical membrane properties. The data support that both BPF and BPS, behaving in the same way in the membrane as BPA and with the same capacity to accumulate in the biological membrane, are not safe alternatives to BPA.
Collapse
Affiliation(s)
- José Villalaín
- Institute of Research, Development, and Innovation in Healthcare Biotechnology (IDiBE), Universidad "Miguel Hernández", E-03202 Elche, Alicante, Spain
| |
Collapse
|
6
|
Villalaín J. Location and interaction of idebenone and mitoquinone in a membrane similar to the inner mitochondrial membrane. Comparison with ubiquinone 10. Free Radic Biol Med 2024; 222:211-222. [PMID: 38908803 DOI: 10.1016/j.freeradbiomed.2024.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/10/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
Oxygen is essential for aerobic life on earth but it is also the origin of harmful reactive oxygen species (ROS). Ubiquinone is par excellence the endogenous cellular antioxidant, but a very hydrophobic one. Because of that, other molecules have been envisaged, such as idebenone (IDE) and mitoquinone (MTQ), molecules having the same redox active benzoquinone moiety but higher solubility. We have used molecular dynamics to determine the location and interaction of these molecules, both in their oxidized and reduced forms, with membrane lipids in a membrane similar to that of the mitochondria. Both IDE and reduced IDE (IDOL) are situated near the membrane interface, whereas both MTQ and reduced MTQ (MTQOL) locate in a position adjacent to the phospholipid hydrocarbon chains. The quinone moieties of both ubiquinone 10 (UQ10) and reduced UQ10 (UQOL10) in contraposition to the same moieties of IDE, IDOL, MTQ and MTQOL, located near the membrane interphase, whereas the isoprenoid chains remained at the middle of the hydrocarbon chains. These molecules do not aggregate and their functional quinone moieties are located in the membrane at different depths but near the hydrophobic phospholipid chains whereby protecting them from ROS harmful effects.
Collapse
Affiliation(s)
- José Villalaín
- Institute of Research, Development, and Innovation in Healthcare Biotechnology (IDiBE), Universidad "Miguel Hernández", E-03202, Elche, Alicante, Spain.
| |
Collapse
|
7
|
Villalaín J. Localization and Aggregation of Honokiol in the Lipid Membrane. Antioxidants (Basel) 2024; 13:1025. [PMID: 39199269 PMCID: PMC11351574 DOI: 10.3390/antiox13081025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/01/2024] Open
Abstract
Honokiol, a biphenyl lignan extracted from bark extracts belonging to Magnolia plant species, is a pleiotropic compound which exhibits a widespread range of antioxidant, antibacterial, antidiabetic, anti-inflammatory, antiaggregant, analgesic, antitumor, antiviral and neuroprotective activities. Honokiol, being highly hydrophobic, is soluble in common organic solvents but insoluble in water. Therefore, its biological effects could depend on its bioactive mechanism. Although honokiol has many impressive bioactive properties, its effects are unknown at the level of the biological membrane. Understanding honokiol's bioactive mechanism could unlock innovative perspectives for its therapeutic development or for therapeutic development of molecules similar to it. I have studied the behaviour of the honokiol molecule in the presence of a plasma-like membrane and established the detailed relation of honokiol with membrane components using all-atom molecular dynamics. The results obtained in this work sustain that honokiol has a tendency to insert inside the membrane; locates near and below the cholesterol oxygen atom, amid the hydrocarbon membrane palisade; increases slightly hydrocarbon fluidity; does not interact specifically with any membrane lipid; and, significantly, forms aggregates. Significantly, aggregation does not impede honokiol from going inside the membrane. Some of the biological characteristics of honokiol could be accredited to its aptitude to alter membrane biophysical properties, but the establishment of aggregate forms in solution might hamper its clinical use.
Collapse
Affiliation(s)
- José Villalaín
- Institute of Research, Development, and Innovation in Healthcare Biotechnology (IDiBE), Universidad "Miguel Hernández", E-03202 Elche, Alicante, Spain
| |
Collapse
|
8
|
Villalaín J. Phospholipid binding of the dengue virus envelope E protein segment containing the conserved His residue. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184198. [PMID: 37437754 DOI: 10.1016/j.bbamem.2023.184198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/16/2023] [Accepted: 07/05/2023] [Indexed: 07/14/2023]
Abstract
Flaviviruses encompass many important human pathogens, including Dengue, Zika, West Nile, Yellow fever, Japanese encephalitis, and Tick-borne encephalitis viruses as well as several emerging viruses that affect millions of people worldwide. They enter cells by endocytosis, fusing their membrane with the late endosomal one in a pH-dependent manner, so membrane fusion is one of the main targets for obtaining new antiviral inhibitors. The envelope E protein, a class II membrane fusion protein, is responsible for fusion and contains different domains involved in the fusion mechanism, including the fusion peptide. However, other segments, apart from the fusion peptide, have been implicated in the mechanism of membrane fusion, in particular a segment containing a His residue supposed to act as a specific pH sensor. We have used atomistic molecular dynamics to study the binding of the envelope E protein segment containing the conserved His residue in its three different tautomer forms with a complex membrane mimicking the late-endosomal one. We show that this His-containing segment is capable of spontaneous membrane binding, preferentially binds electronegatively charged phospholipids and does not bind cholesterol. Since Flaviviruses have caused epidemics in the past, continue to do so and will undoubtedly continue to do so, this specific segment could characterise a new target that would allow finding effective antiviral molecules against DENV virus in particular and Flaviviruses in general.
Collapse
Affiliation(s)
- José Villalaín
- Institute of Research, Development, and Innovation in Healthcare Biotechnology (IDiBE), Universitas "Miguel Hernández", E-03202 Elche, Alicante, Spain.
| |
Collapse
|
9
|
Sengar A, Cervantes M, Bondalapati ST, Hess T, Kasson PM. Single-Virus Fusion Measurements Reveal Multiple Mechanistically Equivalent Pathways for SARS-CoV-2 Entry. J Virol 2023; 97:e0199222. [PMID: 37133381 PMCID: PMC10231210 DOI: 10.1128/jvi.01992-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 04/11/2023] [Indexed: 05/04/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) binds to cell surface receptors and is activated for membrane fusion and cell entry via proteolytic cleavage. Phenomenological data have shown that SARS-CoV-2 can be activated for entry at either the cell surface or in endosomes, but the relative roles in different cell types and mechanisms of entry have been debated. Here, we used single-virus fusion experiments and exogenously controlled proteases to probe activation directly. We found that plasma membrane and an appropriate protease are sufficient to support SARS-CoV-2 pseudovirus fusion. Furthermore, fusion kinetics of SARS-CoV-2 pseudoviruses are indistinguishable no matter which of a broad range of proteases is used to activate the virus. This suggests that the fusion mechanism is insensitive to protease identity or even whether activation occurs before or after receptor binding. These data support a model for opportunistic fusion by SARS-CoV-2 in which the subcellular location of entry likely depends on the differential activity of airway, cellsurface, and endosomal proteases, but all support infection. Inhibition of any single host protease may thus reduce infection in some cells but may be less clinically robust. IMPORTANCE SARS-CoV-2 can use multiple pathways to infect cells, as demonstrated recently when new viral variants switched dominant infection pathways. Here, we used single-virus fusion experiments together with biochemical reconstitution to show that these multiple pathways coexist simultaneously and specifically that the virus can be activated by different proteases in different cellular compartments with mechanistically identical effects. The consequences of this are that the virus is evolutionarily plastic and that therapies targeting viral entry should address multiple pathways at once to achieve optimal clinical effects.
Collapse
Affiliation(s)
- Anjali Sengar
- Department of Molecular Physiology, Global Infectious Diseases Institute, University of Virginia, Charlottesville, Virginia, USA
- Department of Biomedical Engineering, Global Infectious Diseases Institute, University of Virginia, Charlottesville, Virginia, USA
| | - Marcos Cervantes
- Department of Molecular Physiology, Global Infectious Diseases Institute, University of Virginia, Charlottesville, Virginia, USA
- Department of Biomedical Engineering, Global Infectious Diseases Institute, University of Virginia, Charlottesville, Virginia, USA
| | - Sai T. Bondalapati
- Department of Molecular Physiology, Global Infectious Diseases Institute, University of Virginia, Charlottesville, Virginia, USA
- Department of Biomedical Engineering, Global Infectious Diseases Institute, University of Virginia, Charlottesville, Virginia, USA
| | - Tobin Hess
- Department of Molecular Physiology, Global Infectious Diseases Institute, University of Virginia, Charlottesville, Virginia, USA
- Department of Biomedical Engineering, Global Infectious Diseases Institute, University of Virginia, Charlottesville, Virginia, USA
| | - Peter M. Kasson
- Department of Molecular Physiology, Global Infectious Diseases Institute, University of Virginia, Charlottesville, Virginia, USA
- Department of Biomedical Engineering, Global Infectious Diseases Institute, University of Virginia, Charlottesville, Virginia, USA
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
10
|
Villalaín J. LABYRINTHOPEPTIN A2 DISRUPTS RAFT DOMAINS. Chem Phys Lipids 2023; 253:105303. [PMID: 37061155 DOI: 10.1016/j.chemphyslip.2023.105303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/21/2023] [Accepted: 04/11/2023] [Indexed: 04/17/2023]
Abstract
Labyrinthopeptins constitute a class of ribosomal synthesized peptides belonging to the type III family of lantibiotics. They exist in different variants and display broad antiviral activities as well as show antiallodynic activity. Although their mechanism of action is not understood, it has been described that Labyrinthopeptins interact with membrane phospholipids modulating its biophysical properties and point out to membrane destabilization as its main point of action. We have used all-atom molecular dynamics to study the location of labyrinthopeptin A2 in a complex membrane as well as the existence of specific interactions with membrane lipids. Our results indicate that labyrinthopeptin A2, maintaining its globular structure, tends to be placed at the membrane interface, mainly between the phosphate atoms of the phospholipids and the oxygen atom of cholesterol modulating the biophysical properties of the membrane lipids. Outstandingly, we have found that labyrinthopeptin A2 tends to be preferentially surrounded by sphingomyelin while excluding cholesterol. The bioactive properties of labyrinthopeptin A2 could be attributed to the specific disorganization of raft domains in the membrane and the concomitant disruption of the overall membrane organization. These results support the improvement of Labyrinthopeptins as therapeutic molecules, opening up new opportunities for future medical advances.
Collapse
Affiliation(s)
- José Villalaín
- Institute of Research, Development, and Innovation in Healthcare Biotechnology (IDiBE), Universidad "Miguel Hernández", E-03202 Elche-Alicante, Spain.
| |
Collapse
|
11
|
Villalaín J. SARS-CoV-2 Protein S Fusion Peptide Is Capable of Wrapping Negatively-Charged Phospholipids. MEMBRANES 2023; 13:344. [PMID: 36984731 PMCID: PMC10057416 DOI: 10.3390/membranes13030344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 06/18/2023]
Abstract
COVID-19, caused by SARS-CoV-2, which is a positive-sense, single-stranded RNA enveloped virus, emerged in late 2019 and was declared a worldwide pandemic in early 2020 causing more than 600 million infections so far and more than 6 million deaths in the world. Although new vaccines have been implemented, the pandemic continues to impact world health dramatically. Membrane fusion, critical for the viral entry into the host cell, is one of the main targets for the development of novel antiviral therapies to combat COVID-19. The S2 subunit of the viral S protein, a class I membrane fusion protein, contains the fusion domain which is directly implicated in the fusion mechanism. The knowledge of the membrane fusion mechanism at the molecular level will undoubtedly result in the development of effective antiviral strategies. We have used all-atom molecular dynamics to analyse the binding of the SARS-CoV-2 fusion peptide to specific phospholipids in model membranes composed of only one phospholipid plus cholesterol in the presence of either Na+ or Ca2+. Our results show that the fusion peptide is capable of binding to the membrane, that its secondary structure does not change significantly upon binding, that it tends to preferentially bind electronegatively charged phospholipids, and that it does not bind cholesterol at all. Understanding the intricacies of the membrane fusion mechanism and the molecular interactions involved will lead us to the development of antiviral molecules that will allow a more efficient battle against these viruses.
Collapse
Affiliation(s)
- José Villalaín
- Institute of Research, Development, and Innovation in Healthcare Biotechnology (IDiBE), Universitas "Miguel Hernández", E-03202 Elche, Spain
| |
Collapse
|
12
|
Villalaín J. Bergamottin: location, aggregation and interaction with the plasma membrane. J Biomol Struct Dyn 2023; 41:12026-12037. [PMID: 36602143 DOI: 10.1080/07391102.2022.2164521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/27/2022] [Indexed: 01/06/2023]
Abstract
Bioactive furanocoumarins, a group of natural secondary metabolites common in higher plants, are recognized for their benefits to human health and have been shown to have numerous biological properties. However, the knowledge of its biomolecular mechanism is not known. One of the main furanocoumarins is bergamottin (BGM), which is characterized by a planar three-ringed structure and a hydrocarbon chain, which give BGM its high lipid/water partition coefficient. Because of that, and although the biological mechanism of BGM is not known, BGM bioactive properties could be ascribed to its potential to interact with the biological membrane, modulating its structure, changing its dynamics and at the same time that it might interact with lipids. For our goal, we have applied molecular dynamics to determine the position of BGM in a complex membrane and discern the possibility of certain interactions with membrane lipids. Our findings establish that BGM tends to locate in the middle of the hydrocarbon layer of the membrane, inserts in between the hydrocarbon chains of the phospholipids in an oblique position with respect to the membrane plane, increasing the fluidity of the membrane. Significantly, BGM tends to be surrounded by POPC molecules but exclude the molecule of CHOL. Outstandingly, BGM molecules associate spontaneously creating aggregates, which does not preclude them from interacting with and inserting into the membrane. The bioactive properties of BGM could be ascribed to its membranotropic effects and support the improvement of these molecules as therapeutic molecules, giving place to new opportunities for potential medical improvements.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- José Villalaín
- Institute of Research, Development, and Innovation in Healthcare Biotechnology (IDiBE), Universidad "Miguel Hernández", Elche-Alicante, Spain
| |
Collapse
|
13
|
Mannsverk S, Villamil Giraldo AM, Kasson PM. Influenza Virus Membrane Fusion Is Promoted by the Endosome-Resident Phospholipid Bis(monoacylglycero)phosphate. J Phys Chem B 2022; 126:10445-10451. [PMID: 36468619 PMCID: PMC9761668 DOI: 10.1021/acs.jpcb.2c06642] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The phospholipid bis(monoacylglycero)phosphate (BMP) is enriched in late endosomal and endolysosomal membranes and is believed to be involved in membrane deformation and generation of intralumenal vesicles within late endosomes. Previous studies have demonstrated that BMP promotes membrane fusion of several enveloped viruses, but a limited effect has been found on influenza virus. Here, we report the use of single-virus fusion assays to dissect BMP's effect on influenza virus fusion in greater depth. In agreement with prior reports, we found that hemifusion kinetics and efficiency were unaffected by the addition of 10-20 mol % BMP to the target membrane. However, using an assay for fusion pore formation and genome exposure, we found full fusion efficiency to be substantially enhanced by the addition of 10-20 mol % BMP to the target membrane, while the kinetics remained unaffected. By comparing BMP to other negatively charged phospholipids, we found the effect on fusion efficiency mainly attributable to headgroup charge, although we also hypothesize a role for BMP's unusual chemical structure. Our results suggest that BMP function as a permissive factor for a wider range of viruses than previously reported. We hypothesize that BMP may be a general cofactor for endosomal entry of enveloped viruses.
Collapse
Affiliation(s)
- Steinar Mannsverk
- Science
for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala 75124, Sweden
| | - Ana M. Villamil Giraldo
- Science
for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala 75124, Sweden
| | - Peter M. Kasson
- Science
for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala 75124, Sweden,Departments
of Molecular Physiology and Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22908, United States,
| |
Collapse
|
14
|
Haldar S. Recent Developments in Single-Virus Fusion Assay. J Membr Biol 2022; 255:747-755. [PMID: 36173449 DOI: 10.1007/s00232-022-00270-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 09/13/2022] [Indexed: 12/24/2022]
Abstract
Viral infection is a global health hazard. A crucial step in the infection cycle of enveloped viruses is the fusion of viral and host cellular membranes, which permits the transfer of the viral genome to the host cells. Membrane fusion is a ubiquitous process involved in sperm-egg fusion, exocytosis, vesicular trafficking, and viral entry to host cells. While different protein machineries catalyze the diverse fusion processes, the essential step, i.e., merging of two lipid bilayers against a kinetic energy barrier, is the same. Therefore, viral fusion machineries/pathways are not only the sites for antiviral drug development but also serve as model fusogens. Ensemble-based spectroscopic approaches or bulk fusion assays have yielded valuable insights regarding the fusion processes. However, due to the stochastic nature of the fusion events, ensemble-based assays do not permit synchronization of all the fusion events, and the molecular steps leading to fusion pore opening cannot be resolved entirely and correlated with the structural changes in viral fusion proteins. Several single-virus fusion assays have been developed to circumvent these issues. The review describes the recent advancements in single-virus/particle fusion assays using the Influenza virus as a paradigm.
Collapse
Affiliation(s)
- Sourav Haldar
- Division of Virus Research and Therapeutics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India. .,Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, India.
| |
Collapse
|
15
|
Villalaín J. Interaction of Lassa virus fusion and membrane proximal peptides with late endosomal membranes. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:184031. [PMID: 35964711 DOI: 10.1016/j.bbamem.2022.184031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/15/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Mammarenaviruses include many significant worldwide-widespread human pathogens, among them Lassa virus (LASV), having a dramatic morbidity and mortality rate. They are a potential high-risk menace to the worldwide public health since there are no treatments and there is a high possibility of animal-to-human and human-to-human viral transmission. These viruses enter into the cells by endocytosis fusing its membrane envelope with the late endosomal membrane thanks to the glycoprotein GP2, a membrane fusion protein of class I. This protein contains different domains, among them the N-terminal fusion peptide (NFP), the internal fusion loop (IFL), the membrane proximal external region (MPER) and the transmembrane domain (TMD). All these domains are implicated in the membrane fusion process. In this work, we have used an all-atom molecular dynamics study to know the binding of these protein domains with a complex membrane mimicking the late endosome one. We show that the NFP/IFL domain is capable of spontaneously inserting into the membrane without a significant change of secondary structure, the MPER domain locates at the bilayer interface with an orientation parallel to the membrane surface and tends to interact with other MPER domains, and the TMD domain tilts inside the bilayer. Moreover, they predominantly interact with negatively charged phospholipids. Overall, these membrane-interacting domains would characterise a target that would make possible to find effective antiviral molecules against LASV in particular and Mammarenaviruses in general.
Collapse
Affiliation(s)
- José Villalaín
- Institute of Research, Development, and Innovation in Healthcare Biotechnology (IDiBE), Universitas "Miguel Hernández", E-03202 Elche-Alicante, Spain.
| |
Collapse
|
16
|
Villalaín J. Procyanidin C1 Location, Interaction, and Aggregation in Two Complex Biomembranes. MEMBRANES 2022; 12:membranes12070692. [PMID: 35877895 PMCID: PMC9319219 DOI: 10.3390/membranes12070692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 06/29/2022] [Accepted: 07/04/2022] [Indexed: 01/25/2023]
Abstract
Procyanidins are known for their many benefits to human health and show a plethora of biological effects. One of the most important procyanidin is the procyanidin trimer C1 (PC1). Due to its relatively high lipid–water partition coefficient, the properties of PC1 could be attributed to its capability to interact with the biomembrane, to modulate its structure and dynamics, and to interact with lipids and proteins, however, its biological mechanism is not known. We have used all-atom molecular dynamics in order to determine the position of PC1 in complex membranes and the presence of its specific interactions with membrane lipids, having simulated a membrane mimicking the plasma membrane and another mimicking the mitochondrial membrane. PC1 has a tendency to be located at the membrane interphase, with part of the molecule exposed to the water solvent and part of it reaching the first carbons of the hydrocarbon chains. It has no preferred orientation, and it completely excludes the CHOL molecule. Remarkably, PC1 has a tendency to spontaneously aggregate, forming high-order oligomers. These data suggest that its bioactive properties could be attributed to its membranotropic effects, which therefore supports the development of these molecules as therapeutic molecules, which would open new opportunities for future medical advances.
Collapse
Affiliation(s)
- José Villalaín
- Institute of Research, Development, and Innovation in Healthcare Biotechnology (IDiBE), Universidad Miguel Hernández, E-03202 Elche, Spain
| |
Collapse
|
17
|
Merchant M, Mata CP, Liu Y, Zhai H, Protasio AV, Modis Y. A bioactive phlebovirus-like envelope protein in a hookworm endogenous virus. SCIENCE ADVANCES 2022; 8:eabj6894. [PMID: 35544562 PMCID: PMC9094657 DOI: 10.1126/sciadv.abj6894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 03/25/2022] [Indexed: 05/02/2023]
Abstract
Endogenous viral elements (EVEs), accounting for 15% of our genome, serve as a genetic reservoir from which new genes can emerge. Nematode EVEs are particularly diverse and informative of virus evolution. We identify Atlas virus-an intact retrovirus-like EVE in the human hookworm Ancylostoma ceylanicum, with an envelope protein genetically related to GN-GC glycoproteins from the family Phenuiviridae. A cryo-EM structure of Atlas GC reveals a class II viral membrane fusion protein fold not previously seen in retroviruses. Atlas GC has the structural hallmarks of an active fusogen. Atlas GC trimers insert into membranes with endosomal lipid compositions and low pH. When expressed on the plasma membrane, Atlas GC has cell-cell fusion activity. With its preserved biological activities, Atlas GC has the potential to acquire a cellular function. Our work reveals structural plasticity in reverse-transcribing RNA viruses.
Collapse
Affiliation(s)
- Monique Merchant
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge School of Clinical Medicine, Cambridge CB2 0AW, UK
| | - Carlos P. Mata
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge School of Clinical Medicine, Cambridge CB2 0AW, UK
| | - Yangci Liu
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge School of Clinical Medicine, Cambridge CB2 0AW, UK
| | - Haoming Zhai
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge School of Clinical Medicine, Cambridge CB2 0AW, UK
| | - Anna V. Protasio
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
- Christ’s College, University of Cambridge, St Andrew’s Street, Cambridge, CB2 3BU, UK
| | - Yorgo Modis
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge School of Clinical Medicine, Cambridge CB2 0AW, UK
| |
Collapse
|
18
|
Villalaín J. Envelope E protein of dengue virus and phospholipid binding to the late endosomal membrane. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183889. [PMID: 35167815 DOI: 10.1016/j.bbamem.2022.183889] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/11/2022] [Accepted: 02/07/2022] [Indexed: 02/06/2023]
Abstract
Flaviviruses include many significant human pathogens, comprising dengue, West Nile, Yellow fever, Japanese encephalitis, Zika and tick-borne encephalitis viruses and many others, affecting millions of people in the world. These viruses have produced important epidemics in the past, they continue to do it and they will undoubtedly continue to do so in the future. Flaviviruses enter into the cells via receptor-mediated endocytosis by fusing its membrane with the endosomal membrane in a pH-dependent manner with the help of the envelope E protein, a prototypical class II membrane fusion protein. The envelope E protein has a conserved fusion peptide at its distal end, which is responsible in the first instance of inserting the protein into the host membrane. Since the participation of other segments of the E protein in the fusion process should not be ruled out, we have used atomistic molecular dynamics to study the binding of the distal end of domain II of the envelope E protein from Dengue virus (DENV) with a complex membrane similar to the late-endosome one. Our work shows that not only the fusion peptide participates directly in the fusion, but also two other sequences of the protein, next to the fusion peptide it in the three-dimensional structure, are jointly wrapped in the fusion process. Overall, these three sequences represent a new target that would make it possible to obtain effective antivirals against DENV in particular and Flaviviruses in general.
Collapse
Affiliation(s)
- José Villalaín
- Institute of Research, Development, and Innovation in Healthcare Biotechnology (IDiBE), Universitas "Miguel Hernández", E-03202 Elche-Alicante, Spain.
| |
Collapse
|
19
|
Silin VI, Hoogerheide DP. pH dependent electrical properties of the inner- and outer- leaflets of biomimetic cell membranes. J Colloid Interface Sci 2021; 594:279-289. [PMID: 33765647 DOI: 10.1016/j.jcis.2021.03.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 02/16/2021] [Accepted: 03/03/2021] [Indexed: 10/21/2022]
Abstract
Composition and asymmetry of lipid membranes provide a means for regulation of trans-membrane permeability of ions and small molecules. The pH dependence of these processes plays an important role in the functioning and survival of cells. In this work, we study the pH dependence of membrane electrical resistance and capacitance using electrochemical impedance spectroscopy (EIS), surface plasmon resonance (SPR) and neutron reflectometry (NR) measurements of biomimetic tethered bilayer lipid membranes (tBLMs). tBLMs were prepared with single-component phospholipid compositions, as well as mixtures of phospholipids (phosphatidylcholine, phosphatidylserine, phosphatidylethanolamine, sphingomyelin and cholesterol) that mimic the inner- and outer- leaflets of plasma cell membranes. We found that all studied tBLMs have a resistance maximum at pHs near the pKas of the phospholipids. SPR and NR indicated that surface concentration of phospholipids and the thickness of the hydrophobic part of the membrane did not change versus pH. We postulate that these maxima are the result of protonation of the phosphate oxygen of the phospholipids and that hydronium ions play a major role in the conductance at pHs < pKas while sodium ions play the major role at pHs > pKas. An additional sharp resistance maximum of the PE tBLMs found at pH 5.9 and most likely represents the phosphatidylethanolamine's isoelectric point. The data show the key roles of the characteristic parts of phospholipid molecules: terminal group (choline, carboxyl, amine), phosphate, glycerol and ester oxygens on the permeability and selectivity of ions through the membrane. The interactions between these groups lead to significant differences in the electrical properties of biomimetic models of inner- and outer- leaflets of the plasma cell membranes.
Collapse
Affiliation(s)
- Vitalii I Silin
- University of Maryland, Institute for Bioscience and Biotechnology Research, Rockville MD 20850, USA.
| | - David P Hoogerheide
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| |
Collapse
|
20
|
Aggregation of 25-hydroxycholesterol in a complex biomembrane. Differences with cholesterol. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183413. [PMID: 32721397 DOI: 10.1016/j.bbamem.2020.183413] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 12/16/2022]
Abstract
25-Hydroxycholesterol (25HC), one of the most important oxysterol molecules, can be used by cells to fight bacterial and viral infections but the mechanism that defines its biological effects are unknown. Using molecular dynamics, we have aimed to describe the orientation and location of 25HC in the membrane as well as the interactions it might have with lipids. We have studied two complex model membrane systems, one similar to the late endosome membrane and the other one to the plasma membrane. Our results reinforce that 25HC is inserted in the membrane in a relative stable location similar to but not identical to cholesterol. 25HC fluctuates in the membrane to a much greater degree than cholesterol, but the effect of 25HC on the phospholipid order parameters is not significantly different. One of the most notable facts about 25HC is that, unlike cholesterol, this molecule tends to aggregate, forming dimers, trimers and higher-order aggregates. These aggregates are formed spontaneously through the formation of hydrogen bonds between the two 25HC atoms, the formation of hydrogen bonds being independent of the studied system. Remarkably, no contacts or hydrogen bonds are observed between 25HC and cholesterol molecules, as well as between cholesterol molecules themselves at any time. It would be conceivable that 25HC, by forming high order aggregates without significantly altering the membrane properties, would modify the way proteins interact with the membrane and henceforth form a true innate antiviral molecule.
Collapse
|
21
|
Hirsch J, Faber BW, Crowe JE, Verstrepen B, Cornelissen G. E. coli production process yields stable dengue 1 virus-sized particles (VSPs). Vaccine 2020; 38:3305-3312. [PMID: 32197924 DOI: 10.1016/j.vaccine.2020.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 02/26/2020] [Accepted: 03/02/2020] [Indexed: 12/25/2022]
Abstract
Dengue fever is one of the most wide-spread vector-borne diseases in the world. Although dengue-associated mortality is low, morbidity and economic impact are high. Current licensed vaccines are limited and mediate only partial protection, thus a cost-effective vaccine with improved efficacy is strongly needed. In this work, recombinant dengue serotype 1 E protein was produced in E. coli, inclusion bodies were isolated and the E protein solubilized in urea and purified using an immobilized metal chelate affinity column. The protein was refolded by dialysis in order to obtain virus-like particles (VLPs). Particle assembly was confirmed using size-exclusion chromatography, dynamic light scattering (DLS), transmission electron microscopy (TEM), atomic force microscopy and stimulated emission depletion fluorescence (STED) microscopy. Particle diameter was strongly dependent on temperature, pH, buffer salt composition, and addition of L-arginine. Particles were stable in carbonate buffer at pH 9.5 and higher at 4 °C and did not aggregate during short-term temperature increase up to 55 °C. However, on basis of the above analyses, especially the results of DLS, TEM and STED, it was concluded that the particles obtained did not have an optimal virus-like structure and were therefore designated "virus-sized particles" (VSPs) rather than VLPs. Immunization of rabbits with the particles did not induce neutralizing antibodies, despite the recognition of the native virus by rabbit antibodies. As the titers against the immunogen were much higher than against the (heat-inactivated) virus, it is assumed that the conformation of the particles at the time of immunization was not optimal. Studies are currently underway to improve the quality of the E protein virus-sized particles towards true virus-like particles in order to optimize its potential as a dengue vaccine candidate.
Collapse
Affiliation(s)
- Janet Hirsch
- Hamburg University of Applied Sciences, Ulmenliet 20, 21033 Hamburg, Germany.
| | - Bart W Faber
- Department of Parasitology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, the Netherlands.
| | - James E Crowe
- Departments of Pediatrics and Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, 2213 Garland Avenue, Nashville, TN 37232-0417, USA.
| | - Babs Verstrepen
- Department of Virology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, the Netherlands.
| | - Gesine Cornelissen
- Hamburg University of Applied Sciences, Ulmenliet 20, 21033 Hamburg, Germany.
| |
Collapse
|
22
|
Carpio LE, Villalaín J. Identification of the phospholipid binding regions of the envelope E protein of flaviviruses by molecular dynamics. J Biomol Struct Dyn 2019; 38:5136-5147. [PMID: 31779533 DOI: 10.1080/07391102.2019.1697368] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The Flavivirus genus comprise several important human pathogens, including dengue, West Nile, Yellow fever, Japanese encephalitis, Zika, and tick-borne encephalitis viruses. These enveloped viruses affect more than 2 billion people in the world, mainly in less developed countries. Although some vaccines exist for some flaviviruses, these vaccines are not universally available due to many factors and since their infections are a world-wide public health issue, the development of antiviral molecules is fundamental. Flavivirus membranes, through the help of the envelope E glycoprotein, fuse with endosomal compartments in a pH-dependent way to release their genome into the cytoplasm and require specific lipids, such as bis(monoacylglycero)phosphate (BMP), for efficient fusion. The fundamental role the envelope E protein has on viral entry and membrane fusion suggest that it is an essential antiviral target. In this work, we have used atomistic molecular dynamics simulations to study the binding of the head-group of BMP to the tip of the envelope E proteins of ZIKV, DENV, TBEV and JEV viruses whose three-dimensional structures are known. Our results indicate that, apart from the fusion loop, there are different amino acid residues in different regions of the envelope E proteins of flaviviruses capable of binding the head-group of BMP. These regions should work together to accomplish the binding and fusion of the envelope and endosomal membranes and represent a new target to develop and design potent and effective antiviral agents capable of blocking flavivirus-endosome membrane fusion. [Formula: see text].
Collapse
Affiliation(s)
- Laureano E Carpio
- Molecular and Cellular Biology Institute (IBMC) and Institute of Research, Development, and Innovation in Healthcare Biotechnology (IDiBE), Universidad 'Miguel Hernández', Elche-Alicante, Spain
| | - José Villalaín
- Molecular and Cellular Biology Institute (IBMC) and Institute of Research, Development, and Innovation in Healthcare Biotechnology (IDiBE), Universidad 'Miguel Hernández', Elche-Alicante, Spain
| |
Collapse
|
23
|
Zika virus-like particles (VLPs): Stable cell lines and continuous perfusion processes as a new potential vaccine manufacturing platform. Vaccine 2019; 37:6970-6977. [DOI: 10.1016/j.vaccine.2019.05.064] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 04/11/2019] [Accepted: 05/22/2019] [Indexed: 12/16/2022]
|
24
|
Abstract
BACKGROUND The flaviviridae family comprises single-stranded RNA viruses that enter cells via clathrin-mediated pH-dependent endocytosis. Although the initial events of the virus entry have been already identified, data regarding intracellular virus trafficking and delivery to the replication site are limited. The purpose of this study was to map the transport route of Zika virus and to identify the fusion site within the endosomal compartment. METHODS Tracking of viral particles in the cell was carried out with confocal microscopy. Immunostaining of two structural proteins of Zika virus enabled precise mapping of the route of the ribonucleocapsid and the envelope and, consequently, mapping the fusion site in the endosomal compartment. The results were verified using RNAi silencing and chemical inhibitors. RESULTS After endocytic internalization, Zika virus is trafficked through the endosomal compartment to fuse in late endosomes. Inhibition of endosome acidification using bafilomycin A1 hampers the infection, as the fusion is inhibited; instead, the virus is transported to late compartments where it undergoes proteolytic degradation. The degradation products are ejected from the cell via slow recycling vesicles. Surprisingly, NH4Cl, which is also believed to block endosome acidification, shows a very different mode of action. In the presence of this basic compound, the endocytic hub is reprogrammed. Zika virus-containing vesicles never reach the late stage, but are rapidly trafficked to the plasma membrane via a fast recycling pathway after the clathrin-mediated endocytosis. Further, we also noted that, similarly as other members of the flaviviridae family, Zika virus undergoes furin- or furin-like-dependent activation during late steps of infection, while serine or cysteine proteases are not required for Zika virus maturation or entry. CONCLUSIONS Zika virus fusion occurs in late endosomes and is pH-dependent. These results broaden our understanding of Zika virus intracellular trafficking and may in future allow for development of novel treatment strategies. Further, we identified a novel mode of action for agents commonly used in studies of virus entry. Schematic representation of differences in ZIKV trafficking in the presence of Baf A1 and NH4Cl.
Collapse
|
25
|
Rawle RJ, Webster ER, Jelen M, Kasson PM, Boxer SG. pH Dependence of Zika Membrane Fusion Kinetics Reveals an Off-Pathway State. ACS CENTRAL SCIENCE 2018; 4:1503-1510. [PMID: 30555902 PMCID: PMC6276045 DOI: 10.1021/acscentsci.8b00494] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Indexed: 05/20/2023]
Abstract
The recent spread of Zika virus stimulated extensive research on its structure, pathogenesis, and immunology, but mechanistic study of entry has lagged behind, in part due to the lack of a defined reconstituted system. Here, we report Zika membrane fusion measured using a platform that bypasses these barriers, enabling observation of single-virus fusion kinetics without receptor reconstitution. Surprisingly, target membrane binding and low pH are sufficient to trigger viral hemifusion to liposomes containing only neutral lipids. Second, although the extent of hemifusion strongly depends on pH, hemifusion rates are relatively insensitive to pH. Kinetic analysis shows that an off-pathway state is required to capture this pH-dependence and suggests this may be related to viral inactivation. Our surrogate-receptor approach thus yields new understanding of flaviviral entry mechanisms and should be applicable to many emerging viruses.
Collapse
Affiliation(s)
- Robert J. Rawle
- Departments of Molecular
Physiology and Biological Physics and of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22908, United States
| | - Elizabeth R. Webster
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Marta Jelen
- Departments of Molecular
Physiology and Biological Physics and of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22908, United States
| | - Peter M. Kasson
- Departments of Molecular
Physiology and Biological Physics and of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22908, United States
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden 75124
- (P.M.K.) E-mail:
| | - Steven G. Boxer
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
- (S.G.B.) E-mail: . Address: 380
Roth Way, Stanford CA 94305-5012. Phone: 650-723-4442
| |
Collapse
|
26
|
Villalaín J. Epigallocatechin-3-gallate location and interaction with late endosomal and plasma membrane model membranes by molecular dynamics. J Biomol Struct Dyn 2018; 37:3122-3134. [PMID: 30081748 DOI: 10.1080/07391102.2018.1508372] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Epigallocatechin-3-gallate (EGCG) is the most abundant polyphenol in green tea and it has been reported to have many beneficial properties against many different types of illnesses and infections. However, the exact mechanism/s underlying its biological effects are unknown. It has been previously shown that EGCG is capable of binding to and disrupting the membrane, so that some of its effects on biological systems could be ascribed to its capacity to incorporate into the biological membrane and modulate its structure. In this work, we have used atomistic molecular dynamics (MD) to discern the location and orientation of EGCG in model membranes and the possible existence of specific interactions with membrane lipids. For that goal, we have used in our simulation two complex model membranes, one resembling the plasma membrane (PM) and the other one the late endosome (LE) membrane. Our results support that EGCG tends to associate with the membrane and exists inside it in a relatively stable and steady location with a low propensity to be associated with other EGCG molecules. Interestingly, EGCG forms hydrogen bonds with POPC and POPE in the PM system but POPC and BMP and no POPE in the LE. These data suggest that the broad beneficial effects of EGCG could be mediated, at least in part, through its membranotropic effects and therefore membrane functioning. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- José Villalaín
- a Molecular and Cellular Biology Institute (IBMC) and Institute for Biotechnological Research, Development and Innovation (IDiBE) , Universitas "Miguel Hernández" , Alicante , Spain
| |
Collapse
|
27
|
An Envelope-Modified Tetravalent Dengue Virus-Like-Particle Vaccine Has Implications for Flavivirus Vaccine Design. J Virol 2017; 91:JVI.01181-17. [PMID: 28956764 DOI: 10.1128/jvi.01181-17] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 09/09/2017] [Indexed: 12/30/2022] Open
Abstract
Dengue viruses (DENV) infect 50 to 100 million people each year. The spread of DENV-associated infections is one of the most serious public health problems worldwide, as there is no widely available vaccine or specific therapeutic for DENV infections. To address this, we developed a novel tetravalent dengue vaccine by utilizing virus-like particles (VLPs). We created recombinant DENV1 to -4 (DENV1-4) VLPs by coexpressing precursor membrane (prM) and envelope (E) proteins, with an F108A mutation in the fusion loop structure of E to increase the production of VLPs in mammalian cells. Immunization with DENV1-4 VLPs as individual, monovalent vaccines elicited strong neutralization activity against each DENV serotype in mice. For use as a tetravalent vaccine, DENV1-4 VLPs elicited high levels of neutralization activity against all four serotypes simultaneously. The neutralization antibody responses induced by the VLPs were significantly higher than those with DNA or recombinant E protein immunization. Moreover, antibody-dependent enhancement (ADE) was not observed against any serotype at a 1:10 serum dilution. We also demonstrated that the Zika virus (ZIKV) VLP production level was enhanced by introducing the same F108A mutation into the ZIKV envelope protein. Taken together, these results suggest that our strategy for DENV VLP production is applicable to other flavivirus VLP vaccine development, due to the similarity in viral structures, and they describe the promising development of an effective tetravalent vaccine against the prevalent flavivirus.IMPORTANCE Dengue virus poses one of the most serious public health problems worldwide, and the incidence of diseases caused by the virus has increased dramatically. Despite decades of effort, there is no effective treatment against dengue. A safe and potent vaccine against dengue is still needed. We developed a novel tetravalent dengue vaccine by using virus-like particles (VLPs), which are noninfectious because they lack the viral genome. Previous attempts of other groups to use dengue VLPs resulted in generally poor yields. We found that a critical amino acid mutation in the envelope protein enhances the production of VLPs. Our tetravalent vaccine elicited potent neutralizing antibody responses against all four DENV serotypes. Our findings can also be applied to vaccine development against other flaviviruses, such as Zika virus or West Nile virus.
Collapse
|
28
|
Structure of a phleboviral envelope glycoprotein reveals a consolidated model of membrane fusion. Proc Natl Acad Sci U S A 2016; 113:7154-9. [PMID: 27325770 DOI: 10.1073/pnas.1603827113] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
An emergent viral pathogen termed severe fever with thrombocytopenia syndrome virus (SFTSV) is responsible for thousands of clinical cases and associated fatalities in China, Japan, and South Korea. Akin to other phleboviruses, SFTSV relies on a viral glycoprotein, Gc, to catalyze the merger of endosomal host and viral membranes during cell entry. Here, we describe the postfusion structure of SFTSV Gc, revealing that the molecular transformations the phleboviral Gc undergoes upon host cell entry are conserved with otherwise unrelated alpha- and flaviviruses. By comparison of SFTSV Gc with that of the prefusion structure of the related Rift Valley fever virus, we show that these changes involve refolding of the protein into a trimeric state. Reverse genetics and rescue of site-directed histidine mutants enabled localization of histidines likely to be important for triggering this pH-dependent process. These data provide structural and functional evidence that the mechanism of phlebovirus-host cell fusion is conserved among genetically and patho-physiologically distinct viral pathogens.
Collapse
|
29
|
White JM, Whittaker GR. Fusion of Enveloped Viruses in Endosomes. Traffic 2016; 17:593-614. [PMID: 26935856 PMCID: PMC4866878 DOI: 10.1111/tra.12389] [Citation(s) in RCA: 282] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Revised: 02/25/2016] [Accepted: 02/25/2016] [Indexed: 12/12/2022]
Abstract
Ari Helenius launched the field of enveloped virus fusion in endosomes with a seminal paper in the Journal of Cell Biology in 1980. In the intervening years, a great deal has been learned about the structures and mechanisms of viral membrane fusion proteins as well as about the endosomes in which different enveloped viruses fuse and the endosomal cues that trigger fusion. We now recognize three classes of viral membrane fusion proteins based on structural criteria and four mechanisms of fusion triggering. After reviewing general features of viral membrane fusion proteins and viral fusion in endosomes, we delve into three characterized mechanisms for viral fusion triggering in endosomes: by low pH, by receptor binding plus low pH and by receptor binding plus the action of a protease. We end with a discussion of viruses that may employ novel endosomal fusion‐triggering mechanisms. A key take‐home message is that enveloped viruses that enter cells by fusing in endosomes traverse the endocytic pathway until they reach an endosome that has all of the environmental conditions (pH, proteases, ions, intracellular receptors and lipid composition) to (if needed) prime and (in all cases) trigger the fusion protein and to support membrane fusion.
Collapse
Affiliation(s)
- Judith M White
- Department of Cell Biology, University of Virginia, Charlottesville, VA, USA
| | - Gary R Whittaker
- Department of Microbiology & Immunology, Cornell University, Ithaca, NY, USA
| |
Collapse
|