1
|
Zubair A, Sujan A, Ali M, Hussain SM. Current Challenges With Highly Active Antiretroviral Therapy and New Hope and Horizon With CRISPR-CAS9 Technology for HIV Treatment. Chem Biol Drug Des 2025; 105:e70121. [PMID: 40356298 DOI: 10.1111/cbdd.70121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 04/18/2025] [Accepted: 04/28/2025] [Indexed: 05/15/2025]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR/Cas system) is now the predominant approach for genome editing. Compared to conventional genetic editing methods, CRISPR/Cas technology offers several advantages that were previously unavailable. Key benefits include the ability to simultaneously modify multiple locations, reduced costs, enhanced efficiency, and a more user-friendly design. By directing Cas-mediated DNA cleavage to specific genomic targets and utilizing intrinsic DNA repair processes, this system can produce site-specific gene modifications. This goal is achieved through an RNA-guided procedure. As the most effective gene editing method currently available, the CRISPR/Cas system has proven to be highly valuable in genomic research across a wide range of species since its discovery as a component of the adaptive immune system in bacteria. Its applicability extends to various organisms, making it increasingly prevalent in the medical field, where it shows great promise in investigating viral infections, cancer, and genetic disorders. Furthermore, it enhances our understanding of fundamental genetics. This article outlines the current antiretroviral therapy and its adverse effects but also CRISPR/Cas technology. This review article also discusses its mechanism of action and potential applications in the treatment of HIV/AIDS.
Collapse
Affiliation(s)
- Akmal Zubair
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Arooba Sujan
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Ali
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Syeda Maryam Hussain
- Department of Livestock Production and Management, Faculty of Veterinary and Animal Sciences PIR Mehr Ali Shah-Arid Agriculture University, Rawalpindi, Punjab, Pakistan
| |
Collapse
|
2
|
Saiprayong K, Chupradit K, Sasithong P, Suwanpitak S, Muneekaew S, Thongsin N, Srisantitham J, Wattanapanitch M. Development of 2LTRZFP-expressing induced pluripotent stem cells as a potential anti-HIV-1 gene therapy against viral integration. J Leukoc Biol 2025; 117:qiaf018. [PMID: 39946247 DOI: 10.1093/jleuko/qiaf018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 11/29/2024] [Accepted: 02/12/2025] [Indexed: 04/26/2025] Open
Abstract
Highly active antiretroviral drug is the standard treatment for HIV-1 infection to suppress the viral load. However, this treatment does not completely eradicate the virus; it simply decreases the viral load to undetectable levels. The development of a novel therapy to cure the disease is essential. Previously, we developed an engineered zinc finger protein (ZFP) that specifically binds to the 2-LTR-circle junction (2LTRZFP), the target site for viral integrase, preventing HIV-1 integration in human CD34+ hematopoietic stem/progenitor cells (HSPCs) and macrophages. Although the transduction efficiency of 2LTRZFP was ∼50%, purifying and expanding the 2LTRZFP-expressing HSPCs proved difficult. In addition, the batch-to-batch variability in transduction efficiency could have a major impact on the therapeutic efficacy. In this study, we introduced the 2LTRZFP into human induced pluripotent stem cells (iPSCs) followed by clonal isolation and functional validation of the 2LTRZFP. Upon the HIV-1 challenge, the 2LTRZFP protein was found to inhibit the viral integration in iPSCs, iPSC-derived HSPCs, and macrophages. The engineered iPSC clone could be differentiated into functional macrophages, as evidenced by M1 and M2 polarization, and phagocytosis. Our finding revealed that the 2LTRZFP did not perturb the macrophage differentiation process. Therefore, the 2LTRZFP-expressing iPSCs could provide an unlimited supply of HIV-1-resistant HSPCs for transplantation, potentially leading to HIV-1-resistant blood cells. The knowledge obtained from this study will provide a cornerstone for HIV-1 gene therapy using HSPC transplantation as a sustainable HIV-1 treatment in the future.
Collapse
Affiliation(s)
- Kritayaporn Saiprayong
- Siriraj Center for Regenerative Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Rd, Bangkok 10700, Thailand
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Rd, Bangkok 10700, Thailand
| | - Koollawat Chupradit
- Siriraj Center for Regenerative Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Rd, Bangkok 10700, Thailand
| | - Pasut Sasithong
- Siriraj Center for Regenerative Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Rd, Bangkok 10700, Thailand
- Biomedical Sciences Graduate Program, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Rd, Bangkok 10700, Thailand
| | - Siriwal Suwanpitak
- Siriraj Center for Regenerative Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Rd, Bangkok 10700, Thailand
| | - Saitong Muneekaew
- Siriraj Center for Regenerative Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Rd, Bangkok 10700, Thailand
| | - Nontaphat Thongsin
- Siriraj Center for Regenerative Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Rd, Bangkok 10700, Thailand
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Rd, Bangkok 10700, Thailand
| | - Jakkrapatra Srisantitham
- Siriraj Center for Regenerative Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Rd, Bangkok 10700, Thailand
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Rd, Bangkok 10700, Thailand
| | - Methichit Wattanapanitch
- Siriraj Center for Regenerative Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Rd, Bangkok 10700, Thailand
| |
Collapse
|
3
|
Barber HM, Pater AA, Gagnon KT, Damha MJ, O'Reilly D. Chemical engineering of CRISPR-Cas systems for therapeutic application. Nat Rev Drug Discov 2025; 24:209-230. [PMID: 39690326 DOI: 10.1038/s41573-024-01086-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2024] [Indexed: 12/19/2024]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) technology has transformed molecular biology and the future of gene-targeted therapeutics. CRISPR systems comprise a CRISPR-associated (Cas) endonuclease and a guide RNA (gRNA) that can be programmed to guide sequence-specific binding, cleavage, or modification of complementary DNA or RNA. However, the application of CRISPR-based therapeutics is challenged by factors such as molecular size, prokaryotic or phage origins, and an essential gRNA cofactor requirement, which impact efficacy, delivery and safety. This Review focuses on chemical modification and engineering approaches for gRNAs to enhance or enable CRISPR-based therapeutics, emphasizing Cas9 and Cas12a as therapeutic paradigms. Issues that chemically modified gRNAs seek to address, including drug delivery, physiological stability, editing efficiency and off-target effects, as well as challenges that remain, are discussed.
Collapse
Affiliation(s)
- Halle M Barber
- Department of Chemistry, McGill University, Montreal, Quebec, Canada
| | - Adrian A Pater
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Keith T Gagnon
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
| | - Masad J Damha
- Department of Chemistry, McGill University, Montreal, Quebec, Canada.
| | - Daniel O'Reilly
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA.
- Sealy Institute for Drug Discovery, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
4
|
Borrajo A. Breaking Barriers to an HIV-1 Cure: Innovations in Gene Editing, Immune Modulation, and Reservoir Eradication. Life (Basel) 2025; 15:276. [PMID: 40003685 PMCID: PMC11856976 DOI: 10.3390/life15020276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 02/04/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
Recent advances in virology, particularly in the study of HIV-1, have significantly progressed the pursuit of a definitive cure for the disease. Emerging therapeutic strategies encompass innovative gene-editing technologies, immune-modulatory interventions, and next-generation antiretroviral agents. Efforts to eliminate or control viral reservoirs have also gained momentum, with the aim of achieving durable viral remission without the continuous requirement for antiretroviral therapy. Despite these promising developments, critical challenges persist in bridging the gap between laboratory findings and clinical implementation. This review provides a comprehensive analysis of recent breakthroughs, ongoing clinical trials, and the barriers that must be addressed to translate these advancements into effective treatments, emphasizing the multifaceted approaches being pursued to achieve a curative solution for HIV-1 infection.
Collapse
Affiliation(s)
- Ana Borrajo
- Department of Microbiology and Parasitology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
5
|
Yukselten Y, Wishah H, Li JA, Sutton RE. Targeting CCR5: A central approach to HIV treatment and cure strategies. Virology 2025; 603:110375. [PMID: 39729963 DOI: 10.1016/j.virol.2024.110375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/09/2024] [Accepted: 12/20/2024] [Indexed: 12/29/2024]
Abstract
CCR5, a co-receptor critical for R5-tropic HIV entry into host cells, remains a key target for therapeutic interventions. HIV utilizes CCR5, expressed on T cells and macrophages, to facilitate viral entry. Genetic variants, such as the CCR5Δ32 homozygous mutation that confers protection to HIV infection, have made CCR5 a main target for gene-editing technologies, small-molecule inhibitors, and monoclonal antibody-based therapies. Recent studies emphasize the importance of regulating CCR5 expression at transcriptional and post-transcriptional levels and integrating this approach with traditional therapies. Particularly, the role of heterozygous CCR5Δ32 carriers who are HIV seropositive highlights the potential for targeting CCR5 in combination with other immune-regulatory mechanisms. This may lead to more effective treatment strategies and, ultimately, a functional cure for HIV. This minireview discusses the role of CCR5 in HIV pathogenesis and explores the potential of genetic and therapeutic interventions targeting CCR5 as an innovative strategy in the continued battle against HIV.
Collapse
Affiliation(s)
- Yunus Yukselten
- Section of Infectious Diseases, Department of Internal Medicine, Yale University, New Haven, CT, United States
| | - Hanan Wishah
- Section of Infectious Diseases, Department of Internal Medicine, Yale University, New Haven, CT, United States
| | - Jessica A Li
- Section of Infectious Diseases, Department of Internal Medicine, Yale University, New Haven, CT, United States
| | - Richard E Sutton
- Section of Infectious Diseases, Department of Internal Medicine, Yale University, New Haven, CT, United States.
| |
Collapse
|
6
|
Boomgarden AC, Upadhyay C. Progress and Challenges in HIV-1 Vaccine Research: A Comprehensive Overview. Vaccines (Basel) 2025; 13:148. [PMID: 40006695 PMCID: PMC11860913 DOI: 10.3390/vaccines13020148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/20/2025] [Accepted: 01/28/2025] [Indexed: 02/27/2025] Open
Abstract
The development of an effective HIV-1 vaccine remains a formidable challenge in biomedical research. Despite significant advancements in our understanding of HIV biology and pathogenesis, progress has been impeded by factors such as the virus's genetic diversity, high mutation rates, and its ability to establish latent reservoirs. Recent innovative approaches, including mosaic vaccines and mRNA technology to induce broadly neutralizing antibodies, have shown promise. However, the efficacy of these vaccines has been modest, with the best results achieving approximately 30% effectiveness. Ongoing research emphasizes the necessity of a multifaceted strategy to overcome these obstacles and achieve a breakthrough in HIV-1 vaccine development. This review summarizes current approaches utilized to further understand HIV-1 biology and to create a global vaccine. We discuss the impact of these approaches on vaccine development for other diseases, including COVID-19, influenza, and Zika virus. Additionally, we highlight the specific limitations faced with each approach and present the methods researchers employ to overcome these challenges. These innovative techniques, which have demonstrated preclinical and clinical success, have advanced the field closer to the ultimate goal of developing a global HIV-1 vaccine. Leveraging these advancements will enable significant strides in combating HIV-1 and other infectious diseases, ultimately improving global health outcomes.
Collapse
Affiliation(s)
| | - Chitra Upadhyay
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| |
Collapse
|
7
|
Kaupbayeva B, Tsoy A, Safarova (Yantsen) Y, Nurmagambetova A, Murata H, Matyjaszewski K, Askarova S. Unlocking Genome Editing: Advances and Obstacles in CRISPR/Cas Delivery Technologies. J Funct Biomater 2024; 15:324. [PMID: 39590528 PMCID: PMC11595195 DOI: 10.3390/jfb15110324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/28/2024] Open
Abstract
CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats associated with protein 9) was first identified as a component of the bacterial adaptive immune system and subsequently engineered into a genome-editing tool. The key breakthrough in this field came with the realization that CRISPR/Cas9 could be used in mammalian cells to enable transformative genetic editing. This technology has since become a vital tool for various genetic manipulations, including gene knockouts, knock-in point mutations, and gene regulation at both transcriptional and post-transcriptional levels. CRISPR/Cas9 holds great potential in human medicine, particularly for curing genetic disorders. However, despite significant innovation and advancement in genome editing, the technology still possesses critical limitations, such as off-target effects, immunogenicity issues, ethical considerations, regulatory hurdles, and the need for efficient delivery methods. To overcome these obstacles, efforts have focused on creating more accurate and reliable Cas9 nucleases and exploring innovative delivery methods. Recently, functional biomaterials and synthetic carriers have shown great potential as effective delivery vehicles for CRISPR/Cas9 components. In this review, we attempt to provide a comprehensive survey of the existing CRISPR-Cas9 delivery strategies, including viral delivery, biomaterials-based delivery, synthetic carriers, and physical delivery techniques. We underscore the urgent need for effective delivery systems to fully unlock the power of CRISPR/Cas9 technology and realize a seamless transition from benchtop research to clinical applications.
Collapse
Affiliation(s)
- Bibifatima Kaupbayeva
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan
| | - Andrey Tsoy
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan
| | - Yuliya Safarova (Yantsen)
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan
| | | | - Hironobu Murata
- Chemistry Department, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Krzysztof Matyjaszewski
- Chemistry Department, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Department of Molecular Physics, Faculty of Chemistry, Lodz University of Technology, 90-924 Łódź, Poland
| | - Sholpan Askarova
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan
| |
Collapse
|
8
|
Hiner CR, Mueller AL, Su H, Goldstein H. Interventions during Early Infection: Opening a Window for an HIV Cure? Viruses 2024; 16:1588. [PMID: 39459922 PMCID: PMC11512236 DOI: 10.3390/v16101588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/05/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Although combination antiretroviral therapy (ART) has been a landmark achievement for the treatment of human immunodeficiency virus (HIV), an HIV cure has remained elusive. Elimination of latent HIV reservoirs that persist throughout HIV infection is the most challenging barrier to an HIV cure. The progressive HIV infection is marked by the increasing size and diversity of latent HIV reservoirs until an effective immune response is mobilized, which can control but not eliminate HIV infection. The stalemate between HIV replication and the immune response is manifested by the establishment of a viral set point. ART initiation during the early stage limits HIV reservoir development, preserves immune function, improves the quality of life, and may lead to ART-free viral remission in a few people living with HIV (PLWH). However, for the overwhelming majority of PLWH, early ART initiation alone does not cure HIV, and lifelong ART is needed to sustain viral suppression. A critical area of research is focused on determining whether HIV could be functionally cured if additional treatments are provided alongside early ART. Several HIV interventions including Block and Lock, Shock and Kill, broadly neutralizing antibody (bNAb) therapy, adoptive CD8+ T cell therapy, and gene therapy have demonstrated delayed viral rebound and/or viral remission in animal models and/or some PLWH. Whether or not their application during early infection can improve the success of HIV remission is less studied. Herein, we review the current state of clinical and investigative HIV interventions and discuss their potential to improve the likelihood of post-treatment remission if initiated during early infection.
Collapse
Affiliation(s)
- Christopher R. Hiner
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (C.R.H.); (A.L.M.)
| | - April L. Mueller
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (C.R.H.); (A.L.M.)
| | - Hang Su
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (C.R.H.); (A.L.M.)
| | - Harris Goldstein
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (C.R.H.); (A.L.M.)
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
9
|
Chou TC, Maggirwar NS, Marsden MD. HIV Persistence, Latency, and Cure Approaches: Where Are We Now? Viruses 2024; 16:1163. [PMID: 39066325 PMCID: PMC11281696 DOI: 10.3390/v16071163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/13/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
The latent reservoir remains a major roadblock to curing human immunodeficiency virus (HIV) infection. Currently available antiretroviral therapy (ART) can suppress active HIV replication, reduce viral loads to undetectable levels, and halt disease progression. However, antiretroviral drugs are unable to target cells that are latently infected with HIV, which can seed viral rebound if ART is stopped. Consequently, a major focus of the field is to study the latent viral reservoir and develop safe and effective methods to eliminate it. Here, we provide an overview of the major mechanisms governing the establishment and maintenance of HIV latency, the key challenges posed by latent reservoirs, small animal models utilized to study HIV latency, and contemporary cure approaches. We also discuss ongoing efforts to apply these approaches in combination, with the goal of achieving a safe, effective, and scalable cure for HIV that can be extended to the tens of millions of people with HIV worldwide.
Collapse
Affiliation(s)
- Tessa C. Chou
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, CA 92617, USA; (T.C.C.); (N.S.M.)
| | - Nishad S. Maggirwar
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, CA 92617, USA; (T.C.C.); (N.S.M.)
| | - Matthew D. Marsden
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, CA 92617, USA; (T.C.C.); (N.S.M.)
- Department of Medicine, Division of Infectious Disease, School of Medicine, University of California, Irvine, CA 92617, USA
| |
Collapse
|
10
|
Ni F, Hu K, Li M, Yang M, Xiao Y, Fu M, Zhu Z, Liu Y, Hu Q. Tat-dependent conditionally replicating adenoviruses expressing diphtheria toxin A for specifically killing HIV-1-infected cells. Mol Ther 2024; 32:2316-2327. [PMID: 38734901 PMCID: PMC11286811 DOI: 10.1016/j.ymthe.2024.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 02/19/2024] [Accepted: 05/09/2024] [Indexed: 05/13/2024] Open
Abstract
HIV-1 infection remains a public health problem with no cure. Although antiretroviral therapy (ART) is effective for suppressing HIV-1 replication, it requires lifelong drug administration due to a stable reservoir of latent proviruses and may cause serious side effects and drive the emergence of drug-resistant HIV-1 variants. Gene therapy represents an alternative approach to overcome the limitations of conventional treatments against HIV-1 infection. In this study, we constructed and investigated the antiviral effects of an HIV-1 Tat-dependent conditionally replicating adenovirus, which selectively replicates and expresses the diphtheria toxin A chain (Tat-CRAds-DTA) in HIV-1-infected cells both in vitro and in vivo. We found that Tat-CRAds-DTA could specifically induce cell death and inhibit virus replication in HIV-1-infected cells mediated by adenovirus proliferation and DTA expression. A low titer of progeny Tat-CRAds-DTA was also detected in HIV-1-infected cells. In addition, Tat-CRAds-DTA showed no apparent cytotoxicity to HIV-1-negative cells and demonstrated significant therapeutic efficacy against HIV-1 infection in a humanized mouse model. The findings in this study highlight the potential of Tat-CRAds-DTA as a new gene therapy for the treatment of HIV-1 infection.
Collapse
Affiliation(s)
- Fengfeng Ni
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, P.R. China; Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, P.R. China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Kai Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, P.R. China
| | - Miaomiao Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, P.R. China; Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, P.R. China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Mengshi Yang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, P.R. China
| | - Yingying Xiao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, P.R. China
| | - Ming Fu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, P.R. China
| | - Zhiyuan Zhu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, P.R. China; Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, P.R. China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Yalan Liu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, P.R. China; Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, P.R. China; Hubei Jiangxia Laboratory, Wuhan 430200, P.R. China.
| | - Qinxue Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, P.R. China; Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, P.R. China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, P.R. China.
| |
Collapse
|
11
|
Park A, Lee JY. Adenoviral Vector System: A Comprehensive Overview of Constructions, Therapeutic Applications and Host Responses. J Microbiol 2024; 62:491-509. [PMID: 39037484 DOI: 10.1007/s12275-024-00159-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/26/2024] [Accepted: 07/04/2024] [Indexed: 07/23/2024]
Abstract
Adenoviral vectors are crucial for gene therapy and vaccine development, offering a platform for gene delivery into host cells. Since the discovery of adenoviruses, first-generation vectors with limited capacity have evolved to third-generation vectors flacking viral coding sequences, balancing safety and gene-carrying capacity. The applications of adenoviral vectors for gene therapy and anti-viral treatments have expanded through the use of in vitro ligation and homologous recombination, along with gene editing advancements such as CRISPR-Cas9. Current research aims to maintain the efficacy and safety of adenoviral vectors by addressing challenges such as pre-existing immunity against adenoviral vectors and developing new adenoviral vectors from rare adenovirus types and non-human species. In summary, adenoviral vectors have great potential in gene therapy and vaccine development. Through continuous research and technological advancements, these vectors are expected to lead to the development of safer and more effective treatments.
Collapse
Affiliation(s)
- Anyeseu Park
- The Laboratory of Viromics and Evolution, Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, 54531, Republic of Korea
| | - Jeong Yoon Lee
- The Laboratory of Viromics and Evolution, Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, 54531, Republic of Korea.
| |
Collapse
|
12
|
Banda A, Impomeni O, Singh A, Baloch AR, Hu W, Jaijyan DK. Precision in Action: The Role of Clustered Regularly Interspaced Short Palindromic Repeats/Cas in Gene Therapies. Vaccines (Basel) 2024; 12:636. [PMID: 38932365 PMCID: PMC11209408 DOI: 10.3390/vaccines12060636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/21/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)-associated enzyme-CAS holds great promise for treating many uncured human diseases and illnesses by precisely correcting harmful point mutations and disrupting disease-causing genes. The recent Food and Drug Association (FDA) approval of the first CRISPR-based gene therapy for sickle cell anemia marks the beginning of a new era in gene editing. However, delivering CRISPR specifically into diseased cells in vivo is a significant challenge and an area of intense research. The identification of new CRISPR/Cas variants, particularly ultra-compact CAS systems with robust gene editing activities, paves the way for the low-capacity delivery vectors to be used in gene therapies. CRISPR/Cas technology has evolved beyond editing DNA to cover a wide spectrum of functionalities, including RNA targeting, disease diagnosis, transcriptional/epigenetic regulation, chromatin imaging, high-throughput screening, and new disease modeling. CRISPR/Cas can be used to engineer B-cells to produce potent antibodies for more effective vaccines and enhance CAR T-cells for the more precise and efficient targeting of tumor cells. However, CRISPR/Cas technology has challenges, including off-target effects, toxicity, immune responses, and inadequate tissue-specific delivery. Overcoming these challenges necessitates the development of a more effective and specific CRISPR/Cas delivery system. This entails strategically utilizing specific gRNAs in conjunction with robust CRISPR/Cas variants to mitigate off-target effects. This review seeks to delve into the intricacies of the CRISPR/Cas mechanism, explore progress in gene therapies, evaluate gene delivery systems, highlight limitations, outline necessary precautions, and scrutinize the ethical considerations associated with its application.
Collapse
Affiliation(s)
- Amrutha Banda
- Department of Biology, The College of New Jersey, Ewing Township, NJ 08618, USA
| | - Olivia Impomeni
- Department of Biology, The College of New Jersey, Ewing Township, NJ 08618, USA
| | - Aparana Singh
- Department of Chemistry, National Institute of Technology Agartala, Agartala 799046, India;
| | - Abdul Rasheed Baloch
- Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23284, USA;
| | - Wenhui Hu
- Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23284, USA;
| | - Dabbu Kumar Jaijyan
- Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23284, USA;
| |
Collapse
|
13
|
Gurrola TE, Effah SN, Sariyer IK, Dampier W, Nonnemacher MR, Wigdahl B. Delivering CRISPR to the HIV-1 reservoirs. Front Microbiol 2024; 15:1393974. [PMID: 38812680 PMCID: PMC11133543 DOI: 10.3389/fmicb.2024.1393974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/22/2024] [Indexed: 05/31/2024] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) infection is well known as one of the most complex and difficult viral infections to cure. The difficulty in developing curative strategies arises in large part from the development of latent viral reservoirs (LVRs) within anatomical and cellular compartments of a host. The clustered regularly interspaced short palindromic repeats/ CRISPR-associated protein 9 (CRISPR/Cas9) system shows remarkable potential for the inactivation and/or elimination of integrated proviral DNA within host cells, however, delivery of the CRISPR/Cas9 system to infected cells is still a challenge. In this review, the main factors impacting delivery, the challenges for delivery to each of the LVRs, and the current successes for delivery to each reservoir will be discussed.
Collapse
Affiliation(s)
- Theodore E. Gurrola
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Samuel N. Effah
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Ilker K. Sariyer
- Department of Microbiology, Immunology, and Inflammation and Center for Neurovirology and Gene Editing, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Will Dampier
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Michael R. Nonnemacher
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
| | - Brian Wigdahl
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
14
|
Dampier W, Berman R, Nonnemacher MR, Wigdahl B. Computational analysis of cas proteins unlocks new potential in HIV-1 targeted gene therapy. Front Genome Ed 2024; 5:1248982. [PMID: 38239625 PMCID: PMC10794619 DOI: 10.3389/fgeed.2023.1248982] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 12/11/2023] [Indexed: 01/22/2024] Open
Abstract
Introduction: The human immunodeficiency virus type 1 (HIV-1) pandemic has been slowed with the advent of anti-retroviral therapy (ART). However, ART is not a cure and as such has pushed the disease into a chronic infection. One potential cure strategy that has shown promise is the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas gene editing system. It has recently been shown to successfully edit and/or excise the integrated provirus from infected cells and inhibit HIV-1 in vitro, ex vivo, and in vivo. These studies have primarily been conducted with SpCas9 or SaCas9. However, additional Cas proteins are discovered regularly and modifications to these known proteins are being engineered. The alternative Cas molecules have different requirements for protospacer adjacent motifs (PAMs) which impact the possible targetable regions of HIV-1. Other modifications to the Cas protein or gRNA handle impact the tolerance for mismatches between gRNA and the target. While reducing off-target risk, this impacts the ability to fully account for HIV-1 genetic variability. Methods: This manuscript strives to examine these parameter choices using a computational approach for surveying the suitability of a Cas editor for HIV-1 gene editing. The Nominate, Diversify, Narrow, Filter (NDNF) pipeline measures the safety, broadness, and effectiveness of a pool of potential gRNAs for any PAM. This technique was used to evaluate 46 different potential Cas editors for their HIV therapeutic potential. Results: Our examination revealed that broader PAMs that improve the targeting potential of editors like SaCas9 and LbCas12a have larger pools of useful gRNAs, while broader PAMs reduced the pool of useful SpCas9 gRNAs yet increased the breadth of targetable locations. Investigation of the mismatch tolerance of Cas editors indicates a 2-missmatch tolerance is an ideal balance between on-target sensitivity and off-target specificity. Of all of the Cas editors examined, SpCas-NG and SPRY-Cas9 had the highest number of overall safe, broad, and effective gRNAs against HIV. Discussion: Currently, larger proteins and wider PAMs lead to better targeting capacity. This implies that research should either be targeted towards delivering longer payloads or towards increasing the breadth of currently available small Cas editors. With the discovery and adoption of additional Cas editors, it is important for researchers in the HIV-1 gene editing field to explore the wider world of Cas editors.
Collapse
Affiliation(s)
- Will Dampier
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Rachel Berman
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Michael R. Nonnemacher
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
| | - Brian Wigdahl
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
15
|
Freen-van Heeren JJ. Employing CRISPR-Cas9 to Enhance T Cell Effector Function. Methods Mol Biol 2024; 2782:195-208. [PMID: 38622404 DOI: 10.1007/978-1-0716-3754-8_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
As part of the adaptive immune system, T cells are critical to maintain immune homeostasis. T cells provide protective immunity by killing infected cells and combatting cancerous cells. To do so, T cells produce and secrete effector molecules, such as granzymes, perforin, and cytokines such as tumor necrosis factor α and interferon γ. However, in immune suppressive environments, such as tumors, T cells gradually lose the capacity to perform their effector function. One way T cell effector function can be enhanced is through genetic engineering with tools such as clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9). This protocol explains in a step-by-step fashion how to perform a controlled electroporation-based CRISPR experiment to enhance human T cell effector function. Of note, these steps are suitable for CRISPR-mediated genome editing in T cells in general and can thus also be used to study proteins of interest that do not influence T cell effector function.
Collapse
|
16
|
Munir A, Ali M, Qari SH, Munawar N, Saleem MS, Ahmad A. CRISPR workflow solutions: Cargos and versatile delivery platforms in genome editing. CRISPRIZED HORTICULTURE CROPS 2024:67-90. [DOI: 10.1016/b978-0-443-13229-2.00014-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
17
|
Andreu-Saumell I, Rodriguez-Garcia A, Guedan S. Genome Editing in CAR-T Cells Using CRISPR/Cas9 Technology. Methods Mol Biol 2024; 2748:151-165. [PMID: 38070114 DOI: 10.1007/978-1-0716-3593-3_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
CAR-T cell therapy is revolutionizing the treatment of hematologic malignancies. However, there are still many challenges ahead before CAR-T cells can be used effectively to treat solid tumors and certain hematologic cancers, such as T-cell malignancies. Next-generation CAR-T cells containing further genetic modifications are being developed to overcome some of the current limitations of this therapy. In this regard, genome editing is being explored to knock out or knock in genes with the goal of enhancing CAR-T cell efficacy or increasing access. In this chapter, we describe in detail a protocol to knock out genes on CAR-T cells using CRISPR-Cas9 technology. Among various gene editing protocols, due to its simplicity, versatility, and reduced toxicity, we focused on the electroporation of ribonucleoprotein complexes containing the Cas9 protein together with sgRNA. All together, these protocols allow for the design of the knockout strategy, CAR-T cell expansion and genome editing, and analysis of knockout efficiency.
Collapse
Affiliation(s)
- Irene Andreu-Saumell
- Department of Hematology and Oncology, Hospital Clinic de Barcelona, IDIBAPS, Barcelona, Spain
| | - Alba Rodriguez-Garcia
- Department of Hematology and Oncology, Hospital Clinic de Barcelona, IDIBAPS, Barcelona, Spain
| | - Sonia Guedan
- Department of Hematology and Oncology, Hospital Clinic de Barcelona, IDIBAPS, Barcelona, Spain.
| |
Collapse
|
18
|
Assis AJB, Santana BLDO, Gualberto ACM, Pittella-Silva F. Therapeutic applications of CRISPR/Cas9 mediated targeted gene editing in acute lymphoblastic leukemia: current perspectives, future challenges, and clinical implications. Front Pharmacol 2023; 14:1322937. [PMID: 38130408 PMCID: PMC10733529 DOI: 10.3389/fphar.2023.1322937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023] Open
Abstract
Acute Lymphoblastic Leukemia (ALL) is the predominant hematological malignancy in pediatric populations, originating from B- or T-cell precursors within the bone marrow. The disease exhibits a high degree of heterogeneity, both at the molecular level and in terms of clinical presentation. A complex interplay between inherited and acquired genetic alterations contributes to disease pathogenesis, often resulting in the disruption of cellular functions integral to the leukemogenic process. The advent of CRISPR/Cas9 as a gene editing tool has revolutionized biological research, underscoring its potential to modify specific genomic loci implicated in cancer. Enhanced understanding of molecular alterations in ALL has facilitated significant advancements in therapeutic strategies. In this review, we scrutinize the application of CRISPR/Cas9 as a tool for identifying genetic targets to improve therapy, circumvent drug resistance, and facilitate CAR-T cell-based immunotherapy. Additionally, we discuss the challenges and future prospects of CRISPR/Cas9 applications in ALL.
Collapse
Affiliation(s)
| | | | | | - Fabio Pittella-Silva
- Laboratory of Molecular Pathology of Cancer, Faculty of Health Sciences and Medicine, University of Brasília, Brasília, Brazil
| |
Collapse
|
19
|
Au TY, Arudkumar J, Assavarittirong C, Benjamin S. Killing two birds with one stone: CRISPR/Cas9 CCR5 knockout hematopoietic stem cells transplantation to treat patients with HIV infection and hematological malignancies concurrently. Clin Exp Med 2023; 23:4163-4175. [PMID: 37500934 DOI: 10.1007/s10238-023-01129-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 06/23/2023] [Indexed: 07/29/2023]
Abstract
Human immunodeficiency virus (HIV) is known to cause hematological malignancy. Hematopoietic stem cell transplantation (HPSCT) is an advanced treatment for that. Currently, there are three successful HIV-eliminated cases, and two received HPSCT from CCR5-absent donors. It is well established that the CCR5 protein on the cell surface assists human immunodeficiency virus entry. Preliminary studies have revealed that knocking out CCR5 and/or CXCR4 may inhibit the viral entry of HIV, which may prove promising in the further development of HIV treatment options. Herein, we suggest performing autologous or allogeneic HSCT with CCR5 KO hematopoietic stem cells in patients who suffer from complicated HIV conditions, particularly drug-resistant HIV or a concurrent diagnosis of HIV with lymphoma/leukemia, to achieve complete HIV remission. Nevertheless, at the clinical forefront of CRISPR-HIV technology, more efforts should be directed to advance nonhuman primate (NHP) models for studies of HIV pathogenesis and off-target assessments within this system. CRISPR-Cas9 knock out of host HSCT-expressing CCR5 or CXCR4 may confer HIV-resistance, which when applied to bedside therapeutics in an allogeneic or autologous manner can warrant a permanent and effective treatment outcome.
Collapse
Affiliation(s)
- Tsz Yuen Au
- Center for Medical Education in English, Poznan University of Medical Sciences, Poznan, Poland
| | - Jayshen Arudkumar
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia.
- The University of Adelaide, Adelaide, SA, Australia.
| | - Chanika Assavarittirong
- Center for Medical Education in English, Poznan University of Medical Sciences, Poznan, Poland
| | - Shamiram Benjamin
- Center for Medical Education in English, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
20
|
Tyumentseva M, Tyumentsev A, Akimkin V. CRISPR/Cas9 Landscape: Current State and Future Perspectives. Int J Mol Sci 2023; 24:16077. [PMID: 38003266 PMCID: PMC10671331 DOI: 10.3390/ijms242216077] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/06/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 is a unique genome editing tool that can be easily used in a wide range of applications, including functional genomics, transcriptomics, epigenetics, biotechnology, plant engineering, livestock breeding, gene therapy, diagnostics, and so on. This review is focused on the current CRISPR/Cas9 landscape, e.g., on Cas9 variants with improved properties, on Cas9-derived and fusion proteins, on Cas9 delivery methods, on pre-existing immunity against CRISPR/Cas9 proteins, anti-CRISPR proteins, and their possible roles in CRISPR/Cas9 function improvement. Moreover, this review presents a detailed outline of CRISPR/Cas9-based diagnostics and therapeutic approaches. Finally, the review addresses the future expansion of genome editors' toolbox with Cas9 orthologs and other CRISPR/Cas proteins.
Collapse
Affiliation(s)
- Marina Tyumentseva
- Central Research Institute of Epidemiology, Novogireevskaya Str., 3a, 111123 Moscow, Russia; (A.T.); (V.A.)
| | | | | |
Collapse
|
21
|
Khan A, Paneerselvam N, Lawson BR. Antiretrovirals to CCR5 CRISPR/Cas9 gene editing - A paradigm shift chasing an HIV cure. Clin Immunol 2023; 255:109741. [PMID: 37611838 PMCID: PMC10631514 DOI: 10.1016/j.clim.2023.109741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/18/2023] [Accepted: 08/13/2023] [Indexed: 08/25/2023]
Abstract
The evolution of drug-resistant viral strains and anatomical and cellular reservoirs of HIV pose significant clinical challenges to antiretroviral therapy. CCR5 is a coreceptor critical for HIV host cell fusion, and a homozygous 32-bp gene deletion (∆32) leads to its loss of function. Interestingly, an allogeneic HSCT from an HIV-negative ∆32 donor to an HIV-1-infected recipient demonstrated a curative approach by rendering the recipient's blood cells resistant to viral entry. Ex vivo gene editing tools, such as CRISPR/Cas9, hold tremendous promise in generating allogeneic HSC grafts that can potentially replace allogeneic ∆32 HSCTs. Here, we review antiretroviral therapeutic challenges, clinical successes, and failures of allogeneic and allogeneic ∆32 HSCTs, and newer exciting developments within CCR5 editing using CRISPR/Cas9 in the search to cure HIV.
Collapse
Affiliation(s)
- Amber Khan
- The Scintillon Research Institute, 6868 Nancy Ridge Drive, San Diego, CA 92121, USA
| | | | - Brian R Lawson
- The Scintillon Research Institute, 6868 Nancy Ridge Drive, San Diego, CA 92121, USA.
| |
Collapse
|
22
|
Allemailem KS, Alsahli MA, Almatroudi A, Alrumaihi F, Al Abdulmonem W, Moawad AA, Alwanian WM, Almansour NM, Rahmani AH, Khan AA. Innovative Strategies of Reprogramming Immune System Cells by Targeting CRISPR/Cas9-Based Genome-Editing Tools: A New Era of Cancer Management. Int J Nanomedicine 2023; 18:5531-5559. [PMID: 37795042 PMCID: PMC10547015 DOI: 10.2147/ijn.s424872] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 09/16/2023] [Indexed: 10/06/2023] Open
Abstract
The recent developments in the study of clustered regularly interspaced short palindromic repeats/associated protein 9 (CRISPR/Cas9) system have revolutionized the art of genome-editing and its applications for cellular differentiation and immune response behavior. This technology has further helped in understanding the mysteries of cancer progression and possible designing of novel antitumor immunotherapies. CRISPR/Cas9-based genome-editing is now often used to engineer universal T-cells, equipped with recombinant T-cell receptor (TCR) or chimeric antigen receptor (CAR). In addition, this technology is used in cytokine stimulation, antibody designing, natural killer (NK) cell transfer, and to overcome immune checkpoints. The innovative potential of CRISPR/Cas9 in preparing the building blocks of adoptive cell transfer (ACT) immunotherapy has opened a new window of antitumor immunotherapy and some of them have gained FDA approval. The manipulation of immunogenetic regulators has opened a new interface for designing, implementation and interpretation of CRISPR/Cas9-based screening in immuno-oncology. Several cancers like lymphoma, melanoma, lung, and liver malignancies have been treated with this strategy, once thought to be impossible. The safe and efficient delivery of CRISPR/Cas9 system within the immune cells for the genome-editing strategy is a challenging task which needs to be sorted out for efficient immunotherapy. Several targeting approaches like virus-mediated, electroporation, microinjection and nanoformulation-based methods have been used, but each procedure offers some limitations. Here, we elaborate the recent updates of cancer management through immunotherapy in partnership with CRISPR/Cas9 technology. Further, some innovative methods of targeting this genome-editing system within the immune system cells for reprogramming them, as a novel strategy of anticancer immunotherapy is elaborated. In addition, future prospects and clinical trials are also discussed.
Collapse
Affiliation(s)
- Khaled S Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Mohammed A Alsahli
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Amira A Moawad
- Friedrich-Loeffler-Institut, Institute of Bacterial Infections and Zoonoses, Jena, Germany
| | - Wanian M Alwanian
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Nahlah Makki Almansour
- Department of Biology, College of Science, University of Hafr Al Batin, Hafr Al Batin, Saudi Arabia
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Amjad Ali Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| |
Collapse
|
23
|
Babalola BA, Akinsuyi OS, Folajimi EO, Olujimi F, Otunba AA, Chikere B, Adewumagun IA, Adetobi TE. Exploring the future of SARS-CoV-2 treatment after the first two years of the pandemic: A comparative study of alternative therapeutics. Biomed Pharmacother 2023; 165:115099. [PMID: 37406505 DOI: 10.1016/j.biopha.2023.115099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/27/2023] [Accepted: 06/27/2023] [Indexed: 07/07/2023] Open
Abstract
One of the most pressing challenges associated with SARS-CoV-2 treatment is the emergence of new variants that may be more transmissible, cause more severe disease, or be resistant to current treatments and vaccines. The emergence of SARS-CoV-2 has led to a global pandemic, resulting in millions of deaths worldwide. Various strategies have been employed to combat the virus, including neutralizing monoclonal antibodies (mAbs), CRISPR/Cas13, and antisense oligonucleotides (ASOs). While vaccines and small molecules have proven to be an effective means of preventing severe COVID-19 and reducing transmission rates, the emergence of new virus variants poses a challenge to their effectiveness. Monoclonal antibodies have shown promise in treating early-stage COVID-19, but their effectiveness is limited in severe cases and the emergence of new variants may reduce their binding affinity. CRISPR/Cas13 has shown potential in targeting essential viral genes, but its efficiency, specificity, and delivery to the site of infection are major limitations. ASOs have also been shown to be effective in targeting viral RNA, but they face similar challenges to CRISPR/Cas13 in terms of delivery and potential off-target effects. In conclusion, a combination of these strategies may provide a more effective means of combating SARS-CoV-2, and future research should focus on improving their efficiency, specificity, and delivery to the site of infection. It is evident that the continued research and development of these alternative therapies will be essential in the ongoing fight against SARS-CoV-2 and its potential future variants.
Collapse
Affiliation(s)
| | | | | | - Folakemi Olujimi
- Department of Biochemistry, Mountain Top University, Prayer-City, Ogun State, Nigeria
| | | | - Bruno Chikere
- Department of Biochemistry, Covenant University, Ogun State, Nigeria
| | | | | |
Collapse
|
24
|
Zheng R, Zhang L, Parvin R, Su L, Chi J, Shi K, Ye F, Huang X. Progress and Perspective of CRISPR-Cas9 Technology in Translational Medicine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300195. [PMID: 37356052 PMCID: PMC10477906 DOI: 10.1002/advs.202300195] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/29/2023] [Indexed: 06/27/2023]
Abstract
Translational medicine aims to improve human health by exploring potential treatment methods developed during basic scientific research and applying them to the treatment of patients in clinical settings. The advanced perceptions of gene functions have remarkably revolutionized clinical treatment strategies for target agents. However, the progress in gene editing therapy has been hindered due to the severe off-target effects and limited editing sites. Fortunately, the development in the clustered regularly interspaced short palindromic repeats associated protein 9 (CRISPR-Cas9) system has renewed hope for gene therapy field. The CRISPR-Cas9 system can fulfill various simple or complex purposes, including gene knockout, knock-in, activation, interference, base editing, and sequence detection. Accordingly, the CRISPR-Cas9 system is adaptable to translational medicine, which calls for the alteration of genomic sequences. This review aims to present the latest CRISPR-Cas9 technology achievements and prospect to translational medicine advances. The principle and characterization of the CRISPR-Cas9 system are firstly introduced. The authors then focus on recent pre-clinical and clinical research directions, including the construction of disease models, disease-related gene screening and regulation, and disease treatment and diagnosis for multiple refractory diseases. Finally, some clinical challenges including off-target effects, in vivo vectors, and ethical problems, and future perspective are also discussed.
Collapse
Affiliation(s)
- Ruixuan Zheng
- Joint Centre of Translational MedicineThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000P. R. China
- Division of Pulmonary MedicineThe First Affiliated HospitalWenzhou Medical UniversityWenzhouZhejiang325000P. R. China
- Wenzhou Key Laboratory of Interdiscipline and Translational MedicineThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000P. R. China
| | - Lexiang Zhang
- Joint Centre of Translational MedicineThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000P. R. China
- Wenzhou Key Laboratory of Interdiscipline and Translational MedicineThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000P. R. China
- Oujiang Laboratory (Zhejiang Lab for Regenerative MedicineVision and Brain Health); Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiang325000P. R. China
| | - Rokshana Parvin
- Oujiang Laboratory (Zhejiang Lab for Regenerative MedicineVision and Brain Health); Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiang325000P. R. China
| | - Lihuang Su
- Joint Centre of Translational MedicineThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000P. R. China
- Division of Pulmonary MedicineThe First Affiliated HospitalWenzhou Medical UniversityWenzhouZhejiang325000P. R. China
- Wenzhou Key Laboratory of Interdiscipline and Translational MedicineThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000P. R. China
| | - Junjie Chi
- Joint Centre of Translational MedicineThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000P. R. China
- Wenzhou Key Laboratory of Interdiscipline and Translational MedicineThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000P. R. China
| | - Keqing Shi
- Joint Centre of Translational MedicineThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000P. R. China
- Wenzhou Key Laboratory of Interdiscipline and Translational MedicineThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000P. R. China
| | - Fangfu Ye
- Joint Centre of Translational MedicineThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000P. R. China
- Oujiang Laboratory (Zhejiang Lab for Regenerative MedicineVision and Brain Health); Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiang325000P. R. China
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190P. R. China
| | - Xiaoying Huang
- Joint Centre of Translational MedicineThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000P. R. China
- Division of Pulmonary MedicineThe First Affiliated HospitalWenzhou Medical UniversityWenzhouZhejiang325000P. R. China
- Wenzhou Key Laboratory of Interdiscipline and Translational MedicineThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000P. R. China
| |
Collapse
|
25
|
Hussein M, Molina MA, Berkhout B, Herrera-Carrillo E. A CRISPR-Cas Cure for HIV/AIDS. Int J Mol Sci 2023; 24:1563. [PMID: 36675077 PMCID: PMC9863116 DOI: 10.3390/ijms24021563] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 12/28/2022] [Accepted: 01/02/2023] [Indexed: 01/14/2023] Open
Abstract
Human immunodeficiency virus (HIV) infections and HIV-induced acquired immunodeficiency syndrome (AIDS) continue to represent a global health burden. There is currently no effective vaccine, nor any cure, for HIV infections; existing antiretroviral therapy can suppress viral replication, but only as long as antiviral drugs are taken. HIV infects cells of the host immune system, and it can establish a long-lived viral reservoir, which can be targeted and edited through gene therapy. Gene editing platforms based on the clustered regularly interspaced palindromic repeat-Cas system (CRISPR-Cas) have been recognized as promising tools in the development of gene therapies for HIV infections. In this review, we evaluate the current landscape of CRISPR-Cas-based therapies against HIV, with an emphasis on the infection biology of the virus as well as the activity of host restriction factors. We discuss the potential of a combined CRISPR-Cas approach that targets host and viral genes to activate antiviral host factors and inhibit viral replication simultaneously. Lastly, we focus on the challenges and potential solutions of CRISPR-Cas gene editing approaches in achieving an HIV cure.
Collapse
Affiliation(s)
| | | | | | - Elena Herrera-Carrillo
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
26
|
Tsai HC, Pietrobon V, Peng M, Wang S, Zhao L, Marincola FM, Cai Q. Current strategies employed in the manipulation of gene expression for clinical purposes. J Transl Med 2022; 20:535. [PMID: 36401279 PMCID: PMC9673226 DOI: 10.1186/s12967-022-03747-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 09/29/2022] [Indexed: 11/19/2022] Open
Abstract
Abnormal gene expression level or expression of genes containing deleterious mutations are two of the main determinants which lead to genetic disease. To obtain a therapeutic effect and thus to cure genetic diseases, it is crucial to regulate the host's gene expression and restore it to physiological conditions. With this purpose, several molecular tools have been developed and are currently tested in clinical trials. Genome editing nucleases are a class of molecular tools routinely used in laboratories to rewire host's gene expression. Genome editing nucleases include different categories of enzymes: meganucleses (MNs), zinc finger nucleases (ZFNs), clustered regularly interspaced short palindromic repeats (CRISPR)- CRISPR associated protein (Cas) and transcription activator-like effector nuclease (TALENs). Transposable elements are also a category of molecular tools which includes different members, for example Sleeping Beauty (SB), PiggyBac (PB), Tol2 and TcBuster. Transposons have been used for genetic studies and can serve as gene delivery tools. Molecular tools to rewire host's gene expression also include episomes, which are divided into different categories depending on their molecular structure. Finally, RNA interference is commonly used to regulate gene expression through the administration of small interfering RNA (siRNA), short hairpin RNA (shRNA) and bi-functional shRNA molecules. In this review, we will describe the different molecular tools that can be used to regulate gene expression and discuss their potential for clinical applications. These molecular tools are delivered into the host's cells in the form of DNA, RNA or protein using vectors that can be grouped into physical or biochemical categories. In this review we will also illustrate the different types of payloads that can be used, and we will discuss recent developments in viral and non-viral vector technology.
Collapse
Affiliation(s)
| | | | - Maoyu Peng
- Kite Pharma Inc, Santa Monica, CA, 90404, USA
| | - Suning Wang
- Kite Pharma Inc, Santa Monica, CA, 90404, USA
| | - Lihong Zhao
- Kite Pharma Inc, Santa Monica, CA, 90404, USA
| | | | - Qi Cai
- Kite Pharma Inc, Santa Monica, CA, 90404, USA.
| |
Collapse
|
27
|
Çerçi B, Uzay IA, Kara MK, Dinçer P. Clinical trials and promising preclinical applications of CRISPR/Cas gene editing. Life Sci 2022; 312:121204. [PMID: 36403643 DOI: 10.1016/j.lfs.2022.121204] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/03/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022]
Abstract
Treatment of genetic disorders by genomic manipulation has been the unreachable goal of researchers for many decades. Although our understanding of the genetic basis of genetic diseases has advanced tremendously in the last few decades, the tools developed for genomic editing were not efficient and practical for their use in the clinical setting until now. The recent advancements in the research of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR-associated protein (Cas) systems offered an easy and efficient way to edit the genome and accelerated the research on their potential use in the treatment of genetic disorders. In this review, we summarize the clinical trials that evaluate the CRISPR/Cas systems for treating different genetic diseases and highlight promising preclinical research on CRISPR/Cas mediated treatment of a great diversity of genetic disorders. Ultimately, we discuss the future of CRISPR/Cas mediated genome editing in genetic diseases.
Collapse
Affiliation(s)
- Barış Çerçi
- Faculty of Medicine, Hacettepe University, Ankara 06100, Turkey.
| | - Ihsan Alp Uzay
- Faculty of Medicine, Hacettepe University, Ankara 06100, Turkey
| | | | - Pervin Dinçer
- Department of Medical Biology, Faculty of Medicine, Hacettepe University, Ankara 06100, Turkey
| |
Collapse
|
28
|
Demirci S, Essawi K, Germino-Watnick P, Liu X, Hakami W, Tisdale JF. Advances in CRISPR Delivery Methods: Perspectives and Challenges. CRISPR J 2022; 5:660-676. [PMID: 36260301 PMCID: PMC9835311 DOI: 10.1089/crispr.2022.0051] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
With the advent of new genome editing technologies and the emphasis placed on their optimization, the genetic and phenotypic correction of a plethora of diseases sit on the horizon. Ideally, genome editing approaches would provide long-term solutions through permanent disease correction instead of simply treating patients symptomatically. Although various editing machinery options exist, the clustered regularly interspaced short palindromic repeats (CRISPR)-Cas (CRISPR-associated protein) editing technique has emerged as the most popular due to its high editing efficiency, simplicity, and affordability. However, while CRISPR technology is gradually being perfected, optimization is futile without accessible, effective, and safe delivery to the desired cell or tissue. Therefore, it is important that scientists simultaneously focus on inventing and improving delivery modalities for editing machinery as well. In this review, we will discuss the critical details of viral and nonviral delivery systems, including payload, immunogenicity, efficacy in delivery, clinical application, and future directions.
Collapse
Affiliation(s)
- Selami Demirci
- Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institutes (NHLBI), National Institutes of Health (NIH), Bethesda, Maryland, USA; and College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia.,Address correspondence to: Selami Demirci, Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institutes (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20814, USA,
| | - Khaled Essawi
- Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institutes (NHLBI), National Institutes of Health (NIH), Bethesda, Maryland, USA; and College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia.,Department of Medical Laboratory Science, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Paula Germino-Watnick
- Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institutes (NHLBI), National Institutes of Health (NIH), Bethesda, Maryland, USA; and College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Xiong Liu
- Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institutes (NHLBI), National Institutes of Health (NIH), Bethesda, Maryland, USA; and College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Waleed Hakami
- Department of Medical Laboratory Science, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - John F. Tisdale
- Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institutes (NHLBI), National Institutes of Health (NIH), Bethesda, Maryland, USA; and College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia.,Address correspondence to: John F. Tisdale, Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institutes (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20814, USA,
| |
Collapse
|
29
|
Treatment strategies for HIV infection with emphasis on role of CRISPR/Cas9 gene: Success so far and road ahead. Eur J Pharmacol 2022; 931:175173. [DOI: 10.1016/j.ejphar.2022.175173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/15/2022] [Accepted: 07/21/2022] [Indexed: 11/20/2022]
|
30
|
Closing the Door with CRISPR: Genome Editing of CCR5 and CXCR4 as a Potential Curative Solution for HIV. BIOTECH 2022; 11:biotech11030025. [PMID: 35892930 PMCID: PMC9326690 DOI: 10.3390/biotech11030025] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/10/2022] [Accepted: 07/12/2022] [Indexed: 11/17/2022] Open
Abstract
Human immunodeficiency virus (HIV) infection can be controlled by anti-retroviral therapy. Suppressing viral replication relies on life-long medication, but anti-retroviral therapy is not without risks to the patient. Therefore, it is important that permanent cures for HIV infection are developed. Three patients have been described to be completely cured from HIV infection in recent years. In all cases, patients received a hematopoietic stem cell (HSC) transplantation due to a hematological malignancy. The HSCs were sourced from autologous donors that expressed a homozygous mutation in the CCR5 gene. This mutation results in a non-functional receptor, and confers resistance to CCR5-tropic HIV strains that rely on CCR5 to enter host cells. The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated (Cas) system is one of the methods of choice for gene editing, and the CRISPR/Cas system has been employed to target loci of interest in the context of HIV. Here, the current literature regarding CRISPR-mediated genome editing to render cells resistant to HIV (re)-infection by knocking out the co-receptors CCR5 and CXCR4 is summarized, and an outlook is provided regarding future (research) directions.
Collapse
|
31
|
Kandula UR, Wake AD. Promising Stem Cell therapy in the Management of HIV and AIDS: A Narrative Review. Biologics 2022; 16:89-105. [PMID: 35836496 PMCID: PMC9275675 DOI: 10.2147/btt.s368152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/02/2022] [Indexed: 11/23/2022]
Abstract
Stem cell therapies are becoming a major topic in biomedical research all over the planet. It may be a viable treatment choice for people suffering from a wide range of illnesses and injuries. It has recently emerged as an extremely intriguing and well-established science and research topic. Expectations have risen due to advancements in therapeutic approaches. Multiple laboratory testing of regulated stem cell culture and derivation is carried out before the formation of stem cells for the use of therapeutic process. Whereas HIV infection is contagious and can last a lifetime. Researchers are still working to develop a comprehensive and effective treatment for HIV and its associated condition, as well as AIDS. HIV propagation is primarily restricted to the immune system, notably T lymphocytes, as well as macrophages. Large numbers of research studies have contributed to a plethora of data about the enigmatic AIDS life cycle. This vast amount of data provides potential targets for AIDS therapies. Currently, stem cell transplantation, along with other procedures, provided novel insights into HIV pathogenesis and offered a glimpse of hope for the development of a viable HIV cure technique. One of its existing focus areas in HIV and AIDS research is to develop a novel therapeutic strategic plan capable of providing life-long complete recovery of HIV and AIDS without regular drug treatment and, inevitably, curative therapy for HIV and AIDS. The current paper tries to address the possibilities for improved stem cell treatments with "bone marrow, Hematopoietic, human umbilical cord mesenchymal, Genetical modifications with CRISPR/Cas9 in combination of stem cells, induced pluripotent stem cells applications" are discussed which are specifically applied in the HIV and AIDS therapeutic management advancement procedures.
Collapse
Affiliation(s)
- Usha Rani Kandula
- Department of Clinical Nursing, College of Health Sciences, Arsi University, Asella, Ethiopia
| | - Addisu Dabi Wake
- Department of Clinical Nursing, College of Health Sciences, Arsi University, Asella, Ethiopia
| |
Collapse
|
32
|
Rahman MU, Bilal M, Shah JA, Kaushik A, Teissedre PL, Kujawska M. CRISPR-Cas9-Based Technology and Its Relevance to Gene Editing in Parkinson's Disease. Pharmaceutics 2022; 14:1252. [PMID: 35745824 PMCID: PMC9229276 DOI: 10.3390/pharmaceutics14061252] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 12/12/2022] Open
Abstract
Parkinson's disease (PD) and other chronic and debilitating neurodegenerative diseases (NDs) impose a substantial medical, emotional, and financial burden on individuals and society. The origin of PD is unknown due to a complex combination of hereditary and environmental risk factors. However, over the last several decades, a significant amount of available data from clinical and experimental studies has implicated neuroinflammation, oxidative stress, dysregulated protein degradation, and mitochondrial dysfunction as the primary causes of PD neurodegeneration. The new gene-editing techniques hold great promise for research and therapy of NDs, such as PD, for which there are currently no effective disease-modifying treatments. As a result, gene therapy may offer new treatment options, transforming our ability to treat this disease. We present a detailed overview of novel gene-editing delivery vehicles, which is essential for their successful implementation in both cutting-edge research and prospective therapeutics. Moreover, we review the most recent advancements in CRISPR-based applications and gene therapies for a better understanding of treating PD. We explore the benefits and drawbacks of using them for a range of gene-editing applications in the brain, emphasizing some fascinating possibilities.
Collapse
Affiliation(s)
- Mujeeb ur Rahman
- Department of Toxicology, Faculty of Pharmacy, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznan, Poland;
| | - Muhammad Bilal
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China;
| | - Junaid Ali Shah
- College of Life Sciences, Jilin University, Changchun 130012, China;
- Fergana Medical Institute of Public Health Uzbekistan, Fergana 150110, Uzbekistan
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Health System Engineering, Department of Environmental Engineering, Florida Polytechnic University, Lakeland, FL 33805, USA;
- School of Engineering, University of Petroleum and Energy Studies (UPES), Dehradun 248007, Uttarakhand, India
| | - Pierre-Louis Teissedre
- Institut des Sciences de la Vigne et du Vin, Université de Bordeaux, EA 4577, Œnologie, 210 Chemin de Leysotte, F-33140 Villenave d’Ornon, France;
- Institut des Sciences de la Vigne et du Vin, INRA, USC 1366 INRA, IPB, 210 Chemin de Leysotte, F-33140 Villenave d’Ornon, France
| | - Małgorzata Kujawska
- Department of Toxicology, Faculty of Pharmacy, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznan, Poland;
| |
Collapse
|
33
|
Maslennikova A, Mazurov D. Application of CRISPR/Cas Genomic Editing Tools for HIV Therapy: Toward Precise Modifications and Multilevel Protection. Front Cell Infect Microbiol 2022; 12:880030. [PMID: 35694537 PMCID: PMC9177041 DOI: 10.3389/fcimb.2022.880030] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 04/25/2022] [Indexed: 11/18/2022] Open
Abstract
Although highly active antiretroviral therapy (HAART) can robustly control human immunodeficiency virus (HIV) infection, the existence of latent HIV in a form of proviral DNA integrated into the host genome makes the virus insensitive to HAART. This requires patients to adhere to HAART for a lifetime, often leading to drug toxicity or viral resistance to therapy. Current genome-editing technologies offer different strategies to reduce the latent HIV reservoir in the body. In this review, we systematize the research on CRISPR/Cas-based anti-HIV therapeutic methods, discuss problems related to viral escape and gene editing, and try to focus on the technologies that effectively and precisely introduce genetic modifications and confer strong resistance to HIV infection. Particularly, knock-in (KI) approaches, such as mature B cells engineered to produce broadly neutralizing antibodies, T cells expressing fusion inhibitory peptides in the context of inactivated viral coreceptors, or provirus excision using base editors, look very promising. Current and future advancements in the precision of CRISPR/Cas editing and its delivery will help extend its applicability to clinical HIV therapy.
Collapse
Affiliation(s)
- Alexandra Maslennikova
- Cell and Gene Technology Group, Institute of Gene Biology of Russian Academy of Science, Moscow, Russia
| | - Dmitriy Mazurov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology of Russian Academy of Science, Moscow, Russia
| |
Collapse
|
34
|
Scheller SH, Rashad Y, Saleh FM, Willingham KA, Reilich A, Lin D, Izadpanah R, Alt EU, Braun SE. Biallelic, Selectable, Knock-in Targeting of CCR5 via CRISPR-Cas9 Mediated Homology Directed Repair Inhibits HIV-1 Replication. Front Immunol 2022; 13:821190. [PMID: 35386712 PMCID: PMC8978527 DOI: 10.3389/fimmu.2022.821190] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/22/2022] [Indexed: 01/17/2023] Open
Abstract
Transplanting HIV-1 positive patients with hematopoietic stem cells homozygous for a 32 bp deletion in the chemokine receptor type 5 (CCR5) gene resulted in a loss of detectable HIV-1, suggesting genetically disrupting CCR5 is a promising approach for HIV-1 cure. Targeting the CCR5-locus with CRISPR-Cas9 was shown to decrease the amount of CCR5 expression and HIV-1 susceptibility in vitro as well as in vivo. Still, only the individuals homozygous for the CCR5-Δ32 frameshift mutation confer complete resistance to HIV-1 infection. In this study we introduce a mechanism to target CCR5 and efficiently select for cells with biallelic frameshift insertion, using CRISPR-Cas9 mediated homology directed repair (HDR). We hypothesized that cells harboring two different selectable markers (double positive), each in one allele of the CCR5 locus, would carry a frameshift mutation in both alleles, lack CCR5 expression and resist HIV-1 infection. Inducing double-stranded breaks (DSB) via CRISPR-Cas9 leads to HDR and integration of a donor plasmid. Double-positive cells were selected via fluorescence-activated cell sorting (FACS), and CCR5 was analyzed genetically, phenotypically, and functionally. Targeted and selected populations showed a very high frequency of mutations and a drastic reduction in CCR5 surface expression. Most importantly, double-positive cells displayed potent inhibition to HIV-1 infection. Taken together, we show that targeting cells via CRISPR-Cas9 mediated HDR enables efficient selection of mutant cells that are deficient for CCR5 and highly resistant to HIV-1 infection.
Collapse
Affiliation(s)
- Stefan H Scheller
- Applied Stem Cell Laboratory, Medicine/Heart and Vascular Institute, Tulane University Health Sciences Center, New Orleans, LA, United States.,Department of Cardiology and Angiology, Faculty of Medicine, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Yasmine Rashad
- Applied Stem Cell Laboratory, Medicine/Heart and Vascular Institute, Tulane University Health Sciences Center, New Orleans, LA, United States
| | - Fayez M Saleh
- Division of Immunology, Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, United States.,Department of Medical Microbiology, Faculty of Medicine, University of Tabuk, Tabuk, Saudi Arabia
| | - Kurtis A Willingham
- Applied Stem Cell Laboratory, Medicine/Heart and Vascular Institute, Tulane University Health Sciences Center, New Orleans, LA, United States
| | - Antonia Reilich
- Applied Stem Cell Laboratory, Medicine/Heart and Vascular Institute, Tulane University Health Sciences Center, New Orleans, LA, United States
| | - Dong Lin
- Applied Stem Cell Laboratory, Medicine/Heart and Vascular Institute, Tulane University Health Sciences Center, New Orleans, LA, United States.,Department of Surgery, Tulane University Health Science Center, New Orleans, LA, United States
| | - Reza Izadpanah
- Applied Stem Cell Laboratory, Medicine/Heart and Vascular Institute, Tulane University Health Sciences Center, New Orleans, LA, United States.,Department of Surgery, Tulane University Health Science Center, New Orleans, LA, United States
| | - Eckhard U Alt
- Applied Stem Cell Laboratory, Medicine/Heart and Vascular Institute, Tulane University Health Sciences Center, New Orleans, LA, United States.,Isar Klinikum Munich, Munich, Germany
| | - Stephen E Braun
- Applied Stem Cell Laboratory, Medicine/Heart and Vascular Institute, Tulane University Health Sciences Center, New Orleans, LA, United States.,Division of Immunology, Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, United States.,Department of Pharmacology, Tulane University Health Science Center, New Orleans, LA, United States
| |
Collapse
|
35
|
Bloomer H, Khirallah J, Li Y, Xu Q. CRISPR/Cas9 ribonucleoprotein-mediated genome and epigenome editing in mammalian cells. Adv Drug Deliv Rev 2022; 181:114087. [PMID: 34942274 PMCID: PMC8844242 DOI: 10.1016/j.addr.2021.114087] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/15/2021] [Accepted: 12/16/2021] [Indexed: 02/03/2023]
Abstract
The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein (Cas) system has revolutionized the ability to edit the mammalian genome, providing a platform for the correction of pathogenic mutations and further investigation into gene function. CRISPR reagents can be delivered into the cell as DNA, RNA, or pre-formed ribonucleoproteins (RNPs). RNPs offer numerous advantages over other delivery approaches due to their ability to rapidly target genomic sites and quickly degrade thereafter. Here, we review the production steps and delivery methods for Cas9 RNPs. Additionally, we discuss how RNPs enhance genome and epigenome editing efficiencies, reduce off-target editing activity, and minimize cellular toxicity in clinically relevant mammalian cell types. We include details on a broad range of editing approaches, including novel base and prime editing techniques. Finally, we summarize key challenges for the use of RNPs, and propose future perspectives on the field.
Collapse
Affiliation(s)
- Hanan Bloomer
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, US,School of Medicine and Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, US
| | - Jennifer Khirallah
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, US
| | - Yamin Li
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, US,Corresponding Authors: (Y. Li) and (Q. Xu)
| | - Qiaobing Xu
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, US,Corresponding Authors: (Y. Li) and (Q. Xu)
| |
Collapse
|
36
|
Mohamed H, Gurrola T, Berman R, Collins M, Sariyer IK, Nonnemacher MR, Wigdahl B. Targeting CCR5 as a Component of an HIV-1 Therapeutic Strategy. Front Immunol 2022; 12:816515. [PMID: 35126374 PMCID: PMC8811197 DOI: 10.3389/fimmu.2021.816515] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/13/2021] [Indexed: 12/26/2022] Open
Abstract
Globally, human immunodeficiency virus type 1 (HIV-1) infection is a major health burden for which successful therapeutic options are still being investigated. Challenges facing current drugs that are part of the established life-long antiretroviral therapy (ART) include toxicity, development of drug resistant HIV-1 strains, the cost of treatment, and the inability to eradicate the provirus from infected cells. For these reasons, novel anti-HIV-1 therapeutics that can prevent or eliminate disease progression including the onset of the acquired immunodeficiency syndrome (AIDS) are needed. While development of HIV-1 vaccination has also been challenging, recent advancements demonstrate that infection of HIV-1-susceptible cells can be prevented in individuals living with HIV-1, by targeting C-C chemokine receptor type 5 (CCR5). CCR5 serves many functions in the human immune response and is a co-receptor utilized by HIV-1 for entry into immune cells. Therapeutics targeting CCR5 generally involve gene editing techniques including CRISPR, CCR5 blockade using antibodies or antagonists, or combinations of both. Here we review the efficacy of these approaches and discuss the potential of their use in the clinic as novel ART-independent therapies for HIV-1 infection.
Collapse
Affiliation(s)
- Hager Mohamed
- Department of Microbiology and Immunology, Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Theodore Gurrola
- Department of Microbiology and Immunology, Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Rachel Berman
- Department of Microbiology and Immunology, Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Mackenzie Collins
- Department of Microbiology and Immunology, Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Ilker K. Sariyer
- Department of Microbiology, Immunology, and Inflammation, Center for Neurovirology and Gene Editing, School of Medicine, Temple University, Philadelphia, PA, United States
| | - Michael R. Nonnemacher
- Department of Microbiology and Immunology, Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Brian Wigdahl
- Department of Microbiology and Immunology, Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
| |
Collapse
|
37
|
Shademan B, Nourazarian A, Hajazimian S, Isazadeh A, Biray Avci C, Oskouee MA. CRISPR Technology in Gene-Editing-Based Detection and Treatment of SARS-CoV-2. Front Mol Biosci 2022; 8:772788. [PMID: 35087864 PMCID: PMC8787289 DOI: 10.3389/fmolb.2021.772788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 12/21/2021] [Indexed: 01/08/2023] Open
Abstract
Outbreak and rapid spread of coronavirus disease (COVID-19) caused by coronavirus acute respiratory syndrome (SARS-CoV-2) caused severe acute respiratory syndrome (SARS-CoV-2) that started in Wuhan, and has become a global problem because of the high rate of human-to-human transmission and severe respiratory infections. Because of high prevalence of SARS-CoV-2, which threatens many people worldwide, rapid diagnosis and simple treatment are needed. Genome editing is a nucleic acid-based approach to altering the genome by artificially changes in genetic information and induce irreversible changes in the function of target gene. Clustered, regularly interspaced short palindromic repeats (CRISPR/Cas) could be a practical and straightforward approach to this disease. CRISPR/Cas system contains Cas protein, which is controlled by a small RNA molecule to create a double-stranded DNA gap. Evidence suggested that CRISPR/Cas was also usable for diagnosis and treatment of SARS-CoV-2 infection. In this review study, we discoursed on application of CRISPR technology in detection and treatment of SARS-CoV-2 infection. Another aspect of this study was to introduce potential future problems in use of CRISPR/Cas technology.
Collapse
Affiliation(s)
- Behrouz Shademan
- Department of Medical Biology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Alireza Nourazarian
- Department of Basic Medical Sciences, Khoy University of Medical Sciences, Khoy, Iran
| | - Saba Hajazimian
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Isazadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Cigir Biray Avci
- Department of Medical Biology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Mahin Ahangar Oskouee
- Department of Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
38
|
Wei Hou ZZ, Chen S. Updates on CRISPR-based gene editing in HIV-1/AIDS therapy. Virol Sin 2022; 37:1-10. [PMID: 35234622 PMCID: PMC8922418 DOI: 10.1016/j.virs.2022.01.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 11/15/2021] [Indexed: 12/17/2022] Open
Abstract
Although tremendous efforts have been made to prevent and treat HIV-1 infection, HIV-1/AIDS remains a major threat to global human health. The combination antiretroviral therapy (cART), although able to suppress HIV-1 replication, cannot eliminate the proviral DNA integrated into the human genome and thus requires lifelong treatment that may lead to various side effects. In recent years, clustered regularly interspaced short palindromic repeat (CRISPR)-associated nuclease 9 (Cas9) related gene-editing systems have been developed and designed as effective ways to treat HIV-1 infection. However, new gene-targeting tools derived from or functioning like CRISPR/Cas9, including base editor, prime editing, SHERLOCK, DETECTR, PAC-MAN, ABACAS, pfAGO, have been developed and optimized for pathogens detection and diseases correction. Here, we summarize recent studies on HIV-1/AIDS gene therapy and provide more gene-editing targets based on studies relating to the molecular mechanism of HIV-1 infection. We also identify the strategies and potential applications of these new gene-editing technologies for HIV-1/AIDS treatment in the future. Moreover, we discuss the caveats and problems that should be addressed before the clinical use of these versatile CRISPR-based gene targeting tools. Finally, we offer alternative solutions to improve the practice of gene targeting in HIV-1/AIDS gene therapy. New gene-targeting tools derived from CRISPR/Cas9 have been introduced. Recent researches in HIV-1/AIDS gene therapy have been summarized. The strategies and potential applications of new gene editing technologies for HIV-1/AIDS treatment have been provided. The caveats and challenges in HIV-1/AIDS gene therapy have been discussed.
Collapse
|
39
|
Jacob EM, Borah A, Sakthi Kumar D. CRISPR/Cas9 Nano-delivery Approaches for Targeted Gene Therapy. NANOTECHNOLOGY IN THE LIFE SCIENCES 2022:27-64. [DOI: 10.1007/978-3-031-12658-1_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
40
|
Herskovitz J, Hasan M, Patel M, Kevadiya BD, Gendelman HE. Pathways Toward a Functional HIV-1 Cure: Balancing Promise and Perils of CRISPR Therapy. Methods Mol Biol 2022; 2407:429-445. [PMID: 34985679 PMCID: PMC9262118 DOI: 10.1007/978-1-0716-1871-4_27] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
First identified as a viral defense mechanism, clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated proteins (Cas) has been transformed into a gene-editing tool. It now affords promise in the treatment and potential eradication of a range of divergent genetic, cancer, infectious, and degenerative diseases. Adapting CRISPR-Cas into a programmable endonuclease directed guide RNA (gRNA) has attracted international attention. It was recently awarded the 2020 Nobel Prize in Chemistry. The limitations of this technology have also been identified and work has been made in providing potential remedies. For treatment of the human immunodeficiency virus type one (HIV-1), in particular, a CRISPR-Cas9 approach was adapted to target then eliminate latent proviral DNA. To this end, we reviewed the promise and perils of CRISPR-Cas gene-editing strategies for HIV-1 elimination. Obstacles include precise delivery to reservoir tissue and cell sites of latent HIV-1 as well as assay sensitivity and specificity. The detection and consequent excision of common viral strain sequences and the avoidance of off-target activity will serve to facilitate a final goal of HIV-1 DNA elimination and accelerate testing in infected animals ultimately for use in man.
Collapse
Affiliation(s)
- Jonathan Herskovitz
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Mahmudul Hasan
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Milankumar Patel
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Bhavesh D Kevadiya
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Howard E Gendelman
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA.
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA.
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
41
|
A Comprehensive Review of Recent Advancements in Cancer Immunotherapy and Generation of CAR T Cell by CRISPR-Cas9. Processes (Basel) 2021. [DOI: 10.3390/pr10010016] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The mechanisms involved in immune responses to cancer have been extensively studied for several decades, and considerable attention has been paid to harnessing the immune system’s therapeutic potential. Cancer immunotherapy has established itself as a promising new treatment option for a variety of cancer types. Various strategies including cancer vaccines, monoclonal antibodies (mAbs), adoptive T-cell cancer therapy and CAR T-cell therapy have gained prominence through immunotherapy. However, the full potential of cancer immunotherapy remains to be accomplished. In spite of having startling aspects, cancer immunotherapies have some difficulties including the inability to effectively target cancer antigens and the abnormalities in patients’ responses. With the advancement in technology, this system has changed the genome-based immunotherapy process in the human body including the generation of engineered T cells. Due to its high specificity, CRISPR-Cas9 has become a simple and flexible genome editing tool to target nearly any genomic locus. Recently, the CD19-mediated CAR T-cell (chimeric antigen receptor T cell) therapy has opened a new avenue for the treatment of human cancer, though low efficiency is a major drawback of this process. Thus, increasing the efficiency of the CAR T cell (engineered T cells that induce the chimeric antigen receptor) by using CRISPR-Cas9 technology could be a better weapon to fight against cancer. In this review, we have broadly focused on recent immunotherapeutic techniques against cancer and the use of CRISPR-Cas9 technology for the modification of the T cell, which can specifically recognize cancer cells and be used as immune-therapeutics against cancer.
Collapse
|
42
|
Guo Y, Xu B, Wu Z, Bo J, Tong C, Chen D, Wang J, Wang H, Wang Y, Han W. Mutant B2M-HLA-E and B2M-HLA-G fusion proteins protects universal chimeric antigen receptor-modified T cells from allogeneic NK cell-mediated lysis. Eur J Immunol 2021; 51:2513-2521. [PMID: 34323289 PMCID: PMC9292285 DOI: 10.1002/eji.202049107] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/20/2021] [Indexed: 12/27/2022]
Abstract
Recent studies have indicated the antitumor activity and reduced allogeneic response of universal chimeric antigen receptor-modified T (UCAR T) cells lacking endogenous T cell receptors and beta-2 microglobulin (B2M) generated using gene-editing technologies. However, these cells are vulnerable to lysis by allogeneic natural killer (NK) cells due to their lack of human leukocyte antigen (HLA) class I molecule expression. Here, constitutive expression of mutant B2M-HLA-E (mBE) and B2M-HLA-G (mBG) fusion proteins in anti-CD19 UCAR T (UCAR T-19) cells was conducted to protect against allogeneic NK cell-mediated lysis. The ability of cells expressing mBE or mBG to resist NK cell-mediated lysis was observed in gene-edited Jurkat CAR19 cells. UCAR T-19 cells constitutively expressing the mBE and mBG fusion proteins were manufactured and showed effective and specific anti-tumor activity. Constitutive expression of the mBE and mBG fusion proteins in UCAR T-19 cells prevented allogeneic NK cell-mediated lysis. In addition, these cells were not recognizable by allogeneic T cells. Additional experiments, including those in animal models and clinical trials, are required to evaluate the safety and efficacy of UCAR T-19 cells that constitutively express mBE and mBG.
Collapse
MESH Headings
- Antigens, CD19/immunology
- Cytotoxicity, Immunologic/genetics
- Gene Knockout Techniques
- HLA-G Antigens/genetics
- HLA-G Antigens/immunology
- Histocompatibility Antigens Class I/genetics
- Histocompatibility Antigens Class I/immunology
- Humans
- Immunophenotyping
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Lymphocyte Activation/immunology
- Mutation
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/immunology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- beta 2-Microglobulin/genetics
- beta 2-Microglobulin/immunology
- HLA-E Antigens
Collapse
Affiliation(s)
- Yelei Guo
- Department of Bio‐therapeuticthe First Medical CentreChinese PLA General HospitalBeijingChina
| | - Beilei Xu
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijingChina
| | - Zhiqiang Wu
- Department of Bio‐therapeuticthe First Medical CentreChinese PLA General HospitalBeijingChina
| | - Jian Bo
- Department of Hematologythe First Medical CentreChinese PLA General HospitalBeijingChina
| | - Chuan Tong
- Department of Bio‐therapeuticthe First Medical CentreChinese PLA General HospitalBeijingChina
| | - Deyun Chen
- Department of Bio‐therapeuticthe First Medical CentreChinese PLA General HospitalBeijingChina
| | - Jin Wang
- Department of Outpatientthe Sixth Medical CentreChinese PLA General HospitalBeijingChina
| | - Haoyi Wang
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijingChina
| | - Yao Wang
- Department of Bio‐therapeuticthe First Medical CentreChinese PLA General HospitalBeijingChina
| | - Weidong Han
- Department of Bio‐therapeuticthe First Medical CentreChinese PLA General HospitalBeijingChina
| |
Collapse
|
43
|
Zhi L, Su X, Yin M, Zhang Z, Lu H, Niu Z, Guo C, Zhu W, Zhang X. Genetical engineering for NK and T cell immunotherapy with CRISPR/Cas9 technology: Implications and challenges. Cell Immunol 2021; 369:104436. [PMID: 34500148 DOI: 10.1016/j.cellimm.2021.104436] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 08/07/2021] [Accepted: 08/25/2021] [Indexed: 12/23/2022]
Abstract
Immunotherapy has become one of the most promising strategies in cancer therapies. Among the therapeutic alternatives, genetically engineered NK/T cell therapies have emerged as powerful and innovative therapeutic modalities for cancer patients with precise targeting and impressive efficacy. Nonetheless, this approach still faces multiple challenges, such as immunosuppressive tumor microenvironment, exhaustion of immune effector cells in tumors, off-target effects manufacturing complexity, and poor infiltration of effector cells, all of which need to be overcome for further utilization to cancers. Recently, CRISPR/Cas9 genome editing technology, with the goal of enhancing the efficacy and increasing the availability of engineered effector cell therapies, has shown considerable potential in the novel strategies and options to overcome these limitations. Here we review the current progress of the applications of CRISPR in cancer immunotherapy. Furthermore, we discuss issues related to the NK/T cell applications, gene delivery methods, efficiency, challenges, and implications of CRISPR/Cas9.
Collapse
Affiliation(s)
- Lingtong Zhi
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan Province, PR China
| | - Xin Su
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan Province, PR China
| | - Meichen Yin
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan Province, PR China
| | - Zikang Zhang
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan Province, PR China
| | - Hui Lu
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan Province, PR China
| | - Zhiyuan Niu
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan Province, PR China
| | - Changjiang Guo
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan Province, PR China
| | - Wuling Zhu
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan Province, PR China.
| | - Xuan Zhang
- Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, Henan, PR China.
| |
Collapse
|
44
|
Arango D, Bittar A, Esmeral NP, Ocasión C, Muñoz-Camargo C, Cruz JC, Reyes LH, Bloch NI. Understanding the Potential of Genome Editing in Parkinson's Disease. Int J Mol Sci 2021; 22:9241. [PMID: 34502143 PMCID: PMC8430539 DOI: 10.3390/ijms22179241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 01/05/2023] Open
Abstract
CRISPR is a simple and cost-efficient gene-editing technique that has become increasingly popular over the last decades. Various CRISPR/Cas-based applications have been developed to introduce changes in the genome and alter gene expression in diverse systems and tissues. These novel gene-editing techniques are particularly promising for investigating and treating neurodegenerative diseases, including Parkinson's disease, for which we currently lack efficient disease-modifying treatment options. Gene therapy could thus provide treatment alternatives, revolutionizing our ability to treat this disease. Here, we review our current knowledge on the genetic basis of Parkinson's disease to highlight the main biological pathways that become disrupted in Parkinson's disease and their potential as gene therapy targets. Next, we perform a comprehensive review of novel delivery vehicles available for gene-editing applications, critical for their successful application in both innovative research and potential therapies. Finally, we review the latest developments in CRISPR-based applications and gene therapies to understand and treat Parkinson's disease. We carefully examine their advantages and shortcomings for diverse gene-editing applications in the brain, highlighting promising avenues for future research.
Collapse
Affiliation(s)
- David Arango
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá 111711, Colombia; (D.A.); (A.B.); (N.P.E.); (C.M.-C.); (J.C.C.)
| | - Amaury Bittar
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá 111711, Colombia; (D.A.); (A.B.); (N.P.E.); (C.M.-C.); (J.C.C.)
| | - Natalia P. Esmeral
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá 111711, Colombia; (D.A.); (A.B.); (N.P.E.); (C.M.-C.); (J.C.C.)
| | - Camila Ocasión
- Grupo de Diseño de Productos y Procesos, Department of Chemical and Food Engineering, Universidad de los Andes, Bogotá 111711, Colombia; (C.O.); (L.H.R.)
| | - Carolina Muñoz-Camargo
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá 111711, Colombia; (D.A.); (A.B.); (N.P.E.); (C.M.-C.); (J.C.C.)
| | - Juan C. Cruz
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá 111711, Colombia; (D.A.); (A.B.); (N.P.E.); (C.M.-C.); (J.C.C.)
| | - Luis H. Reyes
- Grupo de Diseño de Productos y Procesos, Department of Chemical and Food Engineering, Universidad de los Andes, Bogotá 111711, Colombia; (C.O.); (L.H.R.)
| | - Natasha I. Bloch
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá 111711, Colombia; (D.A.); (A.B.); (N.P.E.); (C.M.-C.); (J.C.C.)
| |
Collapse
|
45
|
Sadeqi Nezhad M, Yazdanifar M, Abdollahpour-Alitappeh M, Sattari A, Seifalian A, Bagheri N. Strengthening the CAR-T cell therapeutic application using CRISPR/Cas9 technology. Biotechnol Bioeng 2021; 118:3691-3705. [PMID: 34241908 DOI: 10.1002/bit.27882] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/26/2021] [Accepted: 07/07/2021] [Indexed: 11/11/2022]
Abstract
Adoptive cell immunotherapy with chimeric antigen receptor T (CAR-T) cell has brought a revolutionary means of treatment for aggressive diseases such as hematologic malignancies and solid tumors. Over the last decade, the United States Food and Drug Administration (FDA) approved five types of CAR-T cell therapies for hematologic malignancies, including Idecabtagene vicleucel (Abecma), Lisocabtagene maraleucel (Breyanzi), Brexucabtagene autoleucel (Tecartus), Tisagenlecleucel (Kymriah), and Axicabtagene ciloleucel (Yescarta). Despite outstanding results gained from different clinical trials, CAR-T cell therapy is not free from side effects and toxicities, and needs careful investigations and improvements. Gene-editing technology, clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system, has emerged as a promising tool to address some of the CAR-T therapy hurdles. Using CRISPR/Cas9 technology, CAR expression as well as other cellular pathways can be modified in various ways to enhance CAR-T cells antitumor function and persistence in immunosuppressive tumor microenvironment. CRISPR/Cas9 technology can also be used to decrease CAR-T cell toxicities and side effects. Hereby, we discussed the practical challenges and hurdles related to the accuracy, efficiency, efficacy, safety, and delivery of CRISPR/Cas9 technology to the genetically engineered-T cells. Combining of these two state-of-the-art technologies, CRISPR/Cas9 and CAR-T cells, the field of oncology has an extraordinary opportunity to enter a new era of immunotherapy, which offers novel therapeutic options for different types of tumors.
Collapse
Affiliation(s)
- Muhammad Sadeqi Nezhad
- Department of Clinical Laboratory Science, Young Researchers and Elites Club, Gorgan Branch, Islamic Azad University, Gorgan, Iran
| | - Mahboubeh Yazdanifar
- Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA, USA
| | | | - Arash Sattari
- Department of Clinical Laboratory Science, Gorgan Branch, Islamic Azad University, Gorgan, Iran
| | - Alexander Seifalian
- Nanotechnology and Regenerative Medicine Commercialization Centre (Ltd), The London BioScience Innovation Centre, London, UK
| | - Nader Bagheri
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
46
|
Binnie A, Fernandes E, Almeida-Lousada H, de Mello RA, Castelo-Branco P. CRISPR-based strategies in infectious disease diagnosis and therapy. Infection 2021; 49:377-385. [PMID: 33393066 PMCID: PMC7779109 DOI: 10.1007/s15010-020-01554-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 11/06/2020] [Indexed: 12/21/2022]
Abstract
PURPOSE CRISPR gene-editing technology has the potential to transform the diagnosis and treatment of infectious diseases, but most clinicians are unaware of its broad applicability. Derived from an ancient microbial defence system, these so-called "molecular scissors" enable precise gene editing with a low error rate. However, CRISPR systems can also be targeted against pathogenic DNA or RNA sequences. This potential is being combined with innovative delivery systems to develop new therapeutic approaches to infectious diseases. METHODS We searched Pubmed and Google Scholar for CRISPR-based strategies in the diagnosis and treatment of infectious diseases. Reference lists were reviewed and synthesized for narrative review. RESULTS CRISPR-based strategies represent a novel approach to many challenging infectious diseases. CRISPR technologies can be harnessed to create rapid, low-cost diagnostic systems, as well as to identify drug-resistance genes. Therapeutic strategies, such as CRISPR systems that cleave integrated viral genomes or that target resistant bacteria, are in development. CRISPR-based therapies for emerging viruses, such as SARS-CoV-2, have also been proposed. Finally, CRISPR systems can be used to reprogram human B cells to produce neutralizing antibodies. The risks of CRISPR-based therapies include off-target and on-target modifications. Strategies to control these risks are being developed and a phase 1 clinical trials of CRISPR-based therapies for cancer and monogenic diseases are already underway. CONCLUSIONS CRISPR systems have broad applicability in the field of infectious diseases and may offer solutions to many of the most challenging human infections.
Collapse
Affiliation(s)
- Alexandra Binnie
- Department of Critical Care, William Osler Health System, Etobicoke, ON, Canada.
- Faculty of Medicine and Biomedical Sciences, University of Algarve, Edificio 2, Ala Norte, Campus Gambelas, 8005-139, Faro, Portugal.
- Algarve Biomedical Center Research Institute, Faro, Portugal.
- Centre for Biomedical Research, University of Algarve, Faro, Portugal.
| | - Emanuel Fernandes
- Faculty of Medicine and Biomedical Sciences, University of Algarve, Edificio 2, Ala Norte, Campus Gambelas, 8005-139, Faro, Portugal
- Algarve Biomedical Center Research Institute, Faro, Portugal
| | - Helder Almeida-Lousada
- Faculty of Medicine and Biomedical Sciences, University of Algarve, Edificio 2, Ala Norte, Campus Gambelas, 8005-139, Faro, Portugal
- Algarve Biomedical Center Research Institute, Faro, Portugal
- Centre for Biomedical Research, University of Algarve, Faro, Portugal
| | - Ramon Andrade de Mello
- Faculty of Medicine and Biomedical Sciences, University of Algarve, Edificio 2, Ala Norte, Campus Gambelas, 8005-139, Faro, Portugal
- Algarve Biomedical Center Research Institute, Faro, Portugal
- ONCOLOGY PRECISION & HEALTH ECONOMICS RESEARCH GROUP (ONCOPRECHE), Departamento de Oncologia Clínica da Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brasil, & Pós-graduação em Medicina da Universidade Nove de Julho (UNINOVE), São Paulo, Brasil
| | - Pedro Castelo-Branco
- Faculty of Medicine and Biomedical Sciences, University of Algarve, Edificio 2, Ala Norte, Campus Gambelas, 8005-139, Faro, Portugal
- Algarve Biomedical Center Research Institute, Faro, Portugal
- Centre for Biomedical Research, University of Algarve, Faro, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
| |
Collapse
|
47
|
Escalona‐Noguero C, López‐Valls M, Sot B. CRISPR/Cas technology as a promising weapon to combat viral infections. Bioessays 2021; 43:e2000315. [PMID: 33569817 PMCID: PMC7995209 DOI: 10.1002/bies.202000315] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/15/2021] [Accepted: 01/21/2021] [Indexed: 12/13/2022]
Abstract
The versatile clustered regularly interspaced short palindromic repeats (CRISPR)/Cas system has emerged as a promising technology for therapy and molecular diagnosis. It is especially suited for overcoming viral infections outbreaks, since their effective control relies on an efficient treatment, but also on a fast diagnosis to prevent disease dissemination. The CRISPR toolbox offers DNA- and RNA-targeting nucleases that constitute dual weapons against viruses. They allow both the manipulation of viral and host genomes for therapeutic purposes and the detection of viral nucleic acids in "Point of Care" sensor devices. Here, we thoroughly review recent advances in the use of the CRISPR/Cas system for the treatment and diagnosis of viral deleterious infections such as HIV or SARS-CoV-2, examining their strengths and limitations. We describe the main points to consider when designing CRISPR antiviral strategies and the scientific efforts to develop more sensitive CRISPR-based viral detectors. Finally, we discuss future prospects to improve both applications. Also see the video abstract here: https://www.youtube.com/watch?v=C0z1dLpJWl4.
Collapse
Affiliation(s)
| | | | - Begoña Sot
- Fundación IMDEA‐NanocienciaMadridSpain
- Nanobiotecnología (IMDEA‐Nanociencia)Unidad Asociada al Centro Nacional de Biotecnología (CSIC)MadridSpain
| |
Collapse
|
48
|
Karuppusamy KV, Babu P, Thangavel S. The Strategies and Challenges of CCR5 Gene Editing in Hematopoietic Stem and Progenitor Cells for the Treatment of HIV. Stem Cell Rev Rep 2021; 17:1607-1618. [PMID: 33788143 DOI: 10.1007/s12015-021-10145-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2021] [Indexed: 12/29/2022]
Abstract
HIV infection continues to be a serious health issue with an alarming global spread, owing to the fact that attempts at developing an effective vaccine or a permanent cure remains futile. So far, the only available treatment for the clinical management of HIV is the combined Anti-Retroviral Therapy (cART), but the long-term cART is associated with metabolic changes, organ damages, and development and transmission of drug resistant HIV strains. Thus, there is a need for the development of one-time curative treatment for HIV infection. The allogeneic transplantation with the Hematopoietic Stem and Progenitor cells (HSPCs) having 32 bp deletion in Chemokine receptor 5 gene (CCR5 Δ32) demonstrated successful HIV remission in the Berlin and London patients, and highlighted that transplantation of CCR5 null HSPCs is a promising approach for a long- term HIV remission. The advent of gene editing technologies offers a new choice of generating ex vivo CCR5 ablated allogeneic or autologous HSPCs for stem cell transplantation into HIV patients. Many groups are attempting CCR5 disruption in HSPCs using various gene-editing strategies. At least two such studies, involving CCR5 gene editing in HSPCs have entered the clinical trials. This review aims to outline the strategies taken for CCR5 gene editing and discuss the challenges associated with the development of CCR5 manipulated HSPCs for the gene therapy of HIV infection.
Collapse
Affiliation(s)
- Karthik V Karuppusamy
- Centre for Stem Cell Research (A unit of inStem, Bengaluru), Christian Medical College, Vellore, Tamil Nadu, India.,Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Prathibha Babu
- Centre for Stem Cell Research (A unit of inStem, Bengaluru), Christian Medical College, Vellore, Tamil Nadu, India.,Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Saravanabhavan Thangavel
- Centre for Stem Cell Research (A unit of inStem, Bengaluru), Christian Medical College, Vellore, Tamil Nadu, India. .,Manipal Academy of Higher Education, Manipal, Karnataka, India.
| |
Collapse
|
49
|
Rautela I, Uniyal P, Thapliyal P, Chauhan N, Bhushan Sinha V, Dev Sharma M. An extensive review to facilitate understanding of CRISPR technology as a gene editing possibility for enhanced therapeutic applications. Gene 2021; 785:145615. [PMID: 33775851 DOI: 10.1016/j.gene.2021.145615] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 03/20/2021] [Accepted: 03/23/2021] [Indexed: 02/06/2023]
Abstract
CRISPR are the sequences in bacterial and archaeal genome which provide resistance against viral infections. They might be the natural part of bacterial genomes for providing protection against viruses like bacteriophages but science has successfully achieved their use in the benefit of man-kind by using them for the treatment of deadly diseases like cancer, AIDS or genetic disorders like sickle cell disease and Leber congenital amaurosis. CRISPR system is majorly divided into two classes i.e class I and class II, of which the class II CRISPR/Cas9 system performs site specific cleavage of DNA with a guide RNA Cas12 (Cpf1). With the new emerging discoveries it is being found that CRISPR not only works on double stranded DNA but can also be useful to induce any sort of site specific cleavage in RNA too by Cas13 earlier known as C2c2, which is a protein found in CRISPR system and has ability to cure viral infections in plants. CRISPR is being used in the field of gene manipulation and various animals models are available to serve this purpose with short lifespan, rapid reproducibility and lower maintenance cost. Many successful studies and experiments performed using CRISPR, reveals their potency and utility to bring revolution in the areas which were previously believed to be out of scope of science and medicine.
Collapse
Affiliation(s)
- Indra Rautela
- Department of Biotechnology, School of Applied and Life Sciences (SALS), Uttaranchal University, Dehradun 248001, Uttarakhand, India
| | - Pooja Uniyal
- Department of Biotechnology, School of Basic and Applied Sciences, Shri Guru Ram Rai University, Patel Nagar, Dehradun 248001, Uttarakhand, India
| | - Priya Thapliyal
- Department of Biochemistry, H.N.B. Garhwal (A Central) University, Srinagar 246174, Uttarakhand, India
| | - Neha Chauhan
- Department of Medical Microbiology, College of Paramedical Sciences, Shri Guru Ram Rai University, Patel Nagar, Dehradun 248001, Uttarakhand, India
| | | | - Manish Dev Sharma
- Department of Biotechnology, School of Basic and Applied Sciences, Shri Guru Ram Rai University, Patel Nagar, Dehradun 248001, Uttarakhand, India.
| |
Collapse
|
50
|
Freen-van Heeren JJ. Using CRISPR to enhance T cell effector function for therapeutic applications. Cytokine X 2021; 3:100049. [PMID: 33604565 PMCID: PMC7885876 DOI: 10.1016/j.cytox.2020.100049] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 12/15/2020] [Indexed: 12/12/2022] Open
Abstract
T cells are critical to fight pathogenic microbes and combat malignantly transformed cells in the fight against cancer. To exert their effector function, T cells produce effector molecules, such as the pro-inflammatory cytokines IFN-γ, TNF-α and IL-2. Tumors possess many inhibitory mechanisms that dampen T cell effector function, limiting the secretion of cytotoxic molecules. As a result, the control and elimination of tumors is impaired. Through recent advances in genomic editing, T cells can now be successfully modified via CRISPR/Cas9 technology. For instance, engaging (post-)transcriptional mechanisms to enhance T cell cytokine production, the retargeting of T cell antigen specificity or rendering T cells refractive to inhibitory receptor signaling can augment T cell effector function. Therefore, CRISPR/Cas9-mediated genome editing might provide novel strategies for cancer immunotherapy. Recently, the first-in-patient clinical trial was successfully performed with CRISPR/Cas9-modified human T cell therapy. In this review, a brief overview of currently available techniques is provided, and recent advances in T cell genomic engineering for the enhancement of T cell effector function for therapeutic purposes are discussed.
Collapse
Key Words
- AP-1, activator protein 1
- ARE, AU-rich element
- ARE-Del, deletion of the 3′UTR AREs from the Ifng/IFNG gene
- CAR T cells
- CAR, Chimeric Antigen Receptor
- CRISPR
- CRISPR, Clustered Regularly Interspaced Short Palindromic Repeat
- CRS, cytokine release syndrome
- CTLA-4, cytotoxic T-lymphocyte-associated protein 4
- Cas, CRISPR-associated
- Cas9
- Cytokines
- DGK, Diacylglycerol kinase
- DHX37, DEAH-box helicase 37
- EBV, Epstein Barr virus
- FOXP3, Forkhead box P3
- GATA, GATA binding protein
- Genome editing
- IFN, interferon
- IL, interleukin
- LAG-3, Lymphocyte Activating 3
- NF-κB, nuclear factor of activated B cells
- PD-1, Programmed cell Death 1
- PD-L1, Programmed Death Ligand 1
- PTPN2, Protein Tyrosine Phosphatase Non-Receptor 2
- Pdia3, Protein Disulfide Isomerase Family A Member 3
- RBP, RNA-binding protein
- RNP, ribonuclear protein
- T cell effector function
- T cells
- TCR, T cell receptor
- TGF, transforming growth factor
- TIL, Tumor Infiltrating Lymphocyte
- TLRs, Toll-like receptors
- TNF, tumor necrosis factor
- TRAC, TCR-α chain
- TRBC, TCR-β chain
- UTR, untranslated region
- tTCR, transgenic TCR
Collapse
|