1
|
Islam A, Amin E, Khan MA, Islam M, Gupta SD, Abedin J, Rahman MZ, Forwood JK, Hosaain ME, Shirin T. Epidemiology and evolutionary dynamics of H9N2 avian influenza virus in Bangladesh. Emerg Microbes Infect 2025:2498574. [PMID: 40271995 DOI: 10.1080/22221751.2025.2498574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
Low pathogenicity avian influenza (LPAI) H9N2 has been enzootic in Bangladeshi poultry since 2006. H9N2 outbreaks can decrease egg production and growth and pose a risk to human health. The role of avian hosts in the persistence, evolution, and dispersion of H9N2 is poorly understood in Bangladesh. Hence, this study unveils the intricate role of major host species in virus maintenance and evolution and the temporal and seasonal patterns of H9N2 in Bangladesh from 2006 to 2023. Multinomial logistic regression analysis indicated that the circulation of H9N2 in different species and interfaces is significantly influenced by the seasons. Bayesian phylogenetic analysis of H9N2 sequences in Bangladesh revealed two distinct lineages: G1 and Eurasian. The G1 lineage split into two clusters, coexisting until 2019, at which point only one cluster persisted. Bayesian phylodynamic analysis of G1 lineage unveiled frequent bidirectional viral transitions among ducks, chickens, and quails. Chickens might be a pivotal source of H9N2 in Bangladesh, with a higher number of viral transitions from chickens to ducks and quails. Quails appear to acquire most of their viral transitions from chickens rather than ducks, suggesting that quail epizootics are primarily triggered by spillover events from chickens. Our results suggest viral circulation in commercial chickens despite vaccination. The vaccination approach should be revised, assess vaccine efficacy, and extension of vaccination to backyard chickens and quails.
Collapse
Affiliation(s)
- Ariful Islam
- Biosecurity Research Program and Training Centre, Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW-2678, Australia
- Training Hub Promoting Regional Industry and Innovation in Virology and Epidemiology, Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
| | - Emama Amin
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka Bangladesh
| | - Md Arif Khan
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka Bangladesh
| | - Monjurul Islam
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka Bangladesh
| | - Suman Das Gupta
- Biosecurity Research Program and Training Centre, Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW-2678, Australia
- School of Agricultural, Environmental and Veterinary Sciences, Faculty of Science and Health, Charles Sturt University, Wagga Wagga, NSW-2678, Australia
| | - Josefina Abedin
- Queensland Alliance for One Health Sciences, School of Veterinary Science, University of Queensland, Brisbane, QLD, Australia
| | - Mohammed Ziaur Rahman
- One Health Laboratory, International Centre for Diarrheal Diseases Research, Bangladesh (icddr,b), Bangladesh
| | - Jade K Forwood
- Biosecurity Research Program and Training Centre, Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW-2678, Australia
- Training Hub Promoting Regional Industry and Innovation in Virology and Epidemiology, Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
- School of Dentistry and Medical Sciences, Charles Sturt University, NSW-2678, Australia
| | - Mohammed Enayet Hosaain
- One Health Laboratory, International Centre for Diarrheal Diseases Research, Bangladesh (icddr,b), Bangladesh
| | - Tahmina Shirin
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka Bangladesh
| |
Collapse
|
2
|
Tan M, Zeng X, Xie Y, Li X, Liu J, Yang J, Yang L, Wang D. Reported human infections of H9N2 avian influenza virus in China in 2021. Front Public Health 2023; 11:1255969. [PMID: 38155898 PMCID: PMC10753182 DOI: 10.3389/fpubh.2023.1255969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/15/2023] [Indexed: 12/30/2023] Open
Abstract
Introduction The continued emergence of human infections of H9N2 avian influenza virus (AIV) poses a serious threat to public health. The prevalent Y280/G9 lineage of H9N2 AIV in Chinese poultry can directly bind to human receptors, increasing the risk of spillover infections to humans. Since 2013, the number of human cases of H9N2 avian influenza has been increasing continuously, and in 2021, China reported the highest number of human cases, at 25. Methods In this study, we analyzed the age, geographic, temporal, and sex distributions of humans with H9N2 avian influenza in 2021 using data from the National Influenza Center (Beijing, China). We also conducted evolutionary, gene homology, and molecular characterization analyses of the H9N2 AIVs infecting humans. Results Our findings show that children under the age of 12 accounted for 80% of human cases in 2021, and females were more frequently affected than males. More cases occurred in winter than in summer, and most cases were concentrated in southern China. Human-infecting H9N2 viruses showed a high level of genetic homology and belonged to the prevalent G57 genotype. Several additional α2,6-SA-binding sites and sites of mammalian adaptation were also identified in the genomes of human-infecting H9N2 viruses. Discussion Therefore, continuous monitoring of H9N2 AIV and the implementation of further measures to control the H9N2 virus in poultry are essential to reduce the interspecies transmission of the virus.
Collapse
Affiliation(s)
- Min Tan
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, Beijing, China
| | - Xiaoxu Zeng
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, Beijing, China
| | - Yiran Xie
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, Beijing, China
| | - Xiyan Li
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, Beijing, China
| | - Jia Liu
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, Beijing, China
| | - Jiaying Yang
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangdong, China
| | - Lei Yang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, Beijing, China
| | - Dayan Wang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, Beijing, China
| |
Collapse
|
3
|
Stadejek W, Chiers K, Van Reeth K. Infectivity and transmissibility of an avian H3N1 influenza virus in pigs. Vet Res 2023; 54:4. [PMID: 36694192 PMCID: PMC9872060 DOI: 10.1186/s13567-022-01133-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/05/2022] [Indexed: 01/26/2023] Open
Abstract
In 2019 a low pathogenic H3N1 avian influenza virus (AIV) caused an outbreak in Belgian poultry farms, characterized by an unusually high mortality in chickens. Influenza A viruses of the H1 and H3 subtype can infect pigs and become established in swine populations. Therefore, the H3N1 epizootic raised concern about AIV transmission to pigs and from pigs to humans. Here, we assessed the replication efficiency of this virus in explants of the porcine respiratory tract and in pigs, using virus titration and/or RT-qPCR. We also examined transmission from directly, intranasally inoculated pigs to contact pigs. The H3N1 AIV replicated to moderate titers in explants of the bronchioles and lungs, but not in the nasal mucosa or trachea. In the pig infection study, infectious virus was only detected in a few lung samples collected between 1 and 3 days post-inoculation. Virus titers were between 1.7 and 4.8 log10 TCID50. In line with the ex vivo experiment, no virus was isolated from the upper respiratory tract of pigs. In the transmission experiment, we could not detect virus transmission from directly inoculated to contact pigs. An increase in serum antibody titers was observed only in the inoculated pigs. We conclude that the porcine respiratory tract tissue explants can be a useful tool to assess the replication efficiency of AIVs in pigs. The H3N1 AIV examined here is unlikely to pose a risk to swine populations. However, continuous risk assessment studies of emerging AIVs in pigs are necessary, since different virus strains will have different genotypic and phenotypic traits.
Collapse
Affiliation(s)
- Wojciech Stadejek
- grid.5342.00000 0001 2069 7798Laboratory of Virology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Koen Chiers
- grid.5342.00000 0001 2069 7798Laboratory of Veterinary Pathology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Kristien Van Reeth
- grid.5342.00000 0001 2069 7798Laboratory of Virology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| |
Collapse
|
4
|
Mo JS, Abente EJ, Cardenas Perez M, Sutton TC, Cowan B, Ferreri LM, Geiger G, Gauger PC, Perez DR, Vincent Baker AL, Rajao DS. Transmission of Human Influenza A Virus in Pigs Selects for Adaptive Mutations on the HA Gene. J Virol 2022; 96:e0148022. [PMID: 36317880 PMCID: PMC9682980 DOI: 10.1128/jvi.01480-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 10/01/2022] [Indexed: 11/24/2022] Open
Abstract
Influenza A viruses (FLUAV) cause respiratory diseases in many host species, including humans and pigs. The spillover of FLUAV between swine and humans has been a concern for both public health and the swine industry. With the emergence of the triple reassortant internal gene (TRIG) constellation, establishment of human-origin FLUAVs in pigs has become more common, leading to increased viral diversity. However, little is known about the adaptation processes that are needed for a human-origin FLUAV to transmit and become established in pigs. We generated a reassortant FLUAV (VIC11pTRIG) containing surface gene segments from a human FLUAV strain and internal gene segments from the 2009 pandemic and TRIG FLUAV lineages and demonstrated that it can replicate and transmit in pigs. Sequencing and variant analysis identified three mutants that emerged during replication in pigs, which were mapped near the receptor binding site of the hemagglutinin (HA). The variants replicated more efficiently in differentiated swine tracheal cells compared to the virus containing the wildtype human-origin HA, and one of them was present in all contact pigs. These results show that variants are selected quickly after replication of human-origin HA in pigs, leading to improved fitness in the swine host, likely contributing to transmission. IMPORTANCE Influenza A viruses cause respiratory disease in several species, including humans and pigs. The bidirectional transmission of FLUAV between humans and pigs plays a significant role in the generation of novel viral strains, greatly impacting viral epidemiology. However, little is known about the evolutionary processes that allow human FLUAV to become established in pigs. In this study, we generated reassortant viruses containing human seasonal HA and neuraminidase (NA) on different constellations of internal genes and tested their ability to replicate and transmit in pigs. We demonstrated that a virus containing a common internal gene constellation currently found in U.S. swine was able to transmit efficiently via the respiratory route. We identified a specific amino acid substitution that was fixed in the respiratory contact pigs that was associated with improved replication in primary swine tracheal epithelial cells, suggesting it was crucial for the transmissibility of the human virus in pigs.
Collapse
Affiliation(s)
- Jong-suk Mo
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | | | - Matias Cardenas Perez
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Troy C. Sutton
- Department of Veterinary and Biomedical Sciences, Penn State University, University Park, Pennsylvania, USA
| | - Brianna Cowan
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Lucas M. Ferreri
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Ginger Geiger
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Phillip C. Gauger
- Veterinary Diagnostic & Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Daniel R. Perez
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | | | - Daniela S. Rajao
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
5
|
Cáceres CJ, Rajao DS, Perez DR. Airborne Transmission of Avian Origin H9N2 Influenza A Viruses in Mammals. Viruses 2021; 13:v13101919. [PMID: 34696349 PMCID: PMC8540072 DOI: 10.3390/v13101919] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/16/2021] [Accepted: 09/20/2021] [Indexed: 12/17/2022] Open
Abstract
Influenza A viruses (IAV) are widespread viruses affecting avian and mammalian species worldwide. IAVs from avian species can be transmitted to mammals including humans and, thus, they are of inherent pandemic concern. Most of the efforts to understand the pathogenicity and transmission of avian origin IAVs have been focused on H5 and H7 subtypes due to their highly pathogenic phenotype in poultry. However, IAV of the H9 subtype, which circulate endemically in poultry flocks in some regions of the world, have also been associated with cases of zoonotic infections. In this review, we discuss the mammalian transmission of H9N2 and the molecular factors that are thought relevant for this spillover, focusing on the HA segment. Additionally, we discuss factors that have been associated with the ability of these viruses to transmit through the respiratory route in mammalian species. The summarized information shows that minimal amino acid changes in the HA and/or the combination of H9N2 surface genes with internal genes of human influenza viruses are enough for the generation of H9N2 viruses with the ability to transmit via aerosol.
Collapse
|
6
|
Abstract
Influenza A viruses (IAVs) of the H9 subtype are enzootic in Asia, the Middle East, and parts of North and Central Africa, where they cause significant economic losses to the poultry industry. Of note, some strains of H9N2 viruses have been linked to zoonotic episodes of mild respiratory diseases. Because of the threat posed by H9N2 viruses to poultry and human health, these viruses are considered of pandemic concern by the World Health Organization (WHO). H9N2 IAVs continue to diversify into multiple antigenically and phylogenetically distinct lineages that can further promote the emergence of strains with pandemic potential. Somewhat neglected compared with the H5 and H7 subtypes, there are numerous indicators that H9N2 viruses could be involved directly or indirectly in the emergence of the next influenza pandemic. The goal of this work is to discuss the state of knowledge on H9N2 IAVs and to provide an update on the contemporary global situation.
Collapse
Affiliation(s)
- Silvia Carnaccini
- Department of Population Health, Poultry Diagnostic and Research Center, University of Georgia, Athens, Georgia 30602, USA
| | - Daniel R Perez
- Department of Population Health, Poultry Diagnostic and Research Center, University of Georgia, Athens, Georgia 30602, USA
| |
Collapse
|
7
|
Bertran K, Pantin-Jackwood MJ, Criado MF, Lee DH, Balzli CL, Spackman E, Suarez DL, Swayne DE. Pathobiology and innate immune responses of gallinaceous poultry to clade 2.3.4.4A H5Nx highly pathogenic avian influenza virus infection. Vet Res 2019; 50:89. [PMID: 31675983 PMCID: PMC6824115 DOI: 10.1186/s13567-019-0704-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 09/27/2019] [Indexed: 11/10/2022] Open
Abstract
In the 2014-2015 Eurasian lineage clade 2.3.4.4A H5 highly pathogenic avian influenza (HPAI) outbreak in the U.S., backyard flocks with minor gallinaceous poultry and large commercial poultry (chickens and turkeys) operations were affected. The pathogenesis of the first H5N8 and reassortant H5N2 clade 2.3.4.4A HPAI U.S. isolates was investigated in six gallinaceous species: chickens, Japanese quail, Bobwhite quail, Pearl guinea fowl, Chukar partridges, and Ring-necked pheasants. Both viruses caused 80-100% mortality in all species, except for H5N2 virus that caused 60% mortality in chickens. The surviving challenged birds remained uninfected based on lack of clinical disease and lack of seroconversion. Among the infected birds, chickens and Japanese quail in early clinical stages (asymptomatic and listless) lacked histopathologic findings. In contrast, birds of all species in later clinical stages (moribund and dead) had histopathologic lesions and systemic virus replication consistent with HPAI virus infection in gallinaceous poultry. These birds had widespread multifocal areas of necrosis, sometimes with heterophilic or lymphoplasmacytic inflammatory infiltrate, and viral antigen in parenchymal cells of most tissues. In general, lesions and antigen distribution were similar regardless of virus and species. However, endotheliotropism was the most striking difference among species, with only Pearl guinea fowl showing widespread replication of both viruses in endothelial cells of most tissues. The expression of IFN-γ and IL-10 in Japanese quail, and IL-6 in chickens, were up-regulated in later clinical stages compared to asymptomatic birds.
Collapse
Affiliation(s)
- Kateri Bertran
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA, 30605, USA.,IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Mary J Pantin-Jackwood
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA, 30605, USA
| | - Miria F Criado
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA, 30605, USA
| | - Dong-Hun Lee
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA, 30605, USA.,Department of Pathobiology & Veterinary Science, University of Connecticut, Storrs, CT, 06269, USA
| | - Charles L Balzli
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA, 30605, USA.,Battelle National Biodefense Institute, National Biodefense Analysis and Countermeasures Center, 8300 Research PI, Fort Detrick, MD, 21702, USA
| | - Erica Spackman
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA, 30605, USA
| | - David L Suarez
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA, 30605, USA
| | - David E Swayne
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA, 30605, USA.
| |
Collapse
|
8
|
Chamba Pardo FO, Wayne S, Culhane MR, Perez A, Allerson M, Torremorell M. Effect of strain-specific maternally-derived antibodies on influenza A virus infection dynamics in nursery pigs. PLoS One 2019; 14:e0210700. [PMID: 30640929 PMCID: PMC6331129 DOI: 10.1371/journal.pone.0210700] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 12/31/2018] [Indexed: 12/25/2022] Open
Abstract
Reducing the number of influenza A virus (IAV) infected pigs at weaning is critical to minimize IAV spread to other farms. Sow vaccination is a common measure to reduce influenza levels at weaning. However, the impact of maternally-derived antibodies on IAV infection dynamics in growing pigs is poorly understood. We evaluated the effect of maternally-derived antibodies at weaning on IAV prevalence at weaning, time of influenza infection, number of weeks that pigs tested IAV positive, and estimated quantity of IAV in nursery pigs. We evaluated 301 pigs within 10 cohorts for their influenza serological (seroprevalence estimated by hemagglutination inhibition (HI) test) and virological (prevalence) status. Nasal swabs were collected weekly and pigs were bled 3 times throughout the nursery period. There was significant variability in influenza seroprevalence, HI titers and influenza prevalence after weaning. Increase in influenza seroprevalence at weaning was associated with low influenza prevalence at weaning and delayed time to IAV infection throughout the nursery. Piglets with IAV HI titers of 40 or higher at weaning were also less likely to test IAV positive at weaning, took longer to become infected, tested IAV RT-PCR positive for fewer weeks, and had higher IAV RT-PCR cycle threshold values compared to piglets with HI titers less than 40. Our findings suggest that sow vaccination or infection status that results in high levels of IAV strain-specific maternally-derived antibodies may help to reduce IAV circulation in both suckling and nursery pigs.
Collapse
Affiliation(s)
| | - Spencer Wayne
- Health Services, Pipestone Veterinary Services, Pipestone, MN, United States of America
| | - Marie Rene Culhane
- Veterinary Population Medicine Department, University of Minnesota, St. Paul, MN, United States of America
| | - Andres Perez
- Veterinary Population Medicine Department, University of Minnesota, St. Paul, MN, United States of America
| | - Matthew Allerson
- Health and Research Division, Holden Farms Inc., Northfield, MN, United States of America
| | - Montserrat Torremorell
- Veterinary Population Medicine Department, University of Minnesota, St. Paul, MN, United States of America
- * E-mail:
| |
Collapse
|
9
|
Rodriguez L, Nogales A, Iqbal M, Perez DR, Martinez-Sobrido L. Identification of Amino Acid Residues Responsible for Inhibition of Host Gene Expression by Influenza A H9N2 NS1 Targeting of CPSF30. Front Microbiol 2018; 9:2546. [PMID: 30405591 PMCID: PMC6207622 DOI: 10.3389/fmicb.2018.02546] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/05/2018] [Indexed: 02/02/2023] Open
Abstract
H9N2 influenza A viruses (IAV) are considered low pathogenic avian influenza viruses (LPAIV). These viruses are endemic in poultry in many countries in Asia, the Middle East and parts of Africa. Several cases of H9N2-associated infections in humans as well as in pigs have led the World Health Organization (WHO) to include these viruses among those with pandemic potential. To date, the processes and mechanisms associated with H9N2 IAV adaptation to mammals are poorly understood. The non-structural protein 1 (NS1) from IAV is a virulence factor that counteracts the innate immune responses. Here, we evaluated the ability of the NS1 protein from A/quail/Hong Kong/G1/97 (HK/97) H9N2 to inhibit host immune responses. We found that HK/97 NS1 protein counteracted interferon (IFN) responses but was not able to inhibit host gene expression in human or avian cells. In contrast, the NS1 protein from earlier H9N2 IAV strains, including the first H9N2 A/turkey/Wisconsin/1/1966 (WI/66), were able to inhibit both IFN and host gene expression. Using chimeric constructs between WI/66 and HK/97 NS1 proteins, we identified the region and amino acid residues involved in inhibition of host gene expression. Amino acid substitutions L103F, I106M, P114S, G125D and N139D in HK/97 NS1 resulted in binding to the 30-kDa subunit of the cleavage and polyadenylation specificity factor (CPSF30) and, in consequence, inhibition of host gene expression. Notably, changes in the same amino acid residues resulted in the lack of inhibition of host gene expression by WI/66 NS1. Importantly, our results identified a new combination of amino acids required for NS1 binding to CPSF30 and inhibition of host gene expression. These results also confirm previous studies demonstrating strain specific differences in the ability of NS1 proteins to inhibit host gene expression.
Collapse
Affiliation(s)
- Laura Rodriguez
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, United States
- Agencia Española de Medicamentos y Productos Sanitarios, Madrid, Spain
| | - Aitor Nogales
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, United States
| | - Munir Iqbal
- Avian Viral Diseases Programme, The Pirbright Institute, Woking, United Kingdom
| | - Daniel R. Perez
- Department of Population Health, Poultry Diagnostic and Research Center, University of Georgia, Athens, GA, United States
| | - Luis Martinez-Sobrido
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, United States
| |
Collapse
|
10
|
Pathobiology of Clade 2.3.4.4 H5Nx High-Pathogenicity Avian Influenza Virus Infections in Minor Gallinaceous Poultry Supports Early Backyard Flock Introductions in the Western United States in 2014-2015. J Virol 2017; 91:JVI.00960-17. [PMID: 28794040 DOI: 10.1128/jvi.00960-17] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 08/04/2017] [Indexed: 11/20/2022] Open
Abstract
In 2014 and 2015, the United States experienced an unprecedented outbreak of Eurasian clade 2.3.4.4 H5 highly pathogenic avian influenza (HPAI) virus. Initial cases affected mainly wild birds and mixed backyard poultry species, while later outbreaks affected mostly commercial chickens and turkeys. The pathogenesis, transmission, and intrahost evolutionary dynamics of initial Eurasian H5N8 and reassortant H5N2 clade 2.3.4.4 HPAI viruses in the United States were investigated in minor gallinaceous poultry species (i.e., species for which the U.S. commercial industries are small), namely, Japanese quail, bobwhite quail, pearl guinea fowl, chukar partridges, and ring-necked pheasants. Low mean bird infectious doses (<2 to 3.7 log10) support direct introduction and infection of these species as observed in mixed backyard poultry during the early outbreaks. Pathobiological features and systemic virus replication in all species tested were consistent with HPAI virus infection. Sustained virus shedding with transmission to contact-exposed birds, alongside long incubation periods, may enable unrecognized dissemination and adaptation to other gallinaceous species, such as chickens and turkeys. Genome sequencing of excreted viruses revealed numerous low-frequency polymorphisms and 20 consensus-level substitutions in all genes and species, but especially in Japanese quail and pearl guinea fowl and in internal proteins PB1 and PB2. This genomic flexibility after only one passage indicates that influenza viruses can continue to evolve in galliform species, increasing their opportunity to adapt to other species. Our findings suggest that these gallinaceous poultry are permissive for infection and sustainable transmissibility with the 2014 initial wild bird-adapted clade 2.3.4.4 virus, with potential acquisition of mutations leading to host range adaptation.IMPORTANCE The outbreak of clade 2.3.4.4 H5 highly pathogenic avian influenza (HPAI) virus that occurred in the United States in 2014 and 2015 represents the worst livestock disease event in the country, with unprecedented socioeconomic and commercial consequences. Epidemiological and molecular investigations can identify transmission pathways of the HPAI virus. However, understanding the pathogenesis, transmission, and intrahost evolutionary dynamics of new HPAI viruses in different avian species is paramount. The significance of our research is in examining the susceptibility of minor gallinaceous species to HPAI virus, as this poultry sector also suffers from HPAI epizootics, and identifying the biological potential of these species as an epidemiological link between the waterfowl reservoir and the commercial chicken and turkey populations, with the ultimate goal of refining surveillance in these populations to enhance early detection, management, and control in future HPAI virus outbreaks.
Collapse
|
11
|
Replication of H9 influenza viruses in the human ex vivo respiratory tract, and the influence of neuraminidase on virus release. Sci Rep 2017; 7:6208. [PMID: 28740108 PMCID: PMC5524967 DOI: 10.1038/s41598-017-05853-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 06/07/2017] [Indexed: 01/10/2023] Open
Abstract
H9N2 viruses are the most widespread influenza viruses in poultry in Asia. We evaluated the infection and tropism of human and avian H9 influenza virus in the human respiratory tract using ex vivo respiratory organ culture. H9 viruses infected the upper and lower respiratory tract and the majority of H9 viruses had a decreased ability to release virus from the bronchus rather than the lung. This may be attributed to a weak neuraminidase (NA) cleavage of carbon-6-linked sialic acid (Sia) rather than carbon-3-linked Sia. The modified cleavage of N-acetlylneuraminic acid (Neu5Ac) and N-glycolylneuraminic acid (Neu5Gc) by NA in H9 virus replication was observed by reverse genetics, and recombinant H9N2 viruses with amino acids (38KQ) deleted in the NA stalk, and changing the amino acid at position 431 from Proline-to-Lysine. Using recombinant H9 viruses previously evaluated in the ferret, we found that viruses which replicated well in the ferret did not replicate to the same extent in the human ex vivo cultures. The existing risk assessment models for H9N2 viruses in ferrets may not always have a strong correlation with the replication in the human upper respiratory tract. The inclusion of the human ex vivo cultures would further strengthen the future risk-assessment strategies.
Collapse
|
12
|
Mancera Gracia JC, Van den Hoecke S, Richt JA, Ma W, Saelens X, Van Reeth K. A reassortant H9N2 influenza virus containing 2009 pandemic H1N1 internal-protein genes acquired enhanced pig-to-pig transmission after serial passages in swine. Sci Rep 2017; 7:1323. [PMID: 28465552 PMCID: PMC5430982 DOI: 10.1038/s41598-017-01512-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 03/30/2017] [Indexed: 11/09/2022] Open
Abstract
Avian H9N2 and 2009 pandemic H1N1 (pH1N1) influenza viruses can infect pigs and humans, raising the concern that H9N2:pH1N1 reassortant viruses could emerge. Such reassortants demonstrated increased replication and transmissibility in pig, but were still inefficient when compared to pH1N1. Here, we evaluated if a reassortant virus containing the hemagglutinin and neuraminidase of A/quail/Hong Kong/G1/1997 (H9N2) in the A/California/04/2009 (pH1N1) backbone could become better adapted to pigs by serial passaging. The tropism of the original H9N2:pH1N1 (P0) virus was restricted to the nasal mucosa, with no virus detected in the trachea or lungs. Nevertheless, after seven passages the H9N2:pH1N1 (P7) virus replicated in the entire respiratory tract. We also compared the transmissibility of H9N2:pH1N1 (P0), H9N2:pH1N1 (P7) and pH1N1. While only 2/6 direct-contact pigs showed nasal virus excretion of H9N2:pH1N1 (P0) ≥five days, 4/6 direct-contact animals shed the H9N2:pH1N1 (P7). Interestingly, those four animals shed virus with titers similar to those of the pH1N1, which readily transmitted to all six contact animals. The broader tissue tropism and the increased post-transmission replication after seven passages were associated with the HA-D225G substitution. Our data demonstrate that the pH1N1 internal-protein genes together with the serial passages favour H9N2 virus adaptation to pigs.
Collapse
Affiliation(s)
- José Carlos Mancera Gracia
- Laboratory of Virology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Silvie Van den Hoecke
- Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, 9000, Belgium
| | - Juergen A Richt
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, 66506, USA
| | - Wenjun Ma
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, 66506, USA
| | - Xavier Saelens
- Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, 9000, Belgium
| | - Kristien Van Reeth
- Laboratory of Virology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.
| |
Collapse
|
13
|
Variability in H9N2 haemagglutinin receptor-binding preference and the pH of fusion. Emerg Microbes Infect 2017; 6:e11. [PMID: 28325922 PMCID: PMC5378918 DOI: 10.1038/emi.2016.139] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 12/09/2016] [Accepted: 12/27/2016] [Indexed: 12/23/2022]
Abstract
H9N2 avian influenza viruses are primarily a disease of poultry; however, they occasionally infect humans and are considered a potential pandemic threat. Little work has been performed to assess the intrinsic biochemical properties related to zoonotic potential of H9N2 viruses. The objective of this study, therefore, was to investigate H9N2 haemagglutinins (HAs) using two well-known correlates for human adaption: receptor-binding avidity and pH of fusion. Receptor binding was characterized using bio-layer interferometry to measure virus binding to human and avian-like receptor analogues and the pH of fusion was assayed by syncytium formation in virus-infected cells at different pHs. We characterized contemporary H9N2 viruses of the zoonotic G1 lineage, as well as representative viruses of the zoonotic BJ94 lineage. We found that most contemporary H9N2 viruses show a preference for sulphated avian-like receptor analogues. However, the 'Eastern' G1 H9N2 viruses displayed a consistent preference in binding to a human-like receptor analogue. We demonstrate that the presence of leucine at position 226 of the HA receptor-binding site correlated poorly with the ability to bind a human-like sialic acid receptor. H9N2 HAs also display variability in their pH of fusion, ranging between pH 5.4 and 5.85 which is similar to that of the first wave of human H1N1pdm09 viruses but lower than the pH of fusion seen in zoonotic H5N1 and H7N9 viruses. Our results suggest possible molecular mechanisms that may underlie the relatively high prevalence of human zoonotic infection by particular H9N2 virus lineages.
Collapse
|