1
|
Tsishevskaya AA, Alkhireenko DA, Bayandin RB, Kartashov MY, Ternovoi VA, Gladysheva AV. Untranslated Regions of a Segmented Kindia Tick Virus Genome Are Highly Conserved and Contain Multiple Regulatory Elements for Viral Replication. Microorganisms 2024; 12:239. [PMID: 38399643 PMCID: PMC10893285 DOI: 10.3390/microorganisms12020239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
Novel segmented tick-borne RNA viruses belonging to the group of Jingmenviruses (JMVs) are widespread across Africa, Asia, Europe, and America. In this work, we obtained whole-genome sequences of two Kindia tick virus (KITV) isolates and performed modeling and the functional annotation of the secondary structure of 5' and 3' UTRs from JMV and KITV viruses. UTRs of various KITV segments are characterized by the following points: (1) the polyadenylated 3' UTR; (2) 5' DAR and 3' DAR motifs; (3) a highly conserved 5'-CACAG-3' pentanucleotide; (4) a binding site of the La protein; (5) multiple UAG sites providing interactions with the MSI1 protein; (6) three homologous sequences in the 5' UTR and 3' UTR of segment 2; (7) the segment 2 3' UTR of a KITV/2017/1 isolate, which comprises two consecutive 40 nucleotide repeats forming a Y-3 structure; (8) a 35-nucleotide deletion in the second repeat of the segment 2 3' UTR of KITV/2018/1 and KITV/2018/2 isolates, leading to a modification of the Y-3 structure; (9) two pseudoknots in the segment 2 3' UTR; (10) the 5' UTR and 3' UTR being represented by patterns of conserved motifs; (11) the 5'-CAAGUG-3' sequence occurring in early UTR hairpins. Thus, we identified regulatory elements in the UTRs of KITV, which are characteristic of orthoflaviviruses. This suggests that they hold functional significance for the replication of JMVs and the evolutionary similarity between orthoflaviviruses and segmented flavi-like viruses.
Collapse
Affiliation(s)
- Anastasia A. Tsishevskaya
- State Research Center of Virology and Biotechnology «Vector», 630559 Kol’tsovo, Russia; (A.A.T.); (D.A.A.); (R.B.B.); (M.Y.K.); (V.A.T.)
- Physics Department, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Daria A. Alkhireenko
- State Research Center of Virology and Biotechnology «Vector», 630559 Kol’tsovo, Russia; (A.A.T.); (D.A.A.); (R.B.B.); (M.Y.K.); (V.A.T.)
- Natural Sciences Department, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Roman B. Bayandin
- State Research Center of Virology and Biotechnology «Vector», 630559 Kol’tsovo, Russia; (A.A.T.); (D.A.A.); (R.B.B.); (M.Y.K.); (V.A.T.)
| | - Mikhail Yu. Kartashov
- State Research Center of Virology and Biotechnology «Vector», 630559 Kol’tsovo, Russia; (A.A.T.); (D.A.A.); (R.B.B.); (M.Y.K.); (V.A.T.)
| | - Vladimir A. Ternovoi
- State Research Center of Virology and Biotechnology «Vector», 630559 Kol’tsovo, Russia; (A.A.T.); (D.A.A.); (R.B.B.); (M.Y.K.); (V.A.T.)
| | - Anastasia V. Gladysheva
- State Research Center of Virology and Biotechnology «Vector», 630559 Kol’tsovo, Russia; (A.A.T.); (D.A.A.); (R.B.B.); (M.Y.K.); (V.A.T.)
| |
Collapse
|
2
|
Xu P, Tong W, Chen YM. FUSE binding protein FUBP3 is a potent regulator in Japanese encephalitis virus infection. Virol J 2021; 18:224. [PMID: 34794468 PMCID: PMC8600714 DOI: 10.1186/s12985-021-01697-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/10/2021] [Indexed: 12/01/2022] Open
Abstract
Background The JEV genome is a positive-sense RNA with a highly structured capped 5′UTR, 3′UTR and a large open reading frame. 3′UTR is the untranslated region of flavivirus and has various important functions during viral replication, such as translation, replication and encapsidation. During viral replication, the 3′UTR interacts with viral proteins and host proteins and is required for viral RNA replication and translocation. Methods The expression level of FUBP3 was knocked down by siRNA and Flag-tagged FUBP3 overexpression plasmid was constructed for overexpression. BHK-21 cells were cultured and infected with JEV to investigate the functional role of FUBP3 in the viral infection cycle. Subcellular localization of FUBP3 and viral replication complexes was observed by dual immunofluorescence staining. Results Four host proteins were specifically associated with the 3′UTR of JEV, and FUBP3 was selected to further investigate its potential functional role in the JEV infection cycle. Knockdown of FUBP3 protein resulted in a significant decrease in JEV viral titer, whereas ectopic overexpression of FUBP3 resulted in increased JE viral infectivity. In cells stably knocked down for FUBP3 and then infected with JEV, we found almost no detectable viral NS5 protein. In contrast, when cells stably knocking-down of FUBP3 overexpressed FUBP3, we found a significant increase in viral RNA production over time compared to controls. We also demonstrated that FUBP3 re-localized in the cytoplasm after infection with JEV and co-localized with viral proteins. Exogenous overexpression of FUBP3 was also shown to be located in the JE replication complex and to assist viral replication after JEV infection. Conclusions The overall results suggest that FUBP3 regulates RNA replication of JEV and promotes subsequent viral translation and viral particle production.
Collapse
Affiliation(s)
- Peng Xu
- Xiangyang No.1 People's HospitalHubei University of Medicine, Xiangyang, Hubei Province, China
| | - Wei Tong
- Department of Clinical Laboratory, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Young-Mao Chen
- Bachelor Degree Program in Marine Biotechnology, College of Life Sciences, National Taiwan Ocean University, Keelung, 20224, Taiwan. .,Center of Excellence for the Oceans and Matsu Marine Research Center, National Taiwan Ocean University, Keelung, 20224, Taiwan.
| |
Collapse
|
3
|
Ramos-Lorente S, Romero-López C, Berzal-Herranz A. Information Encoded by the Flavivirus Genomes beyond the Nucleotide Sequence. Int J Mol Sci 2021; 22:3738. [PMID: 33916729 PMCID: PMC8038387 DOI: 10.3390/ijms22073738] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 02/05/2023] Open
Abstract
The genus Flavivirus comprises numerous, small, single positive-stranded RNA viruses, many of which are important human pathogens. To store all the information required for their successful propagation, flaviviruses use discrete structural genomic RNA elements to code for functional information by the establishment of dynamic networks of long-range RNA-RNA interactions that promote specific folding. These structural elements behave as true cis-acting, non-coding RNAs (ncRNAs) and have essential regulatory roles in the viral cycle. These include the control of the formation of subgenomic RNAs, known as sfRNAs, via the prevention of the complete degradation of the RNA genome. These sfRNAs are important in ensuring viral fitness. This work summarizes our current knowledge of the functions performed by the genome conformations and the role of RNA-RNA interactions in these functions. It also reviews the role of RNA structure in the production of sfRNAs across the genus Flavivirus, and their existence in related viruses.
Collapse
Affiliation(s)
| | - Cristina Romero-López
- Instituto de Parasitología y Biomedicina López-Neyra (IPBLN-CSIC), Av. Conocimiento 17, Armilla, 18016 Granada, Spain;
| | - Alfredo Berzal-Herranz
- Instituto de Parasitología y Biomedicina López-Neyra (IPBLN-CSIC), Av. Conocimiento 17, Armilla, 18016 Granada, Spain;
| |
Collapse
|
4
|
The Pseudo-Circular Genomes of Flaviviruses: Structures, Mechanisms, and Functions of Circularization. Cells 2021; 10:cells10030642. [PMID: 33805761 PMCID: PMC7999817 DOI: 10.3390/cells10030642] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/19/2021] [Accepted: 03/02/2021] [Indexed: 11/23/2022] Open
Abstract
The circularization of viral genomes fulfills various functions, from evading host defense mechanisms to promoting specific replication and translation patterns supporting viral proliferation. Here, we describe the genomic structures and associated host factors important for flaviviruses genome circularization and summarize their functional roles. Flaviviruses are relatively small, single-stranded, positive-sense RNA viruses with genomes of approximately 11 kb in length. These genomes contain motifs at their 5′ and 3′ ends, as well as in other regions, that are involved in circularization. These motifs are highly conserved throughout the Flavivirus genus and occur both in mature virions and within infected cells. We provide an overview of these sequence motifs and RNA structures involved in circularization, describe their linear and circularized structures, and discuss the proteins that interact with these circular structures and that promote and regulate their formation, aiming to clarify the key features of genome circularization and understand how these affect the flaviviruses life cycle.
Collapse
|
5
|
Liu Y, Zhang Y, Wang M, Cheng A, Yang Q, Wu Y, Jia R, Liu M, Zhu D, Chen S, Zhang S, Zhao X, Huang J, Mao S, Ou X, Gao Q, Wang Y, Xu Z, Chen Z, Zhu L, Luo Q, Liu Y, Yu Y, Zhang L, Tian B, Pan L, Chen X. Structures and Functions of the 3' Untranslated Regions of Positive-Sense Single-Stranded RNA Viruses Infecting Humans and Animals. Front Cell Infect Microbiol 2020; 10:453. [PMID: 32974223 PMCID: PMC7481400 DOI: 10.3389/fcimb.2020.00453] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/23/2020] [Indexed: 12/20/2022] Open
Abstract
The 3′ untranslated region (3′ UTR) of positive-sense single-stranded RNA [ssRNA(+)] viruses is highly structured. Multiple elements in the region interact with other nucleotides and proteins of viral and cellular origin to regulate various aspects of the virus life cycle such as replication, translation, and the host-cell response. This review attempts to summarize the primary and higher order structures identified in the 3′UTR of ssRNA(+) viruses and their functional roles.
Collapse
Affiliation(s)
- Yuanzhi Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - XinXin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Juan Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xumin Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yin Wang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Zhiwen Xu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Zhengli Chen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Qihui Luo
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yunya Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yanling Yu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Leichang Pan
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiaoyue Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
6
|
Fajardo T, Sanford TJ, Mears HV, Jasper A, Storrie S, Mansur DS, Sweeney TR. The flavivirus polymerase NS5 regulates translation of viral genomic RNA. Nucleic Acids Res 2020; 48:5081-5093. [PMID: 32313955 PMCID: PMC7229856 DOI: 10.1093/nar/gkaa242] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/30/2020] [Accepted: 04/01/2020] [Indexed: 11/14/2022] Open
Abstract
Flaviviruses, including dengue virus and Zika virus, contain a single-stranded positive sense RNA genome that encodes viral proteins essential for replication and also serves as the template for new genome synthesis. As these processes move in opposite directions along the genome, translation must be inhibited at a defined point following infection to clear the template of ribosomes to allow efficient replication. Here, we demonstrate in vitro and in cell-based assays that the viral RNA polymerase, NS5, inhibits translation of the viral genome. By reconstituting translation in vitro using highly purified components, we show that this translation block occurs at the initiation stage and that translation inhibition depends on NS5-RNA interaction, primarily through association with the 5' replication promoter region. This work supports a model whereby expression of a viral protein signals successful translation of the infecting genome, prompting a switch to a ribosome depleted replication-competent form.
Collapse
Affiliation(s)
- Teodoro Fajardo
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, UK
| | - Thomas J Sanford
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, UK
| | - Harriet V Mears
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, UK
| | - Annika Jasper
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, UK
| | - Skye Storrie
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, UK
| | - Daniel S Mansur
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Parasitology, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Trevor R Sweeney
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, UK
| |
Collapse
|
7
|
Zeng M, Duan Y, Zhang W, Wang M, Jia R, Zhu D, Liu M, Zhao X, Yang Q, Wu Y, Zhang S, Liu Y, Zhang L, Yu Y, Chen S, Cheng A. Universal RNA Secondary Structure Insight Into Mosquito-Borne Flavivirus (MBFV) cis-Acting RNA Biology. Front Microbiol 2020; 11:473. [PMID: 32292394 PMCID: PMC7118588 DOI: 10.3389/fmicb.2020.00473] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/04/2020] [Indexed: 12/22/2022] Open
Abstract
Mosquito-borne flaviviruses (MBFVs) spread between vertebrate (mammals and birds) and invertebrate (mosquitoes) hosts. The cis-acting RNAs of MBFV share common evolutionary origins and contain frequent alterations, which control the balance of linear and circular genome conformations and allow effective replication. Importantly, multiple cis-acting RNAs interact with trans-acting regulatory RNA-binding proteins (RBPs) and affect the MBFV lifecycle process, including viral replicase binding, viral RNA translation-cyclisation-synthesis and nucleocapsid assembly. Considering that extensive structural probing analyses have been performed on MBFV cis-acting RNAs, herein the homologous RNA structures are online folded and consensus structures are constructed by sort. The specific traits and underlying biology of MBFV cis-acting RNA are illuminated accordingly in a review of RNA structure. These findings deepen our understanding of MBFV cis-acting RNA biology and serve as a resource for designing therapeutics in targeting protein-viral RNA interaction or viral RNA secondary structures.
Collapse
Affiliation(s)
- Miao Zeng
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yanping Duan
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Wei Zhang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Renyong Jia
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Dekang Zhu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Mafeng Liu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Xinxin Zhao
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Qiao Yang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Ying Wu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Shaqiu Zhang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Yunya Liu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yangling Yu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shun Chen
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Anchun Cheng
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| |
Collapse
|
8
|
Baxter VK, Griffin DE. Interferon-Gamma Modulation of the Local T Cell Response to Alphavirus Encephalomyelitis. Viruses 2020; 12:E113. [PMID: 31963302 PMCID: PMC7019780 DOI: 10.3390/v12010113] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/06/2020] [Accepted: 01/09/2020] [Indexed: 12/18/2022] Open
Abstract
Infection of mice with Sindbis virus (SINV) provides a model for examining the role of the immune response to alphavirus infection of the central nervous system (CNS). Interferon-gamma (IFN-γ) is an important component of this response, and we show that SINV-infected differentiated neurons respond to IFN-γ in vitro by induction of antiviral genes and suppression of virus replication. To determine the in vivo effects of IFN-γ on SINV clearance and T cell responses, C57BL/6 mice lacking IFN-γ or IFN-γ receptor-1 were compared to wild-type (WT) mice after intracranial SINV infection. In WT mice, IFN-γ was first produced in the CNS by natural killer cells and then by CD4+ and CD8+ T cells. Mice with impaired IFN-γ signaling initiated clearance of viral RNA earlier than WT mice associated with CNS entry of more granzyme B-producing CD8+ T cells. However, these mice established fewer CD8+ tissue-resident memory T (TRM) cells and were more likely to experience reactivation of viral RNA synthesis late after infection. Therefore, IFN-γ suppresses the local development of granzyme B-expressing CD8+ T cells and slows viral RNA clearance but promotes CD8+ TRM cell establishment.
Collapse
Affiliation(s)
- Victoria K. Baxter
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA;
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Diane E. Griffin
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA;
| |
Collapse
|
9
|
Campos RK, Garcia-Blanco MA, Bradrick SS. Roles of Pro-viral Host Factors in Mosquito-Borne Flavivirus Infections. Curr Top Microbiol Immunol 2019; 419:43-67. [PMID: 28688087 DOI: 10.1007/82_2017_26] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Identification and analysis of viral host factors is a growing area of research which aims to understand the how viruses molecularly interface with the host cell. Investigations into flavivirus-host interactions has led to new discoveries in viral and cell biology, and will potentially bolster strategies to control the important diseases caused by these pathogens. Here, we address the current knowledge of prominent host factors required for the flavivirus life-cycle and mechanisms by which they promote infection.
Collapse
Affiliation(s)
- Rafael K Campos
- Department of Molecular Genetics and Microbiology, Center for RNA Biology, Duke University, Durham, NC, USA.,Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Mariano A Garcia-Blanco
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA. .,Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore.
| | - Shelton S Bradrick
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
10
|
Mazeaud C, Freppel W, Chatel-Chaix L. The Multiples Fates of the Flavivirus RNA Genome During Pathogenesis. Front Genet 2018. [PMID: 30564270 DOI: 10.3389/fgene.2018.00595/full] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023] Open
Abstract
The Flavivirus genus comprises many viruses (including dengue, Zika, West Nile and yellow fever viruses) which constitute important public health concerns worldwide. For several of these pathogens, neither antivirals nor vaccines are currently available. In addition to this unmet medical need, flaviviruses are of particular interest since they constitute an excellent model for the study of spatiotemporal regulation of RNA metabolism. Indeed, with no DNA intermediate or nuclear step, the flaviviral life cycle entirely relies on the cytoplasmic fate of a single RNA species, namely the genomic viral RNA (vRNA) which contains all the genetic information necessary for optimal viral replication. From a single open reading frame, the vRNA encodes a polyprotein which is processed to generate the mature viral proteins. In addition to coding for the viral polyprotein, the vRNA serves as a template for RNA synthesis and is also selectively packaged into newly assembled viral particles. Notably, vRNA translation, replication and encapsidation must be tightly coordinated in time and space via a fine-tuned equilibrium as these processes cannot occur simultaneously and hence, are mutually exclusive. As such, these dynamic processes involve several vRNA secondary and tertiary structures as well as RNA modifications. Finally, the vRNA can be detected as a foreign molecule by cytosolic sensors which trigger upon activation antiviral signaling pathways and the production of antiviral factors such as interferons and interferon-stimulated genes. However, to create an environment favorable to infection, flaviviruses have evolved mechanisms to dampen these antiviral processes, notably through the production of a specific vRNA degradation product termed subgenomic flavivirus RNA (sfRNA). In this review, we discuss the current understanding of the fates of flavivirus vRNA and how this is regulated at the molecular level to achieve an optimal replication within infected cells.
Collapse
Affiliation(s)
- Clément Mazeaud
- Institut National de la Recherche Scientifique, Centre INRS-Institut Armand-Frappier, Laval, QC, Canada
| | - Wesley Freppel
- Institut National de la Recherche Scientifique, Centre INRS-Institut Armand-Frappier, Laval, QC, Canada
| | - Laurent Chatel-Chaix
- Institut National de la Recherche Scientifique, Centre INRS-Institut Armand-Frappier, Laval, QC, Canada
| |
Collapse
|
11
|
Mazeaud C, Freppel W, Chatel-Chaix L. The Multiples Fates of the Flavivirus RNA Genome During Pathogenesis. Front Genet 2018; 9:595. [PMID: 30564270 PMCID: PMC6288177 DOI: 10.3389/fgene.2018.00595] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 11/15/2018] [Indexed: 12/11/2022] Open
Abstract
The Flavivirus genus comprises many viruses (including dengue, Zika, West Nile and yellow fever viruses) which constitute important public health concerns worldwide. For several of these pathogens, neither antivirals nor vaccines are currently available. In addition to this unmet medical need, flaviviruses are of particular interest since they constitute an excellent model for the study of spatiotemporal regulation of RNA metabolism. Indeed, with no DNA intermediate or nuclear step, the flaviviral life cycle entirely relies on the cytoplasmic fate of a single RNA species, namely the genomic viral RNA (vRNA) which contains all the genetic information necessary for optimal viral replication. From a single open reading frame, the vRNA encodes a polyprotein which is processed to generate the mature viral proteins. In addition to coding for the viral polyprotein, the vRNA serves as a template for RNA synthesis and is also selectively packaged into newly assembled viral particles. Notably, vRNA translation, replication and encapsidation must be tightly coordinated in time and space via a fine-tuned equilibrium as these processes cannot occur simultaneously and hence, are mutually exclusive. As such, these dynamic processes involve several vRNA secondary and tertiary structures as well as RNA modifications. Finally, the vRNA can be detected as a foreign molecule by cytosolic sensors which trigger upon activation antiviral signaling pathways and the production of antiviral factors such as interferons and interferon-stimulated genes. However, to create an environment favorable to infection, flaviviruses have evolved mechanisms to dampen these antiviral processes, notably through the production of a specific vRNA degradation product termed subgenomic flavivirus RNA (sfRNA). In this review, we discuss the current understanding of the fates of flavivirus vRNA and how this is regulated at the molecular level to achieve an optimal replication within infected cells.
Collapse
Affiliation(s)
- Clément Mazeaud
- Institut National de la Recherche Scientifique, Centre INRS-Institut Armand-Frappier, Laval, QC, Canada
| | - Wesley Freppel
- Institut National de la Recherche Scientifique, Centre INRS-Institut Armand-Frappier, Laval, QC, Canada
| | - Laurent Chatel-Chaix
- Institut National de la Recherche Scientifique, Centre INRS-Institut Armand-Frappier, Laval, QC, Canada
| |
Collapse
|
12
|
Souto S, Olveira JG, Dopazo CP, Borrego JJ, Bandín I. Modification of betanodavirus virulence by substitutions in the 3' terminal region of RNA2. J Gen Virol 2018; 99:1210-1220. [PMID: 30041710 PMCID: PMC6230769 DOI: 10.1099/jgv.0.001112] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Betanodaviruses have bi-segmented positive-sense RNA genomes, consisting of RNAs 1 and 2. For some members of the related genus alphanodavirus, the 3' terminal 50 nucleotides (nt) of RNA2, including a predicted stem-loop structure (3'SL), are essential for replication. We investigate the possible existence and role of a similar structure in a reassortant betanodavirus strain (RGNNV/SJNNV). In this study, we developed three recombinant strains containing nucleotide changes at positions 1408 and 1412. Predictive models showed stem-loop structures involving nt 1398-1421 of the natural reassortant whereas this structure is modified in the recombinant viruses harbouring point mutations r1408 and r1408-1412, but not in r1412. Results obtained from infectivity assays showed differences between the reference strains and the mutants in both RNA1 and RNA2 synthesis. Moreover, an imbalance between the synthesis of both segments was demonstrated, mainly with the double mutant. All these results suggest an interaction between RNA1 and the 3' non-coding regions (3'NCR) of RNA2. In addition, the significant attenuation of the virulence for Senegalese sole and the delayed replication of r1408-1412 in brain tissues may point to an interaction of RNA2 with host cellular proteins.
Collapse
Affiliation(s)
- Sandra Souto
- 1Departamento de Microbiología y Parasitología, Instituto de Acuicultura, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - José G Olveira
- 1Departamento de Microbiología y Parasitología, Instituto de Acuicultura, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Carlos P Dopazo
- 1Departamento de Microbiología y Parasitología, Instituto de Acuicultura, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Juan J Borrego
- 2Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain
| | - Isabel Bandín
- 1Departamento de Microbiología y Parasitología, Instituto de Acuicultura, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain
| |
Collapse
|
13
|
Wen S, Ma D, Lin Y, Li L, Hong S, Li X, Wang X, Xi J, Qiu L, Pan Y, Chen J, Shan X, Sun Q. Complete Genome Characterization of the 2017 Dengue Outbreak in Xishuangbanna, a Border City of China, Burma and Laos. Front Cell Infect Microbiol 2018; 8:148. [PMID: 29868504 PMCID: PMC5951998 DOI: 10.3389/fcimb.2018.00148] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 04/20/2018] [Indexed: 11/13/2022] Open
Abstract
A dengue outbreak abruptly occurred at the border of China, Myanmar, and Laos in June 2017. By November 3rd 2017, 1184 infected individuals were confirmed as NS1-positivein Xishuangbanna, a city located at the border. To verify the causative agent, complete genome information was obtained through PCR and sequencing based on the viral RNAs extracted from patient samples. Phylogenetic trees were constructed by the maximum likelihood method (MEGA 6.0). Nucleotide and amino acid substitutions were analyzed by BioEdit, followed by RNA secondary structure prediction of untranslated regions (UTRs) and protein secondary structure prediction in coding sequences (CDSs). Strains YN2, YN17741, and YN176272 were isolated from local residents. Stains MY21 and MY22 were isolated from Burmese travelers. The complete genome sequences of the five isolates were 10,735 nucleotides in length. Phylogenetic analysis classified all five isolates as genotype I of DENV-1, while isolates of local residents and Burmese travelers belonged to different branches. The three locally isolates were most similar to the Dongguan strain in 2011, and the other two isolates from Burmese travelers were most similar to the Laos strain in 2008. Twenty-four amino acid substitutions were important in eight evolutionary tree branches. Comparison with DENV-1SS revealed 658 base substitutions in the local isolates, except for two mutations exclusive to YN17741, resulting in 87 synonymous mutations. Compared with the local isolates, 52 amino acid mutations occurred in the CDS of two isolates from Burmese travelers. Comparing MY21 with MY22, 17 amino acid mutations were observed, all these mutations occurred in the CDS of non-structured proteins (two in NS1, 10 in NS2, two in NS3, three in NS5). Secondary structure prediction revealed 46 changes in the potential nucleotide and protein binding sites of the CDSs in local isolates. RNA secondary structure prediction also showed base changes in the 3′UTR of local isolates, leading to two significant changes in the RNA secondary structure. To our knowledge, this study is the first complete genome analysis of isolates from the 2017 dengue outbreak that occurred at the border areas of China, Burma, and Laos.
Collapse
Affiliation(s)
- Songjiao Wen
- Institute of Medical Biology, Peking Union Medical College, Chinese Academy of Medical Sciences, Kunming, China.,Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China.,Yunnan Key Laboratory of Vector-borne Infectious Disease, Kunming, China
| | - Dehong Ma
- Xishuangbanna Dai Autonomous Prefecture People's Hospital, Xishuangbanna, China
| | - Yao Lin
- Institute of Medical Biology, Peking Union Medical College, Chinese Academy of Medical Sciences, Kunming, China.,Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China.,Yunnan Key Laboratory of Vector-borne Infectious Disease, Kunming, China
| | - Lihua Li
- Xishuangbanna Dai Autonomous Prefecture People's Hospital, Xishuangbanna, China
| | - Shan Hong
- Institute of Medical Biology, Peking Union Medical College, Chinese Academy of Medical Sciences, Kunming, China.,Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China.,School of Basic Medicine, Kunming Medical University, Kunming, China
| | - Xiaoman Li
- Institute of Pediatric Disease Research, The Affiliated Children's Hospital of Kunming Medical University, Kunming, China
| | - Xiaodan Wang
- Institute of Medical Biology, Peking Union Medical College, Chinese Academy of Medical Sciences, Kunming, China.,Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China.,Yunnan Key Laboratory of Vector-borne Infectious Disease, Kunming, China
| | - Juemin Xi
- Institute of Medical Biology, Peking Union Medical College, Chinese Academy of Medical Sciences, Kunming, China.,Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China.,Yunnan Key Laboratory of Vector-borne Infectious Disease, Kunming, China
| | - Lijuan Qiu
- Institute of Pediatric Disease Research, The Affiliated Children's Hospital of Kunming Medical University, Kunming, China
| | - Yue Pan
- Institute of Medical Biology, Peking Union Medical College, Chinese Academy of Medical Sciences, Kunming, China.,Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China.,Yunnan Key Laboratory of Vector-borne Infectious Disease, Kunming, China
| | - Junying Chen
- Institute of Medical Biology, Peking Union Medical College, Chinese Academy of Medical Sciences, Kunming, China.,Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China.,Yunnan Key Laboratory of Vector-borne Infectious Disease, Kunming, China
| | - Xiyun Shan
- Xishuangbanna Dai Autonomous Prefecture People's Hospital, Xishuangbanna, China
| | - Qiangming Sun
- Institute of Medical Biology, Peking Union Medical College, Chinese Academy of Medical Sciences, Kunming, China.,Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China.,Yunnan Key Laboratory of Vector-borne Infectious Disease, Kunming, China
| |
Collapse
|
14
|
Barrows NJ, Campos RK, Liao KC, Prasanth KR, Soto-Acosta R, Yeh SC, Schott-Lerner G, Pompon J, Sessions OM, Bradrick SS, Garcia-Blanco MA. Biochemistry and Molecular Biology of Flaviviruses. Chem Rev 2018; 118:4448-4482. [PMID: 29652486 DOI: 10.1021/acs.chemrev.7b00719] [Citation(s) in RCA: 219] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Flaviviruses, such as dengue, Japanese encephalitis, tick-borne encephalitis, West Nile, yellow fever, and Zika viruses, are critically important human pathogens that sicken a staggeringly high number of humans every year. Most of these pathogens are transmitted by mosquitos, and not surprisingly, as the earth warms and human populations grow and move, their geographic reach is increasing. Flaviviruses are simple RNA-protein machines that carry out protein synthesis, genome replication, and virion packaging in close association with cellular lipid membranes. In this review, we examine the molecular biology of flaviviruses touching on the structure and function of viral components and how these interact with host factors. The latter are functionally divided into pro-viral and antiviral factors, both of which, not surprisingly, include many RNA binding proteins. In the interface between the virus and the hosts we highlight the role of a noncoding RNA produced by flaviviruses to impair antiviral host immune responses. Throughout the review, we highlight areas of intense investigation, or a need for it, and potential targets and tools to consider in the important battle against pathogenic flaviviruses.
Collapse
Affiliation(s)
- Nicholas J Barrows
- Department of Biochemistry and Molecular Biology , University of Texas Medical Branch , Galveston , Texas 77555 , United States.,Department of Molecular Genetics and Microbiology , Duke University , Durham , North Carolina 27710 , United States
| | - Rafael K Campos
- Department of Biochemistry and Molecular Biology , University of Texas Medical Branch , Galveston , Texas 77555 , United States.,Department of Molecular Genetics and Microbiology , Duke University , Durham , North Carolina 27710 , United States
| | - Kuo-Chieh Liao
- Programme in Emerging Infectious Diseases , Duke-NUS Medical School , Singapore 169857 , Singapore
| | - K Reddisiva Prasanth
- Department of Biochemistry and Molecular Biology , University of Texas Medical Branch , Galveston , Texas 77555 , United States
| | - Ruben Soto-Acosta
- Department of Biochemistry and Molecular Biology , University of Texas Medical Branch , Galveston , Texas 77555 , United States
| | - Shih-Chia Yeh
- Programme in Emerging Infectious Diseases , Duke-NUS Medical School , Singapore 169857 , Singapore
| | - Geraldine Schott-Lerner
- Department of Biochemistry and Molecular Biology , University of Texas Medical Branch , Galveston , Texas 77555 , United States
| | - Julien Pompon
- Programme in Emerging Infectious Diseases , Duke-NUS Medical School , Singapore 169857 , Singapore.,MIVEGEC, IRD, CNRS, Université de Montpellier , Montpellier 34090 , France
| | - October M Sessions
- Programme in Emerging Infectious Diseases , Duke-NUS Medical School , Singapore 169857 , Singapore
| | - Shelton S Bradrick
- Department of Biochemistry and Molecular Biology , University of Texas Medical Branch , Galveston , Texas 77555 , United States
| | - Mariano A Garcia-Blanco
- Department of Biochemistry and Molecular Biology , University of Texas Medical Branch , Galveston , Texas 77555 , United States.,Programme in Emerging Infectious Diseases , Duke-NUS Medical School , Singapore 169857 , Singapore
| |
Collapse
|
15
|
RNA binding protein 24 regulates the translation and replication of hepatitis C virus. Protein Cell 2018; 9:930-944. [PMID: 29380205 PMCID: PMC6208484 DOI: 10.1007/s13238-018-0507-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 12/10/2017] [Indexed: 12/12/2022] Open
Abstract
The secondary structures of hepatitis C virus (HCV) RNA and the cellular proteins that bind to them are important for modulating both translation and RNA replication. However, the sets of RNA-binding proteins involved in the regulation of HCV translation, replication and encapsidation remain unknown. Here, we identified RNA binding motif protein 24 (RBM24) as a host factor participated in HCV translation and replication. Knockdown of RBM24 reduced HCV propagation in Huh7.5.1 cells. An enhanced translation and delayed RNA synthesis during the early phase of infection was observed in RBM24 silencing cells. However, both overexpression of RBM24 and recombinant human RBM24 protein suppressed HCV IRES-mediated translation. Further analysis revealed that the assembly of the 80S ribosome on the HCV IRES was interrupted by RBM24 protein through binding to the 5'-UTR. RBM24 could also interact with HCV Core and enhance the interaction of Core and 5'-UTR, which suppresses the expression of HCV. Moreover, RBM24 enhanced the interaction between the 5'- and 3'-UTRs in the HCV genome, which probably explained its requirement in HCV genome replication. Therefore, RBM24 is a novel host factor involved in HCV replication and may function at the switch from translation to replication.
Collapse
|
16
|
Flaviviral RNA Structures and Their Role in Replication and Immunity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1062:45-62. [PMID: 29845524 DOI: 10.1007/978-981-10-8727-1_4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
More than simple vectors of genetic information, flaviviral RNAs have emerged as critical regulators of the virus life cycle. Viral RNAs regulate interactions with viral and cellular proteins in both, mosquito and mammalian hosts to ultimately influence processes as diverse as RNA replication, translation, packaging or pathogenicity. In this chapter, we will review the current knowledge of the role of sequence and structures in the flaviviral RNA in viral propagation and interaction with the host cell. We will also cover the increasing body of evidence linking viral non-coding RNAs with pathogenicity, host immunity and epidemic potential.
Collapse
|
17
|
Fernández-Sanlés A, Ríos-Marco P, Romero-López C, Berzal-Herranz A. Functional Information Stored in the Conserved Structural RNA Domains of Flavivirus Genomes. Front Microbiol 2017; 8:546. [PMID: 28421048 PMCID: PMC5376627 DOI: 10.3389/fmicb.2017.00546] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 03/15/2017] [Indexed: 02/05/2023] Open
Abstract
The genus Flavivirus comprises a large number of small, positive-sense single-stranded, RNA viruses able to replicate in the cytoplasm of certain arthropod and/or vertebrate host cells. The genus, which has some 70 member species, includes a number of emerging and re-emerging pathogens responsible for outbreaks of human disease around the world, such as the West Nile, dengue, Zika, yellow fever, Japanese encephalitis, St. Louis encephalitis, and tick-borne encephalitis viruses. Like other RNA viruses, flaviviruses have a compact RNA genome that efficiently stores all the information required for the completion of the infectious cycle. The efficiency of this storage system is attributable to supracoding elements, i.e., discrete, structural units with essential functions. This information storage system overlaps and complements the protein coding sequence and is highly conserved across the genus. It therefore offers interesting potential targets for novel therapeutic strategies. This review summarizes our knowledge of the features of flavivirus genome functional RNA domains. It also provides a brief overview of the main achievements reported in the design of antiviral nucleic acid-based drugs targeting functional genomic RNA elements.
Collapse
Affiliation(s)
| | | | | | - Alfredo Berzal-Herranz
- Department of Molecular Biology, Instituto de Parasitología y Biomedicina “López-Neyra,” Consejo Superior de Investigaciones Científicas (IPBLN-CSIC)Granada, Spain
| |
Collapse
|
18
|
Abstract
Zika virus (ZIKV) is a previously little-known flavivirus closely related to Japanese encephalitis, West Nile, dengue, and yellow fever viruses, all of which are primarily transmitted by blood-sucking mosquitoes. Since its discovery in Uganda in 1947, ZIKV has continued to expand its geographic range, from equatorial Africa and Asia to the Pacific Islands, then further afield to South and Central America and the Caribbean. Currently, ZIKV is actively circulating not only in much of Latin America and its neighbors but also in parts of the Pacific Islands and Southeast Asia. Although ZIKV infection generally causes only mild symptoms in some infected individuals, it is associated with a range of neuroimmunological disorders, including Guillain-Barré syndrome, meningoencephalitis, and myelitis. Recently, maternal ZIKV infection during pregnancy has been linked to neonatal malformations, resulting in various degrees of congenital abnormalities, microcephaly, and even abortion. Despite its emergence as an important public health problem, however, little is known about ZIKV biology, and neither vaccine nor drug is available to control ZIKV infection. This article provides a brief introduction to ZIKV with a major emphasis on its molecular virology, in order to help facilitate the development of diagnostics, therapeutics, and vaccines.
Collapse
Affiliation(s)
- Sang-Im Yun
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, UT, 84322-4815, USA
| | - Young-Min Lee
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, UT, 84322-4815, USA.
- Utah Science Technology and Research, College of Agriculture and Applied Sciences, Utah State University, Logan, UT, 84322-4815, USA.
| |
Collapse
|
19
|
The role of the poly(A) tract in the replication and virulence of tick-borne encephalitis virus. Sci Rep 2016; 6:39265. [PMID: 27982069 PMCID: PMC5159820 DOI: 10.1038/srep39265] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 11/21/2016] [Indexed: 12/11/2022] Open
Abstract
The tick-borne encephalitis virus (TBEV) is a flavivirus transmitted to humans, usually via tick bites. The virus causes tick-borne encephalitis (TBE) in humans, and symptoms range from mild flu-like symptoms to severe and long-lasting sequelae, including permanent brain damage. It has been suggested that within the population of viruses transmitted to the mammalian host, quasispecies with neurotropic properties might become dominant in the host resulting in neurological symptoms. We previously demonstrated the existence of TBEV variants with variable poly(A) tracts within a single blood-fed tick. To characterize the role of the poly(A) tract in TBEV replication and virulence, we generated infectious clones of Torö-2003 with the wild-type (A)3C(A)6 sequence (Torö-6A) or with a modified (A)3C(A)38 sequence (Torö-38A). Torö-38A replicated poorly compared to Torö-6A in cell culture, but Torö-38A was more virulent than Torö-6A in a mouse model of TBE. Next-generation sequencing of TBEV genomes after passaging in cell culture and/or mouse brain revealed mutations in specific genomic regions and the presence of quasispecies that might contribute to the observed differences in virulence. These data suggest a role for quasispecies development within the poly(A) tract as a virulence determinant for TBEV in mice.
Collapse
|
20
|
Viral Interference and Persistence in Mosquito-Borne Flaviviruses. J Immunol Res 2015; 2015:873404. [PMID: 26583158 PMCID: PMC4637105 DOI: 10.1155/2015/873404] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 08/18/2015] [Accepted: 08/19/2015] [Indexed: 12/30/2022] Open
Abstract
Mosquito-borne flaviviruses are important pathogens for humans, and the detection of two or more flaviviruses cocirculating in the same geographic area has often been reported. However, the epidemiological impact remains to be determined. Mosquito-borne flaviviruses are primarily transmitted through Aedes and Culex mosquitoes; these viruses establish a life-long or persistent infection without apparent pathological effects. This establishment requires a balance between virus replication and the antiviral host response. Viral interference is a phenomenon whereby one virus inhibits the replication of other viruses, and this condition is frequently associated with persistent infections. Viral interference and persistent infection are determined by several factors, such as defective interfering particles, competition for cellular factors required for translation/replication, and the host antiviral response. The interaction between two flaviviruses typically results in viral interference, indicating that these viruses share common features during the replicative cycle in the vector. The potential mechanisms involved in these processes are reviewed here.
Collapse
|
21
|
Ishikawa T, Konishi E. Potential chemotherapeutic targets for Japanese encephalitis: current status of antiviral drug development and future challenges. Expert Opin Ther Targets 2015; 19:1379-95. [PMID: 26156208 DOI: 10.1517/14728222.2015.1065817] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Japanese encephalitis (JE) remains a public health threat in Asia. Although several vaccines have been licensed, ∼ 67,900 cases of the disease are estimated to occur annually, probably because the vaccine coverage is low. Therefore, effective antiviral drugs are required to control JE. However, no licensed anti-JE drugs are available, despite extensive efforts to develop them. AREAS COVERED We provide a general overview of JE and JE virus, including its transmission cycle, distribution, structure, replication machinery, immune evasion mechanisms and vaccines. The current situation in antiviral drug development is then reviewed and future perspectives are discussed. EXPERT OPINION Although the development of effective anti-JE drugs is an urgent issue, only supportive care is currently available. Recent progress in our understanding of the viral replication machinery and immune evasion strategies has identified new targets for anti-JE drug development. To date, most candidate drugs have only been evaluated in single-drug formulations, and efficient drug delivery to the CNS has virtually not been considered. However, an effective anti-JE treatment is expected to be achieved with multiple-drug formulations and a targeted drug delivery system in the near future.
Collapse
Affiliation(s)
- Tomohiro Ishikawa
- a 1 Dokkyo Medical University, School of Medicine, Department of Microbiology , 880 Kitakobayashi, Mibu-machi, Shimotsuga-gun, Tochigi 321-0293, Japan
| | - Eiji Konishi
- b 2 Mahidol University, BIKEN Endowed Department of Dengue Vaccine Development, Faculty of Tropical Medicine , 420/6 Ratchawithi Road, Ratchathewi, Bangkok 10400, Thailand.,c 3 Osaka University, Research Institute for Microbial Diseases, BIKEN Endowed Department of Dengue Vaccine Development , 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan +66 2 354 5981 ;
| |
Collapse
|
22
|
Sakai M, Muto M, Hirano M, Kariwa H, Yoshii K. Virulence of tick-borne encephalitis virus is associated with intact conformational viral RNA structures in the variable region of the 3'-UTR. Virus Res 2015; 203:36-40. [PMID: 25801453 DOI: 10.1016/j.virusres.2015.03.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 03/09/2015] [Accepted: 03/12/2015] [Indexed: 02/07/2023]
Abstract
Tick-borne encephalitis virus (TBEV) is maintained between ticks and mammals in nature and causes severe neurological disease in human. However, the mechanism of viral pathogenicity is unknown. Previously, we showed that the deletion in the variable region of the 3'-untranslated region (UTR) is involved in the pathogenicity of the strains from the Far-Eastern subtype of TBEV. To investigate the detailed function of the variable region, we constructed recombinant TBEV with partial deletions in the region. In a mouse model, the partial deletions drastically increased the virulence of the virus, with no effect on virus multiplication in mouse brain. Furthermore, the mutations did not affect the production of subgenomic flavivirus RNA from the 3'-UTR, and the induction of interferon (IFN) and IFN-stimulated genes. These data suggested that the conformational structure of the variable region is associated with the pathogenicity of the Far-Eastern subtype of TBEV. These findings provide a foundation for further research to identify the pathogenic mechanisms of TBEV.
Collapse
Affiliation(s)
- Mizuki Sakai
- Laboratory of Public Health, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
| | - Memi Muto
- Laboratory of Public Health, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
| | - Minato Hirano
- Laboratory of Public Health, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
| | - Hiroaki Kariwa
- Laboratory of Public Health, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
| | - Kentaro Yoshii
- Laboratory of Public Health, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan.
| |
Collapse
|
23
|
Bhullar D, Jalodia R, Kalia M, Vrati S. Cytoplasmic translocation of polypyrimidine tract-binding protein and its binding to viral RNA during Japanese encephalitis virus infection inhibits virus replication. PLoS One 2014; 9:e114931. [PMID: 25545659 PMCID: PMC4278868 DOI: 10.1371/journal.pone.0114931] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 11/16/2014] [Indexed: 11/23/2022] Open
Abstract
Japanese encephalitis virus (JEV) has a single-stranded, positive-sense RNA genome containing a single open reading frame flanked by the 5′- and 3′-non-coding regions (NCRs). The virus genome replicates via a negative-sense RNA intermediate. The NCRs and their complementary sequences in the negative-sense RNA are the sites for assembly of the RNA replicase complex thereby regulating the RNA synthesis and virus replication. In this study, we show that the 55-kDa polypyrimidine tract-binding protein (PTB) interacts in vitro with both the 5′-NCR of the positive-sense genomic RNA - 5NCR(+), and its complementary sequence in the negative-sense replication intermediate RNA - 3NCR(-). The interaction of viral RNA with PTB was validated in infected cells by JEV RNA co-immunoprecipitation and JEV RNA-PTB colocalization experiments. Interestingly, we observed phosphorylation-coupled translocation of nuclear PTB to cytoplasmic foci that co-localized with JEV RNA early during JEV infection. Our studies employing the PTB silencing and over-expression in cultured cells established an inhibitory role of PTB in JEV replication. Using RNA-protein binding assay we show that PTB competitively inhibits association of JEV 3NCR(-) RNA with viral RNA-dependent RNA polymerase (NS5 protein), an event required for the synthesis of the plus-sense genomic RNA. cAMP is known to promote the Protein kinase A (PKA)-mediated PTB phosphorylation. We show that cells treated with a cAMP analogue had an enhanced level of phosphorylated PTB in the cytoplasm and a significantly suppressed JEV replication. Data presented here show a novel, cAMP-induced, PTB-mediated, innate host response that could effectively suppress JEV replication in mammalian cells.
Collapse
Affiliation(s)
| | | | - Manjula Kalia
- Vaccine and Infectious Disease Research Centre, Translational Health Science & Technology Institute, Gurgaon, India
| | - Sudhanshu Vrati
- National Institute of Immunology, New Delhi, India
- Vaccine and Infectious Disease Research Centre, Translational Health Science & Technology Institute, Gurgaon, India
- * E-mail:
| |
Collapse
|
24
|
Abstract
Flaviviruses are a genus of (+)ssRNA (positive ssRNA) enveloped viruses that replicate in the cytoplasm of cells of diverse species from arthropods to mammals. Many are important human pathogens such as DENV-1-4 (dengue virus types 1-4), WNV (West Nile virus), YFV (yellow fever virus), JEV (Japanese encephalitis virus) and TBEV (tick-borne encephalitis). Given their RNA genomes it is not surprising that flaviviral life cycles revolve around critical RNA transactions. It is these we highlight in the present article. First, we summarize the mechanisms governing flaviviral replication and the central role of conserved RNA elements and viral protein-RNA interactions in RNA synthesis, translation and packaging. Secondly, we focus on how host RNA-binding proteins both benefit and inhibit flaviviral replication at different stages of their life cycle in mammalian hosts. Thirdly, we cover recent studies on viral non-coding RNAs produced in flavivirus-infected cells and how these RNAs affect various aspects of cellular RNA metabolism. Together, the article puts into perspective the central role of flaviviral RNAs in modulating both viral and cellular functions.
Collapse
|
25
|
Ishikawa T, Konishi E. Japanese encephalitis: epidemiology, prevention and current status of antiviral drug development. Expert Opin Orphan Drugs 2014. [DOI: 10.1517/21678707.2014.934222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
26
|
Roby JA, Pijlman GP, Wilusz J, Khromykh AA. Noncoding subgenomic flavivirus RNA: multiple functions in West Nile virus pathogenesis and modulation of host responses. Viruses 2014; 6:404-27. [PMID: 24473339 PMCID: PMC3939463 DOI: 10.3390/v6020404] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 01/13/2014] [Accepted: 01/15/2014] [Indexed: 12/11/2022] Open
Abstract
Flaviviruses are a large group of positive strand RNA viruses transmitted by arthropods that include many human pathogens such as West Nile virus (WNV), Japanese encephalitis virus (JEV), yellow fever virus, dengue virus, and tick-borne encephalitis virus. All members in this genus tested so far are shown to produce a unique subgenomic flavivirus RNA (sfRNA) derived from the 3' untranslated region (UTR). sfRNA is a product of incomplete degradation of genomic RNA by the cell 5'–3' exoribonuclease XRN1 which stalls at highly ordered secondary RNA structures at the beginning of the 3'UTR. Generation of sfRNA results in inhibition of XRN1 activity leading to an increase in stability of many cellular mRNAs. Mutant WNV deficient in sfRNA generation was highly attenuated displaying a marked decrease in cytopathicity in cells and pathogenicity in mice. sfRNA has also been shown to inhibit the antiviral activity of IFN-α/β by yet unknown mechanism and of the RNAi pathway by likely serving as a decoy substrate for Dicer. Thus, sfRNA is involved in modulating multiple cellular pathways to facilitate viral pathogenicity; however the overlying mechanism linking all these multiple functions of sfRNA remains to be elucidated.
Collapse
Affiliation(s)
- Justin A Roby
- Australian Infectious Disease Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Brisbane 4072, Australia.
| | - Gorben P Pijlman
- Laboratory of Virology, Wageningen University, Wageningen, 6708NW, The Netherlands.
| | - Jeffrey Wilusz
- Department of Microbiology, Immunology & Pathology, Colorado State University Fort Collins, CO 80523, USA;.
| | - Alexander A Khromykh
- Australian Infectious Disease Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Brisbane 4072, Australia.
| |
Collapse
|
27
|
Inhibition of aldolase A blocks biogenesis of ATP and attenuates Japanese encephalitis virus production. Biochem Biophys Res Commun 2013; 443:464-9. [PMID: 24321549 DOI: 10.1016/j.bbrc.2013.11.128] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 11/27/2013] [Indexed: 12/16/2022]
Abstract
Viral replication depends on host proteins to supply energy and replication accessories for the sufficient production of viral progeny. In this study, we identified fructose-bisphosphate aldolase A as a binding partner of Japanese encephalitis virus (JEV) untranslated regions (UTRs) on the antigenome via RNA affinity capture and mass spectrometry. Direct interaction of aldolase A with JEV RNAs was confirmed by gel mobility shift assay and colocalization with active replication of double-stranded RNA in JEV-infected cells. Infection of JEV caused an increase in aldolase A expression of up to 33%. Knocking down aldolase A reduced viral translation, genome replication, and viral production significantly. Furthermore, JEV infection consumed 50% of cellular ATP, and the ATP level decreased by 70% in the aldolase A-knockdown cells. Overexpression of aldolase A in aldolase A-knockdown cells increased ATP levels significantly. Taken together, these results indicate that JEV replication requires aldolase A and consumes ATP. This is the first report of direct involvement of a host metabolic enzyme, aldolase A protein, in JEV replication.
Collapse
|
28
|
Japanese encephalitis virus non-coding RNA inhibits activation of interferon by blocking nuclear translocation of interferon regulatory factor 3. Vet Microbiol 2013; 166:11-21. [PMID: 23755934 DOI: 10.1016/j.vetmic.2013.04.026] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 04/26/2013] [Accepted: 04/30/2013] [Indexed: 12/24/2022]
Abstract
Noncoding RNA (ncRNA) plays a critical role in modulating a broad range of diseases. All arthropod-borne flaviviruses produce short fragment ncRNA (sfRNA) collinear with highly conserved regions of the 3'-untranslated region (UTR) in the viral genome. We show that the molar ratio of sfRNA to genomic RNA in Japanese encephalitis virus (JEV) persistently infected cells is greater than that in acutely infected cells, indicating an sfRNA role in establishing persistent infection. Transfecting excess quantities of sfRNA into JEV-infected cells reduced interferon-β (IFN-β) promoter activity by 57% and IFN-β mRNA levels by 52%, compared to mock-transfected cells. Transfection of sfRNA into JEV-infected cells also reduced phosphorylation of interferon regulatory factor-3 (IRF-3), the IFN-β upstream regulator, and blocked roughly 30% of IRF-3 nuclear localization. Furthermore, JEV-infected sfRNA transfected cells produced 23% less IFN-β-stimulated apoptosis than mock-transfected groups did. Taken together, these results suggest that sfRNA plays a role against host-cell antiviral responses, prevents cells from undergoing apoptosis, and thus contributes to viral persistence.
Collapse
|
29
|
Novel cis-acting element within the capsid-coding region enhances flavivirus viral-RNA replication by regulating genome cyclization. J Virol 2013; 87:6804-18. [PMID: 23576500 DOI: 10.1128/jvi.00243-13] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
cis-Acting elements in the viral genome RNA (vRNA) are essential for the translation, replication, and/or encapsidation of RNA viruses. In this study, a novel conserved cis-acting element was identified in the capsid-coding region of mosquito-borne flavivirus. The downstream of 5' cyclization sequence (5'CS) pseudoknot (DCS-PK) element has a three-stem pseudoknot structure, as demonstrated by structure prediction and biochemical analysis. Using dengue virus as a model, we show that DCS-PK enhances vRNA replication and that its function depends on its secondary structure and specific primary sequence. Mutagenesis revealed that the highly conserved stem 1 and loop 2, which are involved in potential loop-helix interactions, are crucial for DCS-PK function. A predicted loop 1-stem 3 base triple interaction is important for the structural stability and function of DCS-PK. Moreover, the function of DCS-PK depends on its position relative to the 5'CS, and the presence of DCS-PK facilitates the formation of 5'-3' RNA complexes. Taken together, our results reveal that the cis-acting element DCS-PK enhances vRNA replication by regulating genome cyclization, and DCS-PK might interplay with other cis-acting elements to form a functional vRNA cyclization domain, thus playing critical roles during the flavivirus life cycle and evolution.
Collapse
|
30
|
Ivanyi-Nagy R, Darlix JL. Reprint of: Core protein-mediated 5'-3' annealing of the West Nile virus genomic RNA in vitro. Virus Res 2012; 169:448-57. [PMID: 23022255 PMCID: PMC7172194 DOI: 10.1016/j.virusres.2012.09.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 05/08/2012] [Accepted: 05/08/2012] [Indexed: 12/21/2022]
Abstract
Genome cyclization through conserved RNA sequences located in the 5' and 3' terminal regions of flavivirus genomic RNA is essential for virus replication. Although the role of various cis-acting RNA elements in panhandle formation is well characterized, almost nothing is known about the potential contribution of protein cofactors to viral RNA cyclization. Proteins with nucleic acid chaperone activities are encoded by many viruses (e.g., retroviruses, coronaviruses) to facilitate RNA structural rearrangements and RNA-RNA interactions during the viral replicative cycle. Since the core protein of flaviviruses is also endowed with potent RNA chaperone activities, we decided to examine the effect of West Nile virus (WNV) core on 5'-3' genomic RNA annealing in vitro. Core protein binding resulted in a dramatic, dose-dependent increase in 5'-3' complex formation. Mutations introduced in either the UAR (upstream AUG region) or CS (conserved sequence) elements of the viral RNA diminished core protein-dependent annealing, while compensatory mutations restored the 5'-3' RNA interaction. The activity responsible for stimulating RNA annealing was mapped to the C-terminal RNA-binding region of WNV core protein. These results indicate that core protein - besides its function in viral particle formation - might be involved in the regulation of flavivirus genomic RNA cyclization, and thus virus replication.
Collapse
Affiliation(s)
- Roland Ivanyi-Nagy
- LaboRetro, INSERM U758, Ecole Normale Supérieure de Lyon, IFR128 Biosciences Lyon-Gerland, 46 allée d'Italie, 69364 Lyon, France
| | | |
Collapse
|
31
|
Singha H, Gulati BR, Kumar P, Singh BK, Virmani N, Singh RK. Complete genome sequence analysis of Japanese encephalitis virus isolated from a horse in India. Arch Virol 2012; 158:113-22. [PMID: 23001697 DOI: 10.1007/s00705-012-1474-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 07/31/2012] [Indexed: 10/27/2022]
Abstract
The complete genome of the Japanese encephalitis virus (JEV) strain JEV/eq/India/H225/2009(H225), isolated from an infected horse in India, was sequenced and compared to previously published JEV genomes. H225 genome was 10,977-nucleotides long, comprising a single ORF of 10,299-nucleotides, a 5'-UTR of 95 nucleotides and a 3'-UTR of 582 nucleotides. The H225 genome showed high levels of sequence identity with 47 fully sequenced JEV genomes, ranging from 99.3 % to 75.5 % for nucleotides and 99.2 % to 91.5 % for amino acid sequences. Phylogenetic analysis of the full-length sequence indicated that the H225 strain belongs to genotype III and is closely related to the Indian JEV strain Vellore P20778. A comparison of amino acids associated with neurovirulence in the E proteins and non-structural proteins of known virulent and attenuated JEV strains suggested H225 to be a highly virulent strain. This is the first report of whole-genome sequencing of a genotype III JEV genome isolated from equines.
Collapse
Affiliation(s)
- Harisankar Singha
- Equine Health Unit, National Research Centre on Equines, Sirsa Road, Hisar, 125 001 Haryana, India
| | | | | | | | | | | |
Collapse
|
32
|
Identification of RNA-protein interaction networks involved in the norovirus life cycle. J Virol 2012; 86:11977-90. [PMID: 22933270 DOI: 10.1128/jvi.00432-12] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Human noroviruses are one of the major causes of acute gastroenteritis in the developed world, yet our understanding of their molecular mechanisms of genome translation and replication lags behind that for many RNA viruses. Due to the nonculturable nature of human noroviruses, many related members of the Caliciviridae family of small RNA viruses are often used as model systems to dissect the finer details of the norovirus life cycle. Murine norovirus (MNV) has provided one such system with which to study the basic mechanisms of norovirus translation and replication in cell culture. In this report we describe the use of riboproteomics to identify host factors that interact with the extremities of the MNV genome. This network of RNA-protein interactions contains many well-characterized host factors, including PTB, La, and DDX3, which have been shown to play a role in the life cycle of other RNA viruses. By using RNA coimmunoprecipitation, we confirmed that a number of the factors identified using riboproteomics are associated with the viral RNA during virus replication in cell culture. We further demonstrated that RNA inhibition-mediated knockdown of the intracellular levels of a number of these factors inhibits or slows norovirus replication in cell culture, allowing identification of new intracellular targets for this important group of pathogens.
Collapse
|
33
|
Ivanyi-Nagy R, Darlix JL. Core protein-mediated 5'-3' annealing of the West Nile virus genomic RNA in vitro. Virus Res 2012; 167:226-35. [PMID: 22652509 PMCID: PMC7172325 DOI: 10.1016/j.virusres.2012.05.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 05/08/2012] [Accepted: 05/08/2012] [Indexed: 01/17/2023]
Abstract
Genome cyclization through conserved RNA sequences located in the 5' and 3' terminal regions of flavivirus genomic RNA is essential for virus replication. Although the role of various cis-acting RNA elements in panhandle formation is well characterized, almost nothing is known about the potential contribution of protein cofactors to viral RNA cyclization. Proteins with nucleic acid chaperone activities are encoded by many viruses (e.g., retroviruses, coronaviruses) to facilitate RNA structural rearrangements and RNA-RNA interactions during the viral replicative cycle. Since the core protein of flaviviruses is also endowed with potent RNA chaperone activities, we decided to examine the effect of West Nile virus (WNV) core on 5'-3' genomic RNA annealing in vitro. Core protein binding resulted in a dramatic, dose-dependent increase in 5'-3' complex formation. Mutations introduced in either the UAR (upstream AUG region) or CS (conserved sequence) elements of the viral RNA diminished core protein-dependent annealing, while compensatory mutations restored the 5'-3' RNA interaction. The activity responsible for stimulating RNA annealing was mapped to the C-terminal RNA-binding region of WNV core protein. These results indicate that core protein - besides its function in viral particle formation - might be involved in the regulation of flavivirus genomic RNA cyclization, and thus virus replication.
Collapse
Key Words
- cs, conserved sequence
- dar, downstream aug region
- db, dumbbell-like structure
- denv, dengue virus
- jev, japanese encephalitis virus
- orf, open reading frame
- rdrp, rna-dependent rna polymerase
- sfrna, subgenomic flavivirus rna
- tbev, tick-borne encephalitis virus
- uar, upstream aug region
- utr, untranslated region
- wnv, west nile virus
- yfv, yellow fever virus
- west nile virus
- core protein
- flaviviruses
- viral replication
- genome cyclization
- rna chaperoning
Collapse
Affiliation(s)
| | - Jean-Luc Darlix
- LaboRetro, INSERM U758, Ecole Normale Supérieure de Lyon, IFR128 Biosciences Lyon-Gerland, 46 allée d’Italie, 69364 Lyon, France
| |
Collapse
|
34
|
Martin F. Fifteen years of the yeast three-hybrid system: RNA-protein interactions under investigation. Methods 2012; 58:367-75. [PMID: 22841566 DOI: 10.1016/j.ymeth.2012.07.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 05/04/2012] [Accepted: 07/13/2012] [Indexed: 01/14/2023] Open
Abstract
In 1996, the Wickens and the Kuhl labs developed the yeast three-hybrid system independently. By expressing two chimeric proteins and one chimeric RNA molecule in Saccharomyces cerevisiae, this method allows in vivo monitoring of RNA-protein interactions by measuring the expression levels of HIS3 and LacZ reporter genes. Specific RNA targets have been used to characterize unknown RNA binding proteins. Previously described RNA binding proteins have also been used as bait to select new RNA targets. Finally, this method has been widely used to investigate or confirm previously suspected RNA-protein interactions. However, this method falls short in some aspects, such as RNA display and selection of false positive molecules. This review will summarize the results obtained with this method from the past 15years, as well as on recent efforts to improve its specificity.
Collapse
Affiliation(s)
- Franck Martin
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, Institut de Biologie Moléculaire et Cellulaire, Strasbourg CEDEX, France.
| |
Collapse
|
35
|
Fan YH, Nadar M, Chen CC, Weng CC, Lin YT, Chang RY. Small noncoding RNA modulates Japanese encephalitis virus replication and translation in trans. Virol J 2011; 8:492. [PMID: 22040380 PMCID: PMC3221644 DOI: 10.1186/1743-422x-8-492] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2011] [Accepted: 11/01/2011] [Indexed: 12/14/2022] Open
Abstract
Background Sequence and structural elements in the 3'-untranslated region (UTR) of Japanese encephalitis virus (JEV) are known to regulate translation and replication. We previously reported an abundant accumulation of small subgenomic flaviviral RNA (sfRNA) which is collinear with the highly conserved regions of the 3'-UTR in JEV-infected cells. However, function of the sfRNA in JEV life cycle remains unknown. Results Northern blot and real-time RT-PCR analyses indicated that the sfRNA becomes apparent at the time point at which minus-strand RNA (antigenome) reaches a plateau suggesting a role for sfRNA in the regulation of antigenome synthesis. Transfection of minus-sense sfRNA into JEV-infected cells, in order to counter the effects of plus-sense sfRNA, resulted in higher levels of antigenome suggesting that the presence of the sfRNA inhibits antigenome synthesis. Trans-acting effect of sfRNA on JEV translation was studied using a reporter mRNA containing the luciferase gene fused to partial coding regions of JEV and flanked by the respective JEV UTRs. In vivo and in vitro translation revealed that sfRNA inhibited JEV translation. Conclusions Our results indicate that sfRNA modulates viral translation and replication in trans.
Collapse
Affiliation(s)
- Yi-Hsin Fan
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien 97401, Taiwan
| | | | | | | | | | | |
Collapse
|
36
|
Gebhard LG, Filomatori CV, Gamarnik AV. Functional RNA elements in the dengue virus genome. Viruses 2011; 3:1739-56. [PMID: 21994804 PMCID: PMC3187688 DOI: 10.3390/v3091739] [Citation(s) in RCA: 169] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 08/27/2011] [Accepted: 08/30/2011] [Indexed: 12/17/2022] Open
Abstract
Dengue virus (DENV) genome amplification is a process that involves the viral RNA, cellular and viral proteins, and a complex architecture of cellular membranes. The viral RNA is not a passive template during this process; it plays an active role providing RNA signals that act as promoters, enhancers and/or silencers of the replication process. RNA elements that modulate RNA replication were found at the 5′ and 3′ UTRs and within the viral coding sequence. The promoter for DENV RNA synthesis is a large stem loop structure located at the 5′ end of the genome. This structure specifically interacts with the viral polymerase NS5 and promotes RNA synthesis at the 3′ end of a circularized genome. The circular conformation of the viral genome is mediated by long range RNA-RNA interactions that span thousands of nucleotides. Recent studies have provided new information about the requirement of alternative, mutually exclusive, structures in the viral RNA, highlighting the idea that the viral genome is flexible and exists in different conformations. In this article, we describe elements in the promoter SLA and other RNA signals involved in NS5 polymerase binding and activity, and provide new ideas of how dynamic secondary and tertiary structures of the viral RNA participate in the viral life cycle.
Collapse
Affiliation(s)
- Leopoldo G Gebhard
- Fundación Instituto Leloir-CONICET, Avenida Patricias Argentinas 435, C1405BWE, Buenos Aires, Argentina.
| | | | | |
Collapse
|
37
|
Medigeshi GR. Mosquito-borne flaviviruses: overview of viral life-cycle and host–virus interactions. Future Virol 2011. [DOI: 10.2217/fvl.11.85] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mosquito-borne flaviviruses such as dengue virus, Japanese encephalitis virus and West Nile virus pose a threat to half of the world population and are a serious public health challenge in many developing countries. There are no effective vaccines or antivirals for most of these viruses. Viruses, being obligate parasites, hijack host pathways for efficient replication and therefore each step of viral life-cycle, namely entry into the host cell, genome replication, assembly and exit, requires the participation of host factors. Investigating the biology of mosquito-borne flaviviruses and the complex interplay of virus with its host will help in identifying drug targets and also in developing safer vaccines and antivirals. This article provides insights into the recent developments in our understanding of the virus–host interactions at various steps in the life-cycle of these viruses.
Collapse
Affiliation(s)
- Guruprasad R Medigeshi
- Vaccine & Infectious Disease Research Center, Translational Health Science & Technology Institute, Plot 496, Udyog Vihar Phase III, Gurgaon 122016, Haryana, India
| |
Collapse
|
38
|
van Domselaar R, Bovenschen N. Cell death-independent functions of granzymes: hit viruses where it hurts. Rev Med Virol 2011; 21:301-14. [PMID: 21714121 DOI: 10.1002/rmv.697] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 05/03/2011] [Accepted: 05/06/2011] [Indexed: 12/24/2022]
Abstract
Granule exocytosis by cytotoxic lymphocytes is the key mechanism of our immune response to eliminate virus-infected cells. These lytic granules contain the pore-forming protein perforin and a set of five serine proteases called granzymes (GrA, GrB, GrH, GrK, GrM) that display distinct substrate specificities. Granzymes have mostly been studied for their ability to induce cell death. However, viruses have evolved many inhibitors to effectively block apoptosis. Evidence is emerging that granzymes also use noncytotoxic strategies to inhibit viral replication and potential viral reactivation from latency. Granzymes directly cleave viral or host cell proteins that are required in the viral life cycle. Furthermore, granzymes induce a pro-inflammatory cytokine response to create an antiviral environment. In this review, we summarize and discuss these novel strategies by which the immune system counteracts viral infections, and we will address the potential therapeutic applications that could emerge from this intriguing mechanism.
Collapse
Affiliation(s)
- Robert van Domselaar
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | | |
Collapse
|
39
|
Vashist S, Bhullar D, Vrati S. La protein can simultaneously bind to both 3'- and 5'-noncoding regions of Japanese encephalitis virus genome. DNA Cell Biol 2011; 30:339-46. [PMID: 21294637 DOI: 10.1089/dna.2010.1114] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Japanese encephalitis virus (JEV) genome is a single-stranded, positive-sense RNA with noncoding regions (NCRs) of 95 and 585 bases at its 5' and 3' ends, respectively. These may interact with viral or host proteins important for viral replication. We have previously shown that La protein binds the 3'-stem-loop (SL) structure of JEV 3'-NCR. Using electrophoretic mobility shift and ultraviolet crosslinking assays, we now show that La protein binds both 3'-SL and 5'-NCR of JEV. La protein binding to 5'-NCR RNA was stable under high salt condition (300 mM KCl) and the affinity of RNA protein interaction was high; the dissociation constant (K(d)) for La binding with 5'-NCR RNA was 8.8 nM, indicating the physiological relevance of the interaction. RNA toe-printing assays showed that La protein interacted with nucleotides located in the top loop of the predicted structure of 5'-NCR RNA. Using competitive binding studies and 5'-3' coprecipitation assay, we have demonstrated that La protein could simultaneously bind both JEV 3'- and 5'-NCRs. This may help circularize the viral genome for its efficient transcription and translation.
Collapse
Affiliation(s)
- Surender Vashist
- National Institute of Immunology, Aruna Asaf Ali Marg, JNU Complex, New Delhi, India.
| | | | | |
Collapse
|
40
|
FUSE binding protein 1 interacts with untranslated regions of Japanese encephalitis virus RNA and negatively regulates viral replication. J Virol 2011; 85:4698-706. [PMID: 21367899 DOI: 10.1128/jvi.01950-10] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The untranslated regions (UTRs) located at the 5' and 3' ends of the Japanese encephalitis virus (JEV) genome, a positive-sense RNA, are involved in viral translation, the initiation of RNA synthesis, and the packaging of nascent virions. The cellular and viral proteins that participate in these processes are expected to interact with the UTRs. In this study, we used biotinylated RNA-protein pulldown and liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) analyses to identify that the far upstream element (FUSE) binding protein 1 (FBP1) binds with JEV 5' and 3' UTRs. The impact of FBP1 on JEV infection was determined in cells with altered FBP1 expression. JEV replication was enhanced by knockdown and reduced by the overexpression of FBP1, indicating a negative role for FBP1 in JEV infection. FBP1, a nuclear protein, was redistributed to the perinuclear region and appeared as cytoplasmic foci that partially colocalized with JEV RNA in the early stage of JEV infection. By using a JEV replicon reporter assay, FBP1 appeared to suppress JEV protein expression mediated by the 5' and 3' UTRs. Thus, we suggest that FBP1 binds with the JEV UTR RNA and functions as a host anti-JEV defense molecule by repressing viral protein expression.
Collapse
|
41
|
The cellular protein La functions in enhancement of virus release through lipid rafts facilitated by murine leukemia virus glycosylated Gag. mBio 2011; 2:e00341-10. [PMID: 21343359 PMCID: PMC3042739 DOI: 10.1128/mbio.00341-10] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Murine leukemia viruses (MuLVs) encode two forms of Gag polyprotein: the precursor for the viral core proteins (Pr65gag for Moloney MuLV [M-MuLV]) and a longer glycosylated form (glyco-gag, or gPr80gag). gPr80gag is translated from the same unspliced viral RNA as Pr65gag, from an upstream in-frame CUG initiation codon. As a result, gPr80gag contains 88 unique N-terminal amino acids that include a signal peptide that conducts gPr80gag into the rough endoplasmic reticulum, where it is glycosylated, exported to the cell surface, and cleaved into two proteins of 55 and 40 kDa. The amino-terminal 55-kDa protein remains cell associated with the 88 unique amino acids exposed to the cytosol. We previously showed that gPr80gag facilitates efficient M-MuLV release through lipid rafts. In this report, we found that the unique N-terminal domain of gPr80gag is sufficient to facilitate enhanced M-MuLV particle release from transfected 293T cells. A search for cellular proteins involved in gPr80gag function led to cellular La protein. Overexpression of mouse or human La enhanced M-MuLV particle release in the absence of glyco-gag, and the released virus had a reduced buoyant density characteristic of increased cholesterol content. Moreover, small interfering RNA (siRNA) knockdown of human La abolished glyco-gag enhancement of M-MuLV release. These results implicate La as a cellular protein involved in M-MuLV glyco-gag function. We also found that overexpression of mouse or human La could enhance HIV-1 release in the absence of gPr80gag. Therefore, M-MuLV and HIV-1 may share a pathway for release through lipid rafts involving La. Retroviruses cause diseases such as leukemia and AIDS. An important aspect of viral replication is how viruses are released from infected cells. We previously found that a unique protein encoded by murine leukemia viruses (MuLVs), glyco-gag (or gPr80gag), enhances efficient virus release through cholesterol-rich membrane subdomains called lipid rafts. In this study, we found that the N-terminal domain of gPr80gag is sufficient to enhance viral release. A search for cellular proteins that participate in gPr80gag function led to cellular La protein. Overexpression of La phenocopied glyco-gag in enhancing M-MuLV release, and knockdown of La abolished glyco-gag function. M-MuLV glyco-gag also enhanced release of HIV-1, as did overexpression La in the absence of glyco-gag. Thus, M-MuLV and HIV-1 may share a cellular pathway for release through lipid rafts involving La. These results may also be relevant for other viruses that are released through lipid rafts.
Collapse
|
42
|
Villordo SM, Alvarez DE, Gamarnik AV. A balance between circular and linear forms of the dengue virus genome is crucial for viral replication. RNA (NEW YORK, N.Y.) 2010; 16:2325-2335. [PMID: 20980673 PMCID: PMC2995394 DOI: 10.1261/rna.2120410] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Accepted: 09/08/2010] [Indexed: 05/30/2023]
Abstract
The plasticity of viral plus strand RNA genomes is fundamental for the multiple functions of these molecules. Local and long-range RNA-RNA interactions provide the scaffold for interacting proteins of the translation, replication, and encapsidation machinery. Using dengue virus as a model, we investigated the relevance of the interplay between two alternative conformations of the viral genome during replication. Flaviviruses require long-range RNA-RNA interactions and genome cyclization for RNA synthesis. Here, we define a sequence present in the viral 3'UTR that overlaps two mutually exclusive structures. This sequence can form an extended duplex by long-range 5'-3' interactions in the circular conformation of the RNA or fold locally into a small hairpin (sHP) in the linear form of the genome. A mutational analysis of the sHP structure revealed an absolute requirement of this element for viral viability, suggesting the need of a linear conformation of the genome. Viral RNA replication showed high vulnerability to changes that alter the balance between circular and linear forms of the RNA. Mutations that shift the equilibrium toward the circular or the linear conformation of the genome spontaneously revert to sequences with different mutations that tend to restore the relative stability of the two competing structures. We propose a model in which the viral genome exists in at least two alternative conformations and the balance between these two states is critical for infectivity.
Collapse
|
43
|
Alcaraz-Estrada SL, Yocupicio-Monroy M, del Angel RM. Insights into dengue virus genome replication. Future Virol 2010. [DOI: 10.2217/fvl.10.49] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Since many antiviral drugs are designed to interfere with viral genome replication, understanding this step in the viral replicative cycle has gained importance in recent years. Replication for many RNA viruses occurs in cellular compartments mainly originated from the production and reorganization of virus-induced membranes. Dengue virus translates, replicates and assembles new viral particles within virus-induced membranes from endoplasmic reticulum. In these compartments, all of the components required for replication are recruited, making the process efficient. In addition, membranes protect replication complexes from RNAases and proteases, and ultimately make them less visible to cellular defense sensors. Although several aspects in dengue virus replication are known, many others are yet to be understood. This article aims to summarize the advances in the understanding of dengue virus genome replication, highlighting the cis as well as trans elements that may have key roles in this process.
Collapse
Affiliation(s)
- Sofia Lizeth Alcaraz-Estrada
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Av. IPN 2508. Col. San Pedro Zacatenco, México, D.F. C.P. 07360
| | - Martha Yocupicio-Monroy
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, México, D.F. México
| | | |
Collapse
|
44
|
Pastorino B, Nougairède A, Wurtz N, Gould E, de Lamballerie X. Role of host cell factors in flavivirus infection: Implications for pathogenesis and development of antiviral drugs. Antiviral Res 2010; 87:281-94. [PMID: 20452379 DOI: 10.1016/j.antiviral.2010.04.014] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Revised: 04/21/2010] [Accepted: 04/30/2010] [Indexed: 01/19/2023]
Abstract
The genus Flavivirus contains approximately 70 arthropod-borne enveloped RNA viruses many of which cause severe human and in some cases, animal disease. They include dengue virus, yellow fever virus, West Nile virus, Japanese encephalitis virus, and tick-borne encephalitis virus. Hundreds of thousands of deaths due to flavivirus infections occur each year, many of which are unpreventable due to lack of availability of appropriate vaccines and/or antiviral drugs. Flaviviruses exploit the cytoplasmic cellular machinery to facilitate propagation of infectious progeny virions. They engage in dynamic and antagonistic interactions with host cell membranes and biochemical processes. Following infection, the cells initiate various antiviral strategies to counteract viral invasion. In its defense, the virus has alternative strategies to suppress these host responses to infection. The fine balance between these interactions determines the outcome of the viral infection and disease progression. Published studies have revealed specific effects of flaviviruses on cellular processes, but the underlying mechanisms that determine the specific cytopathogenetic changes induced by different flaviviruses have not, as yet, been elucidated. Independently of the suppression of the type I IFN response which has been described in detail elsewhere, this review focuses on recent discoveries relating to alterations of host metabolism following viral infection. Such studies may contribute to new approaches to antiviral drug development. The role of host cellular factors will be examined in the context of protection and/or pathogenesis resulting from flavivirus infection, with particular emphasis on West Nile virus and dengue virus.
Collapse
Affiliation(s)
- Boris Pastorino
- Unité des Virus Emergents, UMR190 "Emergence des pathologies virales" Université de la Méditerranée, Institut de Recherche pour le Développement, Faculté de Médecine, Marseille, France
| | | | | | | | | |
Collapse
|
45
|
Andrade F. Non-cytotoxic antiviral activities of granzymes in the context of the immune antiviral state. Immunol Rev 2010; 235:128-46. [DOI: 10.1111/j.0105-2896.2010.00909.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
46
|
Yang SH, Liu ML, Tien CF, Chou SJ, Chang RY. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) interaction with 3' ends of Japanese encephalitis virus RNA and colocalization with the viral NS5 protein. J Biomed Sci 2009; 16:40. [PMID: 19368702 PMCID: PMC2673215 DOI: 10.1186/1423-0127-16-40] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2009] [Accepted: 04/15/2009] [Indexed: 01/26/2023] Open
Abstract
Replication of the Japanese encephalitis virus (JEV) genome depends on host factors for successfully completing their life cycles; to do this, host factors have been recruited and/or relocated to the site of viral replication. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a cellular metabolic protein, was found to colocalize with viral RNA-dependent RNA polymerase (NS5) in JEV-infected cells. Subcellular fractionation further indicated that GAPDH remained relatively constant in the cytosol, while increasing at 12 to 24 hours postinfection (hpi) and decreasing at 36 hpi in the nuclear fraction of infected cells. In contrast, the redistribution patterns of GAPDH were not observed in the uninfected cells. Co-immunoprecipitation of GAPDH and JEV NS5 protein revealed no direct protein-protein interaction; instead, GAPDH binds to the 3' termini of plus- and minus-strand RNAs of JEV by electrophoretic mobility shift assays. Accordingly, GAPDH binds to the minus strand more efficiently than to the plus strand of JEV RNAs. This study highlights the findings that infection of JEV changes subcellular localization of GAPDH suggesting that this metabolic enzyme may play a role in JEV replication.
Collapse
Affiliation(s)
- Shang-Hua Yang
- Institute of Biotechnology and Department of Life Science, National Dong Hwa University, Taiwan, ROC.
| | | | | | | | | |
Collapse
|