1
|
Patel H, Kukol A. Harnessing viral internal proteins to combat flu and beyond. Virology 2025; 604:110414. [PMID: 39881469 DOI: 10.1016/j.virol.2025.110414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/27/2024] [Accepted: 01/16/2025] [Indexed: 01/31/2025]
Abstract
This mini-review examines the strategy of combining viral protein sequence conservation with drug-binding potential to identify novel antiviral targets, focusing on internal proteins of influenza A and other RNA viruses. The importance of combating viral genetic variability and reducing the likelihood of resistance development is emphasised in the context of sequence redundancy in viral datasets. It covers recent structural and functional updates, as well as drug targeting efforts for three internal influenza A viral proteins: Basic Polymerase 2, Nuclear Export Protein, and Nucleoprotein. The review discusses new insights into protein interactions, potential inhibitors, and recent drug discovery efforts. Similar approaches beyond influenza including Hepatitis E, SARS-CoV-2, Dengue, and the HIV-1 virus are also covered briefly.
Collapse
Affiliation(s)
- Hershna Patel
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, AL10 9AB, United Kingdom
| | - Andreas Kukol
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, AL10 9AB, United Kingdom.
| |
Collapse
|
2
|
Liu X, Yang C, Lin X, Sun X, Chen H, Zhang Q, Jin M. Phosphorylation of S-S-S Motif in Nuclear Export Protein (NEP) Plays a Critical Role in Viral Ribonucleoprotein (vRNP) Nuclear Export of Influenza A and B Viruses. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2309477. [PMID: 39575547 PMCID: PMC11727112 DOI: 10.1002/advs.202309477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 10/11/2024] [Indexed: 01/14/2025]
Abstract
The phosphorylation of three highly conserved serine residues S23, S24, and S25 (S-S-S motif) has been previously identified in NEP of influenza virus. However, it remains obscure whether and how this motif regulates the vRNPs nuclear export. Here the influenza A H5N6 viruses harboring NEP S23C, S24L, or S25L is generated, allowing to impair the phosphorylation on these sites without mutating viral NS1 protein. These mutations significantly inhibited vRNPs nuclear export are founded, decreased viral infectivity and attenuated virulence in mice. In addition, inhibition or knockout of ATM or CK2, two predicated Ser/Thr protein kinases that phosphorylate the S-S-S motif, impedes vRNP nuclear export and virus replication in cells and reduces the virulence in vivo. Moreover, treatment of NEP peptide mimics containing the S-S-S motif to competitively block NEP binding to the kinases reduces influenza virus replication in cells and mice. However, neither the inhibitors above nor the NEP peptide mimics significantly inhibit the replication of H5N6-DDD mutant, indicating phosphorylation of S-S-S motif is required for the vRNP nuclear export. This studies contribute to a better understanding of the mechanism by which NEP regulates vRNP nuclear export and provides novel insights into antiviral targets against influenza A and B viruses.
Collapse
Affiliation(s)
- Xiaokun Liu
- National Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhan430070P. R. China
| | - Cha Yang
- National Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhan430070P. R. China
| | - Xian Lin
- Wuhan institute of VirologyChinese academy of ScienceWuhan430070P. R. China
| | - Xiaomei Sun
- National Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhan430070P. R. China
| | - Huanchun Chen
- National Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhan430070P. R. China
- College of Veterinary Science and MedicineHuazhong Agricultural UniversityWuhan430070P. R. China
| | - Qiang Zhang
- National Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhan430070P. R. China
| | - Meilin Jin
- National Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhan430070P. R. China
- College of Veterinary Science and MedicineHuazhong Agricultural UniversityWuhan430070P. R. China
- Hubei Jiangxia LaboratoryWuhan430200P. R. China
| |
Collapse
|
3
|
Blake ME, Kleinpeter AB, Jureka AS, Petit CM. Structural Investigations of Interactions between the Influenza a Virus NS1 and Host Cellular Proteins. Viruses 2023; 15:2063. [PMID: 37896840 PMCID: PMC10612106 DOI: 10.3390/v15102063] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
The Influenza A virus is a continuous threat to public health that causes yearly epidemics with the ever-present threat of the virus becoming the next pandemic. Due to increasing levels of resistance, several of our previously used antivirals have been rendered useless. There is a strong need for new antivirals that are less likely to be susceptible to mutations. One strategy to achieve this goal is structure-based drug development. By understanding the minute details of protein structure, we can develop antivirals that target the most conserved, crucial regions to yield the highest chances of long-lasting success. One promising IAV target is the virulence protein non-structural protein 1 (NS1). NS1 contributes to pathogenicity through interactions with numerous host proteins, and many of the resulting complexes have been shown to be crucial for virulence. In this review, we cover the NS1-host protein complexes that have been structurally characterized to date. By bringing these structures together in one place, we aim to highlight the strength of this field for drug discovery along with the gaps that remain to be filled.
Collapse
Affiliation(s)
| | | | | | - Chad M. Petit
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (M.E.B.)
| |
Collapse
|
4
|
Figueiredo-Nunes I, Trigueiro-Louro J, Rebelo-de-Andrade H. Exploring new antiviral targets for influenza and COVID-19: Mapping promising hot spots in viral RNA polymerases. Virology 2023; 578:45-60. [PMID: 36463618 PMCID: PMC9674405 DOI: 10.1016/j.virol.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 10/27/2022] [Accepted: 11/03/2022] [Indexed: 11/19/2022]
Abstract
Influenza and COVID-19 are infectious respiratory diseases that represent a major concern to public health with social and economic impact worldwide, for which the available therapeutic options are not satisfactory. The RdRp has a central role in viral replication and thus represents a major target for the development of antiviral approaches. In this study, we focused on Influenza A virus PB1 polymerase protein and the betacoronaviruses nsp12 polymerase protein, considering their functional and structural similarities. We have performed conservation and druggability analysis to map conserved druggable regions, that may have functional or structural importance in these proteins. We disclosed the most promising and new targeting regions for the discovery of new potential polymerase inhibitors. Conserved druggable regions of putative interaction with favipiravir and molnupiravir were also mapped. We have also compared and integrated the current findings with previous research.
Collapse
Affiliation(s)
- Inês Figueiredo-Nunes
- Host-Pathogen Interaction Unit, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003, Lisbon, Portugal
| | - João Trigueiro-Louro
- Host-Pathogen Interaction Unit, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003, Lisbon, Portugal; Antiviral Resistance Lab, Research & Development Unit, Infectious Diseases Department, Instituto Nacional de Saúde Doutor Ricardo Jorge, IP, Av. Padre Cruz, 1649-016, Lisbon, Portugal.
| | - Helena Rebelo-de-Andrade
- Host-Pathogen Interaction Unit, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003, Lisbon, Portugal; Antiviral Resistance Lab, Research & Development Unit, Infectious Diseases Department, Instituto Nacional de Saúde Doutor Ricardo Jorge, IP, Av. Padre Cruz, 1649-016, Lisbon, Portugal.
| |
Collapse
|
5
|
Naceri S, Marc D, Blot R, Flatters D, Camproux AC. Druggable Pockets at the RNA Interface Region of Influenza A Virus NS1 Protein Are Conserved across Sequence Variants from Distinct Subtypes. Biomolecules 2022; 13:biom13010064. [PMID: 36671449 PMCID: PMC9855689 DOI: 10.3390/biom13010064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/24/2022] [Accepted: 12/25/2022] [Indexed: 12/31/2022] Open
Abstract
Influenza A viruses still represent a major health issue, for both humans and animals. One of the main viral proteins of interest to target is the NS1 protein, which counters the host immune response and promotes viral replication. NS1 is a homodimer composed of a dimeric RNA-binding domain (RBD), which is structurally stable and conserved in sequence, and two effector domains that are tethered to the RBD by linker regions. This linker flexibility leads to NS1 polymorphism and can therefore exhibit different forms. Previously, we identified a putative drug-binding site, located in the RBD interface in a crystal structure of NS1. This pocket could be targeted to block RNA binding and inhibit NS1 activities. The objective of the present study is to confirm the presence of this druggable site, whatever the sequence variants, in order to develop a universal therapeutic compound that is insensitive to sequence variations and structural flexibility. Using a set of four NS1 full-length structures, we combined different bioinformatics approaches such as pocket tracking along molecular dynamics simulations, druggability prediction and classification. This protocol successfully confirmed a frequent large binding-site that is highly druggable and shared by different NS1 forms, which is promising for developing a robust NS1-targeted therapy.
Collapse
Affiliation(s)
- Sarah Naceri
- Unité de Biologie Fonctionnelle et Adaptative, CNRS, INSERM, Université Paris Cité, F-75013 Paris, France
| | - Daniel Marc
- Equipe 3IMo, UMR1282 Infectiologie et Santé Publique, INRAE, F-37380 Nouzilly, France
- UMR1282 Infectiologie et Santé Publique, Université de Tours, F-37000 Tours, France
| | - Rachel Blot
- Unité de Biologie Fonctionnelle et Adaptative, CNRS, INSERM, Université Paris Cité, F-75013 Paris, France
| | - Delphine Flatters
- Unité de Biologie Fonctionnelle et Adaptative, CNRS, INSERM, Université Paris Cité, F-75013 Paris, France
- Correspondence: (D.F.); (A.-C.C.)
| | - Anne-Claude Camproux
- Unité de Biologie Fonctionnelle et Adaptative, CNRS, INSERM, Université Paris Cité, F-75013 Paris, France
- Correspondence: (D.F.); (A.-C.C.)
| |
Collapse
|
6
|
Wang J, Sun Y, Liu S. Emerging antiviral therapies and drugs for the treatment of influenza. Expert Opin Emerg Drugs 2022; 27:389-403. [PMID: 36396398 DOI: 10.1080/14728214.2022.2149734] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Both vaccines and antiviral drugs represent the mainstay for preventing and treating influenza. However, approved M2 ion channel inhibitors, neuraminidase inhibitors, polymerase inhibitors, and various vaccines cannot meet therapeutic needs because of viral resistance. Thus, the discovery of new targets for the virus or host and the development of more effective inhibitors are essential to protect humans from the influenza virus. AREAS COVERED This review summarizes the latest progress in vaccines and antiviral drug research to prevent and treat influenza, providing the foothold for developing novel antiviral inhibitors. EXPERT OPINION Vaccines embody the most effective approach to preventing influenza virus infection, and recombinant protein vaccines show promising prospects in developing next-generation vaccines. Compounds targeting the viral components of RNA polymerase, hemagglutinin and nucleoprotein, and the modification of trusted neuraminidase inhibitors are future research directions for anti-influenza virus drugs. In addition, some host factors affect the replication of virus in vivo, which can be used to develop antiviral drugs.
Collapse
Affiliation(s)
- Jinshen Wang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou Guangdong China
| | - Yihang Sun
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou Guangdong China
| | - Shuwen Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou Guangdong China.,State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Southern Medical University, Nanfang Hospital, Guangzhou Guangdong China
| |
Collapse
|
7
|
Uncovering the Key Targets and Therapeutic Mechanisms of Qizhen Capsule in Gastric Cancer through Network Pharmacology and Bioinformatic Analyses. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:1718143. [DOI: 10.1155/2022/1718143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 10/11/2022] [Accepted: 10/21/2022] [Indexed: 11/12/2022]
Abstract
Objective. This study is aimed at screening out effective active compounds of Qizhen capsule (QZC) and exploring the underlying mechanisms against gastric cancer (GACA) by combining both bioinformatic analysis and experimental approaches. Weighted gene coexpression network analysis (WGCNA), network pharmacology, molecular docking simulation, survival analysis, and data-based differential gene and protein expression analysis were employed to predict QZC’s potential targets and explore the underlying mechanisms. Subsequently, multiple experiments, including cell viability, apoptosis, and protein expression analyses, were conducted to validate the bioinformatics-predicted therapeutic targets. The results indicated that luteolin, rutin, quercetin, and kaempferol were vital active compounds, and TP53, MAPK1, and AKT1 were key targets. Molecular docking simulation showed that the four abovementioned active compounds had high binding affinities to the three main targets. Enrichment analysis showed that vital active compounds exerted therapeutic effects on GACA through regulating the TP53 pathway, MAPK pathway, and PI3K/AKT pathway. Furthermore, data-based gene expression analysis revealed that TP53 and JUN genes were not only differentially expressed between normal and GACA tissues but also correlated with clinical stages. In parallel, in vitro experimental results suggested that QZC exerted therapeutic effects on GACA by decreasing IC50 values, downregulating AKT expression, upregulating TP53 and MAPK expression, and increasing apoptosis of SGC-7901 cells. This study highlights the potential candidate biomarkers, therapeutic targets, and basic mechanisms of QZC in treating GACA, providing a foundation for new drug development, target mining, and related animal studies in GACA.
Collapse
|
8
|
In silico Methods for Identification of Potential Therapeutic Targets. Interdiscip Sci 2022; 14:285-310. [PMID: 34826045 PMCID: PMC8616973 DOI: 10.1007/s12539-021-00491-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 10/19/2021] [Accepted: 11/01/2021] [Indexed: 11/01/2022]
Abstract
AbstractAt the initial stage of drug discovery, identifying novel targets with maximal efficacy and minimal side effects can improve the success rate and portfolio value of drug discovery projects while simultaneously reducing cycle time and cost. However, harnessing the full potential of big data to narrow the range of plausible targets through existing computational methods remains a key issue in this field. This paper reviews two categories of in silico methods—comparative genomics and network-based methods—for finding potential therapeutic targets among cellular functions based on understanding their related biological processes. In addition to describing the principles, databases, software, and applications, we discuss some recent studies and prospects of the methods. While comparative genomics is mostly applied to infectious diseases, network-based methods can be applied to infectious and non-infectious diseases. Nonetheless, the methods often complement each other in their advantages and disadvantages. The information reported here guides toward improving the application of big data-driven computational methods for therapeutic target discovery.
Graphical abstract
Collapse
|
9
|
Darapaneni V, Jaldani A. <em>In silico</em> identification of ivermectin as an influenza A virus nuclear export protein inhibitor. MICROBIOLOGY INDEPENDENT RESEARCH JOURNAL 2022. [DOI: 10.18527/2500-2236-2022-9-1-71-74] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Influenza A virus (IAV) is an etiological agent infecting animals and humans that is responsible for seasonal epidemics and devastating pandemics. IAV nuclear export protein (NEP) is a multifaceted protein that plays a pivotal role in the virus life cycle. One of the most important functions of IAV NEP is to transport newly synthesized viral ribonucleoproteins from the nucleus to the cytoplasm. This function is achieved by the interaction between NEP and matrix protein 1 (M1) facilitated by Trp78 surrounded by negatively charged Glu residues in the M1 binding domain of NEP. In the present study, we targeted the IAV NEP with ivermectin. Utilizing in silico molecular docking, we tested ivermectin for its ability to bind NEP. We found that ivermectin strongly binds to NEP with an affinity of –7.3 kcal/mol. The ivermectin binding site identified in this study is located in the NEP-M1 protein interaction region. It is anticipated that blocking NEP-M1 protein interaction can have a considerably deleterious effect on IAV assembly and propagation. This study highlights the possibility of exploring ivermectin as a potential IAV NEP protein blocker, which could be an important therapeutic strategy in the treatment of influenza.
Collapse
Affiliation(s)
| | - A. Jaldani
- Anvek Institute of Biomolecular Research
| |
Collapse
|
10
|
Trigueiro-Louro J, Santos LA, Almeida F, Correia V, Brito RMM, Rebelo-de-Andrade H. NS1 protein as a novel anti-influenza target: Map-and-mutate antiviral rationale reveals new putative druggable hot spots with an important role on viral replication. Virology 2022; 565:106-116. [PMID: 34773868 DOI: 10.1016/j.virol.2021.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/27/2021] [Accepted: 11/01/2021] [Indexed: 01/28/2023]
Abstract
Influenza NS1 is a promising anti-influenza target, considering its conserved and druggable structure, and key function in influenza replication and pathogenesis. Notwithstanding, target identification and validation, strengthened by experimental data, are lacking. Here, we further explored our previously designed structure-based antiviral rationale directed to highly conserved druggable NS1 regions across a broad spectrum of influenza A viruses. We aimed to identify NS1-mutated viruses exhibiting a reduced growth phenotype and/or an altered cell apoptosis profile. We found that NS1 mutations Y171A, K175A (consensus druggable pocket 1), W102A (consensus druggable pocket 3), Q121A and G184P (multiple consensus druggable pockets) - located at hot spots amenable for pharmacological modulation - significantly impaired A(H1N1)pdm09 virus replication, in vitro. This is the first time that NS1-K175A, -W102A, and -Q121A mutations are characterized. Our map-and-mutate strategy provides the basis to establish the NS1 as a promising target using a rationale with a higher resilience to resistance development.
Collapse
Affiliation(s)
- João Trigueiro-Louro
- Host-Pathogen Interaction Unit, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003, Lisbon, Portugal; Antiviral Resistance Lab, Research & Development Unit, Infectious Diseases Department, Instituto Nacional de Saúde Doutor Ricardo Jorge, IP, Av. Padre Cruz, 1649-016, Lisbon, Portugal.
| | - Luís A Santos
- Antiviral Resistance Lab, Research & Development Unit, Infectious Diseases Department, Instituto Nacional de Saúde Doutor Ricardo Jorge, IP, Av. Padre Cruz, 1649-016, Lisbon, Portugal
| | - Filipe Almeida
- Host-Pathogen Interaction Unit, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003, Lisbon, Portugal; Antiviral Resistance Lab, Research & Development Unit, Infectious Diseases Department, Instituto Nacional de Saúde Doutor Ricardo Jorge, IP, Av. Padre Cruz, 1649-016, Lisbon, Portugal
| | - Vanessa Correia
- Antiviral Resistance Lab, Research & Development Unit, Infectious Diseases Department, Instituto Nacional de Saúde Doutor Ricardo Jorge, IP, Av. Padre Cruz, 1649-016, Lisbon, Portugal
| | - Rui M M Brito
- Chemistry Department and Coimbra Chemistry Centre, Faculty of Science and Technology, University of Coimbra, 3004-535, Coimbra, Portugal
| | - Helena Rebelo-de-Andrade
- Host-Pathogen Interaction Unit, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003, Lisbon, Portugal; Antiviral Resistance Lab, Research & Development Unit, Infectious Diseases Department, Instituto Nacional de Saúde Doutor Ricardo Jorge, IP, Av. Padre Cruz, 1649-016, Lisbon, Portugal.
| |
Collapse
|
11
|
Jaiswal N, Agarwal N, Poluri KM, Kumar D. Effect of urea concentration on instant refolding of Nuclear Export Protein (NEP) from Influenza-A virus H1N1: A solution NMR based investigation. Int J Biol Macromol 2020; 165:2508-2519. [PMID: 33470198 DOI: 10.1016/j.ijbiomac.2020.10.146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 08/12/2020] [Accepted: 10/18/2020] [Indexed: 01/14/2023]
Abstract
Nuclear-export-protein (NEP) plays multiple-functions during influenza virus replication-cycle and shows unique pattern of conserved residues, which altogether make NEP a potential target for developing novel anti-influenza drugs. However, the mechanistic structural biology of NEP has not been fully characterized so far owing to its tendency to aggregate in solution. As structural information is important to guide rational drug-discovery process; therefore, procedural optimization efforts are going on to achieve properly folded NEP in sub-millimolar concentrations for solution-NMR investigations. As a first step in this direction, the refolding-cum-aggregation behavior of recombinant-NEP with N-terminal purification-tag (referred here as NEPN) at different urea-concentrations has been investigated here by NMR-based methods. Several attempts were made to refold denatured NEP-N through step-dialysis. However, owing to its strong tendency to aggregate, excessive precipitation was observed at sub-higher levels of urea concentration (5.0 ± 1.0 M). Finally, we used drip-dilution method with 10.5 M urea-denatured NEP-N and were able to refold NEP-N instantly. The amide 1H dispersion of 3.6 ppm (6.6-10.2 ppm) in the 15N-HSQC-spectra of instantly refolded NEP-N confirmed the folded state. This successful instant-refolding of NEP-N has been reported for the first-time and the underlying mechanism has been rationalized through establishing the complete backbone-resonance-assignments of NEP-N at 9.7 M urea-denatured state.
Collapse
Affiliation(s)
- Nancy Jaiswal
- Centre of Biomedical Research, SGPGIMS Campus, Lucknow 226014, India; Dr. APJ Abdul Kalam Technical University, IET Campus, Sitapur Road, Lucknow, Uttar Pradesh, India
| | - Nipanshu Agarwal
- Department of Biotechnology and Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Krishna Mohan Poluri
- Department of Biotechnology and Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Dinesh Kumar
- Centre of Biomedical Research, SGPGIMS Campus, Lucknow 226014, India.
| |
Collapse
|
12
|
Trigueiro-Louro J, Correia V, Figueiredo-Nunes I, Gíria M, Rebelo-de-Andrade H. Unlocking COVID therapeutic targets: A structure-based rationale against SARS-CoV-2, SARS-CoV and MERS-CoV Spike. Comput Struct Biotechnol J 2020; 18:2117-2131. [PMID: 32913581 PMCID: PMC7452956 DOI: 10.1016/j.csbj.2020.07.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 12/11/2022] Open
Abstract
There are no approved target therapeutics against SARS-CoV-2 or other beta-CoVs. The beta-CoV Spike protein is a promising target considering the critical role in viral infection and pathogenesis and its surface exposed features. We performed a structure-based strategy targeting highly conserved druggable regions resulting from a comprehensive large-scale sequence analysis and structural characterization of Spike domains across SARSr- and MERSr-CoVs. We have disclosed 28 main consensus druggable pockets within the Spike. The RBD and SD1 (S1 subunit); and the CR, HR1 and CH (S2 subunit) represent the most promising conserved druggable regions. Additionally, we have identified 181 new potential hot spot residues for the hSARSr-CoVs and 72 new hot spot residues for the SARSr- and MERSr-CoVs, which have not been described before in the literature. These sites/residues exhibit advantageous structural features for targeted molecular and pharmacological modulation. This study establishes the Spike as a promising anti-CoV target using an approach with a potential higher resilience to resistance development and directed to a broad spectrum of Beta-CoVs, including the new SARS-CoV-2 responsible for COVID-19. This research also provides a structure-based rationale for the design and discovery of chemical inhibitors, antibodies or other therapeutic modalities successfully targeting the Beta-CoV Spike protein.
Collapse
Key Words
- ACE2, angiotensin-converting enzyme2
- Bat-SL-CoVs, bat SARS-like coronavirus
- Beta-CoVs, betacoronavirus
- Betacoronavirus
- CC, conserved cluster
- CD, connector domain
- CDP, consensus druggable pocket
- CDR, consensus druggable residue
- CH, central helix
- CP, cytoplasmic domain
- CR, connecting region
- CS, conservation score
- CoVs, coronavirus
- Coronavirus disease
- DGSS, DoGSiteScorer
- DPP4, dipeptidyl peptidase-4
- Druggability prediction
- FP, fusion peptide
- HR1, heptad repeat 1
- HR2, heptad repeat 2
- MERS-CoVs, middle east respiratory syndrome coronavirus
- MERSr-CoVs, middle east respiratory syndrome-related coronavirus
- MSA, multiple sequence alignment
- NTD, N-terminal domain
- Novel antiviral targets
- PDB, Protein Data Bank
- PDS, PockDrug-Server
- RBD, Receptor-Binding Domain
- S, Spike
- SARS-CoV-2
- SARS-CoV-2, severe acute respiratory syndrome coronavirus 2
- SARS-CoVs, severe acute respiratory syndrome coronavirus
- SARSr-CoVs, severe acute respiratory syndrome-related coronavirus
- SD1, subdomain 1
- SD2, subdomain 2
- SF, SiteFinder from MOE
- SP, small pocket
- Sequence conservation
- Spike protein
- Sv, shorter variant
- T-RHS, top-ranked hot spots
- TMPRSS2, transmembrane protease serine 2
- aa, amino acid
- hSARSr-CoVs, human Severe acute respiratory syndrome-related coronavirus
- nts, nucleotides
Collapse
Affiliation(s)
- João Trigueiro-Louro
- Antiviral Resistance Lab, Research & Development Unit, Infectious Diseases Department, Instituto Nacional de Saúde Doutor Ricardo Jorge, IP, Av. Padre Cruz, 1649-016 Lisbon, Portugal
- Host-Pathogen Interaction Unit, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisbon, Portugal
| | - Vanessa Correia
- Antiviral Resistance Lab, Research & Development Unit, Infectious Diseases Department, Instituto Nacional de Saúde Doutor Ricardo Jorge, IP, Av. Padre Cruz, 1649-016 Lisbon, Portugal
| | - Inês Figueiredo-Nunes
- Host-Pathogen Interaction Unit, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisbon, Portugal
| | - Marta Gíria
- Host-Pathogen Interaction Unit, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisbon, Portugal
| | - Helena Rebelo-de-Andrade
- Antiviral Resistance Lab, Research & Development Unit, Infectious Diseases Department, Instituto Nacional de Saúde Doutor Ricardo Jorge, IP, Av. Padre Cruz, 1649-016 Lisbon, Portugal
- Host-Pathogen Interaction Unit, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisbon, Portugal
| |
Collapse
|
13
|
Molecular Dynamics Simulations of Influenza A Virus NS1 Reveal a Remarkably Stable RNA-Binding Domain Harboring Promising Druggable Pockets. Viruses 2020; 12:v12050537. [PMID: 32422922 PMCID: PMC7290946 DOI: 10.3390/v12050537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/05/2020] [Accepted: 05/12/2020] [Indexed: 12/11/2022] Open
Abstract
The non-structural protein NS1 of influenza A viruses is considered to be the major antagonist of the interferon system and antiviral defenses of the cell. It could therefore represent a suitable target for novel antiviral strategies. As a first step towards the identification of small compounds targeting NS1, we here investigated the druggable potential of its RNA-binding domain since this domain is essential to the biological activities of NS1. We explored the flexibility of the full-length protein by running molecular dynamics simulations on one of its published crystal structures. While the RNA-binding domain structure was remarkably stable along the simulations, we identified a flexible site at the two extremities of the “groove” that is delimited by the antiparallel α-helices that make up its RNA-binding interface. This groove region is able to form potential binding pockets, which, in 60% of the conformations, meet the druggability criteria. We characterized these pockets and identified the residues that contribute to their druggability. All the residues involved in the druggable pockets are essential at the same time to the stability of the RNA-binding domain and to the biological activities of NS1. They are also strictly conserved across the large sequence diversity of NS1, emphasizing the robustness of this search towards the identification of broadly active NS1-targeting compounds.
Collapse
|
14
|
Rosário-Ferreira N, Preto AJ, Melo R, Moreira IS, Brito RMM. The Central Role of Non-Structural Protein 1 (NS1) in Influenza Biology and Infection. Int J Mol Sci 2020; 21:E1511. [PMID: 32098424 PMCID: PMC7073157 DOI: 10.3390/ijms21041511] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 01/23/2020] [Accepted: 01/24/2020] [Indexed: 01/07/2023] Open
Abstract
Influenza (flu) is a contagious viral disease, which targets the human respiratory tract and spreads throughout the world each year. Every year, influenza infects around 10% of the world population and between 290,000 and 650,000 people die from it according to the World Health Organization (WHO). Influenza viruses belong to the Orthomyxoviridae family and have a negative sense eight-segment single-stranded RNA genome that encodes 11 different proteins. The only control over influenza seasonal epidemic outbreaks around the world are vaccines, annually updated according to viral strains in circulation, but, because of high rates of mutation and recurrent genetic assortment, new viral strains of influenza are constantly emerging, increasing the likelihood of pandemics. Vaccination effectiveness is limited, calling for new preventive and therapeutic approaches and a better understanding of the virus-host interactions. In particular, grasping the role of influenza non-structural protein 1 (NS1) and related known interactions in the host cell is pivotal to better understand the mechanisms of virus infection and replication, and thus propose more effective antiviral approaches. In this review, we assess the structure of NS1, its dynamics, and multiple functions and interactions, to highlight the central role of this protein in viral biology and its potential use as an effective therapeutic target to tackle seasonal and pandemic influenza.
Collapse
Affiliation(s)
- Nícia Rosário-Ferreira
- Coimbra Chemistry Center, Chemistry Department, Faculty of Science and Technology, University of Coimbra, 3004-535 Coimbra, Portugal
- CNC—Center for Neuroscience and Cell Biology. University of Coimbra, UC Biotech Building, 3060-197 Cantanhede, Portugal
| | - António J. Preto
- CNC—Center for Neuroscience and Cell Biology. University of Coimbra, UC Biotech Building, 3060-197 Cantanhede, Portugal
| | - Rita Melo
- CNC—Center for Neuroscience and Cell Biology. University of Coimbra, UC Biotech Building, 3060-197 Cantanhede, Portugal
- Centro de Ciências e Tecnologias Nucleares and Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela LRS, Portugal
| | - Irina S. Moreira
- CNC—Center for Neuroscience and Cell Biology. University of Coimbra, UC Biotech Building, 3060-197 Cantanhede, Portugal
- Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Rui M. M. Brito
- Coimbra Chemistry Center, Chemistry Department, Faculty of Science and Technology, University of Coimbra, 3004-535 Coimbra, Portugal
| |
Collapse
|
15
|
Boukharta M, El Amri H, Zakham F, Ennaji MM. Role of Genetic and Molecular Dynamics in the Emergence, Reemergence, and Interspecies Transmission of Equine Influenza Viruses. EMERGING AND REEMERGING VIRAL PATHOGENS 2020:745-780. [DOI: 10.1016/b978-0-12-819400-3.00034-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
16
|
Patel H, Kukol A. Prediction of ligands to universally conserved binding sites of the influenza a virus nuclear export protein. Virology 2019; 537:97-103. [PMID: 31542626 DOI: 10.1016/j.virol.2019.08.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/09/2019] [Accepted: 08/13/2019] [Indexed: 11/27/2022]
Abstract
The nuclear export protein (NEP) of the influenza A virus exports viral ribonucleoproteins to the host cell cytoplasm following nuclear transcription. In this work conservation analysis of 3000 protein sequences and molecular modelling of full-length NEP identified ligand binding sites overlapping with high sequence conservation. Two binding hot spots were identified close to the first nuclear export signal and several hot spots overlapped with highly conserved amino acids such as Arg42, Asp43, Lys39, Ile80, Gln101 and Val109. Virtual screening with ~43,000 compounds against a binding site showed affinities of up to -8.95 kcal/mol, while ~1700 approved drugs showed affinities of up to -8.31 kcal/mol. A drug-like compounds predicted was ZINC01564229 that could be used as probe to investigate NEP function or as a new drug lead. The approved drugs Nandrolone phenylpropionate and Estropipate were predicted to bind with high affinity and may be investigated for repurposing as anti-influenza drugs. IMPORTANCE: The influenza A virus causes respiratory illness in humans and farm animals annually across the world. Antigenic shifts and drifts in the surface proteins lead to genome diversity and unpredictable pandemics and epidemics. The high evolution rate of the RNA genome can also limit the effectiveness of antivirals and is the cause of emerging resistance. From a human health perspective, it is important that compounds identified as potential influenza replication inhibitors remain effective long-term. This work presents results which are based on computational predictions that reveal interactions between available compounds and regions of the influenza A nuclear export protein which display high conservation. Due to a low probability of highly conserved regions undergoing genomic changes, these compounds may serve as ideal leads for new antivirals.
Collapse
Affiliation(s)
- Hershna Patel
- School of Life and Medical Sciences, University of Hertfordshire, United Kingdom
| | - Andreas Kukol
- School of Life and Medical Sciences, University of Hertfordshire, United Kingdom.
| |
Collapse
|
17
|
Trigueiro-Louro JM, Correia V, Santos LA, Guedes RC, Brito RMM, Rebelo-de-Andrade H. To hit or not to hit: Large-scale sequence analysis and structure characterization of influenza A NS1 unlocks new antiviral target potential. Virology 2019; 535:297-307. [PMID: 31104825 DOI: 10.1016/j.virol.2019.04.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/22/2019] [Accepted: 04/23/2019] [Indexed: 12/13/2022]
Abstract
Influenza NS1 protein is among the most promising novel druggable anti-influenza target, based on its structure; multiple interactions; and global function in influenza replication and pathogenesis. Notwithstanding, drug development guidance based on NS1 structural biology is lacking. Here, we design a promising strategy directed to highly conserved druggable regions as a result of an exhaustive large-scale sequence analysis and structure characterization of NS1 protein across human-infecting influenza A subtypes, over the past 100 years. We have identified 3 druggable pockets and 8 new potential hot spot residues in the NS1 protein, not described before, additionally to other 16 sites previously identified, which represent attractive targets for pharmacological modulation. This study provides a rationale towards structure-function studies of NS1 druggable sites, which have the potential to accelerate the NS1 target validation. This research also contributes to a deeper comprehension and insight into the evolutionary dynamics of influenza A NS1 protein.
Collapse
Affiliation(s)
- João M Trigueiro-Louro
- Host-Pathogen Interaction Unit, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003, Lisbon, Portugal; Antiviral Resistance Lab, Research & Development Unit, Infectious Diseases Department, Instituto Nacional de Saúde Doutor Ricardo Jorge, IP, Av. Padre Cruz, 1649-016, Lisbon, Portugal.
| | - Vanessa Correia
- Antiviral Resistance Lab, Research & Development Unit, Infectious Diseases Department, Instituto Nacional de Saúde Doutor Ricardo Jorge, IP, Av. Padre Cruz, 1649-016, Lisbon, Portugal
| | - Luís A Santos
- Antiviral Resistance Lab, Research & Development Unit, Infectious Diseases Department, Instituto Nacional de Saúde Doutor Ricardo Jorge, IP, Av. Padre Cruz, 1649-016, Lisbon, Portugal
| | - Rita C Guedes
- Medicinal Chemistry Unit, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003, Lisbon, Portugal
| | - Rui M M Brito
- Chemistry Department and Coimbra Chemistry Centre, Faculty of Science and Technology, University of Coimbra, 3004-535, Coimbra, Portugal
| | - Helena Rebelo-de-Andrade
- Host-Pathogen Interaction Unit, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003, Lisbon, Portugal; Antiviral Resistance Lab, Research & Development Unit, Infectious Diseases Department, Instituto Nacional de Saúde Doutor Ricardo Jorge, IP, Av. Padre Cruz, 1649-016, Lisbon, Portugal.
| |
Collapse
|
18
|
Sohrabi SM, Mohammadi M, Tabatabaiepour SN, Tabatabaiepour SZ, Hosseini-Nave H, Soltani MF, Alizadeh H, Hadizadeh M. A SystematicIn SilicoAnalysis of theLegionellaceaeFamily for Identification of Novel Drug Target Candidates. Microb Drug Resist 2019; 25:157-166. [DOI: 10.1089/mdr.2017.0328] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
| | - Mohsen Mohammadi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Lorestan University of Medical Sciences, Khorramabad, Iran
| | | | | | - Hossein Hosseini-Nave
- Department of Microbiology and Virology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Fazel Soltani
- Molecular Genetics and Genetic Engineering, Department of Crop Production and Plant Breeding, School of Agriculture, Razi University, Kermanshah, Iran
| | - Hosniyeh Alizadeh
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Morteza Hadizadeh
- Physiology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
19
|
Kukol A. Meet Our Editorial Board Member. Protein Pept Lett 2019. [DOI: 10.2174/092986652602190220155059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Andreas Kukol
- Department of Biological and Environmental Sciences School of Life and Medical Sciences University of Hertfordshire Hatfield AL10 9AB, United Kingdom
| |
Collapse
|
20
|
Golovko AO, Koroleva ON, Tolstova AP, Kuz'mina NV, Dubrovin EV, Drutsa VL. Aggregation of Influenza A Virus Nuclear Export Protein. BIOCHEMISTRY (MOSCOW) 2018; 83:1411-1421. [PMID: 30482152 DOI: 10.1134/s0006297918110111] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Influenza A virus nuclear export protein (NEP) plays an important role in the viral life cycle. Recombinant NEP proteins containing (His)6-tag at either N- or C-terminus were obtained by heterologous expression in Escherichia coli cells and their high propensity for aggregation was demonstrated. Dynamic light scattering technique was used to study the kinetics and properties of NEP aggregation in solutions under different conditions (pH, ionic strength, presence of low-molecular-weight additives and organic solvents). Using atomic force microscopy, the predominance of spherical aggregates in all examined NEP preparations was shown, with some amyloid-like structures being observed in the case of NEP-C protein. A number of structure prediction programs were used to identify aggregation-prone regions in the NEP structure. All-atom molecular dynamics simulations indicate a high rate of NEP molecule aggregation and reveal the regions preferentially involved in the intermolecular contacts that are located at the edges of the rod-like protein molecule. Our results suggest that NEP aggregation is determined by different types of interactions and represents an intrinsic property of the protein that appears to be necessary for its functioning in vivo.
Collapse
Affiliation(s)
- A O Golovko
- Lomonosov Moscow State University, Department of Bioengineering and Bioinformatics, Moscow, 119991, Russia.
| | - O N Koroleva
- Lomonosov Moscow State University, Department of Chemistry, Moscow, 119991, Russia.
| | - A P Tolstova
- Lomonosov Moscow State University, Department of Physics, Moscow, 119991, Russia.
| | - N V Kuz'mina
- Lomonosov Moscow State University, Department of Biology, Moscow, 119991, Russia. .,Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, 119071, Russia
| | - E V Dubrovin
- Lomonosov Moscow State University, Department of Physics, Moscow, 119991, Russia.
| | - V L Drutsa
- Lomonosov Moscow State University, Belozersky Research Institute of Physico-Chemical Biology, Moscow, 119991, Russia.
| |
Collapse
|
21
|
Golovko AO, Koroleva ON, Drutsa VL. Heterologous Expression and Isolation of Influenza A Virus Nuclear Export Protein NEP. BIOCHEMISTRY (MOSCOW) 2018; 82:1529-1537. [PMID: 29486703 DOI: 10.1134/s0006297917120124] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Influenza A virus nuclear export protein NEP (NS2, 14.4 kDa) plays a key role in various steps of the virus life cycle. Highly purified protein preparations are required for structural and functional studies. In this study, we designed a series of Escherichia coli plasmid constructs for highly efficient expression of the NEP gene under control of the constitutive trp promoter. An efficient method for extraction of NEP from inclusion bodies based on dodecyl sulfate treatment was developed. Preparations of purified NEP with either N- or C-terminal (His)6-tag were obtained using Ni-NTA agarose affinity chromatography with yield of more than 20 mg per liter of culture. According to CD data, the secondary structure of the proteins matched that of natural NEP. A high propensity of NEP to aggregate over a wide range of conditions was observed.
Collapse
Affiliation(s)
- A O Golovko
- Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics, Moscow, 119991, Russia.
| | | | | |
Collapse
|
22
|
Hadizadeh M, Tabatabaiepour SN, Tabatabaiepour SZ, Hosseini Nave H, Mohammadi M, Sohrabi SM. Genome-Wide Identification of Potential Drug Target in Enterobacteriaceae Family: A Homology-Based Method. Microb Drug Resist 2018; 24:8-17. [DOI: 10.1089/mdr.2016.0259] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Morteza Hadizadeh
- Department of Agriculture, Payame Noor University (PNU), Tehran, Iran
| | | | | | - Hossein Hosseini Nave
- Department of Microbiology and Virology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohsen Mohammadi
- Faculty of Pharmacy, Department of Pharmaceutical Biotechnology, Lorestan University of Medical Sciences, Khorramabad, Iran
| | | |
Collapse
|
23
|
Shtykova EV, Bogacheva EN, Dadinova LA, Jeffries CM, Fedorova NV, Golovko AO, Baratova LA, Batishchev OV. Small-angle X-Ray analysis of macromolecular structure: the structure of protein NS2 (NEP) in solution. CRYSTALLOGR REP+ 2017. [DOI: 10.1134/s1063774517060220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Wang BX, Fish EN. Interactions Between NS1 of Influenza A Viruses and Interferon-α/β: Determinants for Vaccine Development. J Interferon Cytokine Res 2017; 37:331-341. [PMID: 28514196 DOI: 10.1089/jir.2017.0032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Influenza A viruses (IAVs) cause mild to severe infections in humans with considerable socioeconomic and global health consequences. The host interferon (IFN)-α/β response, critical as the first line of defense against foreign pathogens, is induced upon detection of IAV genomic RNA in infected cells by host innate pattern recognition receptors. IFN-α/β production and subsequent activation of cell signaling result in the expression of antiviral IFN-stimulated genes whose products target various stages of the IAV life cycle to inhibit viral replication and the spread of infection and establish an antiviral state. IAVs, however, encode a multifunctional virulence factor, nonstructural protein 1 (NS1), that directly antagonizes the host IFN-α/β response to support viral replication. In this review, we highlight the mechanisms by which NS1 suppresses IFN-α/β production and subsequent cell signaling, and consider, therefore, the potential for recombinant IAVs lacking NS1 to be used as live-attenuated vaccines.
Collapse
Affiliation(s)
- Ben X Wang
- 1 Toronto General Hospital Research Institute, University Health Network , Toronto, Ontario, Canada .,2 Department of Immunology, University of Toronto , Toronto, Ontario, Canada
| | - Eleanor N Fish
- 1 Toronto General Hospital Research Institute, University Health Network , Toronto, Ontario, Canada .,2 Department of Immunology, University of Toronto , Toronto, Ontario, Canada
| |
Collapse
|
25
|
The Short Form of the Zinc Finger Antiviral Protein Inhibits Influenza A Virus Protein Expression and Is Antagonized by the Virus-Encoded NS1. J Virol 2017; 91:JVI.01909-16. [PMID: 27807230 DOI: 10.1128/jvi.01909-16] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 10/27/2016] [Indexed: 12/25/2022] Open
Abstract
Zinc finger antiviral protein (ZAP) is a host factor that specifically inhibits the replication of certain viruses. There are two ZAP isoforms arising from alternative splicing, which differ only at the C termini. It was recently reported that the long isoform (ZAPL) promotes proteasomal degradation of influenza A virus (IAV) proteins PA and PB2 through the C-terminal poly(ADP-ribose) polymerase (PARP) domain, which is missing in the short form (ZAPS), and that this antiviral activity is antagonized by the viral protein PB1. Here, we report that ZAP inhibits IAV protein expression in a PARP domain-independent manner. Overexpression of ZAPS inhibited the expression of PA, PB2, and neuraminidase (NA), and downregulation of the endogenous ZAPS enhanced their expression. We show that ZAPS inhibited PB2 protein expression by reducing the encoding viral mRNA levels and repressing its translation. However, downregulation of ZAPS only modestly enhanced the early stage of viral replication. We provide evidence showing that the antiviral activity of ZAPS is antagonized by the viral protein NS1. A recombinant IAV carrying an NS1 mutant that lost the ZAPS-antagonizing activity replicated better in ZAPS-deficient cells. We further provide evidence suggesting that NS1 antagonizes ZAPS by inhibiting its binding to target mRNA. These results uncover a distinct mechanism underlying the interactions between ZAP and IAV. IMPORTANCE ZAP is a host antiviral factor that has been extensively reported to inhibit the replication of certain viruses by repressing the translation and promoting the degradation of the viral mRNAs. There are two ZAP isoforms, ZAPL and ZAPS. ZAPL was recently reported to promote IAV protein degradation through the PARP domain. Whether ZAPS, which lacks the PARP domain, inhibits IAV and the underlying mechanisms remained to be determined. Here, we show that ZAPS posttranscriptionally inhibits IAV protein expression. This antiviral activity of ZAP is antagonized by the viral protein NS1. The fact that ZAP uses two distinct mechanisms to inhibit IAV infection and that the virus evolved different antagonists suggests an important role of ZAP in the host effort to control IAV infection and the importance of the threat of ZAP to the virus. The results reported here help us to comprehensively understand the interactions between ZAP and IAV.
Collapse
|
26
|
Recent discoveries of influenza A drug target sites to combat virus replication. Biochem Soc Trans 2016; 44:932-6. [DOI: 10.1042/bst20160002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Indexed: 11/17/2022]
Abstract
Sequence variations in the binding sites of influenza A proteins are known to limit the effectiveness of current antiviral drugs. Clinically, this leads to increased rates of virus transmission and pathogenicity. Potential influenza A inhibitors are continually being discovered as a result of high-throughput cell based screening studies, whereas the application of computational tools to aid drug discovery has further increased the number of predicted inhibitors reported. This review brings together the aspects that relate to the identification of influenza A drug target sites and the findings from recent antiviral drug discovery strategies.
Collapse
|
27
|
Thulasi Raman SN, Zhou Y. Networks of Host Factors that Interact with NS1 Protein of Influenza A Virus. Front Microbiol 2016; 7:654. [PMID: 27199973 PMCID: PMC4855030 DOI: 10.3389/fmicb.2016.00654] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 04/19/2016] [Indexed: 11/13/2022] Open
Abstract
Pigs are an important host of influenza A viruses due to their ability to generate reassortant viruses with pandemic potential. NS1 protein of influenza A viruses is a key virulence factor and a major antagonist of innate immune responses. It is also involved in enhancing viral mRNA translation and regulation of virus replication. Being a protein with pleiotropic functions, NS1 has a variety of cellular interaction partners. Hence, studies on swine influenza viruses (SIV) and identification of swine influenza NS1-interacting host proteins is of great interest. Here, we constructed a recombinant SIV carrying a Strep-tag in the NS1 protein and infected primary swine respiratory epithelial cells (SRECs) with this virus. The Strep-tag sequence in the NS1 protein enabled us to purify intact, the NS1 protein and its interacting protein complex specifically. We identified cellular proteins present in the purified complex by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and generated a dataset of these proteins. 445 proteins were identified by LC-MS/MS and among them 192 proteins were selected by setting up a threshold based on MS parameters. The selected proteins were analyzed by bioinformatics and were categorized as belonging to different functional groups including translation, RNA processing, cytoskeleton, innate immunity, and apoptosis. Protein interaction networks were derived using these data and the NS1 interactions with some of the specific host factors were verified by immunoprecipitation. The novel proteins and the networks revealed in our study will be the potential candidates for targeted study of the molecular interaction of NS1 with host proteins, which will provide insights into the identification of new therapeutic targets to control influenza infection and disease pathogenesis.
Collapse
Affiliation(s)
- Sathya N Thulasi Raman
- Vaccine and Infectious Disease Organization - International Vaccine Centre, University of Saskatchewan, SaskatoonSK, Canada; Vaccinology and Immunotherapeutics Program, School of Public Health, University of Saskatchewan, SaskatoonSK, Canada
| | - Yan Zhou
- Vaccine and Infectious Disease Organization - International Vaccine Centre, University of Saskatchewan, SaskatoonSK, Canada; Vaccinology and Immunotherapeutics Program, School of Public Health, University of Saskatchewan, SaskatoonSK, Canada
| |
Collapse
|
28
|
Boukharta M, Azlmat S, Elharrak M, Ennaji MM. Multiple alignment comparison of the non-structural genes of three strains of equine influenza viruses (H3N8) isolated in Morocco. BMC Res Notes 2015; 8:471. [PMID: 26404167 PMCID: PMC4581100 DOI: 10.1186/s13104-015-1441-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 09/11/2015] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Three equine influenza viruses, A/equine/Nador/1/1997(H3N8), A/equine/Essaouira/2/2004(H3N8), and A/equine/Essaouira/3/2004(H3N8), were isolated from different Equidae during local respiratory disease outbreaks in Morocco in 1997 and 2004. Their non-structural (NS) genes were amplified and sequenced. RESULTS The results show high homology of NS nucleotide sequences of A/equine/Nador/1/1997 with European strains (i.e., A/equine/newmarket/2/93 and A/equine/Grobois/1/1998) and clustered into the European lineage. However, NS gene of A/equine/Essaouira/2/2004(H3N8) and A/equine/Essaouira/3/2004(H3N8) strains indicated high homology with equine influenza strains that had circulated before 1990 (A/equine/Fontainbleu/1/1979(H3N8), which belonged to a pre-divergent phase Amino acid sequence comparison of the NS1 protein with reference strain A/equine/Miami/1963(H3N8) shows that the A/equine/Nador/1/1997(H3N8) strain has 12 substitutions at the residues D/24/N, R/44/K, S/48/I, R/67/Q, A/86/V, E/139/K, A/112/T, E/186/K, L/185/F, A/223/E, S/213/T and S/228/P. In both A/equine/Essaouira/2/2004(H3N8) and A/equine/Essaouira/3/2004(H3N8) strains, the NS1 sequences present one common mutation at the residue: S/228/P. CONCLUSION It seems that all of these substitutions are not produced at the key residues of the RNA-binding domain (RBD) and the effector domain (ED). Consequently, we can suppose that they will not affect the potency of inhibition of cellular defences, and the virulence of the Moroccan equine strains will be maintained.
Collapse
Affiliation(s)
- Mohamed Boukharta
- Laboratory of Virology, Microbiology and Quality/ETB, Faculty of Sciences and Techniques, Mohammedia, University Hassan II Mohammedia-Casablanca, PO BOX 146, Quartier Yasmina, Mohammedia, 20650, Morocco.
| | - Souad Azlmat
- Department of Biology, Instruction Military Hospital Med V Rabat, University Mohammed V Souissi, Rabat, Morocco.
| | - Mehdi Elharrak
- Society of Pharmaceutical and Veterinary Products, Virology Laboratory, Av Hassan II, BP 4569, Rabat, Morocco.
| | - My Mustapha Ennaji
- Laboratory of Virology, Microbiology and Quality/ETB, Faculty of Sciences and Techniques, Mohammedia, University Hassan II Mohammedia-Casablanca, PO BOX 146, Quartier Yasmina, Mohammedia, 20650, Morocco.
| |
Collapse
|
29
|
Zhu CY, Zheng FL, She XS, Zhao D, Gu Y, Duan YT, Chang AK, Liu HS. Identification of NS1 domains of avian H5N1 influenza virus which influence the interaction with the NOLC1 protein. Virus Genes 2015; 50:238-44. [DOI: 10.1007/s11262-015-1166-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Accepted: 01/06/2015] [Indexed: 11/28/2022]
|
30
|
Abstract
The non-structural protein 1 of influenza virus (NS1) is a relatively small polypeptide with an outstanding number of ascribed functions. NS1 is the main viral antagonist of the innate immune response during influenza virus infection, chiefly by inhibiting the type I interferon system at multiple steps. As such, its role is critical to overcome the first barrier the host presents to halt the viral infection. However, the pro-viral activities of this well-studied protein go far beyond and include regulation of viral RNA and protein synthesis, and disruption of the host cell homeostasis by dramatically affecting general gene expression while tweaking the PI3K signaling network. Because of all of this, NS1 is a key virulence factor that impacts influenza pathogenesis, and adaptation to new hosts, making it an attractive target for control strategies. Here, we will overview the many roles that have been ascribed to the NS1 protein, and give insights into the sequence features and structural properties that make them possible, highlighting the need to understand how NS1 can actually perform all of these functions during viral infection.
Collapse
Affiliation(s)
- Juan Ayllon
- Department of Microbiology, Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | | |
Collapse
|
31
|
Silvério-Machado R, Couto BRGM, dos Santos MA. Retrieval of Enterobacteriaceae drug targets using singular value decomposition. Bioinformatics 2014; 31:1267-73. [DOI: 10.1093/bioinformatics/btu792] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 11/23/2014] [Indexed: 01/25/2023] Open
|
32
|
Marc D. Influenza virus non-structural protein NS1: interferon antagonism and beyond. J Gen Virol 2014; 95:2594-2611. [PMID: 25182164 DOI: 10.1099/vir.0.069542-0] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Most viruses express one or several proteins that counter the antiviral defences of the host cell. This is the task of non-structural protein NS1 in influenza viruses. Absent in the viral particle, but highly expressed in the infected cell, NS1 dramatically inhibits cellular gene expression and prevents the activation of key players in the IFN system. In addition, NS1 selectively enhances the translation of viral mRNAs and may regulate the synthesis of viral RNAs. Our knowledge of the virus and of NS1 has increased dramatically during the last 15 years. The atomic structure of NS1 has been determined, many cellular partners have been identified and its multiple activities have been studied in depth. This review presents our current knowledge, and attempts to establish relationships between the RNA sequence, the structure of the protein, its ligands, its activities and the pathogenicity of the virus. A better understanding of NS1 could help in elaborating novel antiviral strategies, based on either live vaccines with altered NS1 or on small-compound inhibitors of NS1.
Collapse
Affiliation(s)
- Daniel Marc
- Université François Rabelais, UMR1282 Infectiologie et Santé Publique, 37000 Tours, France.,Pathologie et Immunologie Aviaire, INRA, UMR1282 Infectiologie et Santé Publique, 37380 Nouzilly, France
| |
Collapse
|
33
|
Tynell J, Melén K, Julkunen I. Mutations within the conserved NS1 nuclear export signal lead to inhibition of influenza A virus replication. Virol J 2014; 11:128. [PMID: 25023993 PMCID: PMC4112715 DOI: 10.1186/1743-422x-11-128] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 07/04/2014] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The influenza A virus NS1 protein is a virulence factor and an antagonist of host cell innate immune responses. During virus infection NS1 protein has several functions both in the nucleus and in the cytoplasm and its intracellular localization is regulated by one or two nuclear localization signals (NLS) and a nuclear export signal (NES). METHODS In order to investigate the role of NS1 NES in intracellular localization, virus life cycle and host interferon responses, we generated recombinant A/Udorn/72 viruses harboring point mutations in the NES sequence. RESULTS NS1 NES was found to be inactivated by several of the mutations resulting in nuclear retention of NS1 at late stages of infection confirming that this sequence is a bona fide functional NES. Some of the mutant viruses showed reduced growth properties in cell culture, inability to antagonize host cell interferon production and increased p-IRF3 levels, but no clear correlation between these phenotypes and NS1 localization could be made. Impaired activation of Akt phosphorylation by the replication-deficient viruses indicates possible disruption of NS1-p85β interaction by mutations in the NES region. CONCLUSION We conclude that mutations within the NS1 NES result in impairment of several NS1 functions which extends further from the NES site being only involved in regulating the nuclear-cytoplasmic trafficking of NS1.
Collapse
Affiliation(s)
- Janne Tynell
- Virology Unit, Department of Infectious Disease Surveillance and Control, National Institute for Health and Welfare (THL), Mannerheimintie 166, FIN-00300 Helsinki, Finland
| | - Krister Melén
- Virology Unit, Department of Infectious Disease Surveillance and Control, National Institute for Health and Welfare (THL), Mannerheimintie 166, FIN-00300 Helsinki, Finland
| | - Ilkka Julkunen
- Virology Unit, Department of Infectious Disease Surveillance and Control, National Institute for Health and Welfare (THL), Mannerheimintie 166, FIN-00300 Helsinki, Finland
- Department of Virology, University of Turku, Turku, Finland
| |
Collapse
|
34
|
Kukol A, Patel H. Influenza A nucleoprotein binding sites for antivirals: current research and future potential. Future Virol 2014. [DOI: 10.2217/fvl.14.45] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Andreas Kukol
- School of Life & Medical Sciences, University of Hertfordshire, Hatfield, AL10 9AB, UK
| | - Hershna Patel
- School of Life & Medical Sciences, University of Hertfordshire, Hatfield, AL10 9AB, UK
| |
Collapse
|
35
|
Lalime EN, Pekosz A. The R35 residue of the influenza A virus NS1 protein has minimal effects on nuclear localization but alters virus replication through disrupting protein dimerization. Virology 2014; 458-459:33-42. [PMID: 24928037 DOI: 10.1016/j.virol.2014.04.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 04/05/2014] [Accepted: 04/09/2014] [Indexed: 10/25/2022]
Abstract
The influenza A virus NS1 protein has a nuclear localization sequence (NLS) in the amino terminal region. This NLS overlaps sequences that are important for RNA binding as well as protein dimerization. To assess the significance of the NS1 NLS on influenza virus replication, the NLS amino acids were individually mutated to alanines and recombinant viruses encoding these mutations were rescued. Viruses containing NS1 proteins with mutations at R37, R38 and K41 displayed minimal changes in replication or NS1 protein nuclear localization. Recombinant viruses encoding NS1 R35A were not recovered but viruses containing second site mutations at position D39 in addition to the R35A mutation were isolated. The mutations at position 39 were shown to partially restore NS1 protein dimerization but had minimal effects on nuclear localization. These data indicate that the amino acids in the NS1 NLS region play a more important role in protein dimerization compared to nuclear localization.
Collapse
Affiliation(s)
- Erin N Lalime
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University, Bloomberg School of Public Health, 615 North Wolfe Street, Suite E5132, Baltimore, MD 21205-2103, USA
| | - Andrew Pekosz
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University, Bloomberg School of Public Health, 615 North Wolfe Street, Suite E5132, Baltimore, MD 21205-2103, USA.
| |
Collapse
|
36
|
Large-scale analysis of influenza A virus nucleoprotein sequence conservation reveals potential drug-target sites. Virology 2014; 454-455:40-7. [PMID: 24725930 DOI: 10.1016/j.virol.2014.01.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 10/18/2013] [Accepted: 01/24/2014] [Indexed: 01/05/2023]
Abstract
The nucleoprotein (NP) of the influenza A virus encapsidates the viral RNA and participates in the infectious life cycle of the virus. The aims of this study were to find the degree of conservation of NP among all virus subtypes and hosts and to identify conserved binding sites, which may be utilised as potential drug target sites. The analysis of conservation based on 4430 amino acid sequences identified high conservation in known functional regions as well as novel highly conserved sites. Highly variable clusters identified on the surface of NP may be associated with adaptation to different hosts and avoidance of the host immune defence. Ligand binding potential overlapping with high conservation was found in the tail-loop binding site and near the putative RNA binding region. The results provide the basis for developing antivirals that may be universally effective and have a reduced potential to induce resistance through mutations.
Collapse
|
37
|
Warren S, Wan XF, Conant G, Korkin D. Extreme evolutionary conservation of functionally important regions in H1N1 influenza proteome. PLoS One 2013; 8:e81027. [PMID: 24282564 PMCID: PMC3839886 DOI: 10.1371/journal.pone.0081027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Accepted: 10/08/2013] [Indexed: 12/31/2022] Open
Abstract
The H1N1 subtype of influenza A virus has caused two of the four documented pandemics and is responsible for seasonal epidemic outbreaks, presenting a continuous threat to public health. Co-circulating antigenically divergent influenza strains significantly complicates vaccine development and use. Here, by combining evolutionary, structural, functional, and population information about the H1N1 proteome, we seek to answer two questions: (1) do residues on the protein surfaces evolve faster than the protein core residues consistently across all proteins that constitute the influenza proteome? and (2) in spite of the rapid evolution of surface residues in influenza proteins, are there any protein regions on the protein surface that do not evolve? To answer these questions, we first built phylogenetically-aware models of the patterns of surface and interior substitutions. Employing these models, we found a single coherent pattern of faster evolution on the protein surfaces that characterizes all influenza proteins. The pattern is consistent with the events of inter-species reassortment, the worldwide introduction of the flu vaccine in the early 80's, as well as the differences caused by the geographic origins of the virus. Next, we developed an automated computational pipeline to comprehensively detect regions of the protein surface residues that were 100% conserved over multiple years and in multiple host species. We identified conserved regions on the surface of 10 influenza proteins spread across all avian, swine, and human strains; with the exception of a small group of isolated strains that affected the conservation of three proteins. Surprisingly, these regions were also unaffected by genetic variation in the pandemic 2009 H1N1 viral population data obtained from deep sequencing experiments. Finally, the conserved regions were intrinsically related to the intra-viral macromolecular interaction interfaces. Our study may provide further insights towards the identification of novel protein targets for influenza antivirals.
Collapse
Affiliation(s)
- Samantha Warren
- Department of Computer Science, University of Missouri, Columbia, Missouri, United States of America
| | - Xiu-Feng Wan
- Department of Basic Sciences, Mississippi State University, Mississippi State, Mississippi, United States of America
| | - Gavin Conant
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, United States of America
- Informatics Institute, University of Missouri, Columbia, Missouri, United States of America
| | - Dmitry Korkin
- Department of Computer Science, University of Missouri, Columbia, Missouri, United States of America
- Informatics Institute, University of Missouri, Columbia, Missouri, United States of America
- Bond Life Science Center, University of Missouri, Columbia, Missouri, United States of America
| |
Collapse
|
38
|
Yan S, Wu G. Possibility of cross-species/subtype reassortments in influenza A viruses: an analysis of nonstructural protein variations. Virulence 2013; 4:716-25. [PMID: 24104702 DOI: 10.4161/viru.26612] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The reassortment of genetic segments from different host species and from different subtypes of influenza A viruses occurs frequently, which may generate new strains causing flu epidemic or pandemic. However, the underlined mechanisms of reassortment were less addressed from the viewpoint of protein variations. Recently, we used the amino-acid pair predictability as an indicator to convert eight types of influenza A virus proteins into predictable portion of amino-acid pairs, and then applied the models I and II ANOVA to estimate their differences in terms of subtypes and host species. In order to get a full picture, 2729 and 1063 non-structural 1 and 2 proteins of influenza A viruses were analyzed in this study. The results are consistent with those obtained from hemagglutinin, neuraminidase, nucleoprotein, polymerase acidic protein, polymerase basic proteins 1 and 2, and matrix proteins 1 and 2, indicating that inter-species/subtypes variations are smaller than intra-species/subtype ones. Our findings provide statistical evidence that can partially explains why cross-subtype mutation and cross-species infection easily occur during co-infecting of different strains.
Collapse
Affiliation(s)
- Shaomin Yan
- State Key Laboratory of Non-food Biomass Enzyme Technology; National Engineering Research Center for Non-food Biorefinery; Guangxi Key Laboratory of Biorefinery; Guangxi Academy of Sciences; Guangxi, PR China
| | - Guang Wu
- State Key Laboratory of Non-food Biomass Enzyme Technology; National Engineering Research Center for Non-food Biorefinery; Guangxi Key Laboratory of Biorefinery; Guangxi Academy of Sciences; Guangxi, PR China
| |
Collapse
|
39
|
Abdelwhab EM, Veits J, Mettenleiter TC. Avian influenza virus NS1: A small protein with diverse and versatile functions. Virulence 2013; 4:583-8. [PMID: 24051601 PMCID: PMC3906290 DOI: 10.4161/viru.26360] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- E M Abdelwhab
- Friedrich-Loeffler-Institut; Federal Research Institute for Animal Health; Institute of Molecular Biology; Insel Riems, Germany
| | | | | |
Collapse
|
40
|
Beyleveld G, White KM, Ayllon J, Shaw ML. New-generation screening assays for the detection of anti-influenza compounds targeting viral and host functions. Antiviral Res 2013; 100:120-32. [PMID: 23933115 DOI: 10.1016/j.antiviral.2013.07.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Revised: 07/23/2013] [Accepted: 07/26/2013] [Indexed: 01/08/2023]
Abstract
Current options for influenza antiviral therapy are limited to the neuraminidase inhibitors, and knowledge that high levels of oseltamivir resistance have been seen among previously circulating H1N1 viruses increases the urgency to find new influenza therapeutics. To feed this pipeline, assays that are appropriate for use in high-throughput screens are being developed and are discussed in this review. Particular emphasis is placed on cell-based assays that capture both inhibitors of viral functions as well as the host functions that facilitate optimal influenza virus replication. Success in this area has been fueled by a greater understanding of the genome structure of influenza viruses and the ability to generate replication-competent recombinant viruses that carry a reporter gene, allowing for easy monitoring of viral infection in a high-throughput setting. This article forms part of a symposium in Antiviral Research on "Treatment of influenza: targeting the virus or the host."
Collapse
Affiliation(s)
- Grant Beyleveld
- Department of Microbiology and Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | | | | |
Collapse
|
41
|
Engel DA. The influenza virus NS1 protein as a therapeutic target. Antiviral Res 2013; 99:409-16. [PMID: 23796981 DOI: 10.1016/j.antiviral.2013.06.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 06/08/2013] [Accepted: 06/11/2013] [Indexed: 10/26/2022]
Abstract
Nonstructural protein 1 (NS1) of influenza A virus plays a central role in virus replication and blockade of the host innate immune response, and is therefore being considered as a potential therapeutic target. The primary function of NS1 is to dampen the host interferon (IFN) response through several distinct molecular mechanisms that are triggered by interactions with dsRNA or specific cellular proteins. Sequestration of dsRNA by NS1 results in inhibition of the 2'-5' oligoadenylate synthetase/RNase L antiviral pathway, and also inhibition of dsRNA-dependent signaling required for new IFN production. Binding of NS1 to the E3 ubiquitin ligase TRIM25 prevents activation of RIG-I signaling and subsequent IFN induction. Cellular RNA processing is also targeted by NS1, through recognition of cleavage and polyadenylation specificity factor 30 (CPSF30), leading to inhibition of IFN-β mRNA processing as well as that of other cellular mRNAs. In addition NS1 binds to and inhibits cellular protein kinase R (PKR), thus blocking an important arm of the IFN system. Many additional proteins have been reported to interact with NS1, either directly or indirectly, which may serve its anti-IFN and additional functions, including the regulation of viral and host gene expression, signaling pathways and viral pathogenesis. Many of these interactions are potential targets for small-molecule intervention. Structural, biochemical and functional studies have resulted in hypotheses for drug discovery approaches that are beginning to bear experimental fruit, such as targeting the dsRNA-NS1 interaction, which could lead to restoration of innate immune function and inhibition of virus replication. This review describes biochemical, cell-based and nucleic acid-based approaches to identifying NS1 antagonists.
Collapse
Affiliation(s)
- Daniel A Engel
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908, United States.
| |
Collapse
|
42
|
Abstract
Influenza virus is a major human and animal pathogen causing seasonal epidemics and occasional pandemics in the human population that are associated with significant morbidity and mortality. Influenza A virus, a member of the orthomyxovirus family, contains an RNA genome with a coding capacity for a limited number of proteins. In addition to ensuring the structural integrity of virions, these viral proteins facilitate the replication of virus in the host cell. Consequently, viral proteins often evolve to perform multiple functions, the influenza A virus nuclear export protein (NEP) (also referred to as non-structural protein 2, or NS2) being an emerging example. NEP was originally implicated in mediating the nuclear export of viral ribonucleoprotein (RNP) complexes, which are synthesized in the infected cell nucleus and are assembled into progeny virions at the cell membrane. However, since then, new and unexpected roles for NEP during the influenza virus life cycle have started to emerge. These recent studies have shown NEP to be involved in regulating the accumulation of viral genomic vRNA and antigenomic cRNA as well as viral mRNA synthesized by the viral RNA-dependent RNA polymerase. Subsequently, this regulation of viral RNA transcription and replication by NEP was shown to be an important factor in the adaptation of highly pathogenic avian H5N1 influenza viruses to the mammalian host. Unexpectedly, NEP has also been implicated in recruiting a cellular ATPase to the cell membrane to aid the efficient release of budding virions. Accordingly, NEP is proposed to play multiple biologically important roles during the influenza virus life cycle.
Collapse
Affiliation(s)
| | - Ervin Fodor
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
43
|
Cho EJ, Xia S, Ma LC, Robertus J, Krug RM, Anslyn EV, Montelione GT, Ellington AD. Identification of influenza virus inhibitors targeting NS1A utilizing fluorescence polarization-based high-throughput assay. ACTA ACUST UNITED AC 2012; 17:448-59. [PMID: 22223052 DOI: 10.1177/1087057111431488] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This article describes the development of a simple and robust fluorescence polarization (FP)-based binding assay and adaptation to high-throughput identification of small molecules blocking dsRNA binding to NS1A protein (nonstructural protein 1 from type A influenza strains). This homogeneous assay employs fluorescein-labeled 16-mer dsRNA and full-length NS1A protein tagged with glutathione S-transferase to monitor the changes in FP and fluorescence intensity simultaneously. The assay was optimized for high-throughput screening in a 384-well format and achieved a z' score greater than 0.7. Its feasibility for high-throughput screening was demonstrated using the National Institutes of Health clinical collection. Six of 446 small molecules were identified as possible ligands in an initial screening. A series of validation tests confirmed epigallocatechine gallate (EGCG) to be active in the submicromolar range. A mechanism of EGCG inhibition involving interaction with the dsRNA-binding motif of NS1A, including Arg38, was proposed. This structural information is anticipated to provide a useful basis for the modeling of antiflu therapeutic reagents. Overall, the FP-based binding assay demonstrated its superior capability for simple, rapid, inexpensive, and robust identification of NS1A inhibitors and validation of their activity targeting NS1A.
Collapse
Affiliation(s)
- Eun Jeong Cho
- Texas Institute for Drug and Diagnostic Development, University of Texas at Austin, Austin, TX 78712, USA.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Tran L, Choi SB, Al-Najjar BO, Yusuf M, Wahab HA, Le L. Discovery of potential M2 channel inhibitors based on the amantadine scaffold via virtual screening and pharmacophore modeling. Molecules 2011; 16:10227-55. [PMID: 22158591 PMCID: PMC6264534 DOI: 10.3390/molecules161210227] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 12/06/2011] [Accepted: 12/08/2011] [Indexed: 01/20/2023] Open
Abstract
The M2 channel protein on the influenza A virus membrane has become the main target of the anti-flu drugs amantadine and rimantadine. The structure of the M2 channel proteins of the H3N2 (PDB code 2RLF) and 2009-H1N1 (Genbank accession number GQ385383) viruses may help researchers to solve the drug-resistant problem of these two adamantane-based drugs and develop more powerful new drugs against influenza A virus. In the present study, we searched for new M2 channel inhibitors through a combination of different computational methodologies, including virtual screening with docking and pharmacophore modeling. Virtual screening was performed to calculate the free energies of binding between receptor M2 channel proteins and 200 new designed ligands. After that, pharmacophore analysis was used to identify the important M2 protein-inhibitor interactions and common features of top binding compounds with M2 channel proteins. Finally, the two most potential compounds were determined as novel leads to inhibit M2 channel proteins in both H3N2 and 2009-H1N1 influenza A virus.
Collapse
Affiliation(s)
- Linh Tran
- School of Biotechnology, Ho Chi Minh International University, Quarter 6, Linh Trung, Thu Duc District, Ho Chi Minh City 70000, Vietnam; (L.T.)
- Pharmaceutical Design and Simulation (PhDS) Laboratory, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia; (S.B.C.); (B.O.A.-N.); (M.Y.)
| | - Sy Bing Choi
- Pharmaceutical Design and Simulation (PhDS) Laboratory, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia; (S.B.C.); (B.O.A.-N.); (M.Y.)
| | - Belal O. Al-Najjar
- Pharmaceutical Design and Simulation (PhDS) Laboratory, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia; (S.B.C.); (B.O.A.-N.); (M.Y.)
| | - Muhammad Yusuf
- Pharmaceutical Design and Simulation (PhDS) Laboratory, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia; (S.B.C.); (B.O.A.-N.); (M.Y.)
| | - Habibah A. Wahab
- Pharmaceutical Design and Simulation (PhDS) Laboratory, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia; (S.B.C.); (B.O.A.-N.); (M.Y.)
- Authors to whom correspondence should be addressed; (L.L.); or (H.A.W.); Tel.: +84-906-578-836; Fax: +84-37-244-271
| | - Ly Le
- School of Biotechnology, Ho Chi Minh International University, Quarter 6, Linh Trung, Thu Duc District, Ho Chi Minh City 70000, Vietnam; (L.T.)
- Authors to whom correspondence should be addressed; (L.L.); or (H.A.W.); Tel.: +84-906-578-836; Fax: +84-37-244-271
| |
Collapse
|
45
|
Kukol A. Consensus virtual screening approaches to predict protein ligands. Eur J Med Chem 2011; 46:4661-4. [DOI: 10.1016/j.ejmech.2011.05.026] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 05/10/2011] [Accepted: 05/10/2011] [Indexed: 10/18/2022]
|
46
|
Genetically engineered, biarsenically labeled influenza virus allows visualization of viral NS1 protein in living cells. J Virol 2010; 84:7204-13. [PMID: 20463066 DOI: 10.1128/jvi.00203-10] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Real-time fluorescence imaging of viral proteins in living cells provides a valuable means to study virus-host interactions. The challenge of generating replication-competent fluorescent influenza A virus is that the segmented genome does not allow fusion of a fluorescent protein gene to any viral gene. Here, we introduced the tetracysteine (TC) biarsenical labeling system into influenza virus in order to fluorescently label viral protein in the virus life cycle. We generated infectious influenza A viruses bearing a small TC tag (CCPGCC) in the loop/linker regions of the NS1 proteins. In the background of A/Puerto Rico/8/34 (H1N1) (PR8) virus, the TC tag can be inserted into NS1 after amino acid 52 (AA52) (PR8-410), AA79 (PR8-412), or AA102 (PR8-413) or the TC tag can be inserted and replace amino acids 79 to 84 (AA79-84) (PR8-411). Although PR8-410, PR8-411, and PR8-412 viruses are attenuated than the wild-type (WT) virus to some extent in multiple-cycle infection, their growth potential is similar to that of the WT virus during a single cycle of infection, and their NS1 subcellular localization and viral protein synthesis rate are quite similar to those of the WT virus. Furthermore, labeling with membrane-permeable biarsenical dye resulted in fluorescent NS1 protein in the context of virus infection. We could exploit this strategy on NS1 protein of A/Texas/36/91 (H1N1) (Tx91) by successfully rescuing a TC-tagged virus, Tx91-445, which carries the TC tag replacement of AA79-84. The infectivity of Tx91-445 virus was similar to that of WT Tx91 during multiple cycles of replication and a single cycle of replication. The NS1 protein derived from Tx91-445 can be fluorescently labeled in living cells. Finally, with biarsenical labeling, the engineered replication-competent virus allowed us to visualize NS1 protein nuclear import in virus-infected cells in real time.
Collapse
|
47
|
Majerová T, Hoffman H, Majer F. Therapeutic targets for influenza – perspectives in drug development. ACTA ACUST UNITED AC 2010. [DOI: 10.1135/cccc2009087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Since new and dangerous influenza virus strains, such as H5N1 “avian flu” and more recently the swine-origin H1N1 “swine flu”, are constantly evolving, the need for effective anti-influenza drugs is pressing. It is becoming clear that the emergence of drug-resistant viruses will be a major potential problem in future efforts to control influenza virus infection. Moreover, development of vaccines against new influenza strains takes several months, and their production capacity is limited. Thus, new classes of anti-influenza drugs are highly sought after. This review focuses mainly on novel strategies, including targeting viral entry into host cells, inhibition of viral transcription and genome replication, and targeting of the NS1 influenza protein. Another approach involves viral RNA silencing by siRNAs or by antisense oligonucleotides. Inhibitors of viral neuraminidase have been the most successful approach in influenza virus breakdown to date. Viral maturation can also be blocked by inhibition of hemagglutinin-processing cellular proteinases. Compounds modifying the host cell immune response have also been reported. Design of specific compounds universally active against all viral variants with a reduced potential for the emergence of drug-resistant mutants is the main challenge in anti-influenza drug development, and the goals in this field are discussed here. A review with 140 references.
Collapse
|
48
|
Deng L, Guan J, Dong Q, Zhou S. Prediction of protein-protein interaction sites using an ensemble method. BMC Bioinformatics 2009; 10:426. [PMID: 20015386 PMCID: PMC2808167 DOI: 10.1186/1471-2105-10-426] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2009] [Accepted: 12/16/2009] [Indexed: 01/23/2023] Open
Abstract
Background Prediction of protein-protein interaction sites is one of the most challenging and intriguing problems in the field of computational biology. Although much progress has been achieved by using various machine learning methods and a variety of available features, the problem is still far from being solved. Results In this paper, an ensemble method is proposed, which combines bootstrap resampling technique, SVM-based fusion classifiers and weighted voting strategy, to overcome the imbalanced problem and effectively utilize a wide variety of features. We evaluate the ensemble classifier using a dataset extracted from 99 polypeptide chains with 10-fold cross validation, and get a AUC score of 0.86, with a sensitivity of 0.76 and a specificity of 0.78, which are better than that of the existing methods. To improve the usefulness of the proposed method, two special ensemble classifiers are designed to handle the cases of missing homologues and structural information respectively, and the performance is still encouraging. The robustness of the ensemble method is also evaluated by effectively classifying interaction sites from surface residues as well as from all residues in proteins. Moreover, we demonstrate the applicability of the proposed method to identify interaction sites from the non-structural proteins (NS) of the influenza A virus, which may be utilized as potential drug target sites. Conclusion Our experimental results show that the ensemble classifiers are quite effective in predicting protein interaction sites. The Sub-EnClassifiers with resampling technique can alleviate the imbalanced problem and the combination of Sub-EnClassifiers with a wide variety of feature groups can significantly improve prediction performance.
Collapse
Affiliation(s)
- Lei Deng
- Department of Computer Science and Technology, Tongji University, Shanghai 201804, China.
| | | | | | | |
Collapse
|
49
|
X-ray structures of NS1 effector domain mutants. Arch Biochem Biophys 2009; 494:198-204. [PMID: 19995550 DOI: 10.1016/j.abb.2009.12.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Revised: 12/01/2009] [Accepted: 12/04/2009] [Indexed: 11/21/2022]
Abstract
The influenza A virus nonstructural protein NS1 is a multifunctional dimeric protein that acts as a potent inhibitor of the host cellular antiviral state. The C-terminal effector domain of NS1 binds host proteins, including CPSF30, and is a target for the development of new antiviral drugs. Here we present crystallographic structures of two mutant effector domains, W187Y and W187A, of influenza A/Udorn/72 virus. Unlike wild-type, the mutants behave exclusively as monomers in solution based on gel filtration data and light scattering. The W187Y mutant is able to bind CPSF30 with a binding affinity close to the wild-type protein; that is, it retains a receptor site for aromatic ligands nearly identical to the wild-type. Therefore, this monomeric mutant protein could serve as a drug target for a high throughput inhibitor screening assays, since its binding pocket is unoccupied in solution and potentially more accessible to small molecule ligands.
Collapse
|