1
|
Mou C, Zhao X, Zhuo C, He Q, Xu M, Shi K, Han T, Xu S, Chen Z. The mRNA vaccine expressing fused structural protein of PRRSV protects piglets against PRRSV challenge. Vet Microbiol 2025; 305:110534. [PMID: 40318244 DOI: 10.1016/j.vetmic.2025.110534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/14/2025] [Accepted: 04/23/2025] [Indexed: 05/07/2025]
Abstract
The swine industry experiences substantial economic losses annually due to the porcine reproductive and respiratory syndrome virus (PRRSV). The limited protective efficacy of existing commercial vaccines against epidemic PRRSV underscores the urgent need for innovative solutions. The mRNA vaccines, which elicit robust immune responses, have emerged as a promising avenue in vaccine development. In this study, two distinct mRNA vaccines were engineered: one encoding the full-length GP5 and M proteins (GP5-M), and the other encoding the full-length N protein along with epitope peptide segments of the M and E proteins (NMEpep). Our findings indicate that, compared with NMEpep, piglets immunized with the GP5-M mRNA vaccine produced specific antibodies, exhibited elevated levels of PRRSV-specific IFN-γ, and demonstrated effective activation of CD4+ and CD8+ T cells as well as CD21+ B cells. Furthermore, the GP5-M vaccine conferred protective efficacy against HP-PRRSV challenge, evidenced by the mitigation of clinical symptoms, reduction in viral loads, and alleviation of tissue damage. In conclusion, this study presents a promising candidate vaccine for addressing epidemic PRRSV and establishes the GP5-M mRNA vaccine as a viable platform for the development of next-generation PRRSV vaccines.
Collapse
Affiliation(s)
- Chunxiao Mou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu Province, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Xing Zhao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Chen Zhuo
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Qing He
- Therarna. Co., Ltd., Nanjing, Jiangsu Province, China
| | - Mengwei Xu
- Therarna. Co., Ltd., Nanjing, Jiangsu Province, China
| | - Kaichuang Shi
- Guangxi Center for Animal Disease Control and Prevention, Nanning, Guangxi Province, China
| | - Tiyun Han
- Therarna. Co., Ltd., Nanjing, Jiangsu Province, China
| | - Shi Xu
- Therarna. Co., Ltd., Nanjing, Jiangsu Province, China.
| | - Zhenhai Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu Province, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu Province, China.
| |
Collapse
|
2
|
Hodges AL, Walker LR, Everding T, Mote BE, Vu HLX, Ciobanu DC. Metagenomic detection and genome assembly of novel PRRSV-2 strain using Oxford Nanopore Flongle flow cell. J Anim Sci 2025; 103:skae395. [PMID: 39742418 PMCID: PMC11826234 DOI: 10.1093/jas/skae395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 12/31/2024] [Indexed: 01/03/2025] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is the causative agent of a syndrome characterized by reproductive failure and respiratory complications (PRRS). Early detection and classification of PRRSV strains are vital for appropriate management strategies to minimize loss following outbreaks. The most widely used classification method for PRRSV is based on open reading frame 5 (ORF5) sequences. However, the effectiveness of the ORF5-based classification system in accurately representing genetic variation is under scrutiny because ORF5 constitutes less than 5% of the 15kb-long genome. In this study, a single Oxford Nanopore Flongle flow cell was used to identify and assemble the genome of a strain sampled in May of 2022 from a Midwest research farm. Based on comparisons with available PRRSV genomes, the assembled genome was determined to be a novel PRRSV-2 strain belonging to the 1-4-4 L1C.5 ORF5-based lineage. Phylogenetic analyses of ORF5 and whole-genome sequences demonstrated differences in clustering between PRRSV strains, supporting the inability of ORF5 to capture genome-wide variation. For example, high levels of variation were observed within ORF1a, which encodes the hypervariable nsp2 protein. Comparison of the newly assembled genome with the genome of a highly characterized strain (VR2332 PRRSV-2) identified a 100 amino acid deletion within nsp2 characteristic of NADC34-like PRRSV. Oxford Nanopore Technologies' Flongle flow cell has been proven in this study to provide a rapid, cost-effective and accessible approach for whole-genome sequencing of PRRSV strains present within clinical samples necessary for strain-specific genome-wide characterization.
Collapse
Affiliation(s)
- Arabella L Hodges
- Animal Science Department, University of Nebraska–Lincoln, Lincoln, NE 68583, USA
| | - Lianna R Walker
- Animal Science Department, University of Nebraska–Lincoln, Lincoln, NE 68583, USA
| | - Talia Everding
- Animal Science Department, University of Nebraska–Lincoln, Lincoln, NE 68583, USA
| | - Benny E Mote
- Animal Science Department, University of Nebraska–Lincoln, Lincoln, NE 68583, USA
| | - Hiep L X Vu
- Animal Science Department, University of Nebraska–Lincoln, Lincoln, NE 68583, USA
| | - Daniel C Ciobanu
- Animal Science Department, University of Nebraska–Lincoln, Lincoln, NE 68583, USA
| |
Collapse
|
3
|
Wei Y, Dai G, Huang M, Wen L, Chen RA, Liu DX. Construction of an infectious cloning system of porcine reproductive and respiratory syndrome virus and identification of glycoprotein 5 as a potential determinant of virulence and pathogenicity. Front Microbiol 2023; 14:1227485. [PMID: 37547693 PMCID: PMC10397516 DOI: 10.3389/fmicb.2023.1227485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/06/2023] [Indexed: 08/08/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) infection of pigs causes a variety of clinical manifestations, depending on the pathogenicity and virulence of the specific strain. Identification and characterization of potential determinant(s) for the pathogenicity and virulence of these strains would be an essential step to precisely design and develop effective anti-PRRSV intervention. In this study, we report the construction of an infectious clone system based on PRRSV vaccine strain SP by homologous recombination technique, and the rescue of a chimeric rSP-HUB2 strain by replacing the GP5 and M protein-coding region from SP strain with the corresponding region from a highly pathogenic strain PRRSV-HUB2. The two recombinant viruses were shown to be genetically stable and share similar growth kinetics, with rSP-HUB2 exhibiting apparent growth and fitness advantages. Compared to in cells infected with PRRSV-rSP, infection of cells with rSP-HUB2 showed significantly more inhibition of the induction of type I interferon (IFN-β) and interferon stimulator gene 56 (ISG56), and significantly more promotion of the induction of proinflammatory cytokines IL-6, IL-8, ISG15 and ISG20. Further overexpression, deletion and mutagenesis studies demonstrated that amino acid residue F16 in the N-terminal region of the GP5 protein from HUB2 was a determinant for the phenotypic difference between the two recombinant viruses. This study provides evidence that GP5 may function as a potential determinant for the pathogenicity and virulence of highly pathogenic PRRSV.
Collapse
Affiliation(s)
- Yuqing Wei
- Guangdong Province Key Laboratory Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, Guangdong, China
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing, Guangdong, China
| | - Guo Dai
- Guangdong Province Key Laboratory Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, Guangdong, China
| | - Mei Huang
- Zhaoqing Institute of Biotechnology Co., Ltd., Zhaoqing, Guangdong, China
| | - Lianghai Wen
- Zhaoqing Institute of Biotechnology Co., Ltd., Zhaoqing, Guangdong, China
| | - Rui Ai Chen
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing, Guangdong, China
| | - Ding Xiang Liu
- Guangdong Province Key Laboratory Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, Guangdong, China
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing, Guangdong, China
| |
Collapse
|
4
|
Lee MA, Jayaramaiah U, You SH, Shin EG, Song SM, Ju L, Kang SJ, Hyun BH, Lee HS. Molecular Characterization of Porcine Reproductive and Respiratory Syndrome Virus in Korea from 2018 to 2022. Pathogens 2023; 12:757. [PMID: 37375447 DOI: 10.3390/pathogens12060757] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 06/29/2023] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is an endemic disease in the Republic of Korea. Surveillance of PRRS virus (PRRSV) types is critical to tailor control measures. This study collected 5062 serum and tissue samples between 2018 and 2022. Open reading frame 5 (ORF5) sequences suggest that subgroup A (42%) was predominant, followed by lineage 1 (21%), lineage 5 (14%), lineage Korea C (LKC) (9%), lineage Korea B (LKB) (6%), and subtype 1C (5%). Highly virulent lineages 1 (NADC30/34/MN184) and 8 were also detected. These viruses typically mutate or recombine with other viruses. ORF5 and non-structural protein 2 (NSP2) deletion patterns were less variable in the PRRSV-1. Several strains belonging to PRRSV-2 showed differences in NSP2 deletion and ORF5 sequences. Similar vaccine-like isolates to the PRRSV-1 subtype 1C and PRRSV-2 lineage 5 were also found. The virus is evolving independently in the field and has eluded vaccine protection. The current vaccine that is used in Korea offers only modest or limited heterologous protection. Ongoing surveillance to identify the current virus strain in circulation is necessary to design a vaccine. A systemic immunization program with region-specific vaccinations and stringent biosecurity measures is required to reduce PRRSV infections in the Republic of Korea.
Collapse
Affiliation(s)
- Min-A Lee
- Viral Disease Division, Animal and Plant Quarantine Agency, 177 Hyeoksin-ro, Gimcheon-si 39660, Republic of Korea
| | - Usharani Jayaramaiah
- Viral Disease Division, Animal and Plant Quarantine Agency, 177 Hyeoksin-ro, Gimcheon-si 39660, Republic of Korea
| | - Su-Hwa You
- Viral Disease Division, Animal and Plant Quarantine Agency, 177 Hyeoksin-ro, Gimcheon-si 39660, Republic of Korea
| | - Eun-Gyeong Shin
- Viral Disease Division, Animal and Plant Quarantine Agency, 177 Hyeoksin-ro, Gimcheon-si 39660, Republic of Korea
| | - Seung-Min Song
- Viral Disease Division, Animal and Plant Quarantine Agency, 177 Hyeoksin-ro, Gimcheon-si 39660, Republic of Korea
| | - Lanjeong Ju
- Viral Disease Division, Animal and Plant Quarantine Agency, 177 Hyeoksin-ro, Gimcheon-si 39660, Republic of Korea
| | - Seok-Jin Kang
- Viral Disease Division, Animal and Plant Quarantine Agency, 177 Hyeoksin-ro, Gimcheon-si 39660, Republic of Korea
| | - Bang-Hun Hyun
- Viral Disease Division, Animal and Plant Quarantine Agency, 177 Hyeoksin-ro, Gimcheon-si 39660, Republic of Korea
| | - Hyang-Sim Lee
- Viral Disease Division, Animal and Plant Quarantine Agency, 177 Hyeoksin-ro, Gimcheon-si 39660, Republic of Korea
| |
Collapse
|
5
|
Genomic Analysis of Porcine Reproductive and Respiratory Syndrome Virus 1 Revealed Extensive Recombination and Potential Introduction Events in China. Vet Sci 2022; 9:vetsci9090450. [PMID: 36136666 PMCID: PMC9505194 DOI: 10.3390/vetsci9090450] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/07/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Porcine reproductive and respiratory syndrome, caused by the porcine reproductive and respiratory syndrome virus, is considered one of the most devastating swine diseases worldwide. Porcine reproductive and respiratory syndrome virus 1 was first isolated in China in 2006, and there have been few reports concerning its genetic characteristics in China. We hope to find out the regularity of genetic diversity, recombination, and evolution of the virus by analyzing all available genomic sequences during 1991–2018. We found that high-frequency recombination regions were concentrated in non-structural protein 2 and structural proteins 2 to 4 and extensive deletions in non-structural protein 2; phylogenetic analysis revealed four independent introductions in China. Our results suggest that attention should be paid to the prevention and control of porcine reproductive and respiratory syndrome virus 1 and the rational use of vaccine strains. These results will help us to understand the recombination of porcine reproductive and respiratory syndrome virus and strengthen viral inspection before mixing herds of swine to reduce the probability of novel recombinant variants. Moreover, our study might form the basis of monitoring and control measures to prevent the spread of this economically important virus. Abstract Porcine reproductive and respiratory syndrome (PRRS), caused by the PRRS virus (PRRSV), is considered one of the most devastating swine diseases worldwide. PRRSV-1 was first isolated in China in 2006. However, there were few reports concerning the genetic characteristics of PRRSV-1 in China. In this study, three PRRSV-1 strains (HL85, HeB3, and HeB47) were detected by a general RT-qPCR method from clinical samples in 2018. HeB47 was identified as a recombinant between the BJEU06-1 and CReSA228-like strains. To further analyze the recombination and deletion features of PRRSV-1, all the available 88 complete genome sequences (isolated in 19 countries) from 1991 to 2018 in GenBank were analyzed. The high-frequency recombination regions were concentrated in NSP2 and GP2 to GP4. More importantly, phylogenetic analysis of PRRSV-1 revealed four independent introductions in China. Therefore, it is necessary to strengthen the important monitoring of breeding pigs and pork products and epidemiological surveys on pig farms to prevent the further spread of PRRSV-1.
Collapse
|
6
|
Yan X, Shang P, Yim-im W, Sun Y, Zhang J, Firth AE, Lowe J, Fang Y. Molecular characterization of emerging variants of PRRSV in the United States: new features of the -2/-1 programmed ribosomal frameshifting signal in the nsp2 region. Virology 2022; 573:39-49. [DOI: 10.1016/j.virol.2022.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 10/18/2022]
|
7
|
Identification of Virulence Associated Region during Highly Pathogenic Porcine Reproductive and Respiratory Syndrome Virus during Attenuation In Vitro: Complex Question with Different Strain Backgrounds. Viruses 2021; 14:v14010040. [PMID: 35062244 PMCID: PMC8780124 DOI: 10.3390/v14010040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 12/22/2021] [Accepted: 12/24/2021] [Indexed: 12/22/2022] Open
Abstract
Highly pathogenic porcine reproductive and respiratory syndrome virus PRRSV (HP-PRRSV) was one of the most devastating diseases of the pig industry, among various strategies, vaccination was one of the most useful tools for PRRS control. Attenuated live vaccine was used worldwide, however, the genetic basis of HP-PRRSV virulence change during attenuation remain to be determined. Here, to identify virulence associated regions of HP-PRRSV during attenuation in vitro, six full-length infectious cDNA clones with interchanges of 5′UTR + ORF1a, ORF1b, and ORF2-7 + 3′UTR regions between HP-PRRSV strain HuN4-F5 and its attenuated vaccine strain HuN4-F112 were generated, and chimeric viruses were rescued. Piglets were inoculated with chimeric viruses and their parental viruses, and rectal temperature were recorded daily, and serum were collected for future experiments. Our results showed that ORF1a played an important role on virus replication, cytokine response and lung damage, the exchange of ORF1b and ORF2-7 in different backbone led to different exhibition on virus replication in vivo/vitro and cytokine response. Among 9 PRRSV attenuated series, consistent amino acid changes during PRRSV attenuation were found in NSP4, NSP9, GP2, E, GP3 and GP4. Our study provides a fundamental data for the investigation of PRRSV attenuation, the different results of the virulence change among different studies indicated that different mechanisms might be used during PRRSV virulence enhancement in vivo and attenuation in vitro.
Collapse
|
8
|
Ruedas-Torres I, Rodríguez-Gómez IM, Sánchez-Carvajal JM, Larenas-Muñoz F, Pallarés FJ, Carrasco L, Gómez-Laguna J. The jigsaw of PRRSV virulence. Vet Microbiol 2021; 260:109168. [PMID: 34246042 DOI: 10.1016/j.vetmic.2021.109168] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/28/2021] [Indexed: 11/16/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is the causative agent of the, probably, most economically important disease for the pig industry worldwide. This disease, characterised by producing reproductive failure in sows and respiratory problems in growing pigs, appeared in the late 1980s in the United States and Canada. Since its appearance, strains capable of producing higher mortality rates as well as greater severity in clinical signs and lesions than classical strains have been identified. However, since the first reports of these "virulent" PRRSV outbreaks, no homogeneity and consensus in their description have been established. Moreover, to the authors' knowledge, there is no published information related to the criteria that a PRRSV strain should fulfil to be considered as a "virulent" strain. In this review, we revise the terminology used and gather the information related to the main characteristics and differences in clinical signs, lesions, viral replication and tropism as well as immunological parameters between virulent and classical PRRSV strains and propose a first approximation to the criteria to define a virulent PRRSV strain.
Collapse
Affiliation(s)
- I Ruedas-Torres
- Department of Anatomy and Comparative Pathology and Toxicology, Faculty of Veterinary Medicine, Agrifood Campus of International Excellence - ceiA3, University of Córdoba, 14014, Córdoba, Spain.
| | - I M Rodríguez-Gómez
- Department of Anatomy and Comparative Pathology and Toxicology, Faculty of Veterinary Medicine, Agrifood Campus of International Excellence - ceiA3, University of Córdoba, 14014, Córdoba, Spain
| | - J M Sánchez-Carvajal
- Department of Anatomy and Comparative Pathology and Toxicology, Faculty of Veterinary Medicine, Agrifood Campus of International Excellence - ceiA3, University of Córdoba, 14014, Córdoba, Spain
| | - F Larenas-Muñoz
- Department of Anatomy and Comparative Pathology and Toxicology, Faculty of Veterinary Medicine, Agrifood Campus of International Excellence - ceiA3, University of Córdoba, 14014, Córdoba, Spain
| | - F J Pallarés
- Department of Anatomy and Comparative Pathology and Toxicology, Faculty of Veterinary Medicine, Agrifood Campus of International Excellence - ceiA3, University of Córdoba, 14014, Córdoba, Spain
| | - L Carrasco
- Department of Anatomy and Comparative Pathology and Toxicology, Faculty of Veterinary Medicine, Agrifood Campus of International Excellence - ceiA3, University of Córdoba, 14014, Córdoba, Spain
| | - J Gómez-Laguna
- Department of Anatomy and Comparative Pathology and Toxicology, Faculty of Veterinary Medicine, Agrifood Campus of International Excellence - ceiA3, University of Córdoba, 14014, Córdoba, Spain
| |
Collapse
|
9
|
A swine arterivirus deubiquitinase stabilizes two major envelope proteins and promotes production of viral progeny. PLoS Pathog 2021; 17:e1009403. [PMID: 33735221 PMCID: PMC7971519 DOI: 10.1371/journal.ppat.1009403] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 02/17/2021] [Indexed: 11/23/2022] Open
Abstract
Arteriviruses are enveloped positive-strand RNA viruses that assemble and egress using the host cell’s exocytic pathway. In previous studies, we demonstrated that most arteriviruses use a unique -2 ribosomal frameshifting mechanism to produce a C-terminally modified variant of their nonstructural protein 2 (nsp2). Like full-length nsp2, the N-terminal domain of this frameshift product, nsp2TF, contains a papain-like protease (PLP2) that has deubiquitinating (DUB) activity, in addition to its role in proteolytic processing of replicase polyproteins. In cells infected with porcine reproductive and respiratory syndrome virus (PRRSV), nsp2TF localizes to compartments of the exocytic pathway, specifically endoplasmic reticulum-Golgi intermediate compartment (ERGIC) and Golgi complex. Here, we show that nsp2TF interacts with the two major viral envelope proteins, the GP5 glycoprotein and membrane (M) protein, which drive the key process of arterivirus assembly and budding. The PRRSV GP5 and M proteins were found to be poly-ubiquitinated, both in an expression system and in cells infected with an nsp2TF-deficient mutant virus. In contrast, ubiquitinated GP5 and M proteins did not accumulate in cells infected with the wild-type, nsp2TF-expressing virus. Further analysis implicated the DUB activity of the nsp2TF PLP2 domain in deconjugation of ubiquitin from GP5/M proteins, thus antagonizing proteasomal degradation of these key viral structural proteins. Our findings suggest that nsp2TF is targeted to the exocytic pathway to reduce proteasome-driven turnover of GP5/M proteins, thus promoting the formation of GP5-M dimers that are critical for arterivirus assembly. Arteriviruses are a rapidly expanding family of positive-stranded RNA viruses, which includes economically important veterinary pathogens like equine arteritis virus (EAV) and two species of porcine reproductive and respiratory syndrome virus (PRRSV-1 and PRRSV-2). In our previous studies, we uncovered an unprecedented arterivirus gene expression mechanism: a highly efficient -2 programmed ribosomal frameshift (PRF) that is controlled by an interaction of viral protein nsp1ß with specific RNA sequences and host poly(C) binding proteins. It is used by PRRSVs, and most other arteriviruses, to efficiently produce a previously unknown nonstructural protein variant, nsp2TF. In this study, we demonstrate that PRRSV nsp2TF interacts with the two major arteriviral envelope proteins, GP5 and M, whose heterodimerization in the secretory pathway is a key step in envelope protein trafficking and virus assembly. Our findings suggest that nsp2TF promotes arterivirus assembly by antagonizing the ubiquitination-dependent proteasomal degradation of GP5 and M proteins. This mechanism is based on the DUB activity of the PLP2 protease domain located within the N-terminal region of nsp2TF. To our knowledge, this is the first study to demonstrate that viruses can express a DUB that functions specifically to counteract the ubiquitination and degradation of key viral structural proteins.
Collapse
|
10
|
Porcine Reproductive and Respiratory Syndrome Virus Reverse Genetics and the Major Applications. Viruses 2020; 12:v12111245. [PMID: 33142752 PMCID: PMC7692847 DOI: 10.3390/v12111245] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/15/2020] [Accepted: 10/28/2020] [Indexed: 02/06/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is a positive sense, single-stranded RNA virus that is known to infect only pigs. The virus emerged in the late 1980s and became endemic in most swine producing countries, causing substantial economic losses to the swine industry. The first reverse genetics system for PRRSV was reported in 1998. Since then, several infectious cDNA clones for PRRSV have been constructed. The availability of these infectious cDNA clones has facilitated the genetic modifications of the viral genome at precise locations. Common approaches to manipulate the viral genome include site-directed mutagenesis, deletion of viral genes or gene fragments, insertion of foreign genes, and swapping genes between PRRSV strains or between PRRSV and other members of the Arteriviridae family. In this review, we describe the approaches to construct an infectious cDNA for PRRSV and the ten major applications of these infectious clones to study virus biology and virus–host interaction, and to design a new generation of vaccines with improved levels of safety and efficacy.
Collapse
|
11
|
Wang H, Xie X, He W, Wang Y, Ren T, Ouyang K, Chen Y, Huang W, Wei Z. Generation of a Recombinant Porcine Reproductive and Respiratory Syndrome Virus Stably Expressing Two Marker Genes. Front Vet Sci 2020; 7:548282. [PMID: 33195521 PMCID: PMC7641969 DOI: 10.3389/fvets.2020.548282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 09/25/2020] [Indexed: 11/13/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) has been used as a gene expression vector in the development of vaccines. Most of these recombinant PRRSV vectors express only a single foreign gene through either an internal insertion in the hypervariable region of nsp2 or expression cassette and some of these recombinant vectors are genetically unstable. Here, we combined internal insertion in nsp2 and expression cassette methods to generate a novel recombinant PRRSV stably expressing the red fluorescence protein (RFP) and the green fluorescence protein (GFP) genes. Biological characteristic analysis of the recombinant PRRSV carrying the two marker genes, rGX-RFP-GFP, showed that it displayed similar growth kinetics and yet it yielded less infectious viruses when compared to the parental virus rGXAM. Co-expression of both the RFP and GFP was observed using confocal fluorescence microscopy when the rGX-RFP-GFP viruses infected MARC-145 cells. Furthermore, the PRRSV-based two-marker gene expression vector is genetically stable during 20 serial passages in MARC-145 cells. These data demonstrate that it is possible to express two interested immunogens from a single PRRSV vector.
Collapse
Affiliation(s)
- Hao Wang
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Xin Xie
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Wei He
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yuxu Wang
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Tongwei Ren
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Kang Ouyang
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Ying Chen
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Weijian Huang
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Zuzhang Wei
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China
| |
Collapse
|
12
|
Generation of a porcine reproductive and respiratory syndrome virus expressing a marker gene inserted between ORF4 and ORF5a. Arch Virol 2020; 165:1803-1813. [PMID: 32474688 DOI: 10.1007/s00705-020-04679-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 04/24/2020] [Indexed: 01/11/2023]
Abstract
In recent years, the availability of reverse genetics systems for porcine reproductive and respiratory syndrome virus (PRRSV) has created new perspectives for the use of recombinant viruses as expression vectors. Most of these recombinant PRRSV vectors express foreign genes through either an independent transcription unit inserted in ORF1b and ORF2, or in ORF7 and the 3' UTR. The aim of this study was to find an alternative site for foreign gene insertion into the PRRSV genome. Here, we constructed an infectious cDNA clone for a cell-adapted PRRSV strain, GXNN1396-P96. This cDNA-clone-derived recombinant virus (rGXAM) was comparable in its growth kinetics in MARC-145 cells to the parental virus, GX1396-P96. Using the infectious cDNA-clone, we inserted an independent transcription unit in ORF4 and ORF5a to generate a novel PRRSV-based recombinant virus expressing the green fluorescent protein (GFP) gene. Biological characterization of the recombinant virus, rGX45BSTRS-GFP, showed that it maintained similar growth characteristics but produced fewer infectious virions than the parental PRRSV. These data demonstrate that the ORF4 and ORF5a site is able to tolerate the insertion of foreign genes.
Collapse
|
13
|
Hyper-phosphorylation of nsp2-related proteins of porcine reproductive and respiratory syndrome virus. Virology 2020; 543:63-75. [PMID: 32174300 PMCID: PMC7112050 DOI: 10.1016/j.virol.2020.01.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 01/31/2020] [Accepted: 01/31/2020] [Indexed: 01/07/2023]
Abstract
Viruses exploit phosphorylation of both viral and host proteins to support viral replication. In this study, we demonstrate that porcine reproductive and respiratory syndrome virus replicase nsp2, and two nsp2-related −2/−1 frameshifting products, nsp2TF and nsp2N, are hyper-phosphorylated. By mapping phosphorylation sites, we subdivide an extended, previously uncharacterized region, located between the papain-like protease-2 (PLP2) domain and frameshifting site, into three distinct domains. These domains include two large hypervariable regions (HVR) with putative intrinsically disordered structures, separated by a conserved and partly structured interval domain that we defined as the inter-HVR conserved domain (IHCD). Abolishing phosphorylation of the inter-species conserved residue serine918, which is located within the IHCD region, abrogates accumulation of viral genomic and subgenomic RNAs and recombinant virus production. Our study reveals the biological significance of phosphorylation events in nsp2-related proteins, emphasizes pleiotropic functions of nsp2-related proteins in the viral life cycle, and presents potential links to pathogenesis.
Collapse
|
14
|
Primadharsini PP, Nagashima S, Okamoto H. Genetic Variability and Evolution of Hepatitis E Virus. Viruses 2019; 11:E456. [PMID: 31109076 PMCID: PMC6563261 DOI: 10.3390/v11050456] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/15/2019] [Accepted: 05/16/2019] [Indexed: 12/16/2022] Open
Abstract
Hepatitis E virus (HEV) is a single-stranded positive-sense RNA virus. HEV can cause both acute and chronic hepatitis, with the latter usually occurring in immunocompromised patients. Modes of transmission range from the classic fecal-oral route or zoonotic route, to relatively recently recognized but increasingly common routes, such as via the transfusion of blood products or organ transplantation. Extrahepatic manifestations, such as neurological, kidney and hematological abnormalities, have been documented in some limited cases, typically in patients with immune suppression. HEV has demonstrated extensive genomic diversity and a variety of HEV strains have been identified worldwide from human populations as well as growing numbers of animal species. The genetic variability and constant evolution of HEV contribute to its physiopathogenesis and adaptation to new hosts. This review describes the recent classification of the Hepeviridae family, global genotype distribution, clinical significance of HEV genotype and genomic variability and evolution of HEV.
Collapse
Affiliation(s)
- Putu Prathiwi Primadharsini
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Tochigi 329-0498, Japan.
| | - Shigeo Nagashima
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Tochigi 329-0498, Japan.
| | - Hiroaki Okamoto
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Tochigi 329-0498, Japan.
| |
Collapse
|
15
|
Montaner-Tarbes S, Del Portillo HA, Montoya M, Fraile L. Key Gaps in the Knowledge of the Porcine Respiratory Reproductive Syndrome Virus (PRRSV). Front Vet Sci 2019; 6:38. [PMID: 30842948 PMCID: PMC6391865 DOI: 10.3389/fvets.2019.00038] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 01/30/2019] [Indexed: 12/11/2022] Open
Abstract
The porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most important swine diseases in the world. It is causing an enormous economic burden due to reproductive failure in sows and a complex respiratory syndrome in pigs of all ages, with mortality varying from 2 to 100% in the most extreme cases of emergent highly pathogenic strains. PRRSV displays complex interactions with the immune system and a high mutation rate, making the development, and implementation of control strategies a major challenge. In this review, the biology of the virus will be addressed focusing on newly discovered functions of non-structural proteins and novel dissemination mechanisms. Secondly, the role of different cell types and viral proteins will be reviewed in natural and vaccine-induced immune response together with the role of different immune evasion mechanisms focusing on those gaps of knowledge that are critical to generate more efficacious vaccines. Finally, novel strategies for antigen discovery and vaccine development will be discussed, in particular the use of exosomes (extracellular vesicles of endocytic origin). As nanocarriers of lipids, proteins and nucleic acids, exosomes have potential effects on cell activation, modulation of immune responses and antigen presentation. Thus, representing a novel vaccination approach against this devastating disease.
Collapse
Affiliation(s)
- Sergio Montaner-Tarbes
- Innovex Therapeutics S.L, Badalona, Spain.,Departamento de Ciencia Animal, Escuela Técnica Superior de Ingenieria Agraria (ETSEA), Universidad de Lleida, Lleida, Spain
| | - Hernando A Del Portillo
- Innovex Therapeutics S.L, Badalona, Spain.,Germans Trias i Pujol Health Science Research Institute, Badalona, Spain.,ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - María Montoya
- Innovex Therapeutics S.L, Badalona, Spain.,Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Cientificas, Madrid, Spain
| | - Lorenzo Fraile
- Innovex Therapeutics S.L, Badalona, Spain.,Departamento de Ciencia Animal, Escuela Técnica Superior de Ingenieria Agraria (ETSEA), Universidad de Lleida, Lleida, Spain
| |
Collapse
|
16
|
Bi C, Shao Z, Li J, Weng C. Identification of novel epitopes targeting non-structural protein 2 of PRRSV using monoclonal antibodies. Appl Microbiol Biotechnol 2019; 103:2689-2699. [DOI: 10.1007/s00253-019-09665-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/18/2019] [Accepted: 01/22/2019] [Indexed: 11/30/2022]
|
17
|
Genomic Analysis of a Highly Pathogenic Porcine Reproductive and Respiratory Syndrome Virus Circulating in Pig Farms in West China. GENOME ANNOUNCEMENTS 2018; 6:6/27/e00507-18. [PMID: 29976604 PMCID: PMC6033977 DOI: 10.1128/genomea.00507-18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV), which leads to tremendous economic losses worldwide, is currently one of the most threatening viruses for the swine industry. However, PRRSV outbreaks in West China are rarely reported, even though the virus has remained active for a long time across the country. Porcine reproductive and respiratory syndrome virus (PRRSV), which leads to tremendous economic losses worldwide, is currently one of the most threatening viruses for the swine industry. However, PRRSV outbreaks in West China are rarely reported, even though the virus has remained active for a long time across the country. In this study, we report an outbreak of the highly pathogenic PRRSV strain QTX, isolated from a pig farm located in Ningxia, a province in West China.
Collapse
|
18
|
Sui X, Xin T, Guo X, Jia H, Li M, Gao X, Wu J, Jiang Y, Willems L, Zhu H, Hou S. Genomic characterization and pathogenic study of two porcine reproductive and respiratory syndrome viruses with different virulence in Fujian, China. J Vet Sci 2018; 19:339-349. [PMID: 29284210 PMCID: PMC5974515 DOI: 10.4142/jvs.2018.19.3.339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 10/25/2017] [Accepted: 12/26/2017] [Indexed: 11/30/2022] Open
Abstract
Two strains of porcine reproductive and respiratory syndrome virus (PRRSV) were isolated in 2006 and 2016 and designated as FZ06A and FZ16A, respectively. Inoculation experiments showed that FZ06A caused 100% morbidity and 60% mortality, while FZ16A caused 100% morbidity without death. By using genomic sequence and phylogenetic analyses, close relationships between a Chinese highly pathogenic PRRSV strain and the FZ06A and FZ16A strains were observed. Based on the achieved results, multiple genomic variations in Nsp2, a unique N-glycosylation site (N33→K33), and a K151 amino acid (AA) substitution for virulence in the GP5 of FZ16A were detected; except the 30 AA deletion in the Nsp2-coding region. Inoculation experiments were conducted and weaker virulence of FZ16A than FZ06A was observed. Based on our results, a 30 AA deletion in the Nsp2-coding region is an unreliable genomic indicator of a high virulence PRRSV strain. The Nsp2 and GP5 differences, in addition to the virulence difference between these two highly pathogenic PRRSV strains, have the potential to be used to establish a basis for further study of PRRSV virulence determinants and to provide data useful in the development of vaccines against this economically devastating disease.
Collapse
Affiliation(s)
- Xiukun Sui
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.,Molecular and Cellular Biology, Gembloux Agro-Bio Tech University of Liège, 5030 Gembloux, Belgium
| | - Ting Xin
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaoyu Guo
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hong Jia
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ming Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xintao Gao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jing Wu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.,Molecular and Cellular Biology, Gembloux Agro-Bio Tech University of Liège, 5030 Gembloux, Belgium
| | - Yitong Jiang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - L Willems
- Molecular and Cellular Biology, Gembloux Agro-Bio Tech University of Liège, 5030 Gembloux, Belgium
| | - Hongfei Zhu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shaohua Hou
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
19
|
Li N, Yan Y, Zhang A, Gao J, Zhang C, Wang X, Hou G, Zhang G, Jia J, Zhou EM, Xiao S. MicroRNA-like viral small RNA from porcine reproductive and respiratory syndrome virus negatively regulates viral replication by targeting the viral nonstructural protein 2. Oncotarget 2018; 7:82902-82920. [PMID: 27769040 PMCID: PMC5347740 DOI: 10.18632/oncotarget.12703] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 10/03/2016] [Indexed: 11/25/2022] Open
Abstract
Many viruses encode microRNAs (miRNAs) that are small non-coding single-stranded RNAs which play critical roles in virus-host interactions. Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most economically impactful viruses in the swine industry. The present study sought to determine whether PRRSV encodes miRNAs that could regulate PRRSV replication. Four viral small RNAs (vsRNAs) were mapped to the stem-loop structures in the ORF1a, ORF1b and GP2a regions of the PRRSV genome by bioinformatics prediction and experimental verification. Of these, the structures with the lowest minimum free energy (MFE) values predicted for PRRSV-vsRNA1 corresponded to typical stem-loop, hairpin structures. Inhibition of PRRSV-vsRNA1 function led to significant increases in viral replication. Transfection with PRRSV-vsRNA1 mimics significantly inhibited PRRSV replication in primary porcine alveolar macrophages (PAMs). The time-dependent increase in the abundance of PRRSV-vsRNA1 mirrored the gradual upregulation of PRRSV RNA expression. Knockdown of proteins associated with cellular miRNA biogenesis demonstrated that Drosha and Argonaute (Ago2) are involved in PRRSV-vsRNA1 biogenesis. Moreover, PRRSV-vsRNA1 bound specifically to the nonstructural protein 2 (NSP2)-coding sequence of PRRSV genome RNA. Collectively, the results reveal that PRRSV encodes a functional PRRSV-vsRNA1 which auto-regulates PRRSV replication by directly targeting and suppressing viral NSP2 gene expression. These findings not only provide new insights into the mechanism of the pathogenesis of PRRSV, but also explore a potential avenue for controlling PRRSV infection using viral small RNAs.
Collapse
Affiliation(s)
- Na Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China.,Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Yunhuan Yan
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China.,Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Angke Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China.,Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Jiming Gao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China.,Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Chong Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China.,Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Xue Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China.,Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Gaopeng Hou
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China.,Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Gaiping Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China.,College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Jinbu Jia
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China.,State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - En-Min Zhou
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China.,Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Shuqi Xiao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China.,Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| |
Collapse
|
20
|
Effect of an 88-amino-acid deletion in nsp2 of porcine reproductive and respiratory syndrome virus on virus replication and cytokine responses in vitro. Arch Virol 2018; 163:1489-1501. [PMID: 29442228 DOI: 10.1007/s00705-018-3760-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 01/22/2018] [Indexed: 10/18/2022]
Abstract
Previously, a spontaneous 88-amino-acid (aa) deletion in nsp2 was associated with cell-adaptation of porcine reproductive and respiratory syndrome virus (PRRSV) strain JXM100, which arose during passaging of the highly pathogenic PRRSV (HP-PRRSV) strain JX143 in MARC-145 cells. Here, to elucidate the biological role of this deletion, we specifically deleted the region of a cDNA clone of HP-PRRSV strain JX143 (pJX143) corresponding to these 88 amino acids. The effect of the deletion on virus replication in cultured cells and transcriptional activation of inflammatory cytokines and chemokines in pulmonary alveolar macrophages (PAMs) was examined. Mutant virus with the 88-aa deletion in nsp2 (rJX143-D88) had faster growth kinetics and produced larger plaques in MARC-145 cells than the parental virus (rJX143), suggesting that the deletion enhanced virus replication in MARC-145 cells. In contrast, the overall yield of rJX143 was almost 1 log higher than that of rJX143-D88, suggesting that the 88-aa deletion in nsp2 decreased the production of infectious viruses in PAMs. Infection with the mutant virus with the 88-aa deletion resulted in increased mRNA expression of type I interferon (IFN-α and IFN-β) and chemokines genes. In addition, the mRNA expression of antiviral genes (ISG15, ISG54 and PKR) regulated by the IFN response was upregulated in PAMs infected with the mutant virus rJX143-D88. Our results demonstrate that virus-specific host immunity can be enhanced by modifying certain nsp2 epitope regions. These findings provide important insights for understanding virus pathogenesis and development of future vaccines.
Collapse
|
21
|
Wang FX, Yang Y, Liu X, He MH, Liu Y, Sun N, Zhu HW, Ren JQ, Wu H, Wen YJ. Development of monoclonal antibody for differentiating porcine reproductive and respiratory syndrome virus and identification of a novel non-structural protein 2 epitope peptide. Virusdisease 2017; 28:408-415. [PMID: 29291232 PMCID: PMC5747843 DOI: 10.1007/s13337-017-0400-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 08/29/2017] [Indexed: 10/25/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) nucleocapsid protein (NP) is the immunodominant region of PRRSV viral proteins. Non-structural protein 2 (Nsp2) and its hypervariable region play an essential role in the differential diagnosis of PRRSV. Western blot and immunofluorescence assay (IFA) analyses found that 2 out of 18 monoclonal antibodies (MAbs) recognized the NP and that 5 of 11 MAbs recognized Nsp2-120aa. IFA data demonstrated that 2 MAbs raised against the NP have a positive reaction to PRRSV; either HP-PRRSV, classic PRRSV or the vaccine strain at 1:100 dilution. Two MAbs raise against Nsp2-120aa also react positively with the classic PRRSV nor HP-PRRSV, but not with the PRRSV vaccine strain TJM-F92. Epitope mapping using truncated proteins identified a novel Nsp2-120aa epitope. In addition, we show that MAb BR/PNsp2-2A20 recognizes a 20 amino acid peptide (707) GRFEFLPKMILETPPPHPCG (727) of Nsp2. Based on our findings, we propose that MAb BR/PNsp2-2A20, raised against Nsp2-120aa of PRRSV, as a candidate specific diagnostic MAb for differentiation of the PRRSV virulent strains infected pig from vaccine strain TJM-F92 inoculated ones. The MAbs developed here have potential for use in diagnostic and research tools, including immunofluorescence assay, enzyme-linked immunosorbent assay and Western blotting.
Collapse
Affiliation(s)
- Feng-Xue Wang
- State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, No. 4899, Juye Avenue, Jingyue Economic and Technological Development Zone, Changchun, 130112 Jilin People’s Republic of China
| | - Yong Yang
- Wuxi Medical School, Jiangnan University, Wuxi, 214122 Jiangsu People’s Republic of China
| | - Xing Liu
- State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, No. 4899, Juye Avenue, Jingyue Economic and Technological Development Zone, Changchun, 130112 Jilin People’s Republic of China
| | - Min-Hui He
- State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, No. 4899, Juye Avenue, Jingyue Economic and Technological Development Zone, Changchun, 130112 Jilin People’s Republic of China
| | - Ying Liu
- State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, No. 4899, Juye Avenue, Jingyue Economic and Technological Development Zone, Changchun, 130112 Jilin People’s Republic of China
| | - Na Sun
- State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, No. 4899, Juye Avenue, Jingyue Economic and Technological Development Zone, Changchun, 130112 Jilin People’s Republic of China
| | - Hong-Wei Zhu
- State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, No. 4899, Juye Avenue, Jingyue Economic and Technological Development Zone, Changchun, 130112 Jilin People’s Republic of China
| | - Jing-Qiang Ren
- State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, No. 4899, Juye Avenue, Jingyue Economic and Technological Development Zone, Changchun, 130112 Jilin People’s Republic of China
| | - Hua Wu
- Sinovet (Beijing) Biotechnology Co., Ltd, B302 Zhongguancun Biomedical Park, 5 Shangdikaituo Road, Beijing, People’s Republic of China
| | - Yong-Jun Wen
- State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, No. 4899, Juye Avenue, Jingyue Economic and Technological Development Zone, Changchun, 130112 Jilin People’s Republic of China
- Inner Mongolia Agricultural University, 306 Zhaowuda Rd, Saihan Region, Hohhot, People’s Republic of China
| |
Collapse
|
22
|
Hu X, Tian J, Kang H, Guo D, Liu J, Liu D, Jiang Q, Li Z, Qu J, Qu L. Transmissible Gastroenteritis Virus Papain-Like Protease 1 Antagonizes Production of Interferon- β through Its Deubiquitinase Activity. BIOMED RESEARCH INTERNATIONAL 2017; 2017:7089091. [PMID: 29201911 PMCID: PMC5672592 DOI: 10.1155/2017/7089091] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 08/14/2017] [Accepted: 08/24/2017] [Indexed: 01/12/2023]
Abstract
Coronaviruses (CoVs), such as human coronavirus NL63 (HCoV-NL63), severe acute respiratory syndrome CoV (SARS-CoV), murine hepatitis virus (MHV), porcine epidemic diarrhea virus (PEDV), and Middle East Respiratory Syndrome Coronavirus (MERS-CoV), encode papain-like (PL) proteases that inhibit Sendai virus- (SeV-) induced interferon (IFN-β) production. Recently, the crystal structure of transmissible gastroenteritis virus (TGEV) PL1 has been solved, which was similar to that of SARS-CoV PL2pro, which may antagonize host innate immunity. However, very little is known about whether TGEV PL1 can antagonize host innate immune response. Here, we presented evidence that TGEV PL1 encoded by the replicase gene could suppress the IFN-β expression and inhibit the nuclear translocation of interferon regulatory factor 3 (IRF3). The ability to antagonize IFN-β production was dependent on the intact catalytic activity of PL1. Furthermore, TGEV PL1 exerted deubiquitinase (DUB) activity which strongly inhibited the retinoic acid-induced gene I- (RIG-1-) and stimulator of interferon gene- (STING-) dependent IFN expression. Our data collectively suggest that TGEV PL1 can inhibit the IFN-β expression and interfere with RIG-1- and STING-mediated signaling through a viral DUB activity. Our study has yielded strong evidence for the TGEV PL1 mechanisms that counteract the host innate immunity.
Collapse
Affiliation(s)
- Xiaoliang Hu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Jin Tian
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Hongtao Kang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Dongchun Guo
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Jiasen Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Dafei Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Qian Jiang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Zhijie Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Juanjuan Qu
- College of Life Science, Northeast Agricultural University, Harbin, China
| | - Liandong Qu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| |
Collapse
|
23
|
Canelli E, Catella A, Borghetti P, Ferrari L, Ogno G, De Angelis E, Corradi A, Passeri B, Bertani V, Sandri G, Bonilauri P, Leung FC, Guazzetti S, Martelli P. Phenotypic characterization of a highly pathogenic Italian porcine reproductive and respiratory syndrome virus (PRRSV) type 1 subtype 1 isolate in experimentally infected pigs. Vet Microbiol 2017; 210:124-133. [DOI: 10.1016/j.vetmic.2017.09.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 09/01/2017] [Accepted: 09/06/2017] [Indexed: 12/11/2022]
|
24
|
Nan Y, Wu C, Gu G, Sun W, Zhang YJ, Zhou EM. Improved Vaccine against PRRSV: Current Progress and Future Perspective. Front Microbiol 2017; 8:1635. [PMID: 28894443 PMCID: PMC5581347 DOI: 10.3389/fmicb.2017.01635] [Citation(s) in RCA: 177] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 08/11/2017] [Indexed: 12/20/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV), one of the most economically significant pathogens worldwide, has caused numerous outbreaks during the past 30 years. PRRSV infection causes reproductive failure in sows and respiratory disease in growing and finishing pigs, leading to huge economic losses for the swine industry. This impact has become even more significant with the recent emergence of highly pathogenic PRRSV strains from China, further exacerbating global food security. Since new PRRSV variants are constantly emerging from outbreaks, current strategies for controlling PRRSV have been largely inadequate, even though our understanding of PRRSV virology, evolution and host immune response has been rapidly expanding. Meanwhile, practical experience has revealed numerous safety and efficacy concerns for currently licensed vaccines, such as shedding of modified live virus (MLV), reversion to virulence, recombination between field strains and MLV and failure to elicit protective immunity against heterogeneous virus. Therefore, an effective vaccine against PRRSV infection is urgently needed. Here, we systematically review recent advances in PRRSV vaccine development. Antigenic variations resulting from PRRSV evolution, identification of neutralizing epitopes for heterogeneous isolates, broad neutralizing antibodies against PRRSV, chimeric virus generated by reverse genetics, and novel PRRSV strains with interferon-inducing phenotype will be discussed in detail. Moreover, techniques that could potentially transform current MLV vaccines into a superior vaccine will receive special emphasis, as will new insights for future PRRSV vaccine development. Ultimately, improved PRRSV vaccines may overcome the disadvantages of current vaccines and minimize the PRRS impact to the swine industry.
Collapse
Affiliation(s)
- Yuchen Nan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F UniversityYangling, China
| | - Chunyan Wu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F UniversityYangling, China
| | - Guoqian Gu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F UniversityYangling, China
| | - Weiyao Sun
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F UniversityYangling, China
| | - Yan-Jin Zhang
- Molecular Virology Laboratory, Virginia-Maryland College of Veterinary Medicine and Maryland Pathogen Research Institute, University of Maryland, College ParkMD, United States
| | - En-Min Zhou
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F UniversityYangling, China
| |
Collapse
|
25
|
Han J, Zhou L, Ge X, Guo X, Yang H. Pathogenesis and control of the Chinese highly pathogenic porcine reproductive and respiratory syndrome virus. Vet Microbiol 2017; 209:30-47. [PMID: 28292547 DOI: 10.1016/j.vetmic.2017.02.020] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 02/22/2017] [Accepted: 02/27/2017] [Indexed: 12/24/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) has remained a major threat to the worldwide swine industry ever since its first discovery in the early 1990s. Under the selective pressures in the field, this positive-stranded RNA virus undergoes rapid genetic evolution that eventually leads to emergence in 2006 of the devastating Chinese highly pathogenic PRRSV (HP-PRRSV). The atypical nature of HP-PRRSV has caused colossal economic losses to the swine producers in China and the surrounding countries. In this review, we summarize the recent advances in our understanding of the pathogenesis, evolution and ongoing field practices on the control of this troubling virus in China.
Collapse
Affiliation(s)
- Jun Han
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, PR China
| | - Lei Zhou
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, PR China
| | - Xinna Ge
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, PR China
| | - Xin Guo
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, PR China
| | - Hanchun Yang
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, PR China.
| |
Collapse
|
26
|
Rahe MC, Murtaugh MP. Effector mechanisms of humoral immunity to porcine reproductive and respiratory syndrome virus. Vet Immunol Immunopathol 2017; 186:15-18. [PMID: 28413045 DOI: 10.1016/j.vetimm.2017.02.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 02/03/2017] [Accepted: 02/13/2017] [Indexed: 11/28/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) continues to afflict swine nearly 30 years after it was first discovered as the causative agent of "mystery swine disease". Immunological tools of vaccination and exposure to virulent viruses have not succeeded in achieving control and prevention of PRRSV. Humoral immunity, mediated by antibodies, is a hallmark of anti-viral immunity, but little is known about the effector mechanisms of humoral immunity against PRRSV. It is essential to understand the immunological significance of antibody functions, including recently described broadly neutralizing antibodies and potential non-neutralizing activities, in the immune response to PRRSV. Here, we review recent research from PRRSV and other host-pathogen interactions to inform novel routes of exploration into PRRSV humoral immunity which may be important for identifying the immunological correlates of protection against PRRSV infection.
Collapse
Affiliation(s)
- Michael C Rahe
- Department of Veterinary and Biomedical Sciences, University of Minnesota, 1971 Commonwealth Avenue, St. Paul, MN, 55108 USA.
| | - Michael P Murtaugh
- Department of Veterinary and Biomedical Sciences, University of Minnesota, 1971 Commonwealth Avenue, St. Paul, MN, 55108 USA
| |
Collapse
|
27
|
Diseases Primarily Affecting the Reproductive System. Vet Med (Auckl) 2017. [PMCID: PMC7150237 DOI: 10.1016/b978-0-7020-5246-0.00018-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
Complete genomic characterization of two European-genotype porcine reproductive and respiratory syndrome virus isolates in Fujian province of China. Arch Virol 2016; 162:823-833. [PMID: 27858288 DOI: 10.1007/s00705-016-3136-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 10/26/2016] [Indexed: 01/22/2023]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is considered one of the most devastating swine diseases worldwide, resulting in immense economic losses. PRRS virus (PRRSV) is divided into two major genotypes, European (type 1) and the North American (type 2). Type 1 PRRSV have recently emerged in Fujian province (South China), and this might have a significant impact on the Chinese pig industry. From 2013 to 2014, two type 1 PRRSV strains, named FJEU13 and FJQEU14, were isolated from piglets and sows with respiratory problems and reproductive disorders in Fujian province. The full genome length of the two isolates was 14,869-15,062 nucleotides (nt), excluding the poly(A) tail. These isolates shared 86.0-89.9% sequence identity with the prototypic strains Lelystad virus (LV) and 82.8-92% with Chinese type 1 PRRSV strains, but only 59.9-60.1% with the North American reference strain VR-2332. However, they were 82.9% identical to each other. Nonstructural protein 2 (Nsp2) and ORF3-ORF5 were the most variable regions when compared to other type 1 PRRSV strains. Nsp2 and ORF3 contained multiple discontinuous deletions and a 204-bp deletion in NSP2 in isolate FJQEU14, which has never been described in other Chinese type 1 PRRSV strains. All of these results might be useful for understanding the epidemic status of type 1 PRRSV in China.
Collapse
|
29
|
Xiao Y, Wu W, Gao J, Smith N, Burkard C, Xia D, Zhang M, Wang C, Archibald A, Digard P, Zhou EM, Hiscox JA. Characterization of the Interactome of the Porcine Reproductive and Respiratory Syndrome Virus Nonstructural Protein 2 Reveals the Hyper Variable Region as a Binding Platform for Association with 14–3–3 Proteins. J Proteome Res 2016; 15:1388-401. [DOI: 10.1021/acs.jproteome.5b00396] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Yihong Xiao
- Department
of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool L3 5RF, U.K
- Department
of Basic Veterinary Medicine, College of Animal Science and Veterinary
Medicine, Shandong Agricultural University, Tai’an 271018, P.R. China
| | - Weining Wu
- Department
of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool L3 5RF, U.K
| | - Jiming Gao
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, P.R. China
| | - Nikki Smith
- The
Roslin Institute, University of Edinburgh, Edinburgh EH25 9RG, U.K
| | - Christine Burkard
- The
Roslin Institute, University of Edinburgh, Edinburgh EH25 9RG, U.K
| | - Dong Xia
- Department
of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool L3 5RF, U.K
| | - Minxia Zhang
- Department
of Basic Veterinary Medicine, College of Animal Science and Veterinary
Medicine, Shandong Agricultural University, Tai’an 271018, P.R. China
| | - Chengbao Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, P.R. China
| | - Alan Archibald
- The
Roslin Institute, University of Edinburgh, Edinburgh EH25 9RG, U.K
| | - Paul Digard
- The
Roslin Institute, University of Edinburgh, Edinburgh EH25 9RG, U.K
| | - En-min Zhou
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, P.R. China
| | - Julian A. Hiscox
- Department
of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool L3 5RF, U.K
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, P.R. China
| |
Collapse
|
30
|
Liu Y, Wang FX, Wen YJ, Li ZG, Liu X, Sun N, Yang Y, Zhang SQ, Zhu HW, Cheng SP, Wu H. Effect of Nonstructural Protein 2 Hypervariable Regions in the Replication of Porcine Reproductive and Respiratory Syndrome Virus in Marc-145 Cells. Intervirology 2015; 58:288-96. [PMID: 26694645 DOI: 10.1159/000440977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 09/08/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Highly pathogenic (HP) porcine reproductive and respiratory syndrome virus (PRRSV) causes prolonged high fever, red discoloration of the body, blue ears and a high mortality. Previously, we found that the PRRSV vaccine strain TJM contained a deletion of 120 amino acids (aa 628-747) in nonstructural protein 2 (Nsp2). We aimed to explore the replication features of PRRSV after adding the transiently expressed product of these 120 aa in vitro. METHODS We constructed seven eukaryotic expression plasmids containing different parts of the 120-aa sequence, transfected them into Marc-145 cells and then inoculated the cells with 103 TCID50 TJM per well. We detected virus replication at mRNA and protein level by real-time RT-PCR and Western blotting, respectively, and determined the virus titer. RESULTS The transiently expressed 120 aa and one of its truncated polypeptides inhibited PRRSV TJM propagation on Marc-145 cells. The complete 120-aa sequence induced a remarkable decrease in PRRSV replication, causing a reduction in structural protein levels between 36 and 48 h after infection. Additionally, aa 628-727 partly reduced the replication of PRRSV on Marc-145 cells. CONCLUSIONS The 120 aa from Nsp2, especially aa 628-727, play a negative role in PRRSV TJM proliferation.
Collapse
Affiliation(s)
- Ying Liu
- State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Wang X, Marthaler D, Rovira A, Rossow S, Murtaugh MP. Emergence of a virulent porcine reproductive and respiratory syndrome virus in vaccinated herds in the United States. Virus Res 2015; 210:34-41. [DOI: 10.1016/j.virusres.2015.07.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 07/02/2015] [Accepted: 07/03/2015] [Indexed: 10/23/2022]
|
32
|
Zuo Y, Yuan W, Sun J. Complete Genomic Characterization of Porcine Reproductive and Respiratory Syndrome Virus Strain HB-XL. Genes (Basel) 2015. [PMID: 26213972 PMCID: PMC4584324 DOI: 10.3390/genes6030672] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is the causal agent of a serious disease of swine. Here, we report the genome sequence of PRRSV strain HB-XL isolated from a pig farm with a clinical outbreak of porcine reproductive and respiratory syndrome. The genome is 15,323 bp long and has nine open reading frames (GenBank: KP162169). Comparative and phylogenetic analysis showed that HB-XL belongs to the highly pathogenic PRRSV (HP-PRRSV) subfamily in the family PRRSV. The viral nonstructural protein 2 (Nsp2) of the HB-XL strain contained 30 discontinuous amino acid (AA) deletions relative to that of the Nsp2 of the VR2332 strain. The AA substitutions R13 and R151 suggested high virulence of the HB-XL strain. The unique mutations in glycoprotein 5 (GP5) and Nsp2 revealed that HB-XL might be a novel variant PRRSV strain recombined with vaccine strains. However, the low morbidity and mortality in the pig herd from which HB-XL was isolated indicate that the virulence of the virus was weak, so it has potential as a future vaccine strain.
Collapse
Affiliation(s)
- Yi Zuo
- College of Animal Medicine, Agriculture University of Hebei, Baoding 071001, China.
- Hebei Engineering and Technology Research Center of Veterinary Biotechnology, Baoding 071001, China.
| | - Wanzhe Yuan
- College of Animal Medicine, Agriculture University of Hebei, Baoding 071001, China.
- Hebei Engineering and Technology Research Center of Veterinary Biotechnology, Baoding 071001, China.
| | - Jiguo Sun
- College of Animal Medicine, Agriculture University of Hebei, Baoding 071001, China.
- Hebei Engineering and Technology Research Center of Veterinary Biotechnology, Baoding 071001, China.
| |
Collapse
|
33
|
Renukaradhya GJ, Meng XJ, Calvert JG, Roof M, Lager KM. Live porcine reproductive and respiratory syndrome virus vaccines: Current status and future direction. Vaccine 2015; 33:4069-80. [PMID: 26148878 DOI: 10.1016/j.vaccine.2015.06.092] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 06/16/2015] [Accepted: 06/23/2015] [Indexed: 10/23/2022]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) caused by PRRS virus (PRRSV) was reported in the late 1980s. PRRS still is a huge economic concern to the global pig industry with a current annual loss estimated at one billion US dollars in North America alone. It has been 20 years since the first modified live-attenuated PRRSV vaccine (PRRSV-MLV) became commercially available. PRRSV-MLVs provide homologous protection and help in reducing shedding of heterologous viruses, but they do not completely protect pigs against heterologous field strains. There have been many advances in understanding the biology and ecology of PRRSV; however, the complexities of virus-host interaction and PRRSV vaccinology are not yet completely understood leaving a significant gap for improving breadth of immunity against diverse PRRS isolates. This review provides insights on immunization efforts using infectious PRRSV-based vaccines since the 1990s, beginning with live PRRSV immunization, development and commercialization of PRRSV-MLV, and strategies to overcome the deficiencies of PRRSV-MLV through use of replicating viral vectors expressing multiple PRRSV membrane proteins. Finally, powerful reverse genetics systems (infectious cDNA clones) generated from more than 20 PRRSV isolates of both genotypes 1 and 2 viruses have provided a great resource for exploring many innovative strategies to improve the safety and cross-protective efficacy of live PRRSV vaccines. Examples include vaccines with diminished ability to down-regulate the immune system, positive and negative marker vaccines, multivalent vaccines incorporating antigens from other porcine pathogens, vaccines that carry their own cytokine adjuvants, and chimeric vaccine viruses with the potential for broad cross-protection against heterologous strains. To combat this devastating pig disease in the future, evaluation and commercialization of such improved live PRRSV vaccines is a shared goal among PRRSV researchers, pork producers and biologics companies.
Collapse
Affiliation(s)
- Gourapura J Renukaradhya
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH, United States.
| | - Xiang-Jin Meng
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | | | - Michael Roof
- Boehringer Ingelheim Vetmedica, Inc., Ames, IA, United States
| | - Kelly M Lager
- Virus and Prion Research Unit, National Animal Disease Center, U.S. Department of Agriculture, Ames, IA, United States.
| |
Collapse
|
34
|
Effect of amino acids residues 323-433 and 628-747 in Nsp2 of representative porcine reproductive and respiratory syndrome virus strains on inflammatory response in vitro. Virus Res 2015; 208:13-21. [PMID: 26043979 DOI: 10.1016/j.virusres.2015.05.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Revised: 05/20/2015] [Accepted: 05/22/2015] [Indexed: 11/22/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is an important pathogen that is responsible for large economic losses in the swine industry worldwide. In PRRSV strains, many genetic variations occur in the central hypervariable region (HV2) of the Nsp2 gene, which encodes non-structural protein 2. For example, PRRSV strains VR2332, Em2007, MN184C, and TJM-F92 contained variations in the Nsp2 sequences and exhibited differing levels of virulence in adult pigs. However, the role of HV2 with respect to PRRSV immunity is unclear. In this study, four recombinant PRRSV strains (rBB/+30aa, rBB/Δ68aa, rBB/Δ111aa, and rBB/Δ120aa) were rescued using a highly pathogenic type 2 PRRSV cDNA clone (pBB). All rescued strains displayed similar growth characteristics to the parental rBB virus in pulmonary alveolar macrophages (PAMs). Expression levels of inflammatory cytokines IL-β, IL-6, and TNF-α were significantly lower, at the mRNA and protein level, for groups infected with rBB/Δ111aa and rBB/Δ120aa than those in the rBB group. Levels of these inflammatory cytokines in the rBB/+30aa and rBB/Δ68aa groups were not significantly different with those in the rBB group. Phosphorylation levels of IκB were decreased to a greater extent in the rBB/Δ111aa and rBB/Δ120aa groups compared with those in the rBB/+30aa, rBB/Δ68aa, and rBB groups. Our results indicate that amino acids 323-433 and 628-747 of Nsp2 failed to exert significant effects on PRRSV replication in PAMs, but modulated the expression of inflammatory cytokines in vitro.
Collapse
|
35
|
Rascón-Castelo E, Burgara-Estrella A, Mateu E, Hernández J. Immunological features of the non-structural proteins of porcine reproductive and respiratory syndrome virus. Viruses 2015; 7:873-86. [PMID: 25719944 PMCID: PMC4379552 DOI: 10.3390/v7030873] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 02/08/2015] [Accepted: 02/15/2015] [Indexed: 12/18/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is currently one of the most important viruses affecting the swine industry worldwide. Despite the large number of papers published each year, the participation of non-structural proteins (nsps) in the immune response is not completely clear. nsps have been involved in the host innate immune response, specifically, nsp1α/β, nsp2, nsp4 and nsp11 have been associated with the immunomodulation capability of the virus. To date, only participation by nsp1, nsp2, nsp4 and nsp7 in the humoral immune response has been reported, with the role of other nsps being overlooked. Furthermore, nsp1, nsp2, nsp5, nsp7 nsp9, nsp10, nsp11 have been implicated in the induction of IFN-γ and probably in the development of the cell-mediated immune response. This review discusses recent reports involving the participation of nsps in the modulation of the innate immune response and their role in the induction of both the humoral and cellular immune responses.
Collapse
Affiliation(s)
- Edgar Rascón-Castelo
- Laboratorio de Inmunología, Centro de Investigación en Alimentación y Desarrollo A.C (CIAD) Carretera a la Victoria Km 0.6, C.P. 83304 Hermosillo, Sonora, Mexico.
| | - Alexel Burgara-Estrella
- Laboratorio de Inmunología, Centro de Investigación en Alimentación y Desarrollo A.C (CIAD) Carretera a la Victoria Km 0.6, C.P. 83304 Hermosillo, Sonora, Mexico.
| | - Enric Mateu
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.
- Departament de Sanitat i d'Anatomia Animals, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.
| | - Jesús Hernández
- Laboratorio de Inmunología, Centro de Investigación en Alimentación y Desarrollo A.C (CIAD) Carretera a la Victoria Km 0.6, C.P. 83304 Hermosillo, Sonora, Mexico.
| |
Collapse
|
36
|
Gao J, Ji P, Zhang M, Wang X, Li N, Wang C, Xiao S, Mu Y, Zhao Q, Du T, Sun Y, Hiscox JA, Zhang G, Zhou EM. GP5 expression in Marc-145 cells inhibits porcine reproductive and respiratory syndrome virus infection by inducing beta interferon activity. Vet Microbiol 2014; 174:409-418. [DOI: 10.1016/j.vetmic.2014.09.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 09/24/2014] [Accepted: 09/25/2014] [Indexed: 12/14/2022]
|
37
|
Mokhtar H, Eck M, Morgan SB, Essler SE, Frossard JP, Ruggli N, Graham SP. Proteome-wide screening of the European porcine reproductive and respiratory syndrome virus reveals a broad range of T cell antigen reactivity. Vaccine 2014; 32:6828-37. [DOI: 10.1016/j.vaccine.2014.04.054] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 04/11/2014] [Accepted: 04/17/2014] [Indexed: 01/06/2023]
|
38
|
Han M, Yoo D. Engineering the PRRS virus genome: updates and perspectives. Vet Microbiol 2014; 174:279-295. [PMID: 25458419 PMCID: PMC7172560 DOI: 10.1016/j.vetmic.2014.10.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 10/13/2014] [Accepted: 10/15/2014] [Indexed: 12/03/2022]
Abstract
We review PRRSV infectious clones and their applications. 14 infectious clones are available so far for genotypes I and II. Genomic mutations, insertions, deletions, and replacements are successful. We discuss advances and utilization of PRRSV reverse genetics and future potential.
Porcine reproductive and respiratory syndrome virus (PRRSV) is endemic in most pig producing countries worldwide and causes enormous economic losses to the pork industry. Infectious clones for PRRSV have been constructed, and so far at least 14 different infectious clones are available representing both genotypes I and II. Two strategies have been taken for progeny reconstitution: RNA transfection and DNA transfection. Mutations, insertions, deletions, and replacements of the viral genome have been employed to study the structure function relationship, foreign gene expression, functional complementation, and virulence determinants. Essential regions and non-essential regions for viral replication have been identified in both the coding regions and non-encoding regions. Foreign sequences have successfully been inserted into the nsp2 and N regions and in the space between ORF1b and ORF2a. Chimeras between member viruses in the family Arteriviridae have also been constructed and utilized to study cell tropism and functional complementation. This review discusses the advances and utilization of PRRSV reverse genetics and its potential for future research.
Collapse
Affiliation(s)
- Mingyuan Han
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL 61802, United States
| | - Dongwan Yoo
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL 61802, United States.
| |
Collapse
|
39
|
Jing H, Fang L, Wang D, Ding Z, Luo R, Chen H, Xiao S. Porcine reproductive and respiratory syndrome virus infection activates NOD2-RIP2 signal pathway in MARC-145 cells. Virology 2014; 458-459:162-71. [PMID: 24928048 DOI: 10.1016/j.virol.2014.04.031] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 02/12/2014] [Accepted: 04/22/2014] [Indexed: 12/21/2022]
Abstract
Nucleotide-binding oligomerization domains (NOD)-like receptors (NLRs) evolve as a group of germline-encoded receptors that detect cytosolic pathogen-associated molecular patterns. Porcine reproductive and respiratory syndrome virus (PRRSV) is an Arterivirus that has been devastating the swine industry worldwide. By examining the expression kinetics of ten selected NLRs, NOD2 and NLRP3 were found to be continuously up-regulated in PRRSV-infected MARC-145 cells during 48 h of post-infection. Further study revealed that PRRSV infection enhanced the expression and phosphorylation of RIP2. Knockdown of NOD2 and RIP2 by siRNA significantly decreased PRRSV-induced phosphorylation of NF-κB subunit p65, JNK, Erk and p38 MAPK, as well as the expression of IL-6, IL-8, TNF-α, and RANTES in MARC-145 cells. Moreover, increased expression of NOD2 and RIP2 mRNA were observed in alveolar macrophages isolated from PRRSV-challenged piglets at 3, 7 and 10 day post-challenge. Collectively, our results revealed that PRRSV infection activates NOD2-RIP2 signaling pathway to induce pro-inflammatory response.
Collapse
Affiliation(s)
- Huiyuan Jing
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Liurong Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Dang Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhen Ding
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Rui Luo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
40
|
Li B, Du L, Sun B, Yu Z, Wen L, Zhang X, Guo R, Ni Y, Hu Y, Zhou J, Zhu H, Lv L, Yu Y, Wang X, He K. Monoclonal antibodies against Nsp2 protein of the highly pathogenic porcine reproductive and respiratory syndrome virus. Monoclon Antib Immunodiagn Immunother 2014; 32:362-5. [PMID: 24111869 DOI: 10.1089/mab.2013.0023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) continues to be a serious threat, causing an economically significant impact on the swine industry worldwide. In this study, non-structural protein Nsp2 of porcine reproductive and respiratory syndrome virus (PRRSV) was expressed in Escherichia coli and purified by dialysis. An important monoclonal antibody (MAb 2H6) against Nsp2 protein was generated by fusing mouse myeloma cell line SP2/0 with spleen lymphocytes from Nsp2 protein immunized mice. Then activity of the MAb was characterized by enzyme-linked immunosorbent assay (ELISA), Western blot analysis, and indirect immunofluorescence assays. The results demonstrated that the MAb has a positive reaction to HP-PRRSV in IFA at 1:100 dilution and in Western blot analysis at 1:500 dilution, and no reaction with classic PRRSV. These indicated that this MAb against Nsp2 protein of PRRSV might be a good candidate for a specific diagnostic method and functional exploration of the Nsp2 protein.
Collapse
Affiliation(s)
- Bin Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences; Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture; National Center for Engineering Research of Veterinary Bio-products , Nanjing, Jiangsu Province, P.R. China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Kuzemtseva L, de la Torre E, Martín G, Soldevila F, Ait-Ali T, Mateu E, Darwich L. Regulation of toll-like receptors 3, 7 and 9 in porcine alveolar macrophages by different genotype 1 strains of porcine reproductive and respiratory syndrome virus. Vet Immunol Immunopathol 2014; 158:189-98. [DOI: 10.1016/j.vetimm.2014.01.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 12/26/2013] [Accepted: 01/20/2014] [Indexed: 11/28/2022]
|
42
|
SARS coronavirus papain-like protease inhibits the type I interferon signaling pathway through interaction with the STING-TRAF3-TBK1 complex. Protein Cell 2014; 5:369-81. [PMID: 24622840 PMCID: PMC3996160 DOI: 10.1007/s13238-014-0026-3] [Citation(s) in RCA: 215] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 01/13/2014] [Indexed: 12/25/2022] Open
Abstract
SARS coronavirus (SARS-CoV) develops an antagonistic mechanism by which to evade the antiviral activities of interferon (IFN). Previous studies suggested that SARS-CoV papain-like protease (PLpro) inhibits activation of the IRF3 pathway, which would normally elicit a robust IFN response, but the mechanism(s) used by SARS PLpro to inhibit activation of the IRF3 pathway is not fully known. In this study, we uncovered a novel mechanism that may explain how SARS PLpro efficiently inhibits activation of the IRF3 pathway. We found that expression of the membrane-anchored PLpro domain (PLpro-TM) from SARS-CoV inhibits STING/TBK1/IKKε-mediated activation of type I IFNs and disrupts the phosphorylation and dimerization of IRF3, which are activated by STING and TBK1. Meanwhile, we showed that PLpro-TM physically interacts with TRAF3, TBK1, IKKε, STING, and IRF3, the key components that assemble the STING-TRAF3-TBK1 complex for activation of IFN expression. However, the interaction between the components in STING-TRAF3-TBK1 complex is disrupted by PLpro-TM. Furthermore, SARS PLpro-TM reduces the levels of ubiquitinated forms of RIG-I, STING, TRAF3, TBK1, and IRF3 in the STING-TRAF3-TBK1 complex. These results collectively point to a new mechanism used by SARS-CoV through which PLpro negatively regulates IRF3 activation by interaction with STING-TRAF3-TBK1 complex, yielding a SARS-CoV countermeasure against host innate immunity.
Collapse
|
43
|
Yang X, Chen X, Bian G, Tu J, Xing Y, Wang Y, Chen Z. Proteolytic processing, deubiquitinase and interferon antagonist activities of Middle East respiratory syndrome coronavirus papain-like protease. J Gen Virol 2013; 95:614-626. [PMID: 24362959 DOI: 10.1099/vir.0.059014-0] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The emerging Middle East respiratory syndrome coronavirus (MERS-CoV) causes severe pulmonary disease in humans and represents the second example of a highly pathogenic coronavirus (CoV) following severe acute respiratory syndrome coronavirus (SARS-CoV). Genomic studies revealed that two viral proteases, papain-like protease (PLpro) and 3C-like protease (3CLpro), process the polyproteins encoded by the MERS-CoV genomic RNA. We previously reported that SARS-CoV PLpro acts as both deubiquitinase (DUB) and IFN antagonist, but the function of the MERS-CoV PLpro was poorly understood. In this study, we characterized MERS-CoV PLpro, which is a protease and can recognize and process the cleavage sites (CS) of nsp1-2, nsp2-3 and nsp3-4. The LXGG consensus cleavage sites in the N terminus of pp1a/1ab, which is generally essential for CoV PLpro-mediated processing, were also characterized in MERS-CoV. MERS-CoV PLpro, like human SARS-CoV PLpro and NL63-CoV PLP2, is a viral deubiquitinating enzyme. It acts on both K48- and K63-linked ubiquitination and ISG15-linked ISGylation. We confirmed that MERS-CoV PLpro acts as an IFN antagonist through blocking the phosphorylation and nuclear translocation of IFN regulatory factor 3 (IRF3). These findings indicate that MERS-CoV PLpro acts as a viral DUB and suppresses production of IFN-β by an interfering IRF3-mediated signalling pathway, in addition to recognizing and processing the CS at the N terminus of replicase polyprotein to release the non-structural proteins. The characterization of proteolytic processing, DUB and IFN antagonist activities of MERS-CoV PLpro would reveal the interactions between MERS-CoV and its host, and be applicable to develop strategies targeting PLpro for the effective control of MERS-CoV infection.
Collapse
Affiliation(s)
- Xingxing Yang
- Anhui Medical University, Hefei, Anhui Province 230032, PR China.,Division of Infection and Immunity, Department of Electromagnetic and Laser Biology, Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - Xiaojuan Chen
- Division of Infection and Immunity, Department of Electromagnetic and Laser Biology, Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - Guangxing Bian
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - Jian Tu
- Australian School of Advanced Medicine, Macquarie University, Sydney, NSW 2109, Australia
| | - Yaling Xing
- Division of Infection and Immunity, Department of Electromagnetic and Laser Biology, Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - Yayun Wang
- Division of Infection and Immunity, Department of Electromagnetic and Laser Biology, Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - Zhongbin Chen
- Anhui Medical University, Hefei, Anhui Province 230032, PR China.,Division of Infection and Immunity, Department of Electromagnetic and Laser Biology, Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| |
Collapse
|
44
|
Yun SI, Lee YM. Overview: Replication of porcine reproductive and respiratory syndrome virus. J Microbiol 2013; 51:711-23. [PMID: 24385346 PMCID: PMC7091224 DOI: 10.1007/s12275-013-3431-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 10/07/2013] [Indexed: 02/06/2023]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV), an arterivirus that causes significant losses in the pig industry, is one of the most important animal pathogens of global significance. Since the discovery of the virus, significant progress has been made in understanding its epidemiology and transmission, but no adequate control measures are yet available to eliminate infection with this pathogen. The genome replication of PRRSV is required to reproduce, within a few hours of infection, the millions of progeny virions that establish, disseminate, and maintain infection. Replication of the viral RNA genome is a multistep process involving a replication complex that is formed not only from components of viral and cellular origin but also from the viral genomic RNA template; this replication complex is embedded within particular virus-induced membrane vesicles. PRRSV RNA replication is directed by at least 14 replicase proteins that have both common enzymatic activities, including viral RNA polymerase, and also unusual and poorly understood RNA-processing functions. In this review, we summarize our current understanding of PRRSV replication, which is important for developing a successful strategy for the prevention and control of this pathogen.
Collapse
Affiliation(s)
- Sang-Im Yun
- Department of Animal, Dairy, and Veterinary Sciences, Utah Science Technology and Research, College of Agriculture and Applied Sciences, Utah State University, Logan, UT 84322-4815 USA
| | - Young-Min Lee
- Department of Animal, Dairy, and Veterinary Sciences, Utah Science Technology and Research, College of Agriculture and Applied Sciences, Utah State University, Logan, UT 84322-4815 USA
| |
Collapse
|
45
|
Genetic and antigenic characterization of complete genomes of Type 1 Porcine Reproductive and Respiratory Syndrome viruses (PRRSV) isolated in Denmark over a period of 10 years. Virus Res 2013; 178:197-205. [PMID: 24153055 DOI: 10.1016/j.virusres.2013.10.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 10/08/2013] [Accepted: 10/11/2013] [Indexed: 11/20/2022]
Abstract
Porcine Reproductive and Respiratory Syndrome (PRRS) caused by the PRRS virus (PRRSV) is considered one of the most devastating swine diseases worldwide. PRRS viruses are divided into two major genotypes, Type 1 and Type 2, with pronounced diversity between and within the genotypes. In Denmark more than 50% of the herds are infected with Type 1 and/or Type 2 PRRSV. The main objective of this study was to examine the genetic diversity and drift of Type 1 viruses in a population with limited introduction of new animals and semen. A total of 43 ORF5 and 42 ORF7 nucleotide sequences were obtained from viruses collected from 2003 to February 2013. Phylogenetic analysis of ORF5 nucleotide sequences showed that the Danish isolates formed two major clusters within the subtype 1. The nucleotide identity to the subtype 1 protogenotype Lelystad virus (LV) spanned 84.9-98.8% for ORF5 and 90.7-100% for ORF7. Among the Danish viruses the pairwise nucleotide identities in ORF5 and ORF7 were 81.2-100% and 88.9-100%, respectively. Sequencing of the complete genomes, including the 5'- and 3'-end nucleotides, of 8 Danish PRRSV Type 1 showed that the genome lengths differed from 14,876 to 15,098 nucleotides and the pairwise nucleotide identity among the Danish viruses was 86.5-97.3% and the identity to LV was 88.7-97.9%. The study strongly indicated that there have been at least two independent introductions of Type 1 PRRSV in Denmark and analysis of the full genomes revealed a significant drift in several regions of the virus.
Collapse
|
46
|
Highly divergent strains of porcine reproductive and respiratory syndrome virus incorporate multiple isoforms of nonstructural protein 2 into virions. J Virol 2013; 87:13456-65. [PMID: 24089566 DOI: 10.1128/jvi.02435-13] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Viral structural proteins form the critical intermediary between viral infection cycles within and between hosts, function to initiate entry, participate in immediate early viral replication steps, and are major targets for the host adaptive immune response. We report the identification of nonstructural protein 2 (nsp2) as a novel structural component of the porcine reproductive and respiratory syndrome virus (PRRSV) particle. A set of custom α-nsp2 antibodies targeting conserved epitopes within four distinct regions of nsp2 (the PLP2 protease domain [OTU], the hypervariable domain [HV], the putative transmembrane domain [TM], and the C-terminal region [C]) were obtained commercially and validated in PRRSV-infected cells. Highly purified cell-free virions of several PRRSV strains were isolated through multiple rounds of differential density gradient centrifugation and analyzed by immunoelectron microscopy (IEM) and Western blot assays using the α-nsp2 antibodies. Purified viral preparations were found to contain pleomorphic, predominantly spherical virions of uniform size (57.9 nm ± 8.1 nm diameter; n = 50), consistent with the expected size of PRRSV particles. Analysis by IEM indicated the presence of nsp2 associated with the viral particle of diverse strains of PRRSV. Western blot analysis confirmed the presence of nsp2 in purified viral samples and revealed that multiple nsp2 isoforms were associated with the virion. Finally, a recombinant PRRSV genome containing a myc-tagged nsp2 was used to generate purified virus, and these particles were also shown to harbor myc-tagged nsp2 isoforms. Together, these data identify nsp2 as a virion-associated structural PRRSV protein and reveal that nsp2 exists in or on viral particles as multiple isoforms.
Collapse
|
47
|
Lhomme S, Garrouste C, Kamar N, Saune K, Abravanel F, Mansuy JM, Dubois M, Rostaing L, Izopet J. Influence of polyproline region and macro domain genetic heterogeneity on HEV persistence in immunocompromised patients. J Infect Dis 2013; 209:300-3. [PMID: 23964111 PMCID: PMC7107305 DOI: 10.1093/infdis/jit438] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Hepatitis E virus (HEV) can chronically infect immunocompromised patients. The polyproline region (PPR) and the macro domain of ORF1 protein may modulate virus production and/or the host immune response. We investigated the association between the genetic heterogeneity of HEV quasispecies in ORF1 and the outcome of infection in solid-organ transplant patients. Both sequence entropy and genetic distances during the hepatitis E acute phase were higher in patients whose infection became chronic than in those who cleared the virus. Hence, great quasispecies heterogeneity in the regions encoding the PPR and the macro domain may facilitate HEV persistence.
Collapse
Affiliation(s)
- Sebastien Lhomme
- Centre de Physiopathologie de Toulouse Purpan, INSERM, U1043, Toulouse
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Xing Y, Chen J, Tu J, Zhang B, Chen X, Shi H, Baker SC, Feng L, Chen Z. The papain-like protease of porcine epidemic diarrhea virus negatively regulates type I interferon pathway by acting as a viral deubiquitinase. J Gen Virol 2013; 94:1554-1567. [PMID: 23596270 DOI: 10.1099/vir.0.051169-0] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) is the cause of an economically important swine disease. Previous studies suggested that PEDV does not elicit a robust IFN response, but the mechanism(s) used to evade or block this innate immune response was not known. In this study, we found that PEDV infection blocked synthetic dsRNA-induced IFN-β production by interfering with the activation of interferon regulatory factor 3 (IRF3). We identified PEDV replicase encoded papain-like protease 2 (PLP2) as an IFN antagonist that depends on catalytic activity for its function. We show that levels of ubiquitinated proteins are reduced during PEDV infection and that PEDV PLP2 has deubiquitinase (DUB) activity that recognizes and processes both K-48 and K-63 linked polyubiquitin chains. Furthermore, we found that PEDV PLP2 strongly inhibits RIG-I- and STING-activated IFN expression and that PEDV PLP2 can be co-immunoprecipitated with and deubiquitinates RIG-I and STING, the key components of the signalling pathway for IFN expression. These results show that PEDV infection suppresses production of IFN-β and provides evidence indicating that the PEDV papain-like protease 2 acts as a viral DUB to interfere with the RIG-I- and STING-mediated signalling pathway.
Collapse
Affiliation(s)
- Yaling Xing
- Beijing Institute of Radiation Medicine, Beijing 100850, China
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 427 Maduan Street, Harbin 150001, China
| | - Jianfei Chen
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 427 Maduan Street, Harbin 150001, China
| | - Jian Tu
- Australian School of Advanced Medicine, Macquarie University, Sydney, NSW 2109, Australia
| | - Bailing Zhang
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Xiaojuan Chen
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Hongyan Shi
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 427 Maduan Street, Harbin 150001, China
| | - Susan C Baker
- Department of Microbiology and Immunology, Loyola University of Chicago Stritch School of Medicine, Maywood, Illinois, USA
| | - Li Feng
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 427 Maduan Street, Harbin 150001, China
| | - Zhongbin Chen
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| |
Collapse
|
49
|
Sun Z, Lawson S, Langenhorst R, McCormick KL, Brunick C, Opriessnig T, Baker R, Yoon KJ, Zhang W, Huber VC, Fang Y. Construction and immunogenicity evaluation of an epitope-based antigen against swine influenza A virus using Escherichia coli heat-labile toxin B subunit as a carrier-adjuvant. Vet Microbiol 2013; 164:229-38. [PMID: 23497910 DOI: 10.1016/j.vetmic.2013.02.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 02/07/2013] [Accepted: 02/15/2013] [Indexed: 11/28/2022]
Abstract
Influenza A virus causes a highly contagious respiratory disease in a variety of avian and mammalian hosts, including humans and pigs. The primary means for preventing influenza epidemics is vaccination. Epitope-based vaccine represents a new approach to achieve protective immunity. The objective of this study was to construct and evaluate the immunogenicity of an epitope-based antigen for its potential application in future influenza vaccine development. The antigen, comprised of a set of consensus influenza A virus epitopes (IAVe), was genetically linked to a subunit of the bacterial heat-labile enterotoxin (LTB) as an adjuvant. Immunogenicity of this LTB-IAVe antigen was evaluated in a pig model. Despite an inability to detect neutralizing antibodies directed toward the whole virus, humoral immunity against the IAVe was demonstrated in both serum (IgA and IgG) and mucosal secretions (IgG) of immunized pigs. Specific cellular immunity was also induced after LTB-IAVe immunization, as evidenced by up-regulating of IL-1β, IL-8, and IL-4 expression in peripheral blood mononuclear cells (PBMCs) of vaccinated pigs. In comparison to the non-immunized pigs, pigs immunized with the LTB-IAVe showed improved protection against a pathogenic H1N1 swine influenza virus challenge, with about 50% decrease of pneumonic lesions and 10-fold reduction of the viral load in lung and nasal secretion at five days post challenge. This study establishes a platform for future construction of epitope-based vaccines against influenza A virus infection.
Collapse
Affiliation(s)
- Zhi Sun
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Predicted peptides from non-structural proteins of porcine reproductive and respiratory syndrome virus are able to induce IFN-γ and IL-10. Viruses 2013; 5:663-77. [PMID: 23435238 PMCID: PMC3640520 DOI: 10.3390/v5020663] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Revised: 02/07/2013] [Accepted: 02/09/2013] [Indexed: 01/09/2023] Open
Abstract
This work describes peptides from non-structural proteins (nsp) of porcine reproductive and respiratory syndrome virus (PRRSV) predicted as potential T cell epitopes by bioinfornatics and tested for their ability to induce IFN-γ and IL-10 responses. Pigs immunized with either genotype 1 or genotype 2 PRRSV attenuated vaccines (n=5/group) and unvaccinated pigs (n = 4) were used to test the peptides. Swine leukocyte antigen haplotype of each pig was also determined. Pigs were initially screened for IFN-γ responses (ELISPOT) and three peptides were identified; two of them in non-conserved segments of nsp2 and nsp5 and the other in a conserved region of nsp5 peptide. Then, peptides were screened for IL-10 inducing properties. Six peptides were found to induce IL-10 release in PBMC and some of them were also able to inhibit IFN-γ responses on PHA-stimulated cells. Interestingly, the IFN-γ low responder pigs against PRRSV were mostly homozygous for their SLA haplotypes. In conclusion, these results indicate that nsp of PRRSV contain T-cell epitopes inducing IFN-γ responses as well as IL-10 inducing segments with inhibitory capabilities.
Collapse
|