1
|
Prakash O, Verma AK, Paliwal A, Abbas F, Srivastava AK, Mishra VK, Radera S, Jain A. Circulating serotypes and genotypes of dengue virus in North India: An observational study. J Vector Borne Dis 2024; 61:117-122. [PMID: 38648413 DOI: 10.4103/0972-9062.392258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/20/2023] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND OBJECTIVES This study reports observation on circulating serotypes and genotypes of Dengue Virus in North India. METHODS Serum samples were obtained from suspected cases of dengue referred to the virus diagnostic laboratory during 2014 to 2022. All samples were tested for anti-dengue virus IgM antibodies and NS1Ag by ELISA. NS1Ag positive samples were processed for serotyping and genotyping. RESULTS Total 41,476 dengue suspected cases were referred to the laboratory of which 12,292 (29.6%) tested positive. Anti-Dengue Virus IgM antibodies, NS1Ag, both IgM and NS1Ag, were positive in 7007 (57.4%); 3200 (26.0%) and 2085 (16.0%) cases respectively. Total 762 strains were serotyped during 9-year period. DENV-1, DENV-2, DENV-3 and DENV-4 serotypes were found in 79 (10.37%), 506 (66.40%), 151 (19.82%) and 26 (3.41%) cases respectively. DENV-1, DENV-2 and DENV-3 were in circulation throughout. Total 105 strains were genotyped. Genotype IV of DENV-1 serotype was circulating till 2014 which was later replaced by genotype V. A distinct seasonality with increase in number of cases in post-monsoon period was seen. INTERPRETATION CONCLUSION DENV-1, DENV-2 and DENV-3 were found to be in circulation in North India. Predominant serotype/genotype changed at times, but not at regular intervals.
Collapse
Affiliation(s)
- Om Prakash
- Department of Microbiology, King George's Medical University, Lucknow, India
| | | | | | | | | | | | | | | |
Collapse
|
2
|
Behera SP, Bhardwaj P, Deval H, Srivastava N, Singh R, Misra BR, Agrawal A, Kavathekar A, Kant R. Co-circulation of all the four Dengue virus serotypes during 2018-2019: first report from Eastern Uttar Pradesh, India. PeerJ 2023; 11:e14504. [PMID: 36643644 PMCID: PMC9835713 DOI: 10.7717/peerj.14504] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 11/11/2022] [Indexed: 01/17/2023] Open
Abstract
Dengue fever is an endemic disease in India, transmitted by an infected mosquito bite. In India, the number of concurrent infections and the circulation of multiple dengue virus (DENV) serotypes has increased in recent decades. Molecular surveillance among the DENV serotype is important to keep track of the circulating serotypes, evolutionary changes, and key mutations that can alter the diagnostics. The current study included patients admitted for dengue in the Eastern Uttar Pradesh (E-UP) region during 2018-2019. The genetic characterization of the circulating DENV was accomplished through partial CprM (511 bp) gene amplification via reverse transcriptase polymerase chain reaction and sequencing. Phylogenetic analysis revealed the circulation of all four DENV1-4 serotypes. DENV-2 was the most abundant serotype (44%, 27/61), followed by DENV-3 (32%, 20/61). DENV-1 had a 16% (10/61) predominance, while DENV-4 (6%, 4/61) was found to be the least abundant serotype. DENV-2 genotypes were distributed among lineages I (7.4%), II (85%) and III (7.4%) of genotype IV, DENV-3 to lineage III of genotype III, DENV-1 to genotype III; DENV-2 to lineage B (75%) and C (25%) of genotype I. This primary report on the co-circulation of DENV1-4 serotypes from the E-UP region highlights the requirement of continuous molecular surveillance for monitoring circulating DENV serotypes.
Collapse
Affiliation(s)
| | - Pooja Bhardwaj
- ICMR-Regional Medical Research Centre, Gorakhpur, Uttar Pradesh, India
| | - Hirawati Deval
- ICMR-Regional Medical Research Centre, Gorakhpur, Uttar Pradesh, India
| | - Neha Srivastava
- ICMR-Regional Medical Research Centre, Gorakhpur, Uttar Pradesh, India
| | - Rajeev Singh
- ICMR-Regional Medical Research Centre, Gorakhpur, Uttar Pradesh, India
| | - Brij Ranjan Misra
- ICMR-Regional Medical Research Centre, Gorakhpur, Uttar Pradesh, India
| | - Awdhesh Agrawal
- Division of Pathology, Gorakhnath Hospital, Gorakhpur, Uttar Pradesh, India
| | - Asif Kavathekar
- ICMR-Regional Medical Research Centre, Gorakhpur, Uttar Pradesh, India
| | - Rajni Kant
- ICMR-Regional Medical Research Centre, Gorakhpur, Uttar Pradesh, India
| |
Collapse
|
3
|
Padhi A, Gupta E, Singh G, Parveen S, Islam A, Tarai B. Circulation of DENV-3 Genotype 3 during 2017 to 2018 in Delhi: A Single-Center Hospital-Based Study. J Lab Physicians 2022; 14:21-26. [PMID: 36186256 PMCID: PMC9519262 DOI: 10.1055/s-0041-1734017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Introduction Delhi is hyperendemic for dengue virus (DENV) where all the four DENV have previously been reported. A constant vigilance of circulating DENV serotypes is important in surveillance, since the introduction of a new variant to areas affected by preexisting serotypes constitutes a risk factor for dengue hemorrhagic fever and dengue shock syndrome. Objectives This retrospective study was performed with an objective to determine the circulating serotype and genotype of DENV in acute phase blood samples of patients who have reported to a tertiary liver care hospital in New Delhi during the last 2 years (2017-2018). Methods The data of clinician-initiated testing for dengue nonstructural protein 1 (NS1) antigen (Ag) was searched in the institutional hospital information system. The serum sample of dengue NS1 Ag-positive cases confirmed by enzyme-linked immunosorbent assay (ELISA; PANBIO, Gyeonggi-do, ROK) and a fever duration of less than 5 days were retrieved from the laboratory archive. The DENV serotyping on these sample was performed by reverse transcriptase polymerase chain reaction (RT-PCR). Sequencing and phylogenetic analysis was done for the capsid premembrane (CprM) region to determine the genotype. Results A total of 440 acute-phase samples were received. Twenty one (4.77%) were positive for dengue NS1 Ag with a mean age of 35.1 years and male-to-female ratio of 1.1:1. Eight cases (38.09%) were positive by dengue RT-PCR and all belonged to DENV-3 serotypes. Phylogenetic tree analysis revealed DENV-3 clustered to genotype III with 100% homology with 2008 Indian subcontinent strain. Conclusion This study revealed circulation of DENV-3, genotype III in Delhi from 2017 to 2018, similar to the 2008 viral type. Virological surveillance is an important exercise to be done for viral infections with public threat and outbreak potential.
Collapse
Affiliation(s)
- Abhishek Padhi
- Department of Clinical Virology, Institute of Liver and Biliary Sciences, New Delhi, Delhi, India
| | - Ekta Gupta
- Department of Clinical Virology, Institute of Liver and Biliary Sciences, New Delhi, Delhi, India
| | - Gaurav Singh
- Department of Clinical Virology, Institute of Liver and Biliary Sciences, New Delhi, Delhi, India
| | - Shama Parveen
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, Delhi, India
| | - Arshi Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, Delhi, India
| | - Bansidhar Tarai
- Department of Microbiology and Infection Control, Max Superspeciality Hospital, New Delhi, Delhi, India
| |
Collapse
|
4
|
Amir M, Hussain A, Asif M, Ahmed S, Alam H, Moga MA, Cocuz ME, Marceanu L, Blidaru A. Full-Length Genome and Partial Viral Genes Phylogenetic and Geographical Analysis of Dengue Serotype 3 Isolates. Microorganisms 2021; 9:microorganisms9020323. [PMID: 33557307 PMCID: PMC7915001 DOI: 10.3390/microorganisms9020323] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 01/28/2021] [Accepted: 02/01/2021] [Indexed: 11/16/2022] Open
Abstract
Dengue fever is among the most common vector-borne diseases. Dengue virus (DENV), responsible for dengue fever as well as dengue hemorrhagic fever, belongs to the genus flavivirus and family Flaviviridae. Flaviviruses infect various vertebrate species and arthropods and are also responsible for diseases in birds, wild animals, and primates. DENV consists of a single-stranded, positive-sense RNA genome ~11 kb in size. Complete genome and partial gene sequences of geographically distinct DENV-3 strains were retrieved from the GenBank database. The evolutionary divergence of the 33 whole-genome and individual gene sequences of the nucleotides and amino acids of DENV-3 strains were generated with the maximum likelihood (ML) and Bayesian phylogenetic study (BEAST) methods using the MEGA 7 software. The genome size varied from 10,484 to 10,724 nucleotides among the strains with distinct geographical backgrounds belonging to Central America, South-Central Asia, and Eastern Asia. A phylogenetic analysis of the nucleotide and amino acid sequences of these DENV-3 isolates revealed extensive differences in the topologies due to PrM/M, NS1, NS2B, and NS3 genes. These results suggest substantial variation in the evolutionary pathways of the studied genes and genomes.
Collapse
Affiliation(s)
- Muhammad Amir
- Department of Biotechnology, BUITEMS, Baluchistan University of Information & Technology, Engineering and Management Sciences (BUITEMS), Quetta 87300, Pakistan; (M.A.); (A.H.); (M.A.)
| | - Abrar Hussain
- Department of Biotechnology, BUITEMS, Baluchistan University of Information & Technology, Engineering and Management Sciences (BUITEMS), Quetta 87300, Pakistan; (M.A.); (A.H.); (M.A.)
| | - Muhammad Asif
- Department of Biotechnology, BUITEMS, Baluchistan University of Information & Technology, Engineering and Management Sciences (BUITEMS), Quetta 87300, Pakistan; (M.A.); (A.H.); (M.A.)
- Office of Research Innovation and Commercialization, Baluchistan University of Information & Technology, Engineering and Management Sciences (BUITEMS), Quetta 87300, Pakistan
| | - Sagheer Ahmed
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad 44000, Pakistan;
| | - Hina Alam
- Pakistan Institute of Medical Sciences, Islamabad 44000, Pakistan;
| | | | - Maria Elena Cocuz
- Faculty of Medicine, Transilvania University of Brasov, 500019 Brasov, Romania;
- Correspondence: (M.E.C.); (L.M.)
| | - Luigi Marceanu
- Faculty of Medicine, Transilvania University of Brasov, 500019 Brasov, Romania;
- Correspondence: (M.E.C.); (L.M.)
| | - Alexandru Blidaru
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, 020021 Bucharest, Romania;
| |
Collapse
|
5
|
Tiwari S, Shukla MK, Chand G, Sahare L, Ukey MJ, Joshi P, Khedekar R, Singh N, Barde PV. Outbreaks of dengue in Central India in 2016: Clinical, laboratory & epidemiological study. Indian J Med Res 2020; 150:492-497. [PMID: 31939393 PMCID: PMC6977364 DOI: 10.4103/ijmr.ijmr_1315_18] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Background & objectives: Dengue virus (DENV) causes outbreaks and sporadic cases in tropical and subtropical countries. Documenting intricacies of DEN outbreaks is important for future interventions. The objective of this study was to report clinical, laboratory and epidemiological features of DEN outbreaks reported in different districts of Central India in 2016. Methods: In 2016, outbreaks (n=4) suspected of DEN were investigated by rapid response team. Door-to-door fever and entomological surveys were conducted. Blood samples were collected and tested using NS1 or IgM ELISA; real-time reverse transcription-polymerase chain reaction was done to identify serotypes of DEN virus (DENV). NS1-positive samples were tested for the presence of IgG by ELISA. Clinical and demographic data were collected and analyzed. Results: Outbreaks occurred in both urban and rural areas in monsoon season and Aedes aegypti was identified as the vector. Fever, chills, headache and myalgia were the major symptoms; no fatality was recorded. Of the 268 DEN suspects, 135 (50.4%) were found serologically positive. DEN positivity was higher (n=75; 55.56%) among males and in the age group of 16-45 yr (n=78; 57.8%). DENV 3 followed by DENV 2 were detected as the major responsible serotypes. High attack rates (up to 38/1000) and low cumulative IgG prevalence (14.9%) were recorded in rural areas. Interpretation & conclusions: Our study showed that DENV 3 was the major serotype responsible for outbreaks that occurred in monsoon. High attack rates and lower number of secondary infections in rural areas indicated that DENV is emerging in rural parts of Central India. Early diagnosis at local level and timely intervention by mosquito control activities are needed to avoid such outbreaks in future.
Collapse
Affiliation(s)
- Shraddha Tiwari
- Division of Virology and Zoonoses, ICMR-National Institute of Research in Tribal Health, Jabalpur, Madhya Pradesh, India
| | - Mohan K Shukla
- Division of Virology and Zoonoses, ICMR-National Institute of Research in Tribal Health, Jabalpur, Madhya Pradesh, India
| | - Gyan Chand
- Division of Virology and Zoonoses, ICMR-National Institute of Research in Tribal Health, Jabalpur, Madhya Pradesh, India
| | - Lalit Sahare
- Division of Virology and Zoonoses, ICMR-National Institute of Research in Tribal Health, Jabalpur, Madhya Pradesh, India
| | - Mahendra J Ukey
- Division of Virology and Zoonoses, ICMR-National Institute of Research in Tribal Health, Jabalpur, Madhya Pradesh, India
| | - Piyush Joshi
- Division of Virology and Zoonoses, ICMR-National Institute of Research in Tribal Health, Jabalpur, Madhya Pradesh, India
| | - Rameshwar Khedekar
- Division of Virology and Zoonoses, ICMR-National Institute of Research in Tribal Health, Jabalpur, Madhya Pradesh, India
| | - Neeru Singh
- Division of Virology and Zoonoses, ICMR-National Institute of Research in Tribal Health, Jabalpur, Madhya Pradesh, India
| | - Pradip V Barde
- Division of Virology and Zoonoses, ICMR-National Institute of Research in Tribal Health, Jabalpur, Madhya Pradesh, India
| |
Collapse
|
6
|
Barde PV, Shukla MK, Joshi P, Sahare L, Ukey MJ. Molecular studies on dengue viruses detected in patients from Central India. Indian J Med Microbiol 2019; 37:12-18. [PMID: 31424004 DOI: 10.4103/ijmm.ijmm_18_377] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Purpose Dengue viruses (DENVs), the causative agents of dengue (DEN), are classified into four serotypes and several genotypes. Identifying circulating serotypes and genotypes has clinical and epidemiological importance; however, limited information in this regard is available from Central India. This laboratory-based study was done to fill this lacuna. Materials and Methods The samples collected in the acute phase of illness were subjected to DEN NS1 ELISA, and NS1-positive samples (n = 80) were subjected to serotyping; representative samples from each serotype were sequenced to identify genotypes. Results Seventy-one (88.75%) samples could be serotyped. All the four DENV serotypes with dominance of DENV-3 (n = 33; 47%) were detected. DENV-4 was detected after a gap of 3 years. Cases with multiple DENV serotype infection were identified. Genotyping showed that DENV-1 belonging to genotype III, DENV-2 cosmopolitan (IV), DENV-3 genotype III lineage C and DENV-4 genotype I were in circulation in the year 2016. Conclusion Our study documents the molecular characteristics of DENV circulating in the area. Detection of heterologous DENV serotype with dominance of DENV-3 emphasises the need for regular molecular monitoring.
Collapse
Affiliation(s)
- Pradip V Barde
- Division of Virology and Zoonoses, ICMR-National Institute of Research in Tribal Health, Jabalpur, Madhya Pradesh, India
| | - Mohan K Shukla
- Division of Virology and Zoonoses, ICMR-National Institute of Research in Tribal Health, Jabalpur, Madhya Pradesh, India
| | - Piyush Joshi
- Division of Virology and Zoonoses, ICMR-National Institute of Research in Tribal Health, Jabalpur, Madhya Pradesh, India
| | - Lalit Sahare
- Division of Virology and Zoonoses, ICMR-National Institute of Research in Tribal Health, Jabalpur, Madhya Pradesh, India
| | - Mahendra J Ukey
- Division of Virology and Zoonoses, ICMR-National Institute of Research in Tribal Health, Jabalpur, Madhya Pradesh, India
| |
Collapse
|
7
|
Ahamed SF, Rosario V, Britto C, Dias M, Nayak K, Chandele A, Kaja MK, Shet A. Emergence of new genotypes and lineages of dengue viruses during the 2012-15 epidemics in southern India. Int J Infect Dis 2019; 84S:S34-S43. [PMID: 30639622 DOI: 10.1016/j.ijid.2019.01.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 01/06/2019] [Accepted: 01/07/2019] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVES To genotypically characterize dengue virus (DENV) isolates among dengue-infected children from 2012-13/2014-15 outbreaks in southern India. METHODS Children hospitalized with suspected dengue were tested for dengue RT-PCR targeting Capsid-preMembrane (C-prM) and Envelope (Env) regions. Following virologic confirmation (n=612), a representative selection of DENV isolates (n=99) were sequenced for C-prM, aligned using ClustalW and subjected to phylogenetic analysis by maximum-likelihood method in MEGA6. RESULTS In 2012-13 (n=113), DENV-3 (44, 38.9%) and DENV-2 (43, 38.1%) predominated; DENV-1 (22, 19.5%) and DENV-4 (1, 0.9%) were less common. The pattern changed in 2014-15 (n=499), when DENV-1 (329, 65.7%) predominated, followed by DENV-2 (97, 21.2%), DENV-3 (36, 6.7%) and DENV-4 (10, 2.0%). Multiple-serotype co-infections occurred in 2.7% and 5.4% in 2012-13 and 2014-15, respectively. Genotype III (GIII) of DENV-1 predominated (85.7%) in 2012-13, ceding to GI predominance (80.8%) in 2014-15. Among DENV-2, 71.9% (23/32) showed distinct clustering suggesting a new lineage, 'GIVc'. All tested DENV-4 were GIC, whose clustering pattern showed the emergence of two distinct clades. CONCLUSIONS New genotypic/lineage variations in DENV-1 and DENV-2 may have influenced the magnitude and severity of dengue epidemics in southern India during this period. These findings emphasize the role of active surveillance of DENV serotypes/genotypes in aiding outbreak control and vaccine studies.
Collapse
Affiliation(s)
- Syed Fazil Ahamed
- Division of Infectious Diseases, St. John's Research Institute, St. John's National Academy of Health Sciences, Bangalore, 560034, Karnataka, India; The University of Trans-Disciplinary Health Sciences & Technology (TDU), Bangalore, 560064, Karnataka, India.
| | - Vivek Rosario
- Division of Infectious Diseases, St. John's Research Institute, St. John's National Academy of Health Sciences, Bangalore, 560034, Karnataka, India.
| | - Carl Britto
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, UK.
| | - Mary Dias
- Division of Infectious Diseases, St. John's Research Institute, St. John's National Academy of Health Sciences, Bangalore, 560034, Karnataka, India; Department of Microbiology, St. John's Medical College Hospital, St. John's National Academy of Health Sciences, Bangalore, 560034, Karnataka, India.
| | - Kaustuv Nayak
- ICGEB-Emory Vaccine Centre, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | - Anmol Chandele
- ICGEB-Emory Vaccine Centre, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | - Murali-Krishna Kaja
- ICGEB-Emory Vaccine Centre, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India; Department of Pediatrics, Emory University, 1760 Haygood Drive, Atlanta, GA, 30322, USA.
| | - Anita Shet
- International Vaccine Access Center, Johns Hopkins Bloomberg School of Public Health, 415 N Washington St, Baltimore 21231, USA.
| |
Collapse
|
8
|
Parveen N, Islam A, Tazeen A, Hisamuddin M, Abdullah M, Naqvi IH, Faizan MI, Gulyani D, Ahmed A, Parveen S. Circulation of single serotype of Dengue Virus (DENV-3) in New Delhi, India during 2016: A change in the epidemiological trend. J Infect Public Health 2019; 12:49-56. [DOI: 10.1016/j.jiph.2018.08.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 07/20/2018] [Accepted: 08/27/2018] [Indexed: 11/29/2022] Open
|
9
|
Mo L, Shi J, Guo X, Zeng Z, Hu N, Sun J, Wu M, Zhou H, Hu Y. Molecular characterization and phylogenetic analysis of a dengue virus serotype 3 isolated from a Chinese traveler returned from Laos. Virol J 2018; 15:113. [PMID: 30041666 PMCID: PMC6057004 DOI: 10.1186/s12985-018-1016-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 07/04/2018] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Dengue virus (DENV) infection caused by international visitors has become a public health concern in China. Although sporadic imported cases of DENV have been documented in Yunnan, China since 2000, a complete genome sequence of dengue virus serotype 3 (DENV-3) imported from Laos is still not available. Here, we report the first complete genome sequence and genomic characterization of a DENV-3 strain (YNPE3) isolated from a patient returned from Laos. METHODS Viral isolation from the patient's serum was performed using mosquitoes C6/36 cells. Reverse transcriptase polymerase chain reaction (RT-PCR) was used for identification and serotyping of the virus. The complete sequence was determined by Sanger dideoxy sequencing. Homology analysis was implemented by NCBI-BLAST. Multiple sequence alignment was performed using MegAlign module of the Lasergene 7 software package DNASTAR. MFOLD software was used to predict the RNA secondary structure of 5' untranslated region (UTR) and 3' UTR. Phylogenetic analysis, which was based on envelope gene and complete coding sequence, was performed by Maximum-Likelihood method. RESULTS RT-PCR analysis confirmed that the virus belonged to dengue virus serotype 3, which was named YNPE3 strain. The full-length genome of the YNPE3 strain was 10,627 nucleotides (nts) with an open reading frame (ORF) encoding 3390 amino acids. Strain YNPE3 shared 98.6-98.8% nucleotide identity with the closely related strains isolated in India (JQ922556, KU216209, KU216208). We observed the deletion of about 40 nts in the 5' UTR and 3' UTR of strain YNPE3, and 11 nts (ACGCAGGAAGT) insertion that was present in the 3' UTR of YNPE3. Compared with prototype strain H87, abundant amino acid substitutions in the YNPE3 strain were observed. Phylogenetic analysis revealed that the YNPE3 strain belonged to genotype III of DENV-3, and that it might be closely related with genotype III strains isolated in Laos and India. CONCLUSIONS This is the first report of the complete genome sequence and molecular characterization of a DENV-3 isolate imported from Laos. The presented results can further promote disease surveillance, and epidemiological and evolutionary studies of the DENV-3 in Yunnan province of China.
Collapse
Affiliation(s)
- Ling Mo
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, China
- Yunnan Key Laboratory of Vaccine Research and Development of Severe Infectious Disease, Kunming, 650118, China
| | - Jiandong Shi
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, China
- Yunnan Key Laboratory of Vaccine Research and Development of Severe Infectious Disease, Kunming, 650118, China
- Yunnan Provincial Center of Arborvirus Research, Yunnan Provincial Key Laboratory of Vector-borne Diseases Control and Research, Yunnan Institute of Parasitic Diseases, Pu'er, 665000, Yunnan, China
| | - Xiaofang Guo
- Yunnan Provincial Center of Arborvirus Research, Yunnan Provincial Key Laboratory of Vector-borne Diseases Control and Research, Yunnan Institute of Parasitic Diseases, Pu'er, 665000, Yunnan, China
| | - Zhaoping Zeng
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, China
- Yunnan Key Laboratory of Vaccine Research and Development of Severe Infectious Disease, Kunming, 650118, China
| | - Ningzhu Hu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, China
- Yunnan Key Laboratory of Vaccine Research and Development of Severe Infectious Disease, Kunming, 650118, China
- Yunnan Provincial Center of Arborvirus Research, Yunnan Provincial Key Laboratory of Vector-borne Diseases Control and Research, Yunnan Institute of Parasitic Diseases, Pu'er, 665000, Yunnan, China
| | - Jing Sun
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, China
- Yunnan Key Laboratory of Vaccine Research and Development of Severe Infectious Disease, Kunming, 650118, China
- Yunnan Provincial Center of Arborvirus Research, Yunnan Provincial Key Laboratory of Vector-borne Diseases Control and Research, Yunnan Institute of Parasitic Diseases, Pu'er, 665000, Yunnan, China
| | - Meini Wu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, China
- Yunnan Key Laboratory of Vaccine Research and Development of Severe Infectious Disease, Kunming, 650118, China
- Yunnan Provincial Center of Arborvirus Research, Yunnan Provincial Key Laboratory of Vector-borne Diseases Control and Research, Yunnan Institute of Parasitic Diseases, Pu'er, 665000, Yunnan, China
| | - Hongning Zhou
- Yunnan Provincial Center of Arborvirus Research, Yunnan Provincial Key Laboratory of Vector-borne Diseases Control and Research, Yunnan Institute of Parasitic Diseases, Pu'er, 665000, Yunnan, China.
| | - Yunzhang Hu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, China.
- Yunnan Key Laboratory of Vaccine Research and Development of Severe Infectious Disease, Kunming, 650118, China.
- Yunnan Provincial Center of Arborvirus Research, Yunnan Provincial Key Laboratory of Vector-borne Diseases Control and Research, Yunnan Institute of Parasitic Diseases, Pu'er, 665000, Yunnan, China.
| |
Collapse
|
10
|
Joshi AP, Angel A, Angel B, Baharia RK, Rathore S, Sharma N, Yadav K, Thanvi S, Thanvi I, Joshi V. In-silico Designing and Testing of Primers for Sanger Genome Sequencing of Dengue Virus Types of Asian Origin. J Genomics 2018; 6:34-40. [PMID: 29707045 PMCID: PMC5916874 DOI: 10.7150/jgen.22460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 11/12/2017] [Indexed: 01/24/2023] Open
Abstract
Rarity in reporting whole genome sequence of Dengue virus from dengue endemic countries leaves lacunae in understanding regional pattern of virus mutation and ultimately leading to non-understanding of transmission pattern and clinical outcomes emerging at regional levels. Due to inter-serotype genomic similarity and intra-serotype genomic diversity, appropriate designing of primer pairs appears as an exhaustive exercise. Present paper reports new Dengue virus type-specific primer which may help in characterizing virus specific to Asian origin. Genomes of dengue virus serotypes of Asian region were searched and using advanced bioinformatics tools, serotype specific primers were designed and tested for their targeted amplification efficiency. 19 primers sets for DENV-1, 18 primer sets for DENV-2, 17 for DENV-3 and 18 for DENV-4 were designed. In-silico and experimental testing of the designed primers were performed on virus isolated from both clinical isolates and passaged cultures. While all 17 and 18 primer sets of DENV-3 and DENV-2 respectively yielded good quality sequencing results; in case of DENV-4, 16 out of 18 primer sets and in DENV-1, 16 out of 19 primer sets yielded good results. Average sequencing read length was 382 bases and around 82% nucleotide bases were Phred quality QV20 bases (representing an accuracy of circa one miscall every 100 bases) or higher. Results also highlighted importance of use of primer development algorithm and identified genomic regions which are conservative, yet specific for developing primers to achieve efficiency and specificity during experiments.
Collapse
Affiliation(s)
- Ajay Prakash Joshi
- Desert Medicine Research Centre, Indian Council of Medical research, Jodhpur, India-342005
| | - Annette Angel
- Desert Medicine Research Centre, Indian Council of Medical research, Jodhpur, India-342005
| | - Bennet Angel
- Desert Medicine Research Centre, Indian Council of Medical research, Jodhpur, India-342005.,Present Address: Amity Institute of Virology & Immunology (AIVI), Amity University, Noida, U.P., India- 201313
| | - Rajendra Kumar Baharia
- Desert Medicine Research Centre, Indian Council of Medical research, Jodhpur, India-342005.,Present Address: National Institute of Malaria Research, Secotr-8, Dwarika, New Delhi -110077
| | - Suman Rathore
- Desert Medicine Research Centre, Indian Council of Medical research, Jodhpur, India-342005.,All India Institute of Medical Sciences, Jodhpur, India
| | - Neha Sharma
- Desert Medicine Research Centre, Indian Council of Medical research, Jodhpur, India-342005
| | - Karuna Yadav
- Desert Medicine Research Centre, Indian Council of Medical research, Jodhpur, India-342005
| | - Sharad Thanvi
- Department of Neuroscience, Dr. SN Medical College, Jodhpur, India-342001
| | - Indu Thanvi
- Department of Medicine, Dr. SN Medical College, Jodhpur, India-342001
| | - Vinod Joshi
- Desert Medicine Research Centre, Indian Council of Medical research, Jodhpur, India-342005.,Present Address: Amity Institute of Virology & Immunology (AIVI), Amity University, Noida, U.P., India- 201313
| |
Collapse
|
11
|
Tan KK, Zulkifle NI, Sulaiman S, Pang SP, NorAmdan N, MatRahim N, Abd-Jamil J, Shu MH, Mahadi NM, AbuBakar S. Emergence of the Asian lineage dengue virus type 3 genotype III in Malaysia. BMC Evol Biol 2018; 18:58. [PMID: 29699483 PMCID: PMC5921268 DOI: 10.1186/s12862-018-1175-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 04/11/2018] [Indexed: 01/16/2023] Open
Abstract
Background Dengue virus type 3 genotype III (DENV3/III) is associated with increased number of severe infections when it emerged in the Americas and Asia. We had previously demonstrated that the DENV3/III was introduced into Malaysia in the late 2000s. We investigated the genetic diversity of DENV3/III strains recovered from Malaysia and examined their phylogenetic relationships against other DENV3/III strains isolated globally. Results Phylogenetic analysis revealed at least four distinct DENV3/III lineages. Two of the lineages (DENV3/III-B and DENV3/III-C) are current actively circulating whereas the DENV3/III-A and DENV3/III-D were no longer recovered since the 1980s. Selection pressure analysis revealed strong evidence of positive selection on a number of amino acid sites in PrM, E, NS1, NS2a, NS2b, NS3, NS4a, and NS5. The Malaysian DENV3/III isolates recovered in the 1980s (MY.59538/1987) clustered into DENV3/III-B, which was the lineage with cosmopolitan distribution consisting of strains actively circulating in the Americas, Africa, and Asia. The Malaysian isolates recovered after the 2000s clustered within DENV3/III-C. This DENV3/III-C lineage displayed a more restricted geographical distribution and consisted of isolates recovered from Asia, denoted as the Asian lineage. Amino acid variation sites in NS5 (NS5–553I/M, NS5–629 T, and NS5–820E) differentiated the DENV3/III-C from other DENV3 viruses. The codon 629 of NS5 was identified as a positively selected site. While the NS5-698R was identified as unique to the genome of DENV3/III-C3. Phylogeographic results suggested that the recent Malaysian DENV3/III-C was likely to have been introduced from Singapore in 2008 and became endemic. From Malaysia, the virus subsequently spread into Taiwan and Thailand in the early part of the 2010s and later reintroduced into Singapore in 2013. Conclusions Distinct clustering of the Malaysian old and new DENV3/III isolates suggests that the currently circulating DENV3/III in Malaysia did not descend directly from the strains recovered during the 1980s. Phylogenetic analyses and common genetic traits in the genome of the strains and those from the neighboring countries suggest that the Malaysian DENV3/III is likely to have been introduced from the neighboring regions. Malaysia, however, serves as one of the sources of the recent regional spread of DENV3/III-C3 within the Asia region. Electronic supplementary material The online version of this article (10.1186/s12862-018-1175-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kim-Kee Tan
- Tropical Infectious Diseases Research and Education Centre (TIDREC), University of Malaya, 50603, Kuala Lumpur, Malaysia.,Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Nurul-Izzani Zulkifle
- Tropical Infectious Diseases Research and Education Centre (TIDREC), University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Syuhaida Sulaiman
- Tropical Infectious Diseases Research and Education Centre (TIDREC), University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Sui-Ping Pang
- Tropical Infectious Diseases Research and Education Centre (TIDREC), University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - NurAsyura NorAmdan
- Tropical Infectious Diseases Research and Education Centre (TIDREC), University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - NorAziyah MatRahim
- Tropical Infectious Diseases Research and Education Centre (TIDREC), University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Juraina Abd-Jamil
- Tropical Infectious Diseases Research and Education Centre (TIDREC), University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Meng-Hooi Shu
- Tropical Infectious Diseases Research and Education Centre (TIDREC), University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Nor Muhammad Mahadi
- Malaysia Genome Institute, Ministry of Science, Technology and Innovation, Jalan Bangi, 43000, Kajang, Selangor, Malaysia
| | - Sazaly AbuBakar
- Tropical Infectious Diseases Research and Education Centre (TIDREC), University of Malaya, 50603, Kuala Lumpur, Malaysia. .,Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
12
|
Shrivastava S, Tiraki D, Diwan A, Lalwani SK, Modak M, Mishra AC, Arankalle VA. Co-circulation of all the four dengue virus serotypes and detection of a novel clade of DENV-4 (genotype I) virus in Pune, India during 2016 season. PLoS One 2018; 13:e0192672. [PMID: 29470509 PMCID: PMC5823370 DOI: 10.1371/journal.pone.0192672] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 01/22/2018] [Indexed: 11/19/2022] Open
Abstract
Dengue is the most common mosquito-borne viral infection in tropical and sub-tropical countries. In recent years, India has reported increased incidences of concurrent infection with multiple serotypes of dengue viruses (DENV). In the present study, we have characterized DENV circulating during a single season of 2016 in Pune, India. A total of 64 serum samples from NS1 ELISA positive dengue patients were used for PCR amplification of CprM region of the viral genome and sequencing. Phylogenetic analysis documented circulation of all the four DENV serotypes with predominance of DENV-2 (40.6%). DENV genotyping classified DENV-1 to Genotype V, DENV-2 to Genotype IV, DENV-3 to Genotype III and DENV-4 to Genotype I. Further analysis revealed emergence of a novel clade (D) of genotype I of DENV-4. Subsequent isolation of three DENV-4 viruses in cell culture followed by complete genome sequence analysis confirmed this observation. Additionally, a new genotype within serotype-4 with >6.7% sequence variation from other genotypes was identified. This first report of significant co-circulation of all the four serotypes in a single outbreak in Pune reconfirms need for molecular monitoring of DENV.
Collapse
Affiliation(s)
- Shubham Shrivastava
- Department of Communicable Diseases, Interactive Research School for Health Affairs, Bharati Vidyapeeth Deemed University, Pune, Maharashtra, India
| | - Divya Tiraki
- Department of Communicable Diseases, Interactive Research School for Health Affairs, Bharati Vidyapeeth Deemed University, Pune, Maharashtra, India
| | - Arundhati Diwan
- Department of Medicine, Bharati Vidyapeeth Deemed University Medical College, Pune, Maharashtra, India
| | - Sanjay K. Lalwani
- Department of Pediatrics, Bharati Vidyapeeth Deemed University Medical College, Pune, Maharashtra, India
| | - Meera Modak
- Department of Microbiology, Bharati Vidyapeeth Deemed University Medical College, Pune, Maharashtra, India
| | - Akhilesh Chandra Mishra
- Department of Communicable Diseases, Interactive Research School for Health Affairs, Bharati Vidyapeeth Deemed University, Pune, Maharashtra, India
| | - Vidya A. Arankalle
- Department of Communicable Diseases, Interactive Research School for Health Affairs, Bharati Vidyapeeth Deemed University, Pune, Maharashtra, India
- * E-mail:
| |
Collapse
|
13
|
Simultaneous detection and serotyping of dengue infection using single tube multiplex CDC Dengue Real-Time RT-PCR from India. Virusdisease 2018; 29:40-45. [PMID: 29607357 DOI: 10.1007/s13337-018-0423-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Accepted: 01/10/2018] [Indexed: 10/18/2022] Open
Abstract
Four antigenically different dengue virus serotypes (DENV-1, DENV-2, DENV-3 and DENV-4) are known to cause infections in humans. Some of these are known to cause more severe disease than the others. Chances for developing Dengue hemorrhagic fever-dengue shock syndrome (DHF-DSS) increases significantly with history of previous infection with one of the four serotypes. Therefore, early diagnosis, serotyping and providing early warning of dengue fever epidemics to concerned authorities becomes very important for better patient outcome and to curb the rapid spread in the community. During the 2014 outbreak, a total of 100 samples from suspected cases of dengue were collected. NS1 antigen based rapid test was used for serological diagnosis. Dengue complex one step reverse transcription-polymerase chain reaction was performed to look for presence of viral RNA. Single tube multiplex RT-PCR was also performed to look for infecting serotype. CDC Dengue Multiplex Real Time PCR assay was performed for rapid diagnosis and simultaneous serotyping of the dengue virus. Out of the 100 samples screened, 69 were found to be positive by NS1Ag Rapid test. 34 samples were found positive by dengue consensus RT-PCR assay. 22 samples were found to be positive by single tube Dengue multiplex RT-PCR assay. Serotype DEN-2 was present in maximum numbers followed by DEN-3. 44 samples were found positive by DENV CDC Multiplex Real time PCR assay. DEN-2 was found in maximum numbers followed by DEN-1. Dengue remains to be an important health problem in India and across the globe. Few serotypes of dengue are more dangerous than the others. Rapid diagnosis and serotyping remains the key for better patient management and prevention of disease spreading in the community. Highly sensitive, specific and rapid CDC real time RT-PCR assay was found to be most promising tool among all available molecular diagnostic methods. This will serve a rapid and reliable simultaneous dengue virus detection as well serotyping assay in near future for rapid identification of dengue suspected sample screening.
Collapse
|
14
|
Waman VP, Kale MM, Kulkarni-Kale U. Genetic diversity and evolution of dengue virus serotype 3: A comparative genomics study. INFECTION GENETICS AND EVOLUTION 2017; 49:234-240. [PMID: 28126562 DOI: 10.1016/j.meegid.2017.01.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 01/14/2017] [Accepted: 01/21/2017] [Indexed: 11/29/2022]
Abstract
Dengue virus serotype 3 (DENV-3), one of the four serotypes of Dengue viruses, is geographically diverse. There are five distinct genotypes (I-V) of DENV-3. Emerging strains and lineages of DENV-3 are increasingly being reported. Availability of genomic data for DENV-3 strains provides opportunity to study its population structure. Complete genome sequences are available for 860 strains of four genotypes (I, II, III and V) isolated worldwide and were analyzed using population genetics and evolutionary approaches to map landscape of genomic diversity. DENV-3 population is observed to be stratified into five major subpopulations. Genotype I and II formed independent subpopulations while genotype III is subdivided into three subpopulations (GIII-a, GIII-b and GIII-c) and is therefore heterogeneous. Genotypes I, II and GIII-a subpopulations comprise of Asian strains whereas GIII-c comprises of American strains. GIII-b subpopulation includes mainly of American strains along with a few strains from Sri Lanka. Genetic admixture is predominantly observed in Sri Lankan strains of genotype III and all strains of genotype V. Inter-genotype recombination was observed to occur in non-structural region of several Asian strains whereas extent of recombination was limited in American strains. Significant positive selection was found to be operational on all genes and observed to be the main driving force of genetic diversity. Positive selection was strongly operational on the branches leading to Asian genotypes and helped to delineate the genetic differences between Asian and American lineages. Thus, inter-genotype recombination, migration and adaptive evolution are the major determinants of evolution of DENV-3.
Collapse
Affiliation(s)
- Vaishali P Waman
- Bioinformatics Centre, Savitribai Phule Pune University (formerly University of Pune), Pune 411007, Maharashtra, India
| | - Mohan M Kale
- Department of Statistics, Savitribai Phule Pune University (formerly University of Pune), Pune 411007, Maharashtra, India
| | - Urmila Kulkarni-Kale
- Bioinformatics Centre, Savitribai Phule Pune University (formerly University of Pune), Pune 411007, Maharashtra, India.
| |
Collapse
|
15
|
First study of complete genome of Dengue-3 virus from Rajasthan, India: genomic characterization, amino acid variations and phylogenetic analysis. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.virep.2016.05.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Sharma P, Mittal V, Chhabra M, Kumari R, Singh P, Bhattacharya D, Venkatesh S, Rai A. Molecular characterization of DENV-3 circulating during the post-monsoon period of 2013-14 in Delhi, India. Virol Sin 2015; 30:464-9. [PMID: 26676940 DOI: 10.1007/s12250-015-3649-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Affiliation(s)
- Pankaj Sharma
- Division of Zoonosis, National Centre for Disease Control, Delhi, 110054, India
| | - Veena Mittal
- Division of Zoonosis, National Centre for Disease Control, Delhi, 110054, India.
| | - Mala Chhabra
- Division of Zoonosis, National Centre for Disease Control, Delhi, 110054, India
| | - Roop Kumari
- Centre for Medical Entomology and Vector Management, National Centre for Disease Control, Delhi, 110054, India
| | - Priyanka Singh
- Division of Biotechnology, National Centre for Disease Control, Delhi, 110054, India
| | - Dipesh Bhattacharya
- Division of Zoonosis, National Centre for Disease Control, Delhi, 110054, India
| | - Srinivas Venkatesh
- Division of Zoonosis, National Centre for Disease Control, Delhi, 110054, India
- Centre for Medical Entomology and Vector Management, National Centre for Disease Control, Delhi, 110054, India
- Division of Biotechnology, National Centre for Disease Control, Delhi, 110054, India
| | - Arvind Rai
- Division of Biotechnology, National Centre for Disease Control, Delhi, 110054, India
| |
Collapse
|
17
|
Afreen N, Naqvi IH, Broor S, Ahmed A, Parveen S. Phylogenetic and Molecular Clock Analysis of Dengue Serotype 1 and 3 from New Delhi, India. PLoS One 2015; 10:e0141628. [PMID: 26536458 PMCID: PMC4633233 DOI: 10.1371/journal.pone.0141628] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Accepted: 10/01/2015] [Indexed: 11/21/2022] Open
Abstract
Dengue fever is the most prevalent arboviral disease in the tropical and sub-tropical regions of the world. The present report describes molecular detection and serotyping of dengue viruses in acute phase blood samples collected from New Delhi, India. Phylogenetic and molecular clock analysis of dengue virus serotype 1 and 3 strains were also investigated. Dengue virus infection was detected in 68.87% out of 604 samples tested by RT-PCR between 2011 & 2014. Dengue serotype 1 was detected in 25.48% samples, dengue serotype 2 in 79.56% samples and dengue serotype 3 in 11.29% samples. Dengue serotype 4 was not detected. Co-infection by more than one dengue serotype was detected in 18.26% samples. Envelope gene of 29 DENV-1 and 14 DENV-3 strains were sequenced in the study. All the DENV-1 strains grouped with the American African genotype. All DENV-3 strains were found to belong to Genotype III. Nucleotide substitution rates of dengue 1 and 3 viruses were determined in the study. Time to the most recent common ancestor (TMRCA) of dengue 1 viruses was determined to be 132 years. TMRCA of DENV-3 viruses was estimated to be 149 years. Bayesian skyline plots were constructed for Indian DENV-1 and 3 strains which showed a decrease in population size since 2005 in case of DENV- 1 strains while no change was observed in recent years in case of DENV-3 strains. The study also revealed a change in the dominating serotype in Delhi, India in recent years. The study will be helpful in formulating control strategies for the outbreaks. In addition, it will also assist in tracking the movement and evolution of this emerging virus.
Collapse
Affiliation(s)
- Nazia Afreen
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Irshad H. Naqvi
- Dr. M.A. Ansari Health Centre, Jamia Millia Islamia, New Delhi, India
| | - Shobha Broor
- Department of Microbiology, Faculty of Medicine and Health Science, Shree Guru Gobind Singh Tricentenary University, Gurgaon, Haryana, India
| | - Anwar Ahmed
- Protein Research Chair, Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Shama Parveen
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
18
|
Liang W, He X, Liu G, Zhang S, Fu S, Wang M, Chen W, He Y, Tao X, Jiang H, Lin X, Gao X, Hu W, Liu Y, Feng L, Cao Y, Yang G, Jing C, Liang G, Wang H. Distribution and phylogenetic analysis of Culex flavivirus in mosquitoes in China. Arch Virol 2015; 160:2259-68. [PMID: 26118548 DOI: 10.1007/s00705-015-2492-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 06/10/2015] [Indexed: 12/11/2022]
Abstract
Culex flavivirus (CxFV) is an insect-specific virus of the genus Flavivirus. CxFV strains have been isolated from Cx. pipiens, Cx. quinquefasciatus, and other Cx. species in Asia, Africa, North America, Central America and South America. CxFV was isolated for the first time in China in 2006. As this is a novel flavivirus, we explored the distribution and genetic characteristics of Culex flavivirus in China. A total of 46,649 mosquitoes were collected in seven provinces between 2004 and 2012 and were analysed in 871 pools. 29 CxFV RNAs from Cx. pipiens, Cx. tritaeniorhynchus, Anopheles Sinensis, and Culex spp. tested positive for CxFV in real-time RT-PCR. 6 CxFV strains were isolated from Cx. species collected in Shandong, Henan, and Shaanxi provinces, while no virus or viral RNA was detected in samples from Sichuan, Chongqing, Hubei, and Fujian. Phylogenetic analysis of the envelope gene indicated that Chinese strains formed a robust subgroup of genotype 1, together with viruses from the United States and Japan. This study demonstrates that the geographic distribution of CxFV in China is widespread, but geographical boundaries to spread are apparent. Our findings suggest that CxFV can infect various mosquito species in nature.
Collapse
Affiliation(s)
- Wenkai Liang
- Department to Epidemiology, School of Medicine, Jinan University, Guangzhou, Guangdong, 510000, People's Republic of China,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Lineage shift of dengue virus in Eastern India: an increased implication for DHF/DSS. Epidemiol Infect 2014; 143:1599-605. [PMID: 25314901 DOI: 10.1017/s0950268814002751] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dengue fever, a mosquito-borne viral disease, has become a major public health problem with marked expansion in recent decades. Dengue has now become hyperendemic in India with co-circulation of all the four serotypes. Herein, we report an unprecedented outbreak which occurred during August to October 2011 in Odisha, eastern India. This is the first report of a large epidemic in Odisha. Detailed serological and molecular investigation was carried out to identify the aetiology. Almost half of the samples were found to be dengue antigen (NS1) positive. Further molecular assays revealed circulation of mixed dengue serotypes (DENV-2 and DENV-3). Cosmopolitan genotype of DENV-2 and -3 were identified as the aetiology by phylogenetic analysis. Interestingly, a new lineage of DENV-3 within cosmopolitan genotype was incriminated in this outbreak. The emergence of the unprecedented magnitude of the dengue outbreak with the involvement of a novel lineage of DENV in a newer state of India is a major cause for concern. There is an urgent need to monitor phylodynamics of dengue viruses in other endemic areas.
Collapse
|
20
|
Dash PK, Sharma S, Soni M, Agarwal A, Sahni AK, Parida M. Complete genome sequencing and evolutionary phylogeography analysis of Indian isolates of Dengue virus type 1. Virus Res 2014; 195:124-34. [PMID: 25197040 DOI: 10.1016/j.virusres.2014.08.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 08/22/2014] [Accepted: 08/27/2014] [Indexed: 12/31/2022]
Abstract
Dengue is now hyper-endemic in most parts of south and southeast Asia including India. The northern India particularly national capital New Delhi witnessed major Dengue outbreaks with Dengue virus type 1 (DENV-1) as the dominant serotype since last five years. This study was initiated to decipher the complete genome information of recently circulating DENV-1 (2009-2011) along with the prototype Indian DENV-1, isolated in 1956. Further extensive ML phylogenetic and Bayesian phylogeography analysis was carried out to investigate the evolution of this virus and understand its spatiotemporal diffusion across the globe. The complete genome analysis revealed deletion of a unique 21-nucleotide stretch in the 3' un-translated region of recent Indian DENV-1. The north Indian DENV-1 revealed up to 5.2% nucleotide sequence difference compared to recent isolates from southern India. Selection pressure analysis revealed positive selection in few amino acid sites of both structural and non-structural proteins. The molecular phylogeny classified the Indian DENV-1 into genotype III, which is also known as cosmopolitan genotype. The northern and southern Indian DENV-1 were grouped into distinct clades. The molecular clock analysis estimated a mean evolutionary rate of 7.08×10(-4) substitutions/site/year for cosmopolitan genotype. The phylogeography analysis revealed that the cosmopolitan genotype DENV-1 originated ∼1938 in India and subsequently spread globally. The diffusion of virus from India to Caribbean and South America was confirmed through SPREAD analysis. This study also confirmed the temporal displacement of different clades of DENV-1 in India over last five decades.
Collapse
Affiliation(s)
- Paban Kumar Dash
- Division of Virology, Defence R&D Establishment (DRDE), Jhansi Road, Gwalior 474002, MP, India.
| | - Shashi Sharma
- Division of Virology, Defence R&D Establishment (DRDE), Jhansi Road, Gwalior 474002, MP, India
| | - Manisha Soni
- Division of Virology, Defence R&D Establishment (DRDE), Jhansi Road, Gwalior 474002, MP, India
| | - Ankita Agarwal
- Division of Virology, Defence R&D Establishment (DRDE), Jhansi Road, Gwalior 474002, MP, India
| | - Ajay Kumar Sahni
- Department of Microbiology & Pathology, Army Research & Referral (R&R) Hospital, Delhi Cantt, Delhi, India
| | - Manmohan Parida
- Division of Virology, Defence R&D Establishment (DRDE), Jhansi Road, Gwalior 474002, MP, India
| |
Collapse
|
21
|
Koo C, Nasir A, Hapuarachchi HC, Lee KS, Hasan Z, Ng LC, Khan E. Evolution and heterogeneity of multiple serotypes of Dengue virus in Pakistan, 2006-2011. Virol J 2013; 10:275. [PMID: 24007412 PMCID: PMC3844417 DOI: 10.1186/1743-422x-10-275] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 08/30/2013] [Indexed: 11/16/2022] Open
Abstract
Background Even though dengue has been recognized as one of the major public health threats in Pakistan, the understanding of its molecular epidemiology is still limited. The genotypic diversity of Dengue virus (DENV) serotypes involved in dengue outbreaks since 2005 in Pakistan is not well studied. Here, we investigated the origin, diversity, genetic relationships and geographic distribution of DENV to understand virus evolution during the recent expansion of dengue in Pakistan. Methods The study included 200 sera obtained from dengue-suspected patients from 2006 to 2011. DENV infection was confirmed in 94 (47%) sera by a polymerase chain reaction assay. These included 36 (38.3%) DENV-2, 57 DENV-3 (60.6%) and 1 DENV-4 (1.1%) cases. Sequences of 13 whole genomes (6 DENV-2, 6 DENV-3 and 1 DENV-4) and 49 envelope genes (26 DENV-2, 22 DENV-3 and 1 DENV-4) were analysed to determine the origin, phylogeny, diversity and selection pressure during virus evolution. Results DENV-2, DENV-3 and DENV-4 in Pakistan from 2006 to 2011 shared 98.5-99.6% nucleotide and 99.3-99.9% amino acid similarity with those circulated in the Indian subcontinent during the last decade. Nevertheless, Pakistan DENV-2 and DENV-3 strains formed distinct clades characterized by amino acid signatures of NS2A-I116T + NS5-K861R and NS3-K590R + NS5-S895L respectively. Each clade consisted of a heterogenous virus population that circulated in Southern (2006–2009) and Northern Pakistan (2011). Conclusions DENV-2, DENV-3 and DENV-4 that circulated during 2006–2011 are likely to have first introduced via the southern route of Pakistan. Both DENV-2 and DENV-3 have undergone in-situ evolution to generate heterogenous populations, possibly driven by sustained local DENV transmission during 2006–2011 periods. While both DENV-2 and DENV-3 continued to circulate in Southern Pakistan until 2009, DENV-2 has spread in a Northern direction to establish in Punjab Province, which experienced a massive dengue outbreak in 2011.
Collapse
Affiliation(s)
- Carmen Koo
- Environmental Health Institute, National Environment Agency, [as part of its work as a] WHO Collaborating Centre for Reference and Research of Arbovirus and their Associated Vectors, 11, Biopolis Way, #06-05-08, 138667 Singapore, Singapore.
| | | | | | | | | | | | | |
Collapse
|
22
|
Dash PK, Sharma S, Soni M, Agarwal A, Parida M, Rao PVL. Complete genome sequencing and evolutionary analysis of Indian isolates of Dengue virus type 2. Biochem Biophys Res Commun 2013; 436:478-85. [PMID: 23756811 DOI: 10.1016/j.bbrc.2013.05.130] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 05/30/2013] [Indexed: 11/16/2022]
Abstract
Dengue is the most important arboviral infection of global public health significance. It is now endemic in most parts of the South East Asia including India. Though Dengue virus type 2 (DENV-2) is predominantly associated with major outbreaks in India, complete genome information of Indian DENV-2 is not available. In this study, the full-length genome of five DENV-2 isolates (four from 2001 to 2011 and one from 1960), from different parts of India was determined. The complete genome of the Indian DENV-2 was found to be 10,670 bases long with an open reading frame coding for 3391 amino acids. The recent Indian DENV-2 (2001-2011) revealed a nucleotide sequence identity of around 90% and 97% with an older Indian DENV-2 (1960) and closely related Sri Lankan and Chinese DENV-2 respectively. Presence of unique amino acid residues and non-conservative substitutions in critical amino acid residues of major structural and non-structural proteins was observed in recent Indian DENV-2. Selection pressure analysis revealed positive selection in few amino acid sites of the genes encoding for structural and non-structural proteins. The molecular phylogenetic analysis based on comparison of both complete coding region and envelope protein gene with globally diverse DENV-2 viruses classified the recent Indian isolates into a unique South Asian clade within Cosmopolitan genotype. A shift of genotype from American to Cosmopolitan in 1970s characterized the evolution of DENV-2 in India. Present study is the first report on complete genome characterization of emerging DENV-2 isolates from India and highlights the circulation of a unique clade in South Asia.
Collapse
Affiliation(s)
- Paban Kumar Dash
- Division of Virology, Defence R&D Establishment, Jhansi Road, Gwalior, MP 474002, India.
| | | | | | | | | | | |
Collapse
|
23
|
Das B, Das M, Dwibedi B, Kar SK, Hazra RK. Molecular investigations of dengue virus during outbreaks in Orissa state, Eastern India from 2010 to 2011. INFECTION GENETICS AND EVOLUTION 2013; 16:401-10. [PMID: 23523598 DOI: 10.1016/j.meegid.2013.03.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 03/01/2013] [Accepted: 03/09/2013] [Indexed: 11/26/2022]
Abstract
Dengue is one of the most important arboviral diseases in India. Orissa state in Eastern India reported the first dengue outbreak in 2010, followed by extensive outbreaks in 2011, affecting large number of people. Detailed entomological, serological and phylogenetic investigations were performed in mosquitoes and patients serum collected from dengue virus (DENV) affected areas of Orissa. The combination of DENV specific IgM capture-ELISA and reverse-transcription PCR (RT-PCR) detected high DENV positivity in serum samples. DENV was detected in mosquitoes reared from field caught pupae by RT-PCR, which confirmed the vertical transmission of DENV that may have an important role in the recurrence of dengue outbreaks. Phylogenetic analyses revealed the circulation of Indian lineage of DENV-2 (genotype-IV) and DENV-3 (genotype-III) in vectors and patients serum in Orissa from 2010 to 2011, DENV-2 being the prevailing serotype. Selection analyses within the C-prM region showed that the emergence of DENV-2 and DENV-3 in Orissa was constrained by purifying selection which suggested the role of ecological factors like mosquito density and behavior in the recurrent outbreaks. Aedes albopictus was found to be the most abundant vector in the areas surveyed, followed by Aedes aegypti. Indoor breeding spots (earthen pots) were most abundant, with high pupal productivity (38.50) and contributed maximum Aedes species in the affected areas. The DENV infection rate estimated by maximum likelihood estimate (MLE) was high for indoor breeding Aedes (4.87; 95% CI: 1.82, 10.78) in comparison to outdoor breeding Aedes (1.55; 95% CI: 0.09, 7.55). The high MLE in Ae. albopictus (4.72; 95% CI: 1.94, 9.80) in comparison to Ae. aegypti (1.55; 95% CI: 0.09, 7.54) indicated that Ae. albopictus was the main DENV vector responsible for the outbreaks. The results indicated the circulation of two virulent serotypes of DENV in Orissa, mainly by Ae. albopictus with the implication for implementation of intradomecile vector control measures to prevent the spread of dengue.
Collapse
Affiliation(s)
- Biswadeep Das
- Regional Medical Research Center, Bhubaneswar, Orissa 751023, India
| | | | | | | | | |
Collapse
|
24
|
Chen YY, Lin JW, Fan YC, Tu WC, Chang GJJ, Chiou SS. First detection of the Africa/Caribbean/Latin American subtype of Culex flavivirus in Asian country, Taiwan. Comp Immunol Microbiol Infect Dis 2013; 36:387-96. [PMID: 23466196 DOI: 10.1016/j.cimid.2013.02.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 02/01/2013] [Accepted: 02/04/2013] [Indexed: 11/26/2022]
Abstract
Culex flavivirus (CxFV), a member of the genus flavivirus, is a novel insect-specific flaviviruses that can be divided into two subtypes, the cytopathic Asia/U.S. and the noncytopathic Africa/Caribbean/Latin American subtypes. The CxFV circulates in several Asian countries, and here we conducted the first study investigating CxFV in Taiwan. A total of 14,016 mosquitoes were collected between 2010 and 2012 and 3.4% (6/179) of the pools were CxFV-positive. The phylogenetic analyses indicate that the Taiwan isolates are closely related to the Africa/Caribbean/Latin American subtype, but form an independent cluster. In the cytology experiments, the CxFV Taiwan isolate infected only mosquito cells and caused cell-cell fusion that might be associated with a unique glycine residue at position 117 within the envelope protein, which is shared with the cytopathic effect-causing Asia/US subtype. This study marks the first time the Africa/Caribbean/Latin American subtype of CxFV has been identified in an Asian country and grouped into a novel cluster.
Collapse
Affiliation(s)
- Yi-Ying Chen
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | | | | | | | | | | |
Collapse
|
25
|
Liang H, Luo L, Yang Z, Di B, Bai Z, He P, Jing Q, Zheng X. Re-emergence of dengue virus type 3 in Canton, China, 2009-2010, associated with multiple introductions through different geographical routes. PLoS One 2013; 8:e55353. [PMID: 23405138 PMCID: PMC3566136 DOI: 10.1371/journal.pone.0055353] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 12/27/2012] [Indexed: 11/19/2022] Open
Abstract
Background Endemic dengue virus type 3 (DENV-3) infections have not been reported in Canton, China, since 1980. In March 2009, DENV-3 was isolated for the second time, occurring about 30 years after the previous circulation. In August, 3 other cases emerged. One much larger outbreak occurred again in 2010. To address the origin and particularly to determine whether the outbreaks were caused by the same viral genotype, we investigated the epidemiological and molecular characteristics of the introduction, spread and genetic microevolution of DENV-3 involved. Methodology/Principal Findings Three imported cases (index-1,2,3) separately traveled back from Vietnam, India and Tanzania, resulted in 1, 3 and 60 secondary autochthonous cases, respectively. In autochthonous cases, 64.6% positive in IgM anti-DENV and 18.6% in IgG from a total of 48 submitted serum samples, accompanied by 7 DENV-3 isolates. With 99.8%, 99.7%, and 100% envelope gene nucleotidic identity, 09/GZ/1081 from index-1 and endemic strain (09/GZ/1483) belonged to genotype V; 09/GZ/10616 from index-2 and endemic strains (09/GZ/11144 and 09/GZ/11194) belonged to genotype III Clade-A; and 10/GZ/4898 from index-3 and all four 2010 endemic DENV-3 strains belonged to genotype III Clade-B, respectively. Conclusions/Significance Both epidemiological and phylogenetic analyses showed that the 2010 outbreak of dengue was not a reemergence of the 2009 strain. Introductions of different genotypes following more than one route were important contributory factors for the 2009–2010 dengue epidemics/outbreaks in Canton. These findings underscore the importance of early detection and case management of imported case in preventing large-scale dengue epidemics among indigenous peoples of Canton.
Collapse
Affiliation(s)
- Huiying Liang
- Department of Primary Public Health, Canton Center for Disease Control and Prevention, Canton, Guangdong Province, People’s Republic of China
| | - Lei Luo
- Department of Communicable Disease Control and Prevention, Canton Center for Disease Control and Prevention, Canton, Guangdong Province, People’s Republic of China
| | - Zhicong Yang
- Department of Communicable Disease Control and Prevention, Canton Center for Disease Control and Prevention, Canton, Guangdong Province, People’s Republic of China
- * E-mail:
| | - Biao Di
- Department of Communicable Disease Control and Prevention, Canton Center for Disease Control and Prevention, Canton, Guangdong Province, People’s Republic of China
| | - Zhijun Bai
- Department of Communicable Disease Control and Prevention, Canton Center for Disease Control and Prevention, Canton, Guangdong Province, People’s Republic of China
| | - Peng He
- Department of Communicable Disease Control and Prevention, Canton Center for Disease Control and Prevention, Canton, Guangdong Province, People’s Republic of China
| | - Qinlong Jing
- Department of Communicable Disease Control and Prevention, Canton Center for Disease Control and Prevention, Canton, Guangdong Province, People’s Republic of China
| | - Xueli Zheng
- School of Public Health and Tropical Medicine, Southern Medical University, Canton, Guangdong Province, People’s Republic of China
| |
Collapse
|
26
|
Manakkadan A, Joseph I, Prasanna RR, Kunju RI, Kailas L, Sreekumar E. Lineage shift in Indian strains of Dengue virus serotype-3 (Genotype III), evidenced by detection of lineage IV strains in clinical cases from Kerala. Virol J 2013; 10:37. [PMID: 23360780 PMCID: PMC3598737 DOI: 10.1186/1743-422x-10-37] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 01/25/2013] [Indexed: 11/23/2022] Open
Abstract
Background Local epidemiology of Dengue is defined by the genetic diversity of the circulating Dengue virus (DENV) strains. This important information is not available for the virus strains from most parts of the Indian subcontinent. The present study focused on the genetic diversity of the serotype 3 DENV strains (DENV-3) from India. Results A total of 22 DENV-3 strains identified by reverse-transcription PCR analysis of serum samples from 709 patients were studied. These samples were collected over a period of 4 years (2008–2011) from dengue fever suspected patients from Kerala, a dengue endemic state in South India. Comparison of a 1740bp nucleotide sequence of the viral Capsid-Pre-membrane-Envelope coding region of our strains and previously reported DENV-3 strains from India, South Asia and South America revealed non-synonymous substitutions that were genotype III-specific as well as sporadic. Evidence of positive selection was detected in the I81 amino acid residue of the envelope protein. Out of the 22 samples, three had I81A and 18 had I81V substitutions. In the phylogenetic analysis by maximum likelihood method the strains from Kerala clustered in two different lineages (lineage III and IV) within genotype III clade of DENV-3 strains. The ten strains that belonged to lineage IV had a signature amino acid substitution T219A in the envelope protein. Interestingly, all these strains were found to be closely related to a Singapore strain GU370053 isolated in 2007. Conclusions Our study identifies for the first time the presence of lineage IV strains in the Indian subcontinent. Results indicate the possibility of a recent exotic introduction and also a shift from the existing lineage III strains to lineage IV. Lineage shifts in DENV-3 strains have been attributed to dramatic increase in disease severity in many parts of the world. Hence the present observation could be significant in terms of the clinical severity of future dengue cases in the region.
Collapse
Affiliation(s)
- Anoop Manakkadan
- Viral Disease Biology Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | | | | | | | | | | |
Collapse
|
27
|
Patil JA, Cherian S, Walimbe AM, Bhagat A, Vallentyne J, Kakade M, Shah PS, Cecilia D. Influence of evolutionary events on the Indian subcontinent on the phylogeography of dengue type 3 and 4 viruses. INFECTION GENETICS AND EVOLUTION 2012; 12:1759-69. [PMID: 22890284 DOI: 10.1016/j.meegid.2012.07.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 07/12/2012] [Accepted: 07/15/2012] [Indexed: 11/19/2022]
Abstract
During 1960-80 dengue disease profile in India was mild despite circulation of all four serotypes of dengue virus (DENV). Increase in disease severity with a concomitant change in the population of DENV-1 and 2 have been reported since then. To determine population dynamics of DENV-3 and 4, the envelope (E) gene sequence was determined for 16 Indian isolates of DENV-3 and 11 of DENV-4 and analyzed together with 97 DENV-3 and 43 DENV-4 global sequences. All Indian DENV-3 isolates belonged to genotype III, lineages C, D, E and F. Lineage F was newly identified and represented non-circulating viruses. Three non-conservative amino acid changes in domain I, II & III were identified during the transition from lineages F/E, associated with mild disease, to A-D, associated with severe disease. For DENV-4, the current viruses clustered in genotype I, lineage C, whilst the isolates from 1960s formed the new genotype V. A 1979 Indian isolate of DENV-4 was found to be an inter-genotypic recombinant of Sri Lankan isolate (1978) of genotype I and Indian isolate (1961) of genotype V. The rates of nucleotide substitution and time to the most recent common ancestor (tMRCA) estimated for DENV-3 (1782-1934) and DENV-4 (1719-1931) were similar to earlier reports. However, the divergence time for genotype III of DENV-3, 1938-1963, was a more accurate estimate with the inclusion of Indian isolates from the 1960s. By phylogeographical analysis it was revealed that DENV-3 GIII viruses emerged from India and evolved through Sri Lanka whilst DENV-4 emerged and dispersed from India. The present study demonstrates the crucial role that India/Sri Lanka have played in the evolution and dispersion of the major genotypes, GIII of DENV-3 and GI of DENV-4 which are more virulent and show higher dissemination potential.
Collapse
Affiliation(s)
- J A Patil
- Dengue Group, National Institute of Virology, 20-A, Dr Ambedkar Road, PO Box No 11, Pune 411001, Maharashtra State, India
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Anoop M, Mathew AJ, Jayakumar B, Issac A, Nair S, Abraham R, Anupriya MG, Sreekumar E. Complete genome sequencing and evolutionary analysis of dengue virus serotype 1 isolates from an outbreak in Kerala, South India. Virus Genes 2012; 45:1-13. [PMID: 22729802 DOI: 10.1007/s11262-012-0756-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 05/05/2012] [Indexed: 11/26/2022]
Abstract
In this study, dengue virus (DENV) isolates from a localized, small-scale, non-seasonal dengue outbreak were genetically characterized. The outbreak occurred during the pre-monsoon months (April-May) in a medical college campus in Kerala, South India in 2009 affecting 76 people. Analysis of 39 viral RNA positive serum samples by a serotype specific reverse-transcription polymerase chain reaction identified dengue virus serotype 1 (DENV1) as the causative strain. Formation of a distinct genetic clade was revealed in the initial phylogenetic analysis using nucleotide sequences of a partial (303 bp) Capsid-Pre-membrane protein (C-PrM) coding region of 37 outbreak strains. The sequences of these strains clustered with that of the Genotype III DENV-1 strains from India, and 32 among them formed a single major sub-clade. Whole-genome sequencing (10,693 bp) of two strains (RGCB585/2009 and RGCB592/2009) selected from this major sub-clade, and subsequent phylogenetic analysis using the full-length coding region sequence showed that the sequences grouped with that of the isolates from Thailand (1980), Comoros (1993), Singapore (1993), and Brunei (2005) among the Indo-Pacific isolates. The sequences of the two strains had a nucleotide identity of 97-98 % and an amino acid identity of 98-99 % with these closely related strains. Maximum amino acid similarity was shown with the Singapore 8114/93 isolate (99.6 %). Four mutations-L46M in the capsid, D278N in the NS1, L123I, and L879S in the NS5 protein coding regions-were seen as signature substitutions uniformly in RGCB585/2009 and RGCB592/2009; in another isolate from Kerala (RGCB419/2008) and in the Brunei isolate (DS06-210505). These four isolates also had in common a 21-nucleotide deletion in the hyper-variable region of the 3'-non-translated region. This first report on the complete genome characterization of DENV-1 isolates from India reveals a dengue outbreak caused by a genetically different viral strain. The results point to the possibility of exotic introduction of these circulating viral strains in the region.
Collapse
Affiliation(s)
- M Anoop
- Rajiv Gandhi Centre for Biotechnology, Thycaud PO, Thiruvananthapuram, 695014 Kerala, India
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Co-circulation of two genotypes of dengue virus serotype 3 in Guangzhou, China, 2009. Virol J 2012; 9:125. [PMID: 22721418 PMCID: PMC3463466 DOI: 10.1186/1743-422x-9-125] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Accepted: 06/14/2012] [Indexed: 11/14/2022] Open
Abstract
Dengue is emerging as the most important mosquito borne viral disease in the world. In mainland China, sporadic and large outbreaks of dengue illness caused by the four serotypes of dengue virus (DENV-1 to DENV-4) have been well documented. Guangdong province is the major affected area in China, and DENV-1 has dominantly circulated in Guangdong for a long time. In this study, a family cluster of DENV-3 infection in Guangzhou was described. Three cases were diagnosed as dengue fever based on clinical manifestation, serological and RT-PCR assays. Two DENV-3 strains were isolated in C6/36 cells and the complete genome sequences were determined. Phylogenetic analysis revealed that the new DENV-3 isolates from the family cluster were grouped within genotype III. Considering the fact that several DENV-3 strains within genotype V were also identified in Guangzhou in 2009, at least two genotypes of DENV-3 co-circulated in Guangzhou. Careful investigation and virological analysis should be warranted in the future.
Collapse
|
30
|
Alfonso HL, Amarilla AA, Gonçalves PF, Barros MT, de Almeida FT, Silva TR, da Silva EV, Nunes MT, Vasconcelos PFC, Vieira DS, Batista WC, Bobadilla ML, Vazquez C, Moran M, Figueiredo LTM, Aquino VH. Phylogenetic relationship of dengue virus type 3 isolated in Brazil and Paraguay and global evolutionary divergence dynamics. Virol J 2012; 9:124. [PMID: 22716071 PMCID: PMC3494512 DOI: 10.1186/1743-422x-9-124] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 05/31/2012] [Indexed: 11/10/2022] Open
Abstract
Background Dengue is the most important mosquito-borne viral disease worldwide. Dengue virus comprises four antigenically related viruses named dengue virus type 1 to 4 (DENV1-4). DENV-3 was re-introduced into the Americas in 1994 causing outbreaks in Nicaragua and Panama. DENV-3 was introduced in Brazil in 2000 and then spread to most of the Brazilian States, reaching the neighboring country, Paraguay in 2002. In this study, we have analyzed the phylogenetic relationship of DENV-3 isolated in Brazil and Paraguay with viruses isolated worldwide. We have also analyzed the evolutionary divergence dynamics of DENV-3 viruses. Results The entire open reading frame (ORF) of thirteen DENV-3 isolated in Brazil (n = 9) and Paraguay (n = 4) were sequenced for phylogenetic analysis. DENV-3 grouped into three main genotypes (I, II and III). Several internal clades were found within each genotype that we called lineage and sub-lineage. Viruses included in this study belong to genotype III and grouped together with viruses isolated in the Americas within the lineage III. The Brazilian viruses were further segregated into two different sub-lineage, A and B, and the Paraguayan into the sub-lineage B. All three genotypes showed internal grouping. The nucleotide divergence was in average 6.7% for genotypes, 2.7% for lineages and 1.5% for sub-lineages. Phylogenetic trees constructed with any of the protein gene sequences showed the same segregation of the DENV-3 in three genotypes. Conclusion Our results showed that two groups of DENV-3 genotypes III circulated in Brazil during 2002–2009, suggesting different events of introduction of the virus through different regions of the country. In Paraguay, only one group DENV-3 genotype III is circulating that is very closely related to the Brazilian viruses of sub-lineage B. Different degree of grouping can be observed for DENV-3 and each group showed a characteristic evolutionary divergence. Finally, we have observed that any protein gene sequence can be used to identify the virus genotype.
Collapse
Affiliation(s)
- Helda Liz Alfonso
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Universidade de São Paulo, Av, do Café s/n., 14040-903, Ribeirão Preto, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Chakravarti A, Arora R, Luxemburger C. Fifty years of dengue in India. Trans R Soc Trop Med Hyg 2012; 106:273-82. [PMID: 22357401 DOI: 10.1016/j.trstmh.2011.12.007] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 12/21/2011] [Accepted: 12/23/2011] [Indexed: 11/19/2022] Open
Abstract
Dengue is the most important mosquito-borne, human viral disease in many tropical and sub-tropical areas. In India the disease has been essentially described in the form of case series. We reviewed the epidemiology of dengue in India to improve understanding of its evolution in the last 50 years and support the development of effective local prevention and control measures. Early outbreak reports showed a classic epidemic pattern of transmission with sporadic outbreaks, with low to moderate numbers of cases, usually localized to urban centres and neighbouring regions, but occasionally spreading and causing larger epidemics. Trends in recent decades include: larger and more frequent outbreaks; geographic expansion of endemic transmission; spread of the disease from urban to peri-urban and rural areas; an increasing proportion of severe cases and deaths; and progression to hyperendemicity, particularly in large urban areas. The global picture of dengue in India is currently that of a largely endemic country. Understanding demographic differences in infection rates and severity of dengue has important implications for the planning and implementation of effective public health prevention and control measures and targeting of future vaccination campaigns.
Collapse
Affiliation(s)
- Anita Chakravarti
- Maulana Azad Medical College, Bahadur Shah Zafar Marg, New Delhi, Delhi, 10002, India
| | | | | |
Collapse
|
32
|
Chen R, Vasilakis N. Dengue--quo tu et quo vadis? Viruses 2011; 3:1562-608. [PMID: 21994796 PMCID: PMC3187692 DOI: 10.3390/v3091562] [Citation(s) in RCA: 200] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 08/12/2011] [Accepted: 08/12/2011] [Indexed: 02/08/2023] Open
Abstract
Dengue viruses (DENV) are by far the most important arboviral pathogens in the tropics around the world, putting at risk of infection nearly a third of the global human population. DENV are members of the genus Flavivirus in the Family Flaviviridae and comprise four antigenically distinct serotypes (DENV-1-4). Although they share almost identical epidemiological features, they are genetically distinct. Phylogenetic analyses have revealed valuable insights into the origins, epidemiology and the forces that shape DENV evolution in nature. In this review, we examine the current status of DENV evolution, including but not limited to rates of evolution, selection pressures, population sizes and evolutionary constraints, and we discuss how these factors influence transmission, pathogenesis and emergence.
Collapse
Affiliation(s)
- Rubing Chen
- Department of Pathology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA; E-Mail:
| | - Nikos Vasilakis
- Department of Pathology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA; E-Mail:
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA
- Institute for Human Infection and Immunity, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA
- Center for Tropical Diseases, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA
| |
Collapse
|