1
|
Alberts F, Berke O, Maboni G, Petukhova T, Poljak Z. Utilizing machine learning and hemagglutinin sequences to identify likely hosts of influenza H3Nx viruses. Prev Vet Med 2024; 233:106351. [PMID: 39353303 DOI: 10.1016/j.prevetmed.2024.106351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/16/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024]
Abstract
Influenza is a disease that represents both a public health and agricultural risk with pandemic potential. Among the subtypes of influenza A virus, H3 influenza virus can infect many avian and mammalian species and is therefore a virus of interest to human and veterinary public health. The primary goal of this study was to train and validate classifiers for the identification of the most likely host species using the hemagglutinin gene segment of H3 viruses. A five-step process was implemented, which included training four machine learning classifiers, testing the classifiers on the validation dataset, and further exploration of the best-performing model on three additional datasets. The gradient boosting machine classifier showed the highest host-classification accuracy with a 98.0 % (95 % CI [97.01, 98.73]) correct classification rate on an independent validation dataset. The classifications were further analyzed using the predicted probability score which highlighted sequences of particular interest. These sequences were both correctly and incorrectly classified sequences that showed considerable predicted probability for multiple hosts. This showed the potential of using these classifiers for rapid sequence classification and highlighting sequences of interest. Additionally, the classifiers were tested on a separate swine dataset composed of H3N2 sequences from 1998 to 2003 from the United States of America, and a separate canine dataset composed of canine H3N2 sequences of avian origin. These two datasets were utilized to look at the applications of predicted probability and host convergence over time. Lastly, the classifiers were used on an independent dataset of environmental sequences to explore the host identification of environmental sequences. The results of these classifiers show the potential for machine learning to be used as a host identification technique for viruses of unknown origin on a species-specific level.
Collapse
Affiliation(s)
- Famke Alberts
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, Ontario, Canada.
| | - Olaf Berke
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, Ontario, Canada; Centre for Public Health and Zoonoses, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, Ontario, Canada; Centre for Advancing Responsible and Ethical Artificial Intelligence, University of Guelph, 50 Stone Road East, Guelph, Ontario, Canada.
| | - Grazieli Maboni
- Athens Veterinary Diagnostic Laboratory, Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, 501 D.W.Brooks Drive Athens, GA, USA.
| | - Tatiana Petukhova
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, Ontario, Canada.
| | - Zvonimir Poljak
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, Ontario, Canada; Centre for Public Health and Zoonoses, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, Ontario, Canada.
| |
Collapse
|
2
|
Trogu T, Bellini S, Canziani S, Carrera M, Chiapponi C, Chiari M, Farioli M, Fusaro A, Savegnago E, Nucci A, Soliani L, Bortolami A, Lavazza A, Terregino C, Moreno A. Surveillance for Avian Influenza in Wild Birds in the Lombardy Region (Italy) in the Period 2022-2024. Viruses 2024; 16:1668. [PMID: 39599782 PMCID: PMC11598995 DOI: 10.3390/v16111668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 11/29/2024] Open
Abstract
Influenza A virus (AIV) circulation was investigated in the Lombardy region, during 2022-2024, in wild ducks (through hunting and sampling of faecal samples within natural parks) and wild birds found dead. Samples were analysed through real-time RT-PCRs for Influenza A virus, H5 and H7. Whole genome sequencing was performed on AIV-positive samples. Screening of 3497 hunted Anatidae revealed a total of 184 positive samples. Complete sequencing of 136 samples highlighted the presence of 21 different subtypes ranging from H1N1 to H12N5. The H5N1 HPAIV (high pathogenic AIV) subtype, clade 2.3.4.4b, was the most common during the 2022-2023 winter season (31.8%), while H5 LPAI (low pathogenic AIV) strains were the most prevalent (28.6%) in the 2023-2024 season. The molecular survey on wild birds found dead (n = 481) showed two positive buzzards (14%, 2/14), one grey heron (5.5%, 1/18) and one kestrel (7.6%, 1/13). Regarding the order of Charadriiformes, the dead gulls sampled in 2022 (17 birds) were all negative, whereas 85 out of 167 (51%) individuals were positive in 2023. All positives were caused by an H5N1 HPAIV clade 2.3.4.4b virus belonging to genotype BB. All the faecal samples (1699) received from passive surveillance in nature parks were analysed for AIV with negative results.
Collapse
Affiliation(s)
- Tiziana Trogu
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna “Bruno Ubertini” (IZSLER), Via Antonio Bianchi 7/9, 25124 Brescia, Italy; (T.T.); (S.B.); (S.C.); (M.C.); (C.C.); (A.N.); (L.S.); (A.L.)
| | - Silvia Bellini
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna “Bruno Ubertini” (IZSLER), Via Antonio Bianchi 7/9, 25124 Brescia, Italy; (T.T.); (S.B.); (S.C.); (M.C.); (C.C.); (A.N.); (L.S.); (A.L.)
| | - Sabrina Canziani
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna “Bruno Ubertini” (IZSLER), Via Antonio Bianchi 7/9, 25124 Brescia, Italy; (T.T.); (S.B.); (S.C.); (M.C.); (C.C.); (A.N.); (L.S.); (A.L.)
| | - Maya Carrera
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna “Bruno Ubertini” (IZSLER), Via Antonio Bianchi 7/9, 25124 Brescia, Italy; (T.T.); (S.B.); (S.C.); (M.C.); (C.C.); (A.N.); (L.S.); (A.L.)
| | - Chiara Chiapponi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna “Bruno Ubertini” (IZSLER), Via Antonio Bianchi 7/9, 25124 Brescia, Italy; (T.T.); (S.B.); (S.C.); (M.C.); (C.C.); (A.N.); (L.S.); (A.L.)
| | - Mario Chiari
- Direzione Generale Welfare, U.O. Veterinaria, Piazza Città di Lombardia 1, 20124 Milano, Italy; (M.C.); (M.F.)
| | - Marco Farioli
- Direzione Generale Welfare, U.O. Veterinaria, Piazza Città di Lombardia 1, 20124 Milano, Italy; (M.C.); (M.F.)
| | - Alice Fusaro
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, 35020 Padova, Italy; (A.F.); (E.S.); (A.B.); (C.T.)
| | - Enrico Savegnago
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, 35020 Padova, Italy; (A.F.); (E.S.); (A.B.); (C.T.)
| | - Ambra Nucci
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna “Bruno Ubertini” (IZSLER), Via Antonio Bianchi 7/9, 25124 Brescia, Italy; (T.T.); (S.B.); (S.C.); (M.C.); (C.C.); (A.N.); (L.S.); (A.L.)
| | - Laura Soliani
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna “Bruno Ubertini” (IZSLER), Via Antonio Bianchi 7/9, 25124 Brescia, Italy; (T.T.); (S.B.); (S.C.); (M.C.); (C.C.); (A.N.); (L.S.); (A.L.)
| | - Alessio Bortolami
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, 35020 Padova, Italy; (A.F.); (E.S.); (A.B.); (C.T.)
| | - Antonio Lavazza
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna “Bruno Ubertini” (IZSLER), Via Antonio Bianchi 7/9, 25124 Brescia, Italy; (T.T.); (S.B.); (S.C.); (M.C.); (C.C.); (A.N.); (L.S.); (A.L.)
| | - Calogero Terregino
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, 35020 Padova, Italy; (A.F.); (E.S.); (A.B.); (C.T.)
| | - Ana Moreno
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna “Bruno Ubertini” (IZSLER), Via Antonio Bianchi 7/9, 25124 Brescia, Italy; (T.T.); (S.B.); (S.C.); (M.C.); (C.C.); (A.N.); (L.S.); (A.L.)
| |
Collapse
|
3
|
Elli S, Raffaini G, Guerrini M, Kosakovsky Pond S, Matrosovich M. Molecular modeling and phylogenetic analyses highlight the role of amino acid 347 of the N1 subtype neuraminidase in influenza virus host range and interspecies adaptation. Front Microbiol 2023; 14:1309156. [PMID: 38169695 PMCID: PMC10758481 DOI: 10.3389/fmicb.2023.1309156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 11/29/2023] [Indexed: 01/05/2024] Open
Abstract
The N1 neuraminidases (NAs) of avian and pandemic human influenza viruses contain tyrosine and asparagine, respectively, at position 347 on the rim of the catalytic site; the biological significance of this difference is not clear. Here, we used molecular dynamics simulation to model the effects of amino acid 347 on N1 NA interactions with sialyllacto-N-tetraoses 6'SLN-LC and 3'SLN-LC, which represent NA substrates in humans and birds, respectively. Our analysis predicted that Y347 plays an important role in the NA preference for the avian-type substrates. The Y347N substitution facilitates hydrolysis of human-type substrates by resolving steric conflicts of the Neu5Ac2-6Gal moiety with the bulky side chain of Y347, decreasing the free energy of substrate binding, and increasing the solvation of the Neu5Ac2-6Gal bond. Y347 was conserved in all N1 NA sequences of avian influenza viruses in the GISAID EpiFlu database with two exceptions. First, the Y347F substitution was present in the NA of a specific H6N1 poultry virus lineage and was associated with the substitutions G228S and/or E190V/L in the receptor-binding site (RBS) of the hemagglutinin (HA). Second, the highly pathogenic avian H5N1 viruses of the Gs/Gd lineage contained sporadic variants with the NA substitutions Y347H/D, which were frequently associated with substitutions in the HA RBS. The Y347N substitution occurred following the introductions of avian precursors into humans and pigs with N/D347 conserved during virus circulation in these hosts. Comparative evolutionary analysis of site 347 revealed episodic positive selection across the entire tree and negative selection within most host-specific groups of viruses, suggesting that substitutions at NA position 347 occurred during host switches and remained under pervasive purifying selection thereafter. Our results elucidate the role of amino acid 347 in NA recognition of sialoglycan substrates and emphasize the significance of substitutions at position 347 as a marker of host range and adaptive evolution of influenza viruses.
Collapse
Affiliation(s)
- Stefano Elli
- Istituto di Ricerche Chimiche e Biochimiche ‘G. Ronzoni’, Milan, Italy
| | - Giuseppina Raffaini
- Department of Chemistry, Materials, and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Milan, Italy
| | - Marco Guerrini
- Istituto di Ricerche Chimiche e Biochimiche ‘G. Ronzoni’, Milan, Italy
| | - Sergei Kosakovsky Pond
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA, United States
| | | |
Collapse
|
4
|
López-Valiñas Á, Valle M, Pérez M, Darji A, Chiapponi C, Ganges L, Segalés J, Núñez JI. Genetic diversification patterns in swine influenza A virus (H1N2) in vaccinated and nonvaccinated animals. Front Cell Infect Microbiol 2023; 13:1258321. [PMID: 37780850 PMCID: PMC10540852 DOI: 10.3389/fcimb.2023.1258321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/25/2023] [Indexed: 10/03/2023] Open
Abstract
Influenza A viruses (IAVs) are characterized by having a segmented genome, low proofreading polymerases, and a wide host range. Consequently, IAVs are constantly evolving in nature causing a threat to animal and human health. In 2009 a new human pandemic IAV strain arose in Mexico because of a reassortment between two strains previously circulating in pigs; Eurasian "avian-like" (EA) swine H1N1 and "human-like" H1N2, highlighting the importance of swine as adaptation host of avian to human IAVs. Nowadays, although of limited use, a trivalent vaccine, which include in its formulation H1N1, H3N2, and, H1N2 swine IAV (SIAV) subtypes, is one of the most applied strategies to reduce SIAV circulation in farms. Protection provided by vaccines is not complete, allowing virus circulation, potentially favoring viral evolution. The evolutionary dynamics of SIAV quasispecies were studied in samples collected at different times from 8 vaccinated and 8 nonvaccinated pigs, challenged with H1N2 SIAV. In total, 32 SIAV genomes were sequenced by next-generation sequencing, and subsequent variant-calling genomic analysis was carried out. Herein, a total of 364 de novo single nucleotide variants (SNV) were found along all genetic segments in both experimental groups. The nonsynonymous substitutions proportion found was greater in vaccinated animals suggesting that H1N2 SIAV was under positive selection in this scenario. The impact of each substitution with an allele frequency greater than 5% was hypothesized according to previous literature, particularly in the surface glycoproteins hemagglutinin and neuraminidase. The H1N2 SIAV quasispecies evolution capacity was evidenced, observing different evolutionary trends in vaccinated and nonvaccinated animals.
Collapse
Affiliation(s)
- Álvaro López-Valiñas
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Bellaterra, Barcelona, Spain
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Barcelona, Spain
| | - Marta Valle
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Bellaterra, Barcelona, Spain
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Barcelona, Spain
| | - Marta Pérez
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Bellaterra, Barcelona, Spain
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Barcelona, Spain
| | - Ayub Darji
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Bellaterra, Barcelona, Spain
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Barcelona, Spain
| | - Chiara Chiapponi
- WOAH Reference Laboratory for Swine Influenza, Istituto Zooprofilattico Sperimentale della Lombardia ed Emilia-Romagna, Brescia, Italy
| | - Llilianne Ganges
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Bellaterra, Barcelona, Spain
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Barcelona, Spain
- WOAH Reference Laboratory for Classical Swine Fever, IRTA-CReSA, Barcelona, Spain
| | - Joaquim. Segalés
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Barcelona, Spain
- Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - José I. Núñez
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Bellaterra, Barcelona, Spain
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Barcelona, Spain
| |
Collapse
|
5
|
López-Valiñas Á, Valle M, Wang M, Darji A, Cantero G, Chiapponi C, Segalés J, Ganges L, Núñez JI. Vaccination against swine influenza in pigs causes different drift evolutionary patterns upon swine influenza virus experimental infection and reduces the likelihood of genomic reassortments. Front Cell Infect Microbiol 2023; 13:1111143. [PMID: 36992684 PMCID: PMC10040791 DOI: 10.3389/fcimb.2023.1111143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/14/2023] [Indexed: 03/16/2023] Open
Abstract
Influenza A viruses (IAVs) can infect a wide variety of bird and mammal species. Their genome is characterized by 8 RNA single stranded segments. The low proofreading activity of their polymerases and the genomic reassortment between different IAVs subtypes allow them to continuously evolve, constituting a constant threat to human and animal health. In 2009, a pandemic of an IAV highlighted the importance of the swine host in IAVs adaptation between humans and birds. The swine population and the incidence of swine IAV is constantly growing. In previous studies, despite vaccination, swine IAV growth and evolution were proven in vaccinated and challenged animals. However, how vaccination can drive the evolutionary dynamics of swine IAV after coinfection with two subtypes is poorly studied. In the present study, vaccinated and nonvaccinated pigs were challenged by direct contact with H1N1 and H3N2 independent swine IAVs seeder pigs. Nasal swab samples were daily recovered and broncho-alveolar lavage fluid (BALF) was also collected at necropsy day from each pig for swine IAV detection and whole genome sequencing. In total, 39 swine IAV whole genome sequences were obtained by next generation sequencing from samples collected from both experimental groups. Subsequently, genomic, and evolutionary analyses were carried out to detect both, genomic reassortments and single nucleotide variants (SNV). Regarding the segments found per sample, the simultaneous presence of segments from both subtypes was much lower in vaccinated animals, indicating that the vaccine reduced the likelihood of genomic reassortment events. In relation to swine IAV intra-host diversity, a total of 239 and 74 SNV were detected within H1N1 and H3N2 subtypes, respectively. Different proportions of synonymous and nonsynonymous substitutions were found, indicating that vaccine may be influencing the main mechanism that shape swine IAV evolution, detecting natural, neutral, and purifying selection in the different analyzed scenarios. SNV were detected along the whole swine IAV genome with important nonsynonymous substitutions on polymerases, surface glycoproteins and nonstructural proteins, which may have an impact on virus replication, immune system escaping and virulence of virus, respectively. The present study further emphasized the vast evolutionary capacity of swine IAV, under natural infection and vaccination pressure scenarios.
Collapse
Affiliation(s)
- Álvaro López-Valiñas
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- Unitat mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Barcelona, Spain
- *Correspondence: José I. Núñez, ; Álvaro López-Valiñas,
| | - Marta Valle
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- Unitat mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Barcelona, Spain
| | - Miaomiao Wang
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- Unitat mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Barcelona, Spain
| | - Ayub Darji
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- Unitat mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Barcelona, Spain
| | - Guillermo Cantero
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- Unitat mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Barcelona, Spain
| | - Chiara Chiapponi
- WOAH Reference Laboratory for Swine Influenza, Istituto Zooprofilattico Sperimentale della Lombardia ed Emilia-Romagna, Brescia, Italy
| | - Joaquim Segalés
- Unitat mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Barcelona, Spain
- Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Llilianne Ganges
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- Unitat mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Barcelona, Spain
- WOAH Reference Laboratory for Classical Swine Fever, IRTA-CReSA, Barcelona, Spain
| | - José I. Núñez
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- Unitat mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Barcelona, Spain
- *Correspondence: José I. Núñez, ; Álvaro López-Valiñas,
| |
Collapse
|
6
|
López-Valiñas Á, Baioni L, Córdoba L, Darji A, Chiapponi C, Segalés J, Ganges L, Núñez JI. Evolution of Swine Influenza Virus H3N2 in Vaccinated and Nonvaccinated Pigs after Previous Natural H1N1 Infection. Viruses 2022; 14:v14092008. [PMID: 36146814 PMCID: PMC9505157 DOI: 10.3390/v14092008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/20/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Swine influenza viruses (SIV) produce a highly contagious and worldwide distributed disease that can cause important economic losses to the pig industry. Currently, this virus is endemic in farms and, although used limitedly, trivalent vaccine application is the most extended strategy to control SIV. The presence of pre-existing immunity against SIV may modulate the evolutionary dynamic of this virus. To better understand these dynamics, the viral variants generated in vaccinated and nonvaccinated H3N2 challenged pigs after recovery from a natural A(H1N1) pdm09 infection were determined and analyzed. In total, seventeen whole SIV genomes were determined, 6 from vaccinated, and 10 from nonvaccinated animals and their inoculum, by NGS. Herein, 214 de novo substitutions were found along all SIV segments, 44 of them being nonsynonymous ones with an allele frequency greater than 5%. Nonsynonymous substitutions were not found in NP; meanwhile, many of these were allocated in PB2, PB1, and NS1 proteins. Regarding HA and NA proteins, higher nucleotide diversity, proportionally more nonsynonymous substitutions with an allele frequency greater than 5%, and different domain allocations of mutants, were observed in vaccinated animals, indicating different evolutionary dynamics. This study highlights the rapid adaptability of SIV in different environments.
Collapse
Affiliation(s)
- Álvaro López-Valiñas
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193 Barcelona, Spain
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193 Barcelona, Spain
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Barcelona, Spain
| | - Laura Baioni
- WOAH Reference Laboratory for Swine Influenza, Istituto Zooprofilattico Sperimentale della Lombardia ed Emilia-Romagna, 25124 Brescia, Italy
| | - Lorena Córdoba
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193 Barcelona, Spain
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193 Barcelona, Spain
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Barcelona, Spain
| | - Ayub Darji
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193 Barcelona, Spain
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193 Barcelona, Spain
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Barcelona, Spain
| | - Chiara Chiapponi
- WOAH Reference Laboratory for Swine Influenza, Istituto Zooprofilattico Sperimentale della Lombardia ed Emilia-Romagna, 25124 Brescia, Italy
| | - Joaquim Segalés
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193 Barcelona, Spain
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Barcelona, Spain
- Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Llilianne Ganges
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193 Barcelona, Spain
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193 Barcelona, Spain
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Barcelona, Spain
- WOAH Reference Laboratory for Classical Swine Fever, IRTA-CReSA, 08193 Barcelona, Spain
| | - José I. Núñez
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193 Barcelona, Spain
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193 Barcelona, Spain
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Barcelona, Spain
- Correspondence:
| |
Collapse
|
7
|
Genetic Variability among Swine Influenza Viruses in Italy: Data Analysis of the Period 2017-2020. Viruses 2021; 14:v14010047. [PMID: 35062251 PMCID: PMC8781872 DOI: 10.3390/v14010047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/21/2021] [Accepted: 12/26/2021] [Indexed: 12/14/2022] Open
Abstract
Swine play an important role in the ecology of influenza A viruses (IAVs), acting as mixing vessels. Swine (sw) IAVs of H1N1 (including H1N1pdm09), H3N2, and H1N2 subtypes are enzootic in pigs globally, with different geographic distributions. This study investigated the genetic diversity of swIAVs detected during passive surveillance of pig farms in Northern Italy between 2017 and 2020. A total of 672 samples, IAV-positive according to RT-PCR, were subtyped by multiplex RT-PCR. A selection of strains was fully sequenced. High genotypic diversity was detected among the H1N1 and H1N2 strains, while the H3N2 strains showed a stable genetic pattern. The hemagglutinin of the H1Nx swIAVs belonged to HA-1A, HA-1B, and HA-1C lineages. Increasing variability was found in HA-1C strains with the circulation of HA-1C.2, HA-1C.2.1 and HA-1C.2.2 sublineages. Amino acid deletions in the HA-1C receptor binding site were observed and antigenic drift was confirmed. HA-1B strains were mostly represented by the Δ146-147 Italian lineage HA-1B.1.2.2, in combination with the 1990s human-derived NA gene. One antigenic variant cluster in HA-1A strains was identified in 2020. SwIAV circulation in pigs must be monitored continuously since the IAVs’ evolution could generate strains with zoonotic potential.
Collapse
|
8
|
Identification and Characterization of Swine Influenza Virus H1N1 Variants Generated in Vaccinated and Nonvaccinated, Challenged Pigs. Viruses 2021; 13:v13102087. [PMID: 34696517 PMCID: PMC8539973 DOI: 10.3390/v13102087] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/08/2021] [Accepted: 10/13/2021] [Indexed: 01/22/2023] Open
Abstract
Influenza viruses represent a continuous threat to both animal and human health. The 2009 H1N1 A influenza pandemic highlighted the importance of a swine host in the adaptation of influenza viruses to humans. Nowadays, one of the most extended strategies used to control swine influenza viruses (SIVs) is the trivalent vaccine application, whose formulation contains the most frequently circulating SIV subtypes H1N1, H1N2, and H3N2. These vaccines do not provide full protection against the virus, allowing its replication, evolution, and adaptation. To better understand the main mechanisms that shape viral evolution, here, the SIV intra-host diversity was analyzed in samples collected from both vaccinated and nonvaccinated animals challenged with the H1N1 influenza A virus. Twenty-eight whole SIV genomes were obtained by next-generation sequencing, and differences in nucleotide variants between groups were established. Substitutions were allocated along all influenza genetic segments, while the most relevant nonsynonymous substitutions were allocated in the NS1 protein on samples collected from vaccinated animals, suggesting that SIV is continuously evolving despite vaccine application. Moreover, new viral variants were found in both vaccinated and nonvaccinated pigs, showing relevant substitutions in the HA, NA, and NP proteins, which may increase viral fitness under field conditions.
Collapse
|
9
|
Salvesen HA, Whitelaw CBA. Current and prospective control strategies of influenza A virus in swine. Porcine Health Manag 2021; 7:23. [PMID: 33648602 PMCID: PMC7917534 DOI: 10.1186/s40813-021-00196-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 01/21/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Influenza A Viruses (IAV) are endemic pathogens of significant concern in humans and multiple keystone livestock species. Widespread morbidity in swine herds negatively impacts animal welfare standards and economic performance whilst human IAV pandemics have emerged from pigs on multiple occasions. To combat the rising prevalence of swine IAV there must be effective control strategies available. MAIN BODY The most basic form of IAV control on swine farms is through good animal husbandry practices and high animal welfare standards. To control inter-herd transmission, biosecurity considerations such as quarantining of pigs and implementing robust health and safety systems for workers help to reduce the likelihood of swine IAV becoming endemic. Closely complementing the physical on-farm practices are IAV surveillance programs. Epidemiological data is critical in understanding regional distribution and variation to assist in determining an appropriate response to outbreaks and understanding the nature of historical swine IAV epidemics and zoonoses. Medical intervention in pigs is restricted to vaccination, a measure fraught with the intrinsic difficulties of mounting an immune response against a highly mutable virus. It is the best available tool for controlling IAV in swine but is far from being a perfect solution due to its unreliable efficacy and association with an enhanced respiratory disease. Because IAV generally has low mortality rates there is a reticence in the uptake of vaccination. Novel genetic technologies could be a complementary strategy for IAV control in pigs that confers broad-acting resistance. Transgenic pigs with IAV resistance are useful as models, however the complexity of these reaching the consumer market limits them to research models. More promising are gene-editing approaches to prevent viral exploitation of host proteins and modern vaccine technologies that surpass those currently available. CONCLUSION Using the suite of IAV control measures that are available for pigs effectively we can improve the economic productivity of pig farming whilst improving on-farm animal welfare standards and avoid facing the extensive social and financial costs of a pandemic. Fighting 'Flu in pigs will help mitigate the very real threat of a human pandemic emerging, increase security of the global food system and lead to healthier pigs.
Collapse
Affiliation(s)
- Hamish A. Salvesen
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh, UK
| | - C. Bruce A. Whitelaw
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh, UK
| |
Collapse
|
10
|
Abstract
In 1918, a strain of influenza A virus caused a human pandemic resulting in the deaths of 50 million people. A century later, with the advent of sequencing technology and corresponding phylogenetic methods, we know much more about the origins, evolution and epidemiology of influenza epidemics. Here we review the history of avian influenza viruses through the lens of their genetic makeup: from their relationship to human pandemic viruses, starting with the 1918 H1N1 strain, through to the highly pathogenic epidemics in birds and zoonoses up to 2018. We describe the genesis of novel influenza A virus strains by reassortment and evolution in wild and domestic bird populations, as well as the role of wild bird migration in their long-range spread. The emergence of highly pathogenic avian influenza viruses, and the zoonotic incursions of avian H5 and H7 viruses into humans over the last couple of decades are also described. The threat of a new avian influenza virus causing a human pandemic is still present today, although control in domestic avian populations can minimize the risk to human health. This article is part of the theme issue ‘Modelling infectious disease outbreaks in humans, animals and plants: approaches and important themes’. This issue is linked with the subsequent theme issue ‘Modelling infectious disease outbreaks in humans, animals and plants: epidemic forecasting and control’.
Collapse
Affiliation(s)
| | | | - Paul Digard
- The Roslin Institute, University of Edinburgh , Edinburgh , UK
| |
Collapse
|
11
|
Phylogenetic Analysis of HA and NA Genes of Swine Influenza Viruses in Serbia in 2016-2018. ACTA VET-BEOGRAD 2020. [DOI: 10.2478/acve-2020-0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Pigs are very important for the epidemiology of influenza A viruses, being commonly infected with the lineages of most adapted H1N1, H3N2, H1N2 swine subtypes. Epidemiological complexity of swine influenza is increasing by a periodic spillover of human or avian viruses in the pig population when genetic shifts can occur. The objectives of this research were to determine the presence of the influenza A virus in nasal and tracheobronchial swabs and lung tissue samples of ill and dead pigs on commercial farms, to determine circulating subtypes and characterize them through the phylogenetic analysis of hemagglutinin (HA) and neuraminidase (NA) genes. A total of 255 samples collected from 13 farms were analyzed by means of real-time RTPCR. The genome of influenza A virus was detected in 24 samples, which represented a 61.5% prevalence at the farms level (influenza A virus was confirmed in 8 out of 13 farms included in this study). Based on HA and NA gene sequences of 8 viruses, the circulation of H1N1 and H3N2 subtypes of influenza A viruses were determined. In addition, one farm exhibited a time separated circulation of H1N1 and H3N2 virus subtypes. Using Influenza Research Database, our viruses of the H1 subtype were classified into 1C.2.1 and 1A.3.3.2. clade. Based on the nucleotide sequences of HA genes, three viruses of the H1N1 subtype belong to the H1N1pdm09 lineage, and the other four to Eurasian “avian-like” H1avN1 lineage; while based on NA genes sequences, these seven viruses belong to Eurasian “avian-like” H1avN1 lineage. Both HA and NA genes of the virus of the H3N2 subtype belonged to the A/swine/ Gent/1/1984-like H3N2 lineage.
Collapse
|
12
|
Skarlupka AL, Owino SO, Suzuki-Williams LP, Crevar CJ, Carter DM, Ross TM. Computationally optimized broadly reactive vaccine based upon swine H1N1 influenza hemagglutinin sequences protects against both swine and human isolated viruses. Hum Vaccin Immunother 2019; 15:2013-2029. [PMID: 31448974 PMCID: PMC6773400 DOI: 10.1080/21645515.2019.1653743] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 07/27/2019] [Accepted: 08/01/2019] [Indexed: 11/17/2022] Open
Abstract
Swine H1 influenza viruses were stable within pigs for nearly 70 years until in 1998 when a classical swine virus reassorted with avian and human influenza viruses to generate the novel triple reassortant H1N1 strain that eventually led to the 2009 influenza pandemic. Previously, our group demonstrated broad protection against a panel of human H1N1 viruses using HA antigens derived by the COBRA methodology. In this report, the effectiveness of COBRA HA antigens (SW1, SW2, SW3 and SW4), which were designed using only HA sequences from swine H1N1 and H1N2 isolates, were tested in BALB/c mice. The effectiveness of these vaccines were compared to HA sequences designed using both human and swine H1 HA sequences or human only sequences. SW2 and SW4 elicited antibodies that detected the pandemic-like virus, A/California/07/2009 (CA/09), had antibodies with HAI activity against almost all the classical swine influenza viruses isolated from 1973-2015 and all of the Eurasian viruses in our panel. However, sera collected from mice vaccinated with SW2 or SW4 had HAI activity against ~25% of the human seasonal-like influenza viruses isolated from 2009-2015. In contrast, the P1 COBRA HA vaccine (derived from both swine and human HA sequences) elicited antibodies that had HAI activity against both swine and human H1 viruses and protected against CA/09 challenge, but not a human seasonal-like swine H1N2 virus challenge. However, the SW1 vaccine protected against this challenge as well as the homologous vaccine. These results support the idea that a pan-swine-human H1 influenza virus vaccine is possible.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/blood
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Computers, Molecular
- Female
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Humans
- Influenza A Virus, H1N1 Subtype
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/immunology
- Influenza, Human/prevention & control
- Influenza, Human/virology
- Mice
- Mice, Inbred BALB C
- Orthomyxoviridae Infections/prevention & control
- Orthomyxoviridae Infections/virology
- Swine
- Vaccines, Virus-Like Particle/immunology
Collapse
Affiliation(s)
| | - Simon O. Owino
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
| | | | - Corey J. Crevar
- Vaccine and Gene Therapy Institute of Florida, Port St. Lucie, FL, USA
| | - Donald M. Carter
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
- Department of Infectious Diseases, University of Georgia, Athens, GA, USA
| | - Ted M. Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
- Department of Infectious Diseases, University of Georgia, Athens, GA, USA
| |
Collapse
|
13
|
Nelson MI, Worobey M. Origins of the 1918 Pandemic: Revisiting the Swine "Mixing Vessel" Hypothesis. Am J Epidemiol 2018; 187:2498-2502. [PMID: 30508193 PMCID: PMC6269246 DOI: 10.1093/aje/kwy150] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 07/17/2018] [Indexed: 12/13/2022] Open
Abstract
How influenza A viruses host-jump from animal reservoir species to humans, which can initiate global pandemics, is a central question in pathogen evolution. The zoonotic and spatial origins of the influenza virus associated with the “Spanish flu” pandemic of 1918 have been debated for decades. Outbreaks of respiratory disease in US swine occurred concurrently with disease in humans, raising the possibility that the 1918 virus originated in pigs. Swine also were proposed as “mixing vessel” intermediary hosts between birds and humans during the 1957 Asian and 1968 Hong Kong pandemics. Swine have presented an attractive explanation for how avian viruses overcome the substantial evolutionary barriers presented by different cellular environments in humans and birds. However, key assumptions underpinning the swine mixing-vessel model of pandemic emergence have been challenged in light of new evidence. Increased surveillance in swine has revealed that human-to-swine transmission actually occurs far more frequently than the reverse, and there is no empirical evidence that swine played a role in the emergence of human influenza in 1918, 1957, or 1968. Swine-to-human transmission occurs periodically and can trigger pandemics, as in 2009. But swine are not necessary to mediate the establishment of avian viruses in humans, which invites new perspectives on the evolutionary processes underlying pandemic emergence.
Collapse
Affiliation(s)
- Martha I Nelson
- Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, Maryland
| | - Michael Worobey
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona
| |
Collapse
|
14
|
Substitution of D701N in the PB2 protein could enhance the viral replication and pathogenicity of Eurasian avian-like H1N1 swine influenza viruses. Emerg Microbes Infect 2018; 7:75. [PMID: 29717109 PMCID: PMC5931605 DOI: 10.1038/s41426-018-0073-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 03/03/2018] [Accepted: 03/21/2018] [Indexed: 12/12/2022]
Abstract
Eurasian avian-like H1N1 (EA H1N1) swine influenza viruses (SIVs) have become predominant in pig populations in China and have recently been reported to have the most potential to raise the next pandemic in humans. The mutation D701N in the PB2 protein, which accounts for 31% of H1N1 SIVs, has previously been shown to contribute to the adaptation of the highly pathogenic H5N1 or H7N7 avian influenza viruses in mammals. However, little is known of the effects of this substitution on the EA H1N1 viruses. Herein, we investigated the contributions of 701N in the PB2 protein to an EA H1N1 SIV (A/Hunan/42443/2015(H1N1), HuN EA-H1N1), which had 701D in the PB2 protein. Our results found that viral polymerase activity, viral replication, and pathogenicity in mice were indeed enhanced due to the introduction of 701N into the PB2 protein, and the increased viral growth was partly mediated by the host factor importin-α7. Thus, substantial attention should be paid to the D701N mutation in pig populations.
Collapse
|
15
|
Molecular detection of influenza A(H1N1)pdm09 viruses with M genes from human pandemic strains among Nigerian pigs, 2013-2015: implications and associated risk factors. Epidemiol Infect 2017; 145:3345-3360. [PMID: 29166978 DOI: 10.1017/s0950268817002503] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
In the post-pandemic period, influenza A(H1N1)pdm09 virus has been detected in swine populations in different parts of the world. This study was conducted to determine the presence and spatial patterns of this human pandemic virus among Nigerian pigs and identify associated risk factors. Using a two-stage stratified random sampling method, nasal swab specimens were obtained from pigs in Ibadan, Nigeria during the 2013-2014 and 2014-2015 influenza seasons, and the virus was detected by reverse transcriptase-polymerase chain reaction (RT-PCR). Purified RT-PCR products were sequenced in both directions, and sequences were aligned using MUSCLE. Phylogenetic analysis was conducted in MEGA6. Purely spatial scan statistics and a spatial lag regression model were used to identify spatial clusters and associated risk factors. The virus was detected in both seasons, with an overall prevalence of 8·7%. Phylogenetic analyses revealed that the M genes were similar to those of pandemic strains which circulated in humans prior to and during the study. Cluster analysis revealed a significant primary spatial cluster (RR = 4·71, LLR = 5·66, P = 0·0046), while 'hours spent with pigs (R 2 = 0·90, P = 0·0018)' and 'hours spent with pigs from different farms (R 2 = 0·91, P = 0·0001)' were identified as significant risk factors (P < 0·05). These findings reveal that there is considerable risk of transmission of the pandemic virus, either directly from pig handlers or through fomites, to swine herds in Ibadan, Nigeria. Active circulation of the virus among Nigerian pigs could enhance its reassortment with endemic swine influenza viruses. Campaigns for adoption of biosecurity measures in West African piggeries and abattoirs should be introduced and sustained in order to prevent the emergence of a new influenza epicentre in the sub-region.
Collapse
|
16
|
Hydrogen Bond Variations of Influenza A Viruses During Adaptation in Human. Sci Rep 2017; 7:14295. [PMID: 29085020 PMCID: PMC5662722 DOI: 10.1038/s41598-017-14533-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 10/11/2017] [Indexed: 01/12/2023] Open
Abstract
Many host specific mutations have been detected in influenza A viruses (IAVs). However, their effects on hydrogen bond (H-bond) variations have rarely been investigated. In this study, 60 host specific sites were identified in the internal proteins of avian and human IAVs, 27 of which contained mutations with effects on H-bonds. Besides, 30 group specific sites were detected in HA and NA. Twenty-six of 36 mutations existing at these group specific sites caused H-bond loss or formation in at least one subtype. The number of mutations in isolations of 2009 pandemic H1N1, human-infecting H5N1 and H7N9 varied. The combinations of mutations and H-bond changes in these three subtypes of IAVs were also different. In addition, the mutations in isolations of H5N1 distributed more scattered than those in 2009 pandemic H1N1 and H7N9. Eight wave specific mutations in isolations of the fifth H7N9 wave were also identified. Three of them, R140K in HA, Y170H in NA, and R340K in PB2, were capable of resulting in H-bond loss. As mentioned above, these host or group or wave specific H-bond variations provide us with a new field of vision for understanding the changes of structural features in the human adaptation of IAVs.
Collapse
|
17
|
Joseph U, Vijaykrishna D, Smith GJD, Su YCF. Adaptive evolution during the establishment of European avian-like H1N1 influenza A virus in swine. Evol Appl 2017; 11:534-546. [PMID: 29636804 PMCID: PMC5891058 DOI: 10.1111/eva.12536] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 08/15/2017] [Indexed: 12/23/2022] Open
Abstract
An H1N1 subtype influenza A virus with all eight gene segments derived from wild birds (including mallards), ducks and chickens, caused severe disease outbreaks in swine populations in Europe beginning in 1979 and successfully adapted to form the European avian‐like swine (EA‐swine) influenza lineage. Genes of the EA‐swine lineage that are clearly segregated from its closest avian relatives continue to circulate in swine populations globally and represent a unique opportunity to study the adaptive process of an avian‐to‐mammalian cross‐species transmission. Here, we used a relaxed molecular clock model to test whether the EA‐swine virus originated through the introduction of a single avian ancestor as an entire genome, followed by an analysis of host‐specific selection pressures among different gene segments. Our data indicated independent introduction of gene segments via transmission of avian viruses into swine followed by reassortment events that occurred at least 1–4 years prior to the EA‐swine outbreak. All EA‐swine gene segments exhibit greater selection pressure than avian viruses, reflecting both adaptive pressures and relaxed selective constraints that are associated with host switching. Notably, we identified key amino acid mutations in the viral surface proteins (H1 and N1) that play a role in adaptation to new hosts. Following the establishment of EA‐swine lineage, we observed an increased frequency of intrasubtype reassortment of segments compared to the earlier strains that has been associated with adaptive amino acid replacements, disease severity and vaccine escape. Taken together, our study provides key insights into the adaptive changes in viral genomes following the transmission of avian influenza viruses to swine and the early establishment of the EA‐swine lineage.
Collapse
Affiliation(s)
- Udayan Joseph
- Programme in Emerging Infectious Diseases Duke-NUS Medical School Singapore
| | - Dhanasekaran Vijaykrishna
- Programme in Emerging Infectious Diseases Duke-NUS Medical School Singapore.,Department of Microbiology Biomedicine Discovery Institute Monash University Melbourne Vic. Australia
| | - Gavin J D Smith
- Programme in Emerging Infectious Diseases Duke-NUS Medical School Singapore.,Duke Global Health Institute Duke University Durham NC USA
| | - Yvonne C F Su
- Programme in Emerging Infectious Diseases Duke-NUS Medical School Singapore
| |
Collapse
|
18
|
Pitzer VE, Aguas R, Riley S, Loeffen WLA, Wood JLN, Grenfell BT. High turnover drives prolonged persistence of influenza in managed pig herds. J R Soc Interface 2017; 13:rsif.2016.0138. [PMID: 27358277 PMCID: PMC4938081 DOI: 10.1098/rsif.2016.0138] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 06/08/2016] [Indexed: 11/16/2022] Open
Abstract
Pigs have long been hypothesized to play a central role in the emergence of novel human influenza A virus (IAV) strains, by serving as mixing vessels for mammalian and avian variants. However, the key issue of viral persistence in swine populations at different scales is ill understood. We address this gap using epidemiological models calibrated against seroprevalence data from Dutch finishing pigs to estimate the ‘critical herd size’ (CHS) for IAV persistence. We then examine the viral phylogenetic evidence for persistence by comparing human and swine IAV. Models suggest a CHS of approximately 3000 pigs above which influenza was likely to persist, i.e. orders of magnitude lower than persistence thresholds for IAV and other acute viruses in humans. At national and regional scales, we found much stronger empirical signatures of prolonged persistence of IAV in swine compared with human populations. These striking levels of persistence in small populations are driven by the high recruitment rate of susceptible piglets, and have significant implications for management of swine and for overall patterns of genetic diversity of IAV.
Collapse
Affiliation(s)
- Virginia E Pitzer
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University, New Haven, CT 06520, USA Fogarty International Center, National Institutes of Health, Bethesda, MD 20850, USA
| | - Ricardo Aguas
- MRC Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College, London SW7 2AZ, UK
| | - Steven Riley
- MRC Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College, London SW7 2AZ, UK
| | - Willie L A Loeffen
- Department of Virology, Central Veterinary Institute, part of Wageningen UR, Lelystad 8200AB, The Netherlands
| | - James L N Wood
- Disease Dynamics Unit, Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - Bryan T Grenfell
- Fogarty International Center, National Institutes of Health, Bethesda, MD 20850, USA Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
19
|
Diaz A, Marthaler D, Corzo C, Muñoz-Zanzi C, Sreevatsan S, Culhane M, Torremorell M. Multiple Genome Constellations of Similar and Distinct Influenza A Viruses Co-Circulate in Pigs During Epidemic Events. Sci Rep 2017; 7:11886. [PMID: 28928365 PMCID: PMC5605543 DOI: 10.1038/s41598-017-11272-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 08/22/2017] [Indexed: 12/22/2022] Open
Abstract
Swine play a key role in the ecology and transmission of influenza A viruses (IAVs) between species. However, the epidemiology and diversity of swine IAVs is not completely understood. In this cohort study, we sampled on a weekly basis 132 3-week old pigs for 15 weeks. We found two overlapping epidemic events of infection in which most pigs (98.4%) tested PCR positive for IAVs. The prevalence rate of infection ranged between 0 and 86% per week and the incidence density ranged between 0 and 71 cases per 100 pigs-week. Three distinct influenza viral groups (VGs) replicating as a "swarm" of viruses were identified (swine H1-gamma, H1-beta, and H3-cluster-IV IAVs) and co-circulated at different proportions over time suggesting differential allele fitness. Furthermore, using deep genome sequencing 13 distinct viral genome constellations were differentiated. Moreover, 78% of the pigs had recurrent infections with IAVs closely related to each other or IAVs clearly distinct. Our results demonstrated the molecular complexity of swine IAVs during natural infection of pigs in which novel strains of IAVs with zoonotic and pandemic potential can emerge. These are key findings to design better health interventions to reduce the transmission of swine IAVs and minimize the public health risk.
Collapse
Affiliation(s)
- Andres Diaz
- College of Veterinary Medicine, University of Minnesota, Saint Paul, 55108, United States of America
| | - Douglas Marthaler
- College of Veterinary Medicine, University of Minnesota, Saint Paul, 55108, United States of America
| | - Cesar Corzo
- College of Veterinary Medicine, University of Minnesota, Saint Paul, 55108, United States of America
| | - Claudia Muñoz-Zanzi
- School of Public Health, University of Minnesota, Minneapolis, 55454, United States of America
| | - Srinand Sreevatsan
- College of Veterinary Medicine, University of Minnesota, Saint Paul, 55108, United States of America
| | - Marie Culhane
- College of Veterinary Medicine, University of Minnesota, Saint Paul, 55108, United States of America
| | - Montserrat Torremorell
- College of Veterinary Medicine, University of Minnesota, Saint Paul, 55108, United States of America.
| |
Collapse
|
20
|
Chiapponi C, Ebranati E, Pariani E, Faccini S, Luppi A, Baioni L, Manfredi R, Carta V, Merenda M, Affanni P, Colucci ME, Veronesi L, Zehender G, Foni E. Genetic analysis of human and swine influenza A viruses isolated in Northern Italy during 2010-2015. Zoonoses Public Health 2017; 65:114-123. [PMID: 28791803 DOI: 10.1111/zph.12378] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Indexed: 11/30/2022]
Abstract
Influenza A virus (IAV) infection in swine plays an important role in the ecology of influenza viruses. The emergence of new IAVs comes through different mechanisms, with the genetic reassortment of genes between influenza viruses, also originating from different species, being common. We performed a genetic analysis on 179 IAV isolates from humans (n. 75) and pigs (n. 104) collected in Northern Italy between 2010 and 2015, to monitor the genetic exchange between human and swine IAVs. No cases of human infection with swine strains were noticed, but direct infections of swine with H1N1pdm09 strains were detected. Moreover, we pointed out a continuous circulation of H1N1pdm09 strains in swine populations evidenced by the introduction of internal genes of this subtype. These events contribute to generating new viral variants-possibly endowed with pandemic potential-and emphasize the importance of continuous surveillance at both animal and human level.
Collapse
Affiliation(s)
- C Chiapponi
- OIE Reference Laboratory for Swine Influenza, Parma, Italy.,Istituto Zooprofilattico Sperimentale della Lombardia ed Emilia Romagna, Brescia, Italy
| | - E Ebranati
- Dipartimento di Scienze Biomediche e Cliniche "Luigi Sacco", Sezione di Malattie Infettive, Università degli Studi di Milano, Milan, Italy
| | - E Pariani
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan, Italy
| | - S Faccini
- Istituto Zooprofilattico Sperimentale della Lombardia ed Emilia Romagna, Brescia, Italy
| | - A Luppi
- Istituto Zooprofilattico Sperimentale della Lombardia ed Emilia Romagna, Brescia, Italy
| | - L Baioni
- OIE Reference Laboratory for Swine Influenza, Parma, Italy.,Istituto Zooprofilattico Sperimentale della Lombardia ed Emilia Romagna, Brescia, Italy
| | - R Manfredi
- OIE Reference Laboratory for Swine Influenza, Parma, Italy.,Istituto Zooprofilattico Sperimentale della Lombardia ed Emilia Romagna, Brescia, Italy
| | - V Carta
- Dipartimento di Scienze Biomediche e Cliniche "Luigi Sacco", Sezione di Malattie Infettive, Università degli Studi di Milano, Milan, Italy
| | - M Merenda
- OIE Reference Laboratory for Swine Influenza, Parma, Italy.,Istituto Zooprofilattico Sperimentale della Lombardia ed Emilia Romagna, Brescia, Italy
| | - P Affanni
- Dipartimento di Scienze Biomediche, Biotecnologiche e Traslazionali, Università degli Studi di Parma, Parma, Italy
| | - M E Colucci
- Dipartimento di Scienze Biomediche, Biotecnologiche e Traslazionali, Università degli Studi di Parma, Parma, Italy
| | - L Veronesi
- Dipartimento di Scienze Biomediche, Biotecnologiche e Traslazionali, Università degli Studi di Parma, Parma, Italy
| | - G Zehender
- Dipartimento di Scienze Biomediche e Cliniche "Luigi Sacco", Sezione di Malattie Infettive, Università degli Studi di Milano, Milan, Italy
| | - E Foni
- OIE Reference Laboratory for Swine Influenza, Parma, Italy.,Istituto Zooprofilattico Sperimentale della Lombardia ed Emilia Romagna, Brescia, Italy
| |
Collapse
|
21
|
Rovida F, Piralla A, Marzani FC, Moreno A, Campanini G, Mojoli F, Pozzi M, Girello A, Chiapponi C, Vezzoli F, Prati P, Percivalle E, Pavan A, Gramegna M, Iotti GA, Baldanti F. Swine influenza A (H1N1) virus (SIV) infection requiring extracorporeal life support in an immunocompetent adult patient with indirect exposure to pigs, Italy, October 2016. ACTA ACUST UNITED AC 2017; 22. [PMID: 28183395 PMCID: PMC5388119 DOI: 10.2807/1560-7917.es.2017.22.5.30456] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 02/02/2017] [Indexed: 11/20/2022]
Abstract
We describe a case of severe swine influenza A(H1N1) virus infection in an immunocompetent middle-aged man in October 2016 in Italy who had only indirect exposure to pigs. The patient developed a severe acute distress respiratory syndrome which was successfully supported by extracorporeal membrane oxygenation and treated with antiviral therapy. The sole risk factor for influenza was a body mass index > 30 kg/m2. After a month of hospitalisation, the patient was discharged in good health.
Collapse
Affiliation(s)
- Francesca Rovida
- These authors contributed equally to this work.,SS Virologia Molecolare, SC Microbiologia e Virologia, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Antonio Piralla
- These authors contributed equally to this work.,SS Virologia Molecolare, SC Microbiologia e Virologia, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Federico Capra Marzani
- Anestesia e Rianimazione, Dipartimento di Emergenza ed Urgenza, Fondazione IRCCS Policlinico S. Matteo, Pavia, Italy
| | - Ana Moreno
- Istituto Zooprofilattico Sperimentale della Lombardia ed Emilia Romagna, Brescia, Italy
| | - Giulia Campanini
- SS Virologia Molecolare, SC Microbiologia e Virologia, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Francesco Mojoli
- Unità di Anestesia, Rianimazione e Terapia Antalgica, Dipartimento di Scienze Clinico-Chirurgiche, Diagnostiche e Pediatriche, Università degli Studi di Pavia, Pavia, Italy.,Anestesia e Rianimazione, Dipartimento di Emergenza ed Urgenza, Fondazione IRCCS Policlinico S. Matteo, Pavia, Italy
| | - Marco Pozzi
- Anestesia e Rianimazione, Dipartimento di Emergenza ed Urgenza, Fondazione IRCCS Policlinico S. Matteo, Pavia, Italy
| | - Alessia Girello
- SS Virologia Molecolare, SC Microbiologia e Virologia, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Chiara Chiapponi
- Istituto Zooprofilattico Sperimentale della Lombardia ed Emilia Romagna, Parma, Italy
| | - Fausto Vezzoli
- Istituto Zooprofilattico Sperimentale della Lombardia ed Emilia Romagna, Lodi, Italy
| | - Paola Prati
- Istituto Zooprofilattico Sperimentale della Lombardia ed Emilia Romagna, Pavia, Italy
| | - Elena Percivalle
- SS Virologia Molecolare, SC Microbiologia e Virologia, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Anna Pavan
- Agenzia di Tutela della Salute, Pavia, Italy
| | - Maria Gramegna
- Direzione Generale Sanità, Regione Lombardia, Milan, Italy
| | - Giorgio Antonio Iotti
- Unità di Anestesia, Rianimazione e Terapia Antalgica, Dipartimento di Scienze Clinico-Chirurgiche, Diagnostiche e Pediatriche, Università degli Studi di Pavia, Pavia, Italy.,Anestesia e Rianimazione, Dipartimento di Emergenza ed Urgenza, Fondazione IRCCS Policlinico S. Matteo, Pavia, Italy
| | - Fausto Baldanti
- Dipartimento di Scienze Clinico-Chirurgiche, Diagnostiche e Pediatriche, Università degli Studi di Pavia, Pavia, Italy.,SS Virologia Molecolare, SC Microbiologia e Virologia, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| |
Collapse
|
22
|
|
23
|
Maljkovic Berry I, Melendrez MC, Li T, Hawksworth AW, Brice GT, Blair PJ, Halsey ES, Williams M, Fernandez S, Yoon IK, Edwards LD, Kuschner R, Lin X, Thomas SJ, Jarman RG. Frequency of influenza H3N2 intra-subtype reassortment: attributes and implications of reassortant spread. BMC Biol 2016; 14:117. [PMID: 28034300 PMCID: PMC5200972 DOI: 10.1186/s12915-016-0337-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 12/03/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Increasing evidence suggests that influenza reassortment not only contributes to the emergence of new human pandemics but also plays an important role in seasonal influenza epidemics, disease severity, evolution, and vaccine efficacy. We studied this process within 2091 H3N2 full genomes utilizing a combination of the latest reassortment detection tools and more conventional phylogenetic analyses. RESULTS We found that the amount of H3N2 intra-subtype reassortment depended on the number of sampled genomes, occurred with a steady frequency of 3.35%, and was not affected by the geographical origins, evolutionary patterns, or previous reassortment history of the virus. We identified both single reassortant genomes and reassortant clades, each clade representing one reassortment event followed by successful spread of the reassorted variant in the human population. It was this spread that was mainly responsible for the observed high presence of H3N2 intra-subtype reassortant genomes. The successfully spread variants were generally sampled within one year of their formation, highlighting the risk of their rapid spread but also presenting an opportunity for their rapid detection. Simultaneous spread of several different reassortant lineages was observed, and despite their limited average lifetime, second and third generation reassortment was detected, as well as reassortment between viruses belonging to different vaccine-associated clades, likely displaying differing antigenic properties. Some of the spreading reassortants remained confined to certain geographical regions, while others, sharing common properties in amino acid positions of the HA, NA, and PB2 segments, were found throughout the world. CONCLUSIONS Detailed surveillance of seasonal influenza reassortment patterns and variant properties may provide unique information needed for prediction of spread and construction of future influenza vaccines.
Collapse
Affiliation(s)
| | | | - Tao Li
- Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Anthony W Hawksworth
- Operational Infectious Diseases Directorate, Naval Health Research Center, San Diego, CA, USA
| | - Gary T Brice
- Operational Infectious Diseases Directorate, Naval Health Research Center, San Diego, CA, USA
| | - Patrick J Blair
- Operational Infectious Diseases Directorate, Naval Health Research Center, San Diego, CA, USA
| | | | | | - Stefan Fernandez
- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - In-Kyu Yoon
- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
- Present Address: International Vaccine Institute, Seoul, Republic of Korea
| | - Leslie D Edwards
- Office of Medical Services, US Department of State, Washington, DC, USA
| | - Robert Kuschner
- Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Xiaoxu Lin
- Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | | | | |
Collapse
|
24
|
Role of the B Allele of Influenza A Virus Segment 8 in Setting Mammalian Host Range and Pathogenicity. J Virol 2016; 90:9263-84. [PMID: 27489273 PMCID: PMC5044859 DOI: 10.1128/jvi.01205-16] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 07/28/2016] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED Two alleles of segment 8 (NS) circulate in nonchiropteran influenza A viruses. The A allele is found in avian and mammalian viruses, but the B allele is viewed as being almost exclusively found in avian viruses. This might reflect the fact that one or both of its encoded proteins (NS1 and NEP) are maladapted for replication in mammalian hosts. To test this, a number of clade A and B avian virus-derived NS segments were introduced into human H1N1 and H3N2 viruses. In no case was the peak virus titer substantially reduced following infection of various mammalian cell types. Exemplar reassortant viruses also replicated to similar titers in mice, although mice infected with viruses with the avian virus-derived segment 8s had reduced weight loss compared to that achieved in mice infected with the A/Puerto Rico/8/1934 (H1N1) parent. In vitro, the viruses coped similarly with type I interferons. Temporal proteomics analysis of cellular responses to infection showed that the avian virus-derived NS segments provoked lower levels of expression of interferon-stimulated genes in cells than wild type-derived NS segments. Thus, neither the A nor the B allele of avian virus-derived NS segments necessarily attenuates virus replication in a mammalian host, although the alleles can attenuate disease. Phylogenetic analyses identified 32 independent incursions of an avian virus-derived A allele into mammals, whereas 6 introductions of a B allele were identified. However, A-allele isolates from birds outnumbered B-allele isolates, and the relative rates of Aves-to-Mammalia transmission were not significantly different. We conclude that while the introduction of an avian virus segment 8 into mammals is a relatively rare event, the dogma of the B allele being especially restricted is misleading, with implications in the assessment of the pandemic potential of avian influenza viruses. IMPORTANCE Influenza A virus (IAV) can adapt to poultry and mammalian species, inflicting a great socioeconomic burden on farming and health care sectors. Host adaptation likely involves multiple viral factors. Here, we investigated the role of IAV segment 8. Segment 8 has evolved into two distinct clades: the A and B alleles. The B-allele genes have previously been suggested to be restricted to avian virus species. We introduced a selection of avian virus A- and B-allele segment 8s into human H1N1 and H3N2 virus backgrounds and found that these reassortant viruses were fully competent in mammalian host systems. We also analyzed the currently available public data on the segment 8 gene distribution and found surprisingly little evidence for specific avian host restriction of the B-clade segment. We conclude that B-allele segment 8 genes are, in fact, capable of supporting infection in mammals and that they should be considered during the assessment of the pandemic risk of zoonotic influenza A viruses.
Collapse
|
25
|
Sui J, Yang D, Qiao C, Xu H, Xu B, Wu Y, Yang H, Chen Y, Chen H. Protective efficacy of an inactivated Eurasian avian-like H1N1 swine influenza vaccine against homologous H1N1 and heterologous H1N1 and H1N2 viruses in mice. Vaccine 2016; 34:3757-63. [DOI: 10.1016/j.vaccine.2016.06.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 05/26/2016] [Accepted: 06/01/2016] [Indexed: 12/09/2022]
|
26
|
Piralla A, Moreno A, Orlandi ME, Percivalle E, Chiapponi C, Vezzoli F, Baldanti F. Swine Influenza A(H3N2) Virus Infection in Immunocompromised Man, Italy, 2014. Emerg Infect Dis 2016; 21:1189-91. [PMID: 26079745 PMCID: PMC4480377 DOI: 10.3201/eid2107.140981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Because swine influenza virus infection is seldom diagnosed in humans, its frequency might be underestimated. We report a immunocompromised hematologic patient with swine influenza A(H3N2) virus in 2014 in Italy. Local pigs were the source of this human infection.
Collapse
|
27
|
Pinsent A, Fraser C, Ferguson NM, Riley S. A systematic review of reported reassortant viral lineages of influenza A. BMC Infect Dis 2016; 16:3. [PMID: 26732146 PMCID: PMC4702296 DOI: 10.1186/s12879-015-1298-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 11/27/2015] [Indexed: 11/29/2022] Open
Abstract
Background Most previous evolutionary studies of influenza A have focussed on genetic drift, or reassortment of specific gene segments, hosts or subtypes. We conducted a systematic literature review to identify reported claimed reassortant influenza A lineages with genomic data available in GenBank, to obtain 646 unique first-report isolates out of a possible 20,781 open-access genomes. Results After adjusting for correlations, only: swine as host, China, Europe, Japan and years between 1997 and 2002; remained as significant risk factors for the reporting of reassortant viral lineages. For swine H1, more reassortants were observed in the North American H1 clade compared with the Eurasian avian-like H1N1 clade. Conversely, for avian H5 isolates, a higher number of reported reassortants were observed in the European H5N2/H3N2 clade compared with the H5N2 North American clade. Conclusions Despite unavoidable biases (publication, database choice and upload propensity) these results synthesize a large majority of the current literature on novel reported influenza A reassortants and are a potentially useful prerequisite to inform further algorithmic studies. Electronic supplementary material The online version of this article (doi:10.1186/s12879-015-1298-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Amy Pinsent
- Department of Infectious Disease Epidemiology, MRC Centre for Outbreak Analyses and Modelling, School of Public Health, Imperial College London, London, UK.
| | - Christophe Fraser
- Department of Infectious Disease Epidemiology, MRC Centre for Outbreak Analyses and Modelling, School of Public Health, Imperial College London, London, UK.
| | - Neil M Ferguson
- Department of Infectious Disease Epidemiology, MRC Centre for Outbreak Analyses and Modelling, School of Public Health, Imperial College London, London, UK.
| | - Steven Riley
- Department of Infectious Disease Epidemiology, MRC Centre for Outbreak Analyses and Modelling, School of Public Health, Imperial College London, London, UK.
| |
Collapse
|
28
|
Protein mutations following adaptation of avian influenza viruses in different biological systems. Res Vet Sci 2015; 103:176-8. [PMID: 26679814 DOI: 10.1016/j.rvsc.2015.10.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 08/03/2015] [Accepted: 10/17/2015] [Indexed: 11/20/2022]
Abstract
Traditionally, embryonated chicken eggs (ECE) are considered the gold standard for Influenza virus isolation and vaccine production. Nowadays, different biological systems have been improved and performed, in order to evaluate a feasible alternative to ECE. In fact, in a previous study, mammalian and avian cell cultures were successfully used for avian influenza viruses primary isolation from target tissues and virus propagation. This research is focused on the investigation of adaptive mutations that occur after influenza A virus amplification in ECE and cell cultures. The results of the study shows that avian influenza viruses after multiple passages in different biological systems undergo mutations, in particular, the largest number of amino acid substitutions occurred in all biological substrates in the hemagglutinin.
Collapse
|
29
|
Cross-Species Infectivity of H3N8 Influenza Virus in an Experimental Infection in Swine. J Virol 2015; 89:11190-202. [PMID: 26311894 DOI: 10.1128/jvi.01509-15] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 08/17/2015] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED Avian influenza A viruses have gained increasing attention due to their ability to cross the species barrier and cause severe disease in humans and other mammal species as pigs. H3 and particularly H3N8 viruses, are highly adaptive since they are found in multiple avian and mammal hosts. H3N8 viruses have not been isolated yet from humans; however, a recent report showed that equine influenza A viruses (IAVs) can be isolated from pigs, although an established infection has not been observed thus far in this host. To gain insight into the possibility of H3N8 avian IAVs to cross the species barrier into pigs, in vitro experiments and an experimental infection in pigs with four H3N8 viruses from different origins (equine, canine, avian, and seal) were performed. As a positive control, an H3N2 swine influenza virus A was used. Although equine and canine viruses hardly replicated in the respiratory systems of pigs, avian and seal viruses replicated substantially and caused detectable lesions in inoculated pigs without previous adaptation. Interestingly, antibodies against hemagglutinin could not be detected after infection by hemagglutination inhibition (HAI) test with avian and seal viruses. This phenomenon was observed not only in pigs but also in mice immunized with the same virus strains. Our data indicated that H3N8 IAVs from wild aquatic birds have the potential to cross the species barrier and establish successful infections in pigs that might spread unnoticed using the HAI test as diagnostic tool. IMPORTANCE Although natural infection of humans with an avian H3N8 influenza A virus has not yet been reported, this influenza A virus subtype has already crossed the species barrier. Therefore, we have examined the potential of H3N8 from canine, equine, avian, and seal origin to productively infect pigs. Our results demonstrated that avian and seal viruses replicated substantially and caused detectable lesions in inoculated pigs without previous adaptation. Surprisingly, we could not detect specific antibodies against hemagglutinin in any H3N8-infected pigs. Therefore, special attention should be focused toward viruses of the H3N8 subtype since they could behave as stealth viruses in pigs.
Collapse
|
30
|
Nelson M, Culhane MR, Rovira A, Torremorell M, Guerrero P, Norambuena J. Novel Human-like Influenza A Viruses Circulate in Swine in Mexico and Chile. PLOS CURRENTS 2015; 7. [PMID: 26345598 PMCID: PMC4551470 DOI: 10.1371/currents.outbreaks.c8b3207c9bad98474eca3013fa933ca6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Further understanding of the genetic diversity and evolution of influenza A viruses circulating in swine (IAV-S) is important for the development of effective vaccines and our knowledge of pandemic threats. Until recently, very little was known of IAV-S diversity in Latin America, owing to a lack of surveillance. METHODS To address this gap, we sequenced and conducted a phylogenetic analysis of 69 hemagglutinin (HA) sequences from IAV-S isolates collected in swine in Mexico and Chile during 2010-2014, including the H1N1, H1N2, and H3N2 subtypes. RESULTS Our analysis identified multiple IAV-S lineages that appear to have been circulating undetected in swine for decades, including four novel IAV-S lineages of human seasonal virus origin that have not been previously identified in any swine populations globally. We also found evidence of repeated introductions of pandemic H1N1 viruses from humans into swine in Mexico and Chile since 2009, and incursions of H1 and H3 viruses from North American swine into Mexico. DISCUSSION Overall, our findings indicate that at least 12 genetically distinct HA lineages circulate in Latin American swine herds, only two of which have been found in North American swine herds. Human-to-swine transmission, spatial migration via swine movements, and genomic reassortment are the key evolutionary mechanisms that generate this viral diversity. Additional antigenic characterization and whole-genome sequencing is greatly needed to understand the diversity and independent evolution of IAV-S in Latin America.
Collapse
Affiliation(s)
- Martha Nelson
- Fogarty International Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Marie R Culhane
- College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - Albert Rovira
- College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | | | | | | |
Collapse
|
31
|
Vijaykrishna D, Mukerji R, Smith GJD. RNA Virus Reassortment: An Evolutionary Mechanism for Host Jumps and Immune Evasion. PLoS Pathog 2015; 11:e1004902. [PMID: 26158697 PMCID: PMC4497687 DOI: 10.1371/journal.ppat.1004902] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Dhanasekaran Vijaykrishna
- Duke-NUS Graduate Medical School, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Pathology, Singapore General Hospital, SingHealth, Singapore
- * E-mail:
| | | | - Gavin J. D. Smith
- Duke-NUS Graduate Medical School, Singapore
- Duke Global Health Institute, Duke University, Durham, North Carolina, United States of America
| |
Collapse
|
32
|
Nelson MI, Vincent AL. Reverse zoonosis of influenza to swine: new perspectives on the human-animal interface. Trends Microbiol 2015; 23:142-53. [PMID: 25564096 DOI: 10.1016/j.tim.2014.12.002] [Citation(s) in RCA: 179] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 11/26/2014] [Accepted: 12/01/2014] [Indexed: 01/09/2023]
Abstract
The origins of the 2009 influenza A (H1N1) pandemic in swine are unknown, highlighting gaps in our understanding of influenza A virus (IAV) ecology and evolution. We review how recently strengthened influenza virus surveillance in pigs has revealed that influenza virus transmission from humans to swine is far more frequent than swine-to-human zoonosis, and is central in seeding swine globally with new viral diversity. The scale of global human-to-swine transmission represents the largest 'reverse zoonosis' of a pathogen documented to date. Overcoming the bias towards perceiving swine as sources of human viruses, rather than recipients, is key to understanding how the bidirectional nature of the human-animal interface produces influenza threats to both hosts.
Collapse
Affiliation(s)
- Martha I Nelson
- Fogarty International Center, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Amy L Vincent
- Virus and Prion Research Unit, National Animal Disease Center, US Department of Agriculture (USDA) Agricultural Research Service (ARS), Ames, IA 50010, USA
| |
Collapse
|
33
|
Chiapponi C, Baioni L, Luppi A, Moreno A, Castellan A, Foni E. Temporal insight into the natural generation of a new reassortant porcine influenza virus in a swine holding. Vet Microbiol 2014; 174:9-15. [DOI: 10.1016/j.vetmic.2014.08.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 08/18/2014] [Accepted: 08/26/2014] [Indexed: 12/18/2022]
|
34
|
Dudas G, Bedford T, Lycett S, Rambaut A. Reassortment between influenza B lineages and the emergence of a coadapted PB1-PB2-HA gene complex. Mol Biol Evol 2014; 32:162-72. [PMID: 25323575 PMCID: PMC4271528 DOI: 10.1093/molbev/msu287] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Influenza B viruses make a considerable contribution to morbidity attributed to seasonal influenza. Currently circulating influenza B isolates are known to belong to two antigenically distinct lineages referred to as B/Victoria and B/Yamagata. Frequent exchange of genomic segments of these two lineages has been noted in the past, but the observed patterns of reassortment have not been formalized in detail. We investigate interlineage reassortments by comparing phylogenetic trees across genomic segments. Our analyses indicate that of the eight segments of influenza B viruses only segments coding for polymerase basic 1 and 2 (PB1 and PB2) and hemagglutinin (HA) proteins have maintained separate Victoria and Yamagata lineages and that currently circulating strains possess PB1, PB2, and HA segments derived entirely from one or the other lineage; other segments have repeatedly reassorted between lineages thereby reducing genetic diversity. We argue that this difference between segments is due to selection against reassortant viruses with mixed-lineage PB1, PB2, and HA segments. Given sufficient time and continued recruitment to the reassortment-isolated PB1-PB2-HA gene complex, we expect influenza B viruses to eventually undergo sympatric speciation.
Collapse
Affiliation(s)
- Gytis Dudas
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Trevor Bedford
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Samantha Lycett
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, United Kingdom Institute of Biodiversity Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Andrew Rambaut
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, United Kingdom Fogarty International Center, National Institutes of Health, Bethesda, MD Centre for Immunology, Infection and Evolution at the University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
35
|
Quiñones-Mateu ME, Avila S, Reyes-Teran G, Martinez MA. Deep sequencing: becoming a critical tool in clinical virology. J Clin Virol 2014; 61:9-19. [PMID: 24998424 DOI: 10.1016/j.jcv.2014.06.013] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 06/12/2014] [Accepted: 06/14/2014] [Indexed: 02/07/2023]
Abstract
Population (Sanger) sequencing has been the standard method in basic and clinical DNA sequencing for almost 40 years; however, next-generation (deep) sequencing methodologies are now revolutionizing the field of genomics, and clinical virology is no exception. Deep sequencing is highly efficient, producing an enormous amount of information at low cost in a relatively short period of time. High-throughput sequencing techniques have enabled significant contributions to multiples areas in virology, including virus discovery and metagenomics (viromes), molecular epidemiology, pathogenesis, and studies of how viruses to escape the host immune system and antiviral pressures. In addition, new and more affordable deep sequencing-based assays are now being implemented in clinical laboratories. Here, we review the use of the current deep sequencing platforms in virology, focusing on three of the most studied viruses: human immunodeficiency virus (HIV), hepatitis C virus (HCV), and influenza virus.
Collapse
Affiliation(s)
- Miguel E Quiñones-Mateu
- University Hospital Translational Laboratory, University Hospitals Case Medical Center, Cleveland, OH, USA; Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Santiago Avila
- Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico; Centro de Investigaciones en Enfermedades Infecciosas, Mexico City, Mexico
| | - Gustavo Reyes-Teran
- Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico; Centro de Investigaciones en Enfermedades Infecciosas, Mexico City, Mexico
| | - Miguel A Martinez
- Fundació irsicaixa, Universitat Autònoma de Barcelona, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| |
Collapse
|
36
|
Baratelli M, Córdoba L, Pérez LJ, Maldonado J, Fraile L, Núñez JI, Montoya M. Genetic characterization of influenza A viruses circulating in pigs and isolated in north-east Spain during the period 2006–2007. Res Vet Sci 2014; 96:380-8. [DOI: 10.1016/j.rvsc.2013.12.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 11/29/2013] [Accepted: 12/06/2013] [Indexed: 10/25/2022]
|
37
|
Lu L, Lycett SJ, Leigh Brown AJ. Reassortment patterns of avian influenza virus internal segments among different subtypes. BMC Evol Biol 2014; 14:16. [PMID: 24456010 PMCID: PMC3905155 DOI: 10.1186/1471-2148-14-16] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 01/14/2014] [Indexed: 01/26/2023] Open
Abstract
Background The segmented RNA genome of avian Influenza viruses (AIV) allows genetic reassortment between co-infecting viruses, providing an evolutionary pathway to generate genetic innovation. The genetic diversity (16 haemagglutinin and 9 neuraminidase subtypes) of AIV indicates an extensive reservoir of influenza viruses exists in bird populations, but how frequently subtypes reassort with each other is still unknown. Here we quantify the reassortment patterns among subtypes in the Eurasian avian viral pool by reconstructing the ancestral states of the subtypes as discrete states on time-scaled phylogenies with respect to the internal protein coding segments. We further analyzed how host species, the inferred evolutionary rates and the dN/dS ratio varied among segments and between discrete subtypes, and whether these factors may be associated with inter-subtype reassortment rate. Results The general patterns of reassortment are similar among five internal segments with the exception of segment 8, encoding the Non-Structural genes, which has a more divergent phylogeny. However, significant variation in rates between subtypes was observed. In particular, hemagglutinin-encoding segments of subtypes H5 to H9 reassort at a lower rate compared to those of H1 to H4, and Neuraminidase-encoding segments of subtypes N1 and N2 reassort less frequently than N3 to N9. Both host species and dN/dS ratio were significantly associated with reassortment rate, while evolutionary rate was not associated. The dN/dS ratio was negatively correlated with reassortment rate, as was the number of negatively selected sites for all segments. Conclusions These results indicate that overall selective constraint and host species are both associated with reassortment rate. These results together identify the wild bird population as the major source of new reassortants, rather than domestic poultry. The lower reassortment rates observed for H5N1 and H9N2 may be explained by the large proportion of strains derived from domestic poultry populations. In contrast, the higher rates observed in the H1N1, H3N8 and H4N6 subtypes could be due to their primary origin as infections of wild birds with multiple low pathogenicity strains in the large avian reservoir.
Collapse
Affiliation(s)
| | | | - Andrew J Leigh Brown
- University of Edinburgh, Institute of Evolutionary Biology, Ashworth Laboratories, West Mains Road, Edinburgh EH9 3JT, UK.
| |
Collapse
|
38
|
Hassan L. Emerging Zoonoses in Domesticated Livestock of Southeast Asia. ENCYCLOPEDIA OF AGRICULTURE AND FOOD SYSTEMS 2014. [PMCID: PMC7152182 DOI: 10.1016/b978-0-444-52512-3.00216-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Southeast Asia, identified as one of the hotspot for emerging and reemerging diseases is an area of emerging market with doubling population size within the next few years. The livestock industry is growing rapidly to cater for the population need via intensification and various diversification methods. This article discusses a few relevant emerging and emerging zoonoses within the past two decades and highlights the impact of these diseases to the animal industry and public health in the region.
Collapse
|
39
|
Abstract
The tree structure is currently the accepted paradigm to represent evolutionary relationships between organisms, species or other taxa. However, horizontal, or reticulate, genomic exchanges are pervasive in nature and confound characterization of phylogenetic trees. Drawing from algebraic topology, we present a unique evolutionary framework that comprehensively captures both clonal and reticulate evolution. We show that whereas clonal evolution can be summarized as a tree, reticulate evolution exhibits nontrivial topology of dimension greater than zero. Our method effectively characterizes clonal evolution, reassortment, and recombination in RNA viruses. Beyond detecting reticulate evolution, we succinctly recapitulate the history of complex genetic exchanges involving more than two parental strains, such as the triple reassortment of H7N9 avian influenza and the formation of circulating HIV-1 recombinants. In addition, we identify recurrent, large-scale patterns of reticulate evolution, including frequent PB2-PB1-PA-NP cosegregation during avian influenza reassortment. Finally, we bound the rate of reticulate events (i.e., 20 reassortments per year in avian influenza). Our method provides an evolutionary perspective that not only captures reticulate events precluding phylogeny, but also indicates the evolutionary scales where phylogenetic inference could be accurate.
Collapse
|
40
|
Full-Genome Sequence of a Reassortant H1N1 Swine Influenza Virus Isolated from Pigs in Italy. GENOME ANNOUNCEMENTS 2013; 1:1/5/e00778-13. [PMID: 24092781 PMCID: PMC3790085 DOI: 10.1128/genomea.00778-13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In this study, the full-genome sequence of a novel reassortant H1N1 swine influenza virus (SIV) is reported. The isolate has a hemagglutinin (HA) gene of the pandemic H1N1 influenza virus, but it carries the seven genome segments of the avian-origin H1N1 SIV currently circulating in European pig farms.
Collapse
|
41
|
Determinants of virulence of influenza A virus. Eur J Clin Microbiol Infect Dis 2013; 33:479-90. [PMID: 24078062 DOI: 10.1007/s10096-013-1984-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 09/10/2013] [Indexed: 01/08/2023]
Abstract
Influenza A viruses cause yearly seasonal epidemics and occasional global pandemics in humans. In the last century, four human influenza A virus pandemics have occurred. Occasionally, influenza A viruses that circulate in other species cross the species barrier and infect humans. Virus reassortment (i.e. mixing of gene segments of multiple viruses) and the accumulation of mutations contribute to the emergence of new influenza A virus variants. Fortunately, most of these variants do not have the ability to spread among humans and subsequently cause a pandemic. In this review, we focus on the threat of animal influenza A viruses which have shown the ability to infect humans. In addition, genetic factors which could alter the virulence of influenza A viruses are discussed. The identification and characterisation of these factors may provide insights into genetic traits which change virulence and help us to understand which genetic determinants are of importance for the pandemic potential of animal influenza A viruses.
Collapse
|
42
|
Expanded cocirculation of stable subtypes, emerging lineages, and new sporadic reassortants of porcine influenza viruses in swine populations in Northwest Germany. J Virol 2013; 87:10460-76. [PMID: 23824819 DOI: 10.1128/jvi.00381-13] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The emergence of the human 2009 pandemic H1N1 (H1N1pdm) virus from swine populations refocused public and scientific attention on swine as an important source of influenza A viruses bearing zoonotic potential. Widespread and year-round circulation of at least four stable lineages of porcine influenza viruses between 2009 and 2012 in a region of Germany with a high-density swine population is documented here. European avian influenza virus-derived H1N1 (H1N1av) viruses dominated the epidemiology, followed by human-derived subtypes H1N2 and H3N2. H1N1pdm viruses and, in particular, recently emerging reassortants between H1N1pdm and porcine HxN2 viruses (H1pdmN2) were detected in about 8% of cases. Further reassortants between these main lineages were diagnosed sporadically. Ongoing diversification both at the phylogenetic and at the antigenic level was evident for the H1N1av lineage and for some of its reassortants. The H1avN2 reassortant R1931/11 displayed conspicuously distinct genetic and antigenic features and was easily transmitted from pig to pig in an experimental infection. Continuing diverging evolution was also observed in the H1pdmN2 lineage. These viruses carry seven genome segments of the H1N1pdm virus, including a hemagglutinin gene that encodes a markedly antigenically altered protein. The zoonotic potential of this lineage remains to be determined. The results highlight the relevance of surveillance and control of porcine influenza virus infections. This is important for the health status of swine herds. In addition, a more exhaustive tracing of the formation, transmission, and spread of new reassortant influenza A viruses with unknown zoonotic potential is urgently required.
Collapse
|
43
|
Ward MJ, Lycett SJ, Kalish ML, Rambaut A, Leigh Brown AJ. Estimating the rate of intersubtype recombination in early HIV-1 group M strains. J Virol 2013; 87:1967-73. [PMID: 23236072 PMCID: PMC3571495 DOI: 10.1128/jvi.02478-12] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 12/06/2012] [Indexed: 11/20/2022] Open
Abstract
West Central Africa has been implicated as the epicenter of the HIV-1 epidemic, and almost all group M subtypes can be found there. Previous analysis of early HIV-1 group M sequences from Kinshasa in the Democratic Republic of Congo, formerly Zaire, revealed that isolates from a number of individuals fall in different positions in phylogenetic trees constructed from sequences from opposite ends of the genome as a result of recombination between viruses of different subtypes. Here, we use discrete ancestral trait mapping to develop a procedure for quantifying HIV-1 group M intersubtype recombination across phylogenies, using individuals' gag (p17) and env (gp41) subtypes. The method was applied to previously described HIV-1 group M sequences from samples obtained in Kinshasa early in the global radiation of HIV. Nine different p17 and gp41 intersubtype recombinant combinations were present in the data set. The mean number of excess ancestral subtype transitions (NEST) required to map individuals' p17 subtypes onto the gp14 phylogeny samples, compared to the number required to map them onto the p17 phylogenies, and vice versa, indicated that excess subtype transitions occurred at a rate of approximately 7 × 10(-3) to 8 × 10(-3) per lineage per year as a result of intersubtype recombination. Our results imply that intersubtype recombination may have occurred in approximately 20% of lineages evolving over a period of 30 years and confirm intersubtype recombination as a substantial force in generating HIV-1 group M diversity.
Collapse
Affiliation(s)
- Melissa J. Ward
- University of Edinburgh, Institute of Evolutionary Biology, Ashworth Laboratories, Edinburgh, United Kingdom
| | - Samantha J. Lycett
- University of Edinburgh, Institute of Evolutionary Biology, Ashworth Laboratories, Edinburgh, United Kingdom
| | - Marcia L. Kalish
- Vanderbilt University, Vanderbilt Institute for Global Health, Nashville, Tennessee, USA
| | - Andrew Rambaut
- University of Edinburgh, Institute of Evolutionary Biology, Ashworth Laboratories, Edinburgh, United Kingdom
- Fogarty International Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Andrew J. Leigh Brown
- University of Edinburgh, Institute of Evolutionary Biology, Ashworth Laboratories, Edinburgh, United Kingdom
| |
Collapse
|