1
|
Chen Z, Behrendt R, Wild L, Schlee M, Bode C. Cytosolic nucleic acid sensing as driver of critical illness: mechanisms and advances in therapy. Signal Transduct Target Ther 2025; 10:90. [PMID: 40102400 PMCID: PMC11920230 DOI: 10.1038/s41392-025-02174-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 01/14/2025] [Accepted: 02/11/2025] [Indexed: 03/20/2025] Open
Abstract
Nucleic acids from both self- and non-self-sources act as vital danger signals that trigger immune responses. Critical illnesses such as acute respiratory distress syndrome, sepsis, trauma and ischemia lead to the aberrant cytosolic accumulation and massive release of nucleic acids that are detected by antiviral innate immune receptors in the endosome or cytosol. Activation of receptors for deoxyribonucleic acids and ribonucleic acids triggers inflammation, a major contributor to morbidity and mortality in critically ill patients. In the past decade, there has been growing recognition of the therapeutic potential of targeting nucleic acid sensing in critical care. This review summarizes current knowledge of nucleic acid sensing in acute respiratory distress syndrome, sepsis, trauma and ischemia. Given the extensive research on nucleic acid sensing in common pathological conditions like cancer, autoimmune disorders, metabolic disorders and aging, we provide a comprehensive summary of nucleic acid sensing beyond critical illness to offer insights that may inform its role in critical conditions. Additionally, we discuss potential therapeutic strategies that specifically target nucleic acid sensing. By examining nucleic acid sources, sensor activation and function, as well as the impact of regulating these pathways across various acute diseases, we highlight the driving role of nucleic acid sensing in critical illness.
Collapse
Affiliation(s)
- Zhaorong Chen
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, 53127, Bonn, Germany
| | - Rayk Behrendt
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127, Bonn, Germany
| | - Lennart Wild
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, 53127, Bonn, Germany
| | - Martin Schlee
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127, Bonn, Germany
| | - Christian Bode
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, 53127, Bonn, Germany.
| |
Collapse
|
2
|
Stegeman SK, Kourko O, Amsden H, Pellizzari Delano IE, Mamatis JE, Roth M, Colpitts CC, Gee K. RNA Viruses, Toll-Like Receptors, and Cytokines: The Perfect Storm? J Innate Immun 2025; 17:126-153. [PMID: 39820070 PMCID: PMC11845175 DOI: 10.1159/000543608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 01/13/2025] [Indexed: 01/19/2025] Open
Abstract
BACKGROUND The interactions between viruses and the host immune response are nuanced and intricate. The cytokine response arguably plays a central role in dictating the outcome of virus infection, balancing inflammation, and healing, which is crucial to resolving infection without destructive immunopathologies. SUMMARY Early innate immune responses are key to the generation of a beneficial or detrimental immune response. These initial responses are regulated by a plethora of surface bound, endosomal, and cytoplasmic innate immune receptors known as pattern recognition receptors. Of these, the Toll-like receptors (TLRs) play an important role in the induction of cytokines during virus infection. Recognizing pathogen-associated molecular patterns (PAMPs) such as viral proteins and/or nucleotide sequences, the TLRs act as sentinels for the initiation and propagation of immune responses. KEY MESSAGES TLRs are important receptors for initiating the innate response to single-stranded RNA (ssRNA) viruses like influenza A virus (IAV), severe acute respiratory syndrome coronavirus-1 (SARS-CoV-1), SARS-CoV-2, Middle East respiratory syndrome coronavirus, dengue virus, and Ebola virus. Infection with these viruses is also associated with aberrant expression of proinflammatory cytokines that contribute to a harmful cytokine storm response. Herein we discuss the connections between these ssRNA viruses, cytokine storm, and the roles of TLRs. BACKGROUND The interactions between viruses and the host immune response are nuanced and intricate. The cytokine response arguably plays a central role in dictating the outcome of virus infection, balancing inflammation, and healing, which is crucial to resolving infection without destructive immunopathologies. SUMMARY Early innate immune responses are key to the generation of a beneficial or detrimental immune response. These initial responses are regulated by a plethora of surface bound, endosomal, and cytoplasmic innate immune receptors known as pattern recognition receptors. Of these, the Toll-like receptors (TLRs) play an important role in the induction of cytokines during virus infection. Recognizing pathogen-associated molecular patterns (PAMPs) such as viral proteins and/or nucleotide sequences, the TLRs act as sentinels for the initiation and propagation of immune responses. KEY MESSAGES TLRs are important receptors for initiating the innate response to single-stranded RNA (ssRNA) viruses like influenza A virus (IAV), severe acute respiratory syndrome coronavirus-1 (SARS-CoV-1), SARS-CoV-2, Middle East respiratory syndrome coronavirus, dengue virus, and Ebola virus. Infection with these viruses is also associated with aberrant expression of proinflammatory cytokines that contribute to a harmful cytokine storm response. Herein we discuss the connections between these ssRNA viruses, cytokine storm, and the roles of TLRs.
Collapse
Affiliation(s)
- Sophia K Stegeman
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Olena Kourko
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Heather Amsden
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | | | - John E Mamatis
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Madison Roth
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Che C Colpitts
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Katrina Gee
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
3
|
Sato H, Ishii C, Nakayama SMM, Ichise T, Saito K, Watanabe Y, Ogasawara K, Torimoto R, Kobayashi A, Kimura T, Nakamura Y, Yamagishi J, Ikenaka Y, Ishizuka M. Behavior and toxic effects of Pb in a waterfowl model with oral exposure to Pb shots: Investigating Pb exposure in wild birds. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 308:119580. [PMID: 35680064 DOI: 10.1016/j.envpol.2022.119580] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/29/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
Among wild birds, lead (Pb) exposure caused by ingestion of ammunition is a worldwide problem. We aimed to reveal the behavior and toxic effect of Pb caused by ingesting Pb shots in waterfowl. Four male, eight-week old Muscovy ducks (Cairina moschata) were given three Pb shots (approximately 240 mg in total) orally and then fed for 29 days after exposure, simulating a low-dose Pb exposure in wild waterfowl. During the breeding period, blood samples were collected 10 times, and fecal samples every day. Additionally, 22 fresh tissue and 6 bone samples were obtained from each duck through the dissection. Although there were no gross abnormalities, the maximum blood Pb concentration of each duck ranged from 0.6 to 3.7 mg/L, reaching a threshold concentration indicative of clinical symptoms (>0.5 mg/L). δ-aminolevulinic acid dehydratase declined one day after exposure and remained low throughout the feeding period. Hematocrit also tended to decrease, indicating signs of anemia. The highest Pb accumulation was observed in the bones, followed by the kidneys, intestinal tracts, and liver. High Pb accumulation in the bones, which are known to have a long Pb half-life, suggested that Pb would remain in the body and possibly affect bird health beyond 28 days after exposure. Gene expression analysis showed a significant increase in the expression of the toll-like receptor-3 gene, which is involved in virus discrimination in the liver, suggesting a disruption of the immune system. Microbiota analyses showed a correlation between the blood Pb concentration and the abundances of Lachnospiraceae and Ruminococcaceae, suggesting that Pb affects lipid metabolism. These results provide fundamental data on Pb exposure in wild birds and a new perspective on the damage such exposure causes.
Collapse
Affiliation(s)
- Hiroshi Sato
- Laboratory of Toxicology, Faculty of Veterinary Medicine, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo, Hokkaido, 060-0818, Japan
| | - Chihiro Ishii
- Laboratory of Toxicology, Faculty of Veterinary Medicine, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo, Hokkaido, 060-0818, Japan
| | - Shouta M M Nakayama
- Laboratory of Toxicology, Faculty of Veterinary Medicine, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo, Hokkaido, 060-0818, Japan
| | - Takahiro Ichise
- Laboratory of Toxicology, Faculty of Veterinary Medicine, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo, Hokkaido, 060-0818, Japan
| | - Keisuke Saito
- Institute for Raptor Biomedicine Japan, Hokuto 2-2101, Kushiro, Hokkaido, 084-0922, Japan
| | - Yukiko Watanabe
- Institute for Raptor Biomedicine Japan, Hokuto 2-2101, Kushiro, Hokkaido, 084-0922, Japan
| | - Kohei Ogasawara
- Institute for Raptor Biomedicine Japan, Hokuto 2-2101, Kushiro, Hokkaido, 084-0922, Japan
| | - Ryota Torimoto
- Laboratory of Comparative Pathology, Faculty of Veterinary Medicine, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo, Hokkaido, 060-0818, Japan
| | - Atsushi Kobayashi
- Laboratory of Comparative Pathology, Faculty of Veterinary Medicine, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo, Hokkaido, 060-0818, Japan
| | - Takashi Kimura
- Laboratory of Comparative Pathology, Faculty of Veterinary Medicine, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo, Hokkaido, 060-0818, Japan
| | - Yukiko Nakamura
- Division of Collaboration and Education, International Institute for Zoonosis Control, Hokkaido University, Sapporo, 001-0020, Japan
| | - Junya Yamagishi
- Division of Collaboration and Education, International Institute for Zoonosis Control, Hokkaido University, Sapporo, 001-0020, Japan; International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, 001-0020, Japan
| | - Yoshinori Ikenaka
- Laboratory of Toxicology, Faculty of Veterinary Medicine, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo, Hokkaido, 060-0818, Japan; Water Research Group, School of Environmental Sciences and Development, North-West University, South Africa; Translational Research Unit, Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan; One Health Research Center, Hokkaido University, Japan
| | - Mayumi Ishizuka
- Laboratory of Toxicology, Faculty of Veterinary Medicine, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo, Hokkaido, 060-0818, Japan.
| |
Collapse
|
4
|
Hwang E, Kim H, Truong AD, Kim SJ, Song KD. Suppression of the Toll-like receptors 3 mediated pro-inflammatory gene expressions by progenitor cell differentiation and proliferation factor in chicken DF-1 cells. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2022; 64:123-134. [PMID: 35174347 PMCID: PMC8819319 DOI: 10.5187/jast.2021.e130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/27/2021] [Accepted: 11/30/2021] [Indexed: 12/12/2022]
Abstract
Toll-like receptors (TLRs), as a part of innate immunity, plays an important role in detecting pathogenic molecular patterns (PAMPs) which are structural components or product of pathogens and initiate host defense systems or innate immunity. Precise negative feedback regulations of TLR signaling are important in maintaining homeostasis to prevent tissue damage by uncontrolled inflammation during innate immune responses. In this study, we identified and characterized the function of the pancreatic progenitor cell differentiation and proliferation factor (PPDPF) as a negative regulator for TLR signal-mediated inflammation in chicken. Bioinformatics analysis showed that the structure of chicken PPDPF evolutionarily conserved amino acid sequences with domains, i.e., SH3 binding sites and CDC-like kinase 2 (CLK2) binding sites, suggesting that relevant signaling pathways might contribute to suppression of inflammation. Our results showed that stimulation with polyinosinic:polycytidylic acids (Poly [I:C]), a synthetic agonist for TLR3 signaling, increased the mRNA expression of PPDPF in chicken fibroblasts DF-1 but not in chicken macrophage-like cells HD11. In addition, the expression of pro-inflammatory genes stimulated by Poly(I:C) were reduced in DF-1 cells which overexpress PPDPF. Future studies warrant to reveal the molecular mechanisms responsible for the anti-inflammatory capacity of PPDPF in chicken as well as a potential target for controlling viral resistance.
Collapse
Affiliation(s)
- Eunmi Hwang
- Division of Cosmetics and Biotechnology,
College of Life and Health Sciences, Hoseo University, Asan
31499, Korea
| | - Hyungkuen Kim
- Division of Cosmetics and Biotechnology,
College of Life and Health Sciences, Hoseo University, Asan
31499, Korea
| | - Anh Duc Truong
- Department of Agricultural Convergence
Technology, Jeonbuk National University, Jeonju 54896,
Korea
| | - Sung-Jo Kim
- Division of Cosmetics and Biotechnology,
College of Life and Health Sciences, Hoseo University, Asan
31499, Korea
| | - Ki-Duk Song
- Department of Agricultural Convergence
Technology, Jeonbuk National University, Jeonju 54896,
Korea
| |
Collapse
|
5
|
Kombiah S, Kumar M, Murugkar HV, Nagarajan S, Tosh C, Senthilkumar D, Rajukumar K, Kalaiyarasu S, Gautam S, Singh R, Karikalan M, Sharma AK, Singh VP. Role of expression of host cytokines in the pathogenesis of H9N2-PB2 reassortant and non-reassortant H5N1 avian influenza viruses isolated from crows in BALB/c mice. Microb Pathog 2021; 161:105239. [PMID: 34648926 DOI: 10.1016/j.micpath.2021.105239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 10/06/2021] [Accepted: 10/06/2021] [Indexed: 11/16/2022]
Abstract
The present experiment was conducted to study the role of cytokine, chemokine and TLRs responses of H9N2-PB2 reassortant H5N1 virus as compared to non-reassortant H5N1 virus isolated from crows in BALB/c mice. Two groups (12 mice each) of 6-8 weeks old BALB/c mice were intranasally inoculated with 106 EID50/ml of viruses A/crow/India/03CA04/2015 (H9N2-PB2 reassortant H5N1) and A/crow/India/02CA01/2012 (non-reassortant H5N1). At each interval, brain, lung and spleen were collected and relative quantification of cytokines, chemokines and TLRs was done by qPCR. The H9N2-PB2 reassortant H5N1 infected mice brain, the transcripts of TLR7 were significantly higher than other cytokines at 3dpi and KC was significantly upregulated at 7dpi. In non-reassortant H5N1 infected mice brain showed, TLR 7 and IFNα upregulation at 3dpi and IFNγ and TLR7 upregulation at 7dpi. The H9N2-PB2 reassortant H5N1 infected mice lung revealed, IL2 and TLR7 significant upregulation at 3dpi and in non-reassortant H5N1 infected mice, IL6 was significantly upregulated. At 7dpi in H9N2-PB2 reassortant H5N1 virus infected group mice, IL1 and TLR 3 were significantly upregulated in lungs and in non-reassortant group mice, IL1 and TLR7 were significantly upregulated. At 3dpi in H9N2-PB2 reassortant H5N1 virus infected mice spleen, IL4, IFNα, IFNβ were significantly downregulated and TLR7 transcript was significantly upregulated. In non-reassortant group mice, IL6, IFNα, IFNβ and TLR 3 were significantly upregulated. At 7dpi in H9N2-PB2 reassortant H5N1 virus infected mice spleen, IFNα, IFNβ and TLR7 were significantly lower than other cytokines and in non-reassortant group mice, IFNα and IFNβ were significantly downregulated. This study concludes that dysregulation of cytokines in lungs and brain might have contributed to the pathogenesis of both the viruses in mice.
Collapse
Affiliation(s)
- Subbiah Kombiah
- ICAR - National Institute of High Security Animal Diseases, Anand Nagar, Bhopal, Madhya Pradesh, 462 022, India; ICAR - Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243 122, India
| | - Manoj Kumar
- ICAR - National Institute of High Security Animal Diseases, Anand Nagar, Bhopal, Madhya Pradesh, 462 022, India.
| | - Harshad Vinayakrao Murugkar
- ICAR - National Institute of High Security Animal Diseases, Anand Nagar, Bhopal, Madhya Pradesh, 462 022, India
| | - Shanmugasundaram Nagarajan
- ICAR - National Institute of High Security Animal Diseases, Anand Nagar, Bhopal, Madhya Pradesh, 462 022, India
| | - Chakradhar Tosh
- ICAR - National Institute of High Security Animal Diseases, Anand Nagar, Bhopal, Madhya Pradesh, 462 022, India
| | - Dhanapal Senthilkumar
- ICAR - National Institute of High Security Animal Diseases, Anand Nagar, Bhopal, Madhya Pradesh, 462 022, India
| | - Katherukamem Rajukumar
- ICAR - National Institute of High Security Animal Diseases, Anand Nagar, Bhopal, Madhya Pradesh, 462 022, India
| | - Semmannan Kalaiyarasu
- ICAR - National Institute of High Security Animal Diseases, Anand Nagar, Bhopal, Madhya Pradesh, 462 022, India
| | - Siddharth Gautam
- ICAR - Indian Veterinary Research Institute, Mukteshwar, Nainital, Uttrakhand, 263138, India
| | - Rajendra Singh
- ICAR - Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243 122, India
| | - Mathesh Karikalan
- ICAR - Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243 122, India
| | - Anil Kumar Sharma
- ICAR - Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243 122, India
| | - Vijendra Pal Singh
- ICAR - National Institute of High Security Animal Diseases, Anand Nagar, Bhopal, Madhya Pradesh, 462 022, India
| |
Collapse
|
6
|
Chen Y, Lin J, Zhao Y, Ma X, Yi H. Toll-like receptor 3 (TLR3) regulation mechanisms and roles in antiviral innate immune responses. J Zhejiang Univ Sci B 2021; 22:609-632. [PMID: 34414698 PMCID: PMC8377577 DOI: 10.1631/jzus.b2000808] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/09/2021] [Accepted: 04/09/2021] [Indexed: 01/08/2023]
Abstract
Toll-like receptor 3 (TLR3) is a member of the TLR family, mediating the transcriptional induction of type I interferons (IFNs), proinflammatory cytokines, and chemokines, thereby collectively establishing an antiviral host response. Studies have shown that unlike other TLR family members, TLR3 is the only RNA sensor that is utterly dependent on the Toll-interleukin-1 receptor (TIR)-domain-containing adaptor-inducing IFN-β (TRIF). However, the details of how the TLR3-TRIF signaling pathway works in an antiviral response and how it is regulated are unclear. In this review, we focus on recent advances in understanding the antiviral mechanism of the TRIF pathway and describe the essential characteristics of TLR3 and its antiviral effects. Advancing our understanding of TLR3 may contribute to disease diagnosis and could foster the development of novel treatments for viral diseases.
Collapse
Affiliation(s)
- Yujuan Chen
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China
- Chongqing Veterinary Science Engineering Research Center, Chongqing 402460, China
| | - Junhong Lin
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China
- Chongqing Veterinary Science Engineering Research Center, Chongqing 402460, China
| | - Yao Zhao
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China
- Chongqing Veterinary Science Engineering Research Center, Chongqing 402460, China
| | - Xianping Ma
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China
- Chongqing Veterinary Science Engineering Research Center, Chongqing 402460, China
| | - Huashan Yi
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China.
- Chongqing Veterinary Science Engineering Research Center, Chongqing 402460, China.
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing 402460, China.
| |
Collapse
|
7
|
Johansson C, Kirsebom FCM. Neutrophils in respiratory viral infections. Mucosal Immunol 2021; 14:815-827. [PMID: 33758367 PMCID: PMC7985581 DOI: 10.1038/s41385-021-00397-4] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 02/04/2023]
Abstract
Viral respiratory infections are a common cause of severe disease, especially in infants, people who are immunocompromised, and in the elderly. Neutrophils, an important innate immune cell, infiltrate the lungs rapidly after an inflammatory insult. The most well-characterized effector mechanisms by which neutrophils contribute to host defense are largely extracellular and the involvement of neutrophils in protection from numerous bacterial and fungal infections is well established. However, the role of neutrophils in responses to viruses, which replicate intracellularly, has been less studied. It remains unclear whether and, by which underlying immunological mechanisms, neutrophils contribute to viral control or confer protection against an intracellular pathogen. Furthermore, neutrophils need to be tightly regulated to avoid bystander damage to host tissues. This is especially relevant in the lung where damage to delicate alveolar structures can compromise gas exchange with life-threatening consequences. It is inherently less clear how neutrophils can contribute to host immunity to viruses without causing immunopathology and/or exacerbating disease severity. In this review, we summarize and discuss the current understanding of how neutrophils in the lung direct immune responses to viruses, control viral replication and spread, and cause pathology during respiratory viral infections.
Collapse
Affiliation(s)
- Cecilia Johansson
- National Heart and Lung Institute, Imperial College London, London, UK.
| | | |
Collapse
|
8
|
Zhou HX, Li RF, Wang YF, Shen LH, Cai LH, Weng YC, Zhang HR, Chen XX, Wu X, Chen RF, Jiang HM, Wang C, Yang M, Lu J, Luo XD, Jiang Z, Yang ZF. Total alkaloids from Alstonia scholaris inhibit influenza a virus replication and lung immunopathology by regulating the innate immune response. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 77:153272. [PMID: 32702592 DOI: 10.1016/j.phymed.2020.153272] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 06/01/2020] [Accepted: 06/28/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Alstonia scholaris is a folk medicine used to treat cough, asthma and chronic obstructive pulmonary disease in China. Total alkaloids (TA) from A. scholaris exhibit anti-inflammatory properties in acute respiratory disease, which suggests their possible anti-inflammatory effect on influenza virus infection. PURPOSE To assess the clinical use of TA by demonstrating their anti-influenza and anti-inflammatory effects and the possible mechanism underlying the effect of TA on influenza A virus (IAV) infection in vitro and to reveal the inhibitory effect of TA on lung immunopathology caused by IAV infection. METHODS Antiviral and anti-inflammatory activities were assessed in Madin-Darby canine kidney (MDCK) and A549 cells and U937-derived macrophages infected with influenza A/PR/8/34 (H1N1) virus. Proinflammatory cytokine levels were measured by real-time quantitative PCR and Bio-Plex assays. The activation of innate immune signaling induced by H1N1 virus in the absence or presence of TA was detected in A549 cells by Western blot. Furthermore, mice were infected intranasally with H1N1 virus and treated with TA (50, 25 and 12.5 mg/kg/d) or oseltamivir (60 mg/kg/d) for 5 days in vivo. The survival rates and body weight were recorded, and the viral titer, proinflammatory cytokine levels, innate immune cell populations and histopathological changes in the lungs were analyzed. RESULTS TA significantly inhibited viral replication in A549 cells and U937-derived macrophages and markedly reduced cytokine and chemokine production at the mRNA and protein levels. Furthermore, TA blocked the activation of pattern recognition receptor (PRR)- and IFN-activated signal transduction in A549 cells. Critically, TA also increased the survival rate, reduced the viral titer, suppressed proinflammatory cytokine production and innate immune cell infiltration and improved lung histopathology in a lethal PR8 mouse model. CONCLUSION TA exhibits anti-viral and anti-inflammatory effects against IAV infection by interfering with PRR- and IFN-activated signal transduction.
Collapse
Affiliation(s)
- Hong-Xia Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, 510120, China; Dongguan People's Hospital, Dongguan, 523000, China
| | - Run-Feng Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, 510120, China
| | - Yi-Feng Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Li-Han Shen
- Dongguan People's Hospital, Dongguan, 523000, China
| | - Li-Hua Cai
- Dongguan People's Hospital, Dongguan, 523000, China
| | - Yun-Ceng Weng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, 510120, China
| | | | - Xin-Xin Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, 510120, China
| | - Xiao Wu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, 510120, China
| | - Rui-Feng Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, 510120, China
| | - Hai-Ming Jiang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, 510120, China
| | - Caiyun Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau (SAR), 519020, China
| | - Mingrong Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau (SAR), 519020, China
| | - Jingguang Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau (SAR), 519020, China
| | - Xiao-Dong Luo
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, 510120, China; State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| | - Zhihong Jiang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, 510120, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau (SAR), 519020, China; Guangdong-Hong Kong-Macao Joint Laboratory of Infectious Respiratory Disease, 510000, China
| | - Zi-Feng Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, 510120, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau (SAR), 519020, China; KingMed Virology Diagnostic & Translational Center, 510000, China; Guangdong-Hong Kong-Macao Joint Laboratory of Infectious Respiratory Disease, 510000, China.
| |
Collapse
|
9
|
Kc M, Ngunjiri JM, Lee J, Ahn J, Elaish M, Ghorbani A, Abundo MEC, Lee K, Lee CW. Avian Toll-like receptor 3 isoforms and evaluation of Toll-like receptor 3-mediated immune responses using knockout quail fibroblast cells. Poult Sci 2020; 99:6513-6524. [PMID: 33248566 PMCID: PMC7704946 DOI: 10.1016/j.psj.2020.09.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 08/12/2020] [Accepted: 09/11/2020] [Indexed: 12/28/2022] Open
Abstract
Toll-like receptor 3 (TLR3) induces host innate immune response on recognition of viral double-stranded RNA (dsRNA). Although several studies of avian TLR3 have been reported, none of these studies used a gene knockout (KO) model to directly assess its role in inducing the immune response and effect on other dsRNA receptors. In this study, we determined the coding sequence of quail TLR3, identified isoforms, and generated TLR3 KO quail fibroblast (QT-35) cells using a CRISPR/Cas9 system optimized for avian species. The TLR3-mediated immune response was studied by stimulating the wild-type (WT) and KO QT-35 cells with synthetic dsRNA or polyinosinic:polycytidylic acid [poly(I:C)] or infecting the cells with different RNA viruses such as influenza A virus, avian reovirus, and vesicular stomatitis virus. The direct poly(I:C) treatment significantly increased IFN-β and IL-8 gene expression along with the cytoplasmic dsRNA receptor, melanoma differentiation-associated gene 5 (MDA5), in WT cells, whereas no changes in all corresponding genes were observed in KO cells. We further confirmed the antiviral effects of poly(I:C)-induced TLR3-mediated immunity by demonstrating significant reduction of virus titer in poly(I:C)-treated WT cells, but not in TLR3 KO cells. On virus infection, varying levels of IFN-β, IL-8, TLR3, and MDA5 gene upregulation were observed depending on the viruses. No major differences in gene expression level were observed between WT and TLR3 KO cells, which suggests a relatively minor role of TLR3 in sensing and exerting immune response against the viruses tested in vitro. Our data show that quail TLR3 is an important endosomal dsRNA receptor responsible for regulation of type I interferon and proinflammatory cytokine, and affect the expression of MDA5, another dsRNA receptor, most likely through cytokine-mediated communication.
Collapse
Affiliation(s)
- Mahesh Kc
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, USA; Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, USA
| | - John M Ngunjiri
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, USA
| | - Joonbum Lee
- Department of Animal Sciences, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Columbus, USA
| | - Jinsoo Ahn
- Department of Animal Sciences, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Columbus, USA
| | - Mohamed Elaish
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, USA; Poultry Diseases Department, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Amir Ghorbani
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, USA; Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, USA
| | - Michael E C Abundo
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, USA; Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, USA
| | - Kichoon Lee
- Department of Animal Sciences, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Columbus, USA.
| | - Chang-Won Lee
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, USA; Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, USA.
| |
Collapse
|
10
|
Laghlali G, Lawlor KE, Tate MD. Die Another Way: Interplay between Influenza A Virus, Inflammation and Cell Death. Viruses 2020; 12:v12040401. [PMID: 32260457 PMCID: PMC7232208 DOI: 10.3390/v12040401] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/01/2020] [Accepted: 04/01/2020] [Indexed: 02/08/2023] Open
Abstract
Influenza A virus (IAV) is a major concern to human health due to the ongoing global threat of a pandemic. Inflammatory and cell death signalling pathways play important roles in host defence against IAV infection. However, severe IAV infections in humans are characterised by excessive inflammation and tissue damage, often leading to fatal disease. While the molecular mechanisms involved in the induction of inflammation during IAV infection have been well studied, the pathways involved in IAV-induced cell death and their impact on immunopathology have not been fully elucidated. There is increasing evidence of significant crosstalk between cell death and inflammatory pathways and a greater understanding of their role in host defence and disease may facilitate the design of new treatments for IAV infection.
Collapse
Affiliation(s)
- Gabriel Laghlali
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; (G.L.); (K.E.L.)
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC 3168, Australia
- Master de Biologie, École Normale Supérieure de Lyon, Université Claude Bernard Lyon I, Université de Lyon, 69007 Lyon, France
| | - Kate E. Lawlor
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; (G.L.); (K.E.L.)
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Michelle D. Tate
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; (G.L.); (K.E.L.)
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC 3168, Australia
- Correspondence: ; Tel.: +61-85722742
| |
Collapse
|
11
|
Benam KH, Denney L, Ho LP. How the Respiratory Epithelium Senses and Reacts to Influenza Virus. Am J Respir Cell Mol Biol 2019; 60:259-268. [PMID: 30372120 DOI: 10.1165/rcmb.2018-0247tr] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The human lung is constantly exposed to the environment and potential pathogens. As the interface between host and environment, the respiratory epithelium has evolved sophisticated sensing mechanisms as part of its defense against pathogens. In this review, we examine how the respiratory epithelium senses and responds to influenza A virus, the biggest cause of respiratory viral deaths worldwide.
Collapse
Affiliation(s)
- Kambez H Benam
- 1 Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado - Anschutz Medical Campus, Aurora, Colorado.,2 Department of Bioengineering, University of Colorado Denver, Aurora, Colorado; and
| | - Laura Denney
- 3 Translational Lung Immunology Programme, MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Ling-Pei Ho
- 3 Translational Lung Immunology Programme, MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| |
Collapse
|
12
|
Zubova SV, Vorovich MF, Gambaryan AS, Ishmukhametov AA, Grachev SV, Prokhorenko IR. The Effect of a Lipopolysaccharide from Rhodobacter capsulatus PG on Inflammation Caused by Various Influenza Strains. Acta Naturae 2019; 11:46-55. [PMID: 31720016 PMCID: PMC6826150 DOI: 10.32607/20758251-2019-11-3-46-55] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The development of a specific inflammation in mice that had been infected by
two influenza virus strains, A/chicken/Kurgan/5/2005 (H5N1) and A/Hamburg/2009
MA (H1N1), was studied. We investigated the effect of a non-toxic
lipopolysaccharide from Rhodobacter capsulatus PG on the survival and body
weight of the mice, production of IgG antibodies, and the induction of pro- and
anti-inflammatory cytokines in blood serum. The administration of the R.
capsulatus PG lipopolysaccharide was shown to induce interferon-β
synthesis, both in healthy and influenza A virus-infected mice, and to promote
production of antiviral antibodies in the blood of the influenza-infected
animals.
Collapse
Affiliation(s)
- S. V. Zubova
- Institute of Basic Biological Problems of RAS, FRC PSCBR RAS, Science Ave. 3, Pushchino, Moscow, 142290, Russia
| | - M. F. Vorovich
- FGBNU Federal Scientific Center of Research and Development of Immunobiological Preparations named M.P. Chumakov of RAS, pos. Institute of Poliomyelitis, Kievskoye Highway, 27th km, 8/1, Moscow Region, 142782, Russia
- GAOUVO First Moscow State Medical University named I.M. Sechenov of Russia Health Ministry, Trubetskaya Str. 8, Moscow, 119811, Russia
| | - A. S. Gambaryan
- FGBNU Federal Scientific Center of Research and Development of Immunobiological Preparations named M.P. Chumakov of RAS, pos. Institute of Poliomyelitis, Kievskoye Highway, 27th km, 8/1, Moscow Region, 142782, Russia
| | - A. A. Ishmukhametov
- FGBNU Federal Scientific Center of Research and Development of Immunobiological Preparations named M.P. Chumakov of RAS, pos. Institute of Poliomyelitis, Kievskoye Highway, 27th km, 8/1, Moscow Region, 142782, Russia
- GAOUVO First Moscow State Medical University named I.M. Sechenov of Russia Health Ministry, Trubetskaya Str. 8, Moscow, 119811, Russia
| | - S. V. Grachev
- Institute of Basic Biological Problems of RAS, FRC PSCBR RAS, Science Ave. 3, Pushchino, Moscow, 142290, Russia
- GAOUVO First Moscow State Medical University named I.M. Sechenov of Russia Health Ministry, Trubetskaya Str. 8, Moscow, 119811, Russia
| | - I. R. Prokhorenko
- Institute of Basic Biological Problems of RAS, FRC PSCBR RAS, Science Ave. 3, Pushchino, Moscow, 142290, Russia
| |
Collapse
|
13
|
Biondo C, Lentini G, Beninati C, Teti G. The dual role of innate immunity during influenza. Biomed J 2019; 42:8-18. [PMID: 30987709 PMCID: PMC6468094 DOI: 10.1016/j.bj.2018.12.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/14/2018] [Accepted: 12/20/2018] [Indexed: 12/25/2022] Open
Abstract
One of the distinguishing features of the 1918 pandemic is the occurrence of massive, potentially detrimental, activation of the innate immune system in critically ill patients. Whether this reflects an intrinsic capacity of the virus to induce an exaggerated inflammatory responses or its remarkable ability to reproduce in vivo is still open to debate. Tremendous progress has recently been made in our understanding of innate immune responses to influenza infection and it is now time to translate this knowledge into therapeutic strategies, particularly in view of the possible occurrence of future outbreaks caused by virulent strains.
Collapse
Affiliation(s)
- Carmelo Biondo
- Metchnikoff Laboratory, University of Messina, Messina, Italy
| | - Germana Lentini
- Metchnikoff Laboratory, University of Messina, Messina, Italy
| | | | - Giuseppe Teti
- Metchnikoff Laboratory, University of Messina, Messina, Italy.
| |
Collapse
|
14
|
Zarnegar B, Westin A, Evangelidou S, Hallgren J. Innate Immunity Induces the Accumulation of Lung Mast Cells During Influenza Infection. Front Immunol 2018; 9:2288. [PMID: 30337928 PMCID: PMC6180200 DOI: 10.3389/fimmu.2018.02288] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 09/14/2018] [Indexed: 12/21/2022] Open
Abstract
Mast cells release disease-causing mediators and accumulate in the lung of asthmatics. The most common cause of exacerbations of asthma is respiratory virus infections such as influenza. Recently, we demonstrated that influenza infection in mice triggers the recruitment of mast cell progenitors to the lung. This process starts early after infection and leads to the accumulation of mast cells. Previous studies showed that an adaptive immune response was required to trigger the recruitment of mast cell progenitors to the lung in a mouse model of allergic lung inflammation. Therefore, we set out to determine whether an adaptive immune response against the virus is needed to cause the influenza-induced recruitment of mast cell progenitors to the lung. We found that influenza-induced recruitment of mast cell progenitors to the lung was intact in Rag2 -/- mice and mice depleted of CD4+ cells, implicating the involvement of innate immune signals in this process. Seven weeks after the primary infection, the influenza-exposed mice harbored more lung mast cells than unexposed mice. As innate immunity was implicated in stimulating the recruitment process, several compounds known to trigger innate immune responses were administrated intranasally to test their ability to cause an increase in lung mast cell progenitors. Poly I:C, a synthetic analog of viral dsRNA, induced a TLR3-dependent increase in lung mast cell progenitors. In addition, IL-33 induced an ST2-dependent increase in lung mast cell progenitors. In contrast, the influenza-induced recruitment of mast cell progenitors to the lung occurred independently of either TLR3 or ST2, as demonstrated using Tlr3 -/- or Il1rl1 -/- mice. Furthermore, neutralization of IL-33 in Tlr3 -/- mice could not abrogate the influenza-induced influx of mast cell progenitors to the lung. These results suggest that other innate receptor(s) contribute to mount the influx of mast cell progenitors to the lung upon influenza infection. Our study establishes that mast cell progenitors can be rapidly recruited to the lung by innate immune signals. This indicates that during life various innate stimuli of the respiratory tract trigger increases in the mast cell population within the lung. The expanded mast cell population may contribute to the exacerbations of symptoms which occurs when asthmatics are exposed to respiratory infections.
Collapse
Affiliation(s)
- Behdad Zarnegar
- Department of Medical Biochemistry and Microbiology, BMC, Uppsala University, Uppsala, Sweden
| | - Annika Westin
- Department of Medical Biochemistry and Microbiology, BMC, Uppsala University, Uppsala, Sweden
| | - Syrmoula Evangelidou
- Department of Medical Biochemistry and Microbiology, BMC, Uppsala University, Uppsala, Sweden
| | - Jenny Hallgren
- Department of Medical Biochemistry and Microbiology, BMC, Uppsala University, Uppsala, Sweden
| |
Collapse
|
15
|
Huo C, Jin Y, Zou S, Qi P, Xiao J, Tian H, Wang M, Hu Y. Lethal influenza A virus preferentially activates TLR3 and triggers a severe inflammatory response. Virus Res 2018; 257:102-112. [DOI: 10.1016/j.virusres.2018.09.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 09/07/2018] [Accepted: 09/19/2018] [Indexed: 12/13/2022]
|
16
|
Denney L, Ho LP. The role of respiratory epithelium in host defence against influenza virus infection. Biomed J 2018; 41:218-233. [PMID: 30348265 PMCID: PMC6197993 DOI: 10.1016/j.bj.2018.08.004] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/03/2018] [Accepted: 08/03/2018] [Indexed: 12/18/2022] Open
Abstract
The respiratory epithelium is the major interface between the environment and the host. Sophisticated barrier, sensing, anti-microbial and immune regulatory mechanisms have evolved to help maintain homeostasis and to defend the lung against foreign substances and pathogens. During influenza virus infection, these specialised structural cells and populations of resident immune cells come together to mount the first response to the virus, one which would play a significant role in the immediate and long term outcome of the infection. In this review, we focus on the immune defence machinery of the respiratory epithelium and briefly explore how it repairs and regenerates after infection.
Collapse
Affiliation(s)
- Laura Denney
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Ling-Pei Ho
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK.
| |
Collapse
|
17
|
Yip TF, Selim ASM, Lian I, Lee SMY. Advancements in Host-Based Interventions for Influenza Treatment. Front Immunol 2018; 9:1547. [PMID: 30042762 PMCID: PMC6048202 DOI: 10.3389/fimmu.2018.01547] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 06/22/2018] [Indexed: 12/15/2022] Open
Abstract
Influenza is a major acute respiratory infection that causes mortality and morbidity worldwide. Two classes of conventional antivirals, M2 ion channel blockers and neuraminidase inhibitors, are mainstays in managing influenza disease to lessen symptoms while minimizing hospitalization and death in patients with severe influenza. However, the development of viral resistance to both drug classes has become a major public health concern. Vaccines are prophylaxis mainstays but are limited in efficacy due to the difficulty in matching predicted dominant viral strains to circulating strains. As such, other potential interventions are being explored. Since viruses rely on host cellular functions to replicate, recent therapeutic developments focus on targeting host factors involved in virus replication. Besides controlling virus replication, potential targets for drug development include controlling virus-induced host immune responses such as the recently suggested involvement of innate lymphoid cells and NADPH oxidases in influenza virus pathogenesis and immune cell metabolism. In this review, we will discuss the advancements in novel host-based interventions for treating influenza disease.
Collapse
Affiliation(s)
- Tsz-Fung Yip
- HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong, Hong Kong
| | - Aisha Sami Mohammed Selim
- HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong, Hong Kong
| | - Ida Lian
- School of Life Sciences and Chemical Technology, Ngee Ann Polytechnic, Singapore, Singapore
| | - Suki Man-Yan Lee
- HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
18
|
Sun L, Jiang Z, Acosta-Rodriguez VA, Berger M, Du X, Choi JH, Wang J, Wang KW, Kilaru GK, Mohawk JA, Quan J, Scott L, Hildebrand S, Li X, Tang M, Zhan X, Murray AR, La Vine D, Moresco EMY, Takahashi JS, Beutler B. HCFC2 is needed for IRF1- and IRF2-dependent Tlr3 transcription and for survival during viral infections. J Exp Med 2017; 214:3263-3277. [PMID: 28970238 PMCID: PMC5679162 DOI: 10.1084/jem.20161630] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 07/13/2017] [Accepted: 08/16/2017] [Indexed: 01/08/2023] Open
Abstract
Sun et al. show that host cell factor C2 (HCFC2) is necessary for basal and induced Tlr3 transcription; deficiency of HCFC2 compromises survival during influenza virus and herpes simplex virus 1 infections in mice. Transcriptional regulation of numerous interferon-regulated genes, including Toll-like receptor 3 (Tlr3), which encodes an innate immune sensor of viral double-stranded RNA, depends on the interferon regulatory factor 1 (IRF1) and IRF2 transcription factors. We detected specific abrogation of macrophage responses to polyinosinic-polycytidylic acid (poly(I:C)) resulting from three independent N-ethyl-N-nitrosourea–induced mutations in host cell factor C2 (Hcfc2). Hcfc2 mutations compromised survival during influenza virus and herpes simplex virus 1 infections. HCFC2 promoted the binding of IRF1 and IRF2 to the Tlr3 promoter, without which inflammatory cytokine and type I IFN responses to the double-stranded RNA analogue poly(I:C) are reduced in mouse macrophages. HCFC2 was also necessary for the transcription of a large subset of other IRF2-dependent interferon-regulated genes. Deleterious mutations of Hcfc2 may therefore increase susceptibility to diverse infectious diseases.
Collapse
Affiliation(s)
- Lei Sun
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX
| | - Zhengfan Jiang
- Department of Genetics, The Scripps Research Institute, La Jolla, CA
| | - Victoria A Acosta-Rodriguez
- Department of Neuroscience, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX
| | - Michael Berger
- Department of Genetics, The Scripps Research Institute, La Jolla, CA
| | - Xin Du
- Department of Genetics, The Scripps Research Institute, La Jolla, CA
| | - Jin Huk Choi
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX
| | - Jianhui Wang
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX
| | - Kuan-Wen Wang
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX
| | - Gokhul K Kilaru
- Department of Neuroscience, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX
| | - Jennifer A Mohawk
- Department of Neuroscience, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX
| | - Jiexia Quan
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX
| | - Lindsay Scott
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX
| | - Sara Hildebrand
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX
| | - Xiaohong Li
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX
| | - Miao Tang
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX
| | - Xiaoming Zhan
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX
| | - Anne R Murray
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX
| | - Diantha La Vine
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX
| | - Eva Marie Y Moresco
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX
| | - Joseph S Takahashi
- Department of Neuroscience, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX
| | - Bruce Beutler
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
19
|
Silkoff PE, Flavin S, Gordon R, Loza MJ, Sterk PJ, Lutter R, Diamant Z, Turner RB, Lipworth BJ, Proud D, Singh D, Eich A, Backer V, Gern JE, Herzmann C, Halperin SA, Mensinga TT, Del Vecchio AM, Branigan P, San Mateo L, Baribaud F, Barnathan ES, Johnston SL. Toll-like receptor 3 blockade in rhinovirus-induced experimental asthma exacerbations: A randomized controlled study. J Allergy Clin Immunol 2017; 141:1220-1230. [PMID: 28734844 DOI: 10.1016/j.jaci.2017.06.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 06/04/2017] [Accepted: 06/12/2017] [Indexed: 01/21/2023]
Abstract
BACKGROUND Human rhinoviruses (HRVs) commonly precipitate asthma exacerbations. Toll-like receptor 3, an innate pattern recognition receptor, is triggered by HRV, driving inflammation that can worsen asthma. OBJECTIVE We sought to evaluate an inhibitory mAb to Toll-like receptor 3, CNTO3157, on experimental HRV-16 inoculation in healthy subjects and asthmatic patients. METHODS In this double-blind, multicenter, randomized, parallel-group study in North America and Europe, healthy subjects and patients with mild-to-moderate stable asthma received single or multiple doses of CNTO3157 or placebo, respectively, and were then inoculated with HRV-16 within 72 hours. All subjects were monitored for respiratory symptoms, lung function, and nasal viral load. The primary end point was maximal decrease in FEV1 during 10 days after inoculation. RESULTS In asthmatic patients (n = 63) CNTO3157 provided no protection against FEV1 decrease (least squares mean: CNTO3157 [n = 30] = -7.08% [SE, 8.15%]; placebo [n = 25] = -5.98% [SE, 8.56%]) or symptoms after inoculation. In healthy subjects (n = 12) CNTO3157 versus placebo significantly attenuated upper (P = .03) and lower (P = .02) airway symptom scores, with area-under-the-curve increases of 9.1 (15.1) versus 34.9 (17.6) and 13.0 (18.4) versus 50.4 (25.9) for the CNTO3157 (n = 8) and placebo (n = 4) groups, respectively, after inoculation. All of the severe and 4 of the nonserious asthma exacerbations occurred while receiving CNTO3157. CONCLUSION In summary, CNTO3157 was ineffective in attenuating the effect of HRV-16 challenge on lung function, asthma control, and symptoms in asthmatic patients but suppressed cold symptoms in healthy subjects. Other approaches, including blockade of multiple pathways or antiviral agents, need to be sought for this high unmet medical need.
Collapse
Affiliation(s)
| | - Susan Flavin
- Janssen Research & Development LLC, Spring House, Pa
| | - Robert Gordon
- Janssen Research & Development LLC, Spring House, Pa
| | - Mathew J Loza
- Janssen Research & Development LLC, Spring House, Pa
| | - Peter J Sterk
- Department of Respiratory Medicine F5-259, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Rene Lutter
- Departments of Respiratory Medicine and Experimental Immunology, K0-150, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Zuzana Diamant
- Department of Respiratory Medicine & Allergology, Institute for Clinical Science, Skane University Hospital, Lund, and QPS Netherlands, Groningen, The Netherlands
| | - Ronald B Turner
- Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, Va
| | - Brian J Lipworth
- Scottish Centre for Respiratory Research, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom
| | - David Proud
- Department of Physiology & Pharmacology, Snyder Institute for Chronic Diseases, University of Calgary Cumming School of Medicine, Calgary, Canada
| | - Dave Singh
- Centre for Respiratory Medicine and Allergy, Medicines Evaluation Unit, University Hospital of South Manchester Foundation Trust, University of Manchester, Manchester, United Kingdom
| | - Andreas Eich
- IKF Pneumologie Frankfurt, Clinical Research Center Respiratory Diseases, Frankfurt, Germany
| | - Vibeke Backer
- Department of Respiratory Medicine, Copenhagen, Denmark
| | - James E Gern
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wis
| | | | - Scott A Halperin
- Canadian Center for Vaccinology, Dalhousie University and the IWK Health Centre, Halifax, Canada
| | | | | | | | | | | | | | - Sebastian L Johnston
- Airway Disease Infection Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
20
|
Contribution of innate immune cells to pathogenesis of severe influenza virus infection. Clin Sci (Lond) 2017; 131:269-283. [PMID: 28108632 DOI: 10.1042/cs20160484] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 11/19/2016] [Accepted: 11/25/2016] [Indexed: 12/12/2022]
Abstract
Influenza A viruses (IAVs) cause respiratory illness of varying severity based on the virus strains, host predisposition and pre-existing immunity. Ultimately, outcome and recovery from infection rely on an effective immune response comprising both innate and adaptive components. The innate immune response provides the first line of defence and is crucial to the outcome of infection. Airway epithelial cells are the first cell type to encounter the virus in the lungs, providing antiviral and chemotactic molecules that shape the ensuing immune response by rapidly recruiting innate effector cells such as NK cells, monocytes and neutrophils. Each cell type has unique mechanisms to combat virus-infected cells and limit viral replication, however their actions may also lead to pathology. This review focuses how innate cells contribute to protection and pathology, and provides evidence for their involvement in immune pathology in IAV infections.
Collapse
|
21
|
Camp JV, Jonsson CB. A Role for Neutrophils in Viral Respiratory Disease. Front Immunol 2017; 8:550. [PMID: 28553293 PMCID: PMC5427094 DOI: 10.3389/fimmu.2017.00550] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 04/24/2017] [Indexed: 12/23/2022] Open
Abstract
Neutrophils are immune cells that are well known to be present during many types of lung diseases associated with acute respiratory distress syndrome (ARDS) and may contribute to acute lung injury. Neutrophils are poorly studied with respect to viral infection, and specifically to respiratory viral disease. Influenza A virus (IAV) infection is the cause of a respiratory disease that poses a significant global public health concern. Influenza disease presents as a relatively mild and self-limiting although highly pathogenic forms exist. Neutrophils increase in the respiratory tract during infection with mild seasonal IAV, moderate and severe epidemic IAV infection, and emerging highly pathogenic avian influenza (HPAI). During severe influenza pneumonia and HPAI infection, the number of neutrophils in the lower respiratory tract is correlated with disease severity. Thus, comparative analyses of the relationship between IAV infection and neutrophils provide insights into the relative contribution of host and viral factors that contribute to disease severity. Herein, we review the contribution of neutrophils to IAV disease pathogenesis and to other respiratory virus infections.
Collapse
Affiliation(s)
- Jeremy V Camp
- Institute of Virology, University of Veterinary Medicine at Vienna, Vienna, Austria
| | - Colleen B Jonsson
- Department of Microbiology, University of Tennessee-Knoxville, Knoxville, TN, USA
| |
Collapse
|
22
|
Zinngrebe J, Walczak H. TLRs Go Linear – On the Ubiquitin Edge. Trends Mol Med 2017; 23:296-309. [DOI: 10.1016/j.molmed.2017.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 02/13/2017] [Accepted: 02/15/2017] [Indexed: 02/07/2023]
|
23
|
|
24
|
CLEC5A-Mediated Enhancement of the Inflammatory Response in Myeloid Cells Contributes to Influenza Virus Pathogenicity In Vivo. J Virol 2016; 91:JVI.01813-16. [PMID: 27795434 PMCID: PMC5165214 DOI: 10.1128/jvi.01813-16] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 10/14/2016] [Indexed: 12/27/2022] Open
Abstract
Human infections with influenza viruses exhibit mild to severe clinical outcomes as a result of complex virus-host interactions. Induction of inflammatory mediators via pattern recognition receptors may dictate subsequent host responses for pathogen clearance and tissue damage. We identified that human C-type lectin domain family 5 member A (CLEC5A) interacts with the hemagglutinin protein of influenza viruses expressed on lentiviral pseudoparticles through lectin screening. Silencing CLEC5A gene expression, blocking influenza-CLEC5A interactions with anti-CLEC5A antibodies, or dampening CLEC5A-mediated signaling using a spleen tyrosine kinase inhibitor consistently reduced the levels of proinflammatory cytokines produced by human macrophages without affecting the replication of influenza A viruses of different subtypes. Infection of bone marrow-derived macrophages from CLEC5A-deficient mice showed reduced levels of tumor necrosis factor alpha (TNF-α) and IP-10 but elevated alpha interferon (IFN-α) compared to those of wild-type mice. The heightened type I IFN response in the macrophages of CLEC5A-deficient mice was associated with upregulated TLR3 mRNA after treatment with double-stranded RNA. Upon lethal challenges with a recombinant H5N1 virus, CLEC5A-deficient mice showed reduced levels of proinflammatory cytokines, decreased immune cell infiltration in the lungs, and improved survival compared to the wild-type mice, despite comparable viral loads noted throughout the course of infection. The survival difference was more prominent at a lower dose of inoculum. Our results suggest that CLEC5A-mediated enhancement of the inflammatory response in myeloid cells contributes to influenza pathogenicity in vivo and may be considered a therapeutic target in combination with effective antivirals. Well-orchestrated host responses together with effective viral clearance are critical for optimal clinical outcome after influenza infections.
IMPORTANCE Multiple pattern recognition receptors work in synergy to sense viral RNA or proteins synthesized during influenza replication and mediate host responses for viral control. Well-orchestrated host responses may help to maintain the inflammatory response to minimize tissue damage while inducing an effective adaptive immune response for viral clearance. We identified that CLEC5A, a C-type lectin receptor which has previously been reported to mediate flavivirus-induced inflammatory responses, enhanced induction of proinflammatory cytokines and chemokines in myeloid cells after influenza infections. CLEC5A-deficient mice infected with influenza virus showed reduced inflammation in the lungs and improved survival compared to that of the wild-type mice despite comparable viral loads. The survival difference was more prominent at a lower dose of inoculum. Collectively, our results suggest that dampening CLEC5A-mediated inflammatory responses in myeloid cells reduces immunopathogenesis after influenza infections.
Collapse
|
25
|
Zinngrebe J, Rieser E, Taraborrelli L, Peltzer N, Hartwig T, Ren H, Kovács I, Endres C, Draber P, Darding M, von Karstedt S, Lemke J, Dome B, Bergmann M, Ferguson BJ, Walczak H. --LUBAC deficiency perturbs TLR3 signaling to cause immunodeficiency and autoinflammation. J Exp Med 2016; 213:2671-2689. [PMID: 27810922 PMCID: PMC5110014 DOI: 10.1084/jem.20160041] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 09/22/2016] [Indexed: 12/27/2022] Open
Abstract
The linear ubiquitin chain assembly complex (LUBAC), consisting of SHANK-associated RH-domain-interacting protein (SHARPIN), heme-oxidized IRP2 ubiquitin ligase-1 (HOIL-1), and HOIL-1-interacting protein (HOIP), is a critical regulator of inflammation and immunity. This is highlighted by the fact that patients with perturbed linear ubiquitination caused by mutations in the Hoip or Hoil-1 genes, resulting in knockouts of these proteins, may simultaneously suffer from immunodeficiency and autoinflammation. TLR3 plays a crucial, albeit controversial, role in viral infection and tissue damage. We identify a pivotal role of LUBAC in TLR3 signaling and discover a functional interaction between LUBAC components and TLR3 as crucial for immunity to influenza A virus infection. On the biochemical level, we identify LUBAC components as interacting with the TLR3-signaling complex (SC), thereby enabling TLR3-mediated gene activation. Absence of LUBAC components increases formation of a previously unrecognized TLR3-induced death-inducing SC, leading to enhanced cell death. Intriguingly, excessive TLR3-mediated cell death, induced by double-stranded RNA present in the skin of SHARPIN-deficient chronic proliferative dermatitis mice (cpdm), is a major contributor to their autoinflammatory skin phenotype, as genetic coablation of Tlr3 substantially ameliorated cpdm dermatitis. Thus, LUBAC components control TLR3-mediated innate immunity, thereby preventing development of immunodeficiency and autoinflammation.
Collapse
Affiliation(s)
- Julia Zinngrebe
- Centre for Cell Death, Cancer, and Inflammation, UCL Cancer Institute, University College London, London WC1E 6DD, England, UK
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, D-89075 Ulm, Germany
| | - Eva Rieser
- Centre for Cell Death, Cancer, and Inflammation, UCL Cancer Institute, University College London, London WC1E 6DD, England, UK
| | - Lucia Taraborrelli
- Centre for Cell Death, Cancer, and Inflammation, UCL Cancer Institute, University College London, London WC1E 6DD, England, UK
| | - Nieves Peltzer
- Centre for Cell Death, Cancer, and Inflammation, UCL Cancer Institute, University College London, London WC1E 6DD, England, UK
| | - Torsten Hartwig
- Centre for Cell Death, Cancer, and Inflammation, UCL Cancer Institute, University College London, London WC1E 6DD, England, UK
| | - Hongwei Ren
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, England, UK
| | - Ildikó Kovács
- National Korányi Institute of Pulmonology, H-1121 Budapest, Hungary
| | - Cornelia Endres
- Centre for Cell Death, Cancer, and Inflammation, UCL Cancer Institute, University College London, London WC1E 6DD, England, UK
| | - Peter Draber
- Centre for Cell Death, Cancer, and Inflammation, UCL Cancer Institute, University College London, London WC1E 6DD, England, UK
| | - Maurice Darding
- Centre for Cell Death, Cancer, and Inflammation, UCL Cancer Institute, University College London, London WC1E 6DD, England, UK
| | - Silvia von Karstedt
- Centre for Cell Death, Cancer, and Inflammation, UCL Cancer Institute, University College London, London WC1E 6DD, England, UK
| | - Johannes Lemke
- Centre for Cell Death, Cancer, and Inflammation, UCL Cancer Institute, University College London, London WC1E 6DD, England, UK
| | - Balazs Dome
- Department of Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Michael Bergmann
- Department of Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Brian J Ferguson
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, England, UK
| | - Henning Walczak
- Centre for Cell Death, Cancer, and Inflammation, UCL Cancer Institute, University College London, London WC1E 6DD, England, UK
| |
Collapse
|
26
|
Shirey KA, Lai W, Patel MC, Pletneva LM, Pang C, Kurt-Jones E, Lipsky M, Roger T, Calandra T, Tracey K, Al-Abed Y, Bowie AG, Fasano A, Dinarello C, Gusovsky F, Blanco JC, Vogel SN. Novel strategies for targeting innate immune responses to influenza. Mucosal Immunol 2016; 9:1173-82. [PMID: 26813341 PMCID: PMC5125448 DOI: 10.1038/mi.2015.141] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 11/25/2015] [Indexed: 02/04/2023]
Abstract
We previously reported that TLR4(-/-) mice are refractory to mouse-adapted A/PR/8/34 (PR8) influenza-induced lethality and that therapeutic administration of the TLR4 antagonist Eritoran blocked PR8-induced lethality and acute lung injury (ALI) when given starting 2 days post infection. Herein we extend these findings: anti-TLR4- or -TLR2-specific IgG therapy also conferred significant protection of wild-type (WT) mice from lethal PR8 infection. If treatment is initiated 3 h before PR8 infection and continued daily for 4 days, Eritoran failed to protect WT and TLR4(-/-) mice, implying that Eritoran must block a virus-induced, non-TLR4 signal that is required for protection. Mechanistically, we determined that (i) Eritoran blocks high-mobility group B1 (HMGB1)-mediated, TLR4-dependent signaling in vitro and circulating HMGB1 in vivo, and an HMGB1 inhibitor protects against PR8; (ii) Eritoran inhibits pulmonary lung edema associated with ALI; (iii) interleukin (IL)-1β contributes significantly to PR8-induced lethality, as evidenced by partial protection by IL-1 receptor antagonist (IL-1Ra) therapy. Synergistic protection against PR8-induced lethality was achieved when Eritoran and the antiviral drug oseltamivir were administered starting 4 days post infection. Eritoran treatment does not prevent development of an adaptive immune response to subsequent PR8 challenge. Overall, our data support the potential of a host-targeted therapeutic approach to influenza infection.
Collapse
Affiliation(s)
- Kari Ann Shirey
- Department of Microbiology and Immunology, University of Maryland, Baltimore, Baltimore, MD, USA
| | - Wendy Lai
- Department of Microbiology and Immunology, University of Maryland, Baltimore, Baltimore, MD, USA
| | - Mira C. Patel
- Department of Microbiology and Immunology, University of Maryland, Baltimore, Baltimore, MD, USA,Sigmovir Biosystems, Inc., Rockville, MD, USA
| | | | - Catherine Pang
- Dept. of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Evelyn Kurt-Jones
- Dept. of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Michael Lipsky
- Pathology Research, University of Maryland, Baltimore, Baltimore, MD, USA
| | - Thierry Roger
- Infectious Diseases Service, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Thierry Calandra
- Infectious Diseases Service, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Kevin Tracey
- Dept. Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Yousef Al-Abed
- Dept. of Medicinal Chemistry, The Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Andrew G. Bowie
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Alessio Fasano
- Mucosal Immunology and Biology Research Center, MGH for Children, Boston, MA, USA
| | - Charles Dinarello
- Division of Infectious diseases, Univ. of Colorado Denver, Aurora, CO, USA
| | | | | | - Stefanie N. Vogel
- Department of Microbiology and Immunology, University of Maryland, Baltimore, Baltimore, MD, USA,Corresponding author: Stefanie N. Vogel, Ph.D., Dept. of Microbiology and Immunology, University of Maryland, School of Medicine, 685 W. Baltimore St., Rm. 380, Baltimore, MD 21201 USA
| |
Collapse
|
27
|
Human mesenchymal stromal cells reduce influenza A H5N1-associated acute lung injury in vitro and in vivo. Proc Natl Acad Sci U S A 2016; 113:3621-6. [PMID: 26976597 DOI: 10.1073/pnas.1601911113] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Influenza can cause acute lung injury. Because immune responses often play a role, antivirals may not ensure a successful outcome. To identify pathogenic mechanisms and potential adjunctive therapeutic options, we compared the extent to which avian influenza A/H5N1 virus and seasonal influenza A/H1N1 virus impair alveolar fluid clearance and protein permeability in an in vitro model of acute lung injury, defined the role of virus-induced soluble mediators in these injury effects, and demonstrated that the effects are prevented or reduced by bone marrow-derived multipotent mesenchymal stromal cells. We verified the in vivo relevance of these findings in mice experimentally infected with influenza A/H5N1. We found that, in vitro, the alveolar epithelium's protein permeability and fluid clearance were dysregulated by soluble immune mediators released upon infection with avian (A/Hong Kong/483/97, H5N1) but not seasonal (A/Hong Kong/54/98, H1N1) influenza virus. The reduced alveolar fluid transport associated with down-regulation of sodium and chloride transporters was prevented or reduced by coculture with mesenchymal stromal cells. In vivo, treatment of aged H5N1-infected mice with mesenchymal stromal cells increased their likelihood of survival. We conclude that mesenchymal stromal cells significantly reduce the impairment of alveolar fluid clearance induced by A/H5N1 infection in vitro and prevent or reduce A/H5N1-associated acute lung injury in vivo. This potential adjunctive therapy for severe influenza-induced lung disease warrants rapid clinical investigation.
Collapse
|
28
|
Maelfait J, Roose K, Vereecke L, Mc Guire C, Sze M, Schuijs MJ, Willart M, Ibañez LI, Hammad H, Lambrecht BN, Beyaert R, Saelens X, van Loo G. A20 Deficiency in Lung Epithelial Cells Protects against Influenza A Virus Infection. PLoS Pathog 2016; 12:e1005410. [PMID: 26815999 PMCID: PMC4731390 DOI: 10.1371/journal.ppat.1005410] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 12/31/2015] [Indexed: 12/24/2022] Open
Abstract
A20 negatively regulates multiple inflammatory signalling pathways. We here addressed the role of A20 in club cells (also known as Clara cells) of the bronchial epithelium in their response to influenza A virus infection. Club cells provide a niche for influenza virus replication, but little is known about the functions of these cells in antiviral immunity. Using airway epithelial cell-specific A20 knockout (A20AEC-KO) mice, we show that A20 in club cells critically controls innate immune responses upon TNF or double stranded RNA stimulation. Surprisingly, A20AEC-KO mice are better protected against influenza A virus challenge than their wild type littermates. This phenotype is not due to decreased viral replication. Instead host innate and adaptive immune responses and lung damage are reduced in A20AEC-KO mice. These attenuated responses correlate with a dampened cytotoxic T cell (CTL) response at later stages during infection, indicating that A20AEC-KO mice are better equipped to tolerate Influenza A virus infection. Expression of the chemokine CCL2 (also named MCP-1) is particularly suppressed in the lungs of A20AEC-KO mice during later stages of infection. When A20AEC-KO mice were treated with recombinant CCL2 the protective effect was abrogated demonstrating the crucial contribution of this chemokine to the protection of A20AEC-KO mice to Influenza A virus infection. Taken together, we propose a mechanism of action by which A20 expression in club cells controls inflammation and antiviral CTL responses in response to influenza virus infection. Influenza viruses are a major public health threat. Each year, the typical seasonal flu epidemic affects millions of people with sometimes fatal outcomes, especially in high risk groups such as young children and elderly. The sporadic pandemic outbreaks can have even more disastrous consequences. The protein A20 is an important negative regulator of antiviral immune responses. We show that the specific deletion of A20 in bronchial epithelial cells improves the protection against influenza virus infections. This increased protection correlates with a dampened pulmonary cytotoxic T cell response and a strongly suppressed expression of the chemokine CCL2 during later stages of infection.
Collapse
Affiliation(s)
- Jonathan Maelfait
- Inflammation Research Center, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Kenny Roose
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Medical Biotechnology Center, VIB, Ghent, Belgium
| | - Lars Vereecke
- Inflammation Research Center, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Conor Mc Guire
- Medical Biotechnology Center, VIB, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Mozes Sze
- Inflammation Research Center, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Martijn J Schuijs
- Inflammation Research Center, VIB, Ghent, Belgium
- Department of Respiratory Medicine, Ghent University, Ghent, Belgium
| | - Monique Willart
- Inflammation Research Center, VIB, Ghent, Belgium
- Department of Respiratory Medicine, Ghent University, Ghent, Belgium
| | - Lorena Itati Ibañez
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Medical Biotechnology Center, VIB, Ghent, Belgium
| | - Hamida Hammad
- Inflammation Research Center, VIB, Ghent, Belgium
- Department of Respiratory Medicine, Ghent University, Ghent, Belgium
| | - Bart N Lambrecht
- Inflammation Research Center, VIB, Ghent, Belgium
- Department of Respiratory Medicine, Ghent University, Ghent, Belgium
| | - Rudi Beyaert
- Inflammation Research Center, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Xavier Saelens
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Medical Biotechnology Center, VIB, Ghent, Belgium
| | - Geert van Loo
- Inflammation Research Center, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
29
|
Blanc F, Furio L, Moisy D, Yen HL, Chignard M, Letavernier E, Naffakh N, Mok CKP, Si-Tahar M. Targeting host calpain proteases decreases influenza A virus infection. Am J Physiol Lung Cell Mol Physiol 2016; 310:L689-99. [PMID: 26747784 DOI: 10.1152/ajplung.00314.2015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 01/07/2016] [Indexed: 11/22/2022] Open
Abstract
Influenza A viruses (IAV) trigger contagious acute respiratory diseases. A better understanding of the molecular mechanisms of IAV pathogenesis and host immune responses is required for the development of more efficient treatments of severe influenza. Calpains are intracellular proteases that participate in diverse cellular responses, including inflammation. Here, we used in vitro and in vivo approaches to investigate the role of calpain signaling in IAV pathogenesis. Calpain expression and activity were found altered in IAV-infected bronchial epithelial cells. With the use of small-interfering RNA (siRNA) gene silencing, specific synthetic inhibitors of calpains, and mice overexpressing calpastatin, we found that calpain inhibition dampens IAV replication and IAV-triggered secretion of proinflammatory mediators and leukocyte infiltration. Remarkably, calpain inhibition has a protective impact in IAV infection, since it significantly reduced mortality of mice challenged not only by seasonal H3N2- but also by hypervirulent H5N1 IAV strains. Hence, our study suggests that calpains are promising therapeutic targets for treating IAV acute pneumonia.
Collapse
Affiliation(s)
- Fany Blanc
- Institut Pasteur, Unité de Défense Innée et Inflammation, Paris, France; Institut National de la Santé et de la Recherche Médicale U874, Paris, France
| | - Laetitia Furio
- Institut Pasteur, Unité de Défense Innée et Inflammation, Paris, France; Institut National de la Santé et de la Recherche Médicale U874, Paris, France
| | - Dorothée Moisy
- Institut Pasteur, Unité de Génétique Moléculaire des Virus ARN, Paris, France
| | - Hui-Ling Yen
- School of Public Health, The University of Hong Kong, Hong Kong, China
| | - Michel Chignard
- Institut Pasteur, Unité de Défense Innée et Inflammation, Paris, France; Institut National de la Santé et de la Recherche Médicale U874, Paris, France
| | - Emmanuel Letavernier
- Institut National de la Santé et de la Recherche Médicale UMR-S1155, Paris, France
| | - Nadia Naffakh
- Institut Pasteur, Unité de Génétique Moléculaire des Virus ARN, Paris, France
| | - Chris Ka Pun Mok
- The HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong, China
| | - Mustapha Si-Tahar
- Institut Pasteur, Unité de Défense Innée et Inflammation, Paris, France; Institut National de la Santé et de la Recherche Médicale U874, Paris, France; Institut National de la Santé et de la Recherche Médicale U1100, Centre d'Etude des Pathologies Respiratoires, Tours, France; and Université François Rabelais, Tours, France
| |
Collapse
|
30
|
To KKW, Zhou J, Chan JFW, Yuen KY. Host genes and influenza pathogenesis in humans: an emerging paradigm. Curr Opin Virol 2015; 14:7-15. [PMID: 26079652 PMCID: PMC7102748 DOI: 10.1016/j.coviro.2015.04.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Accepted: 04/29/2015] [Indexed: 12/13/2022]
Abstract
The emergence of the pandemic influenza virus A(H1N1)pdm09 in 2009 and avian influenza virus A(H7N9) in 2013 provided unique opportunities for assessing genetic predispositions to severe disease because many patients did not have any underlying risk factor or neutralizing antibody against these agents, in contrast to seasonal influenza viruses. High-throughput screening platforms and large human or animal databases from international collaborations allow rapid selection of potential candidate genes for confirmatory functional studies. In the last 2 years, at least seven new human susceptibility genes have been identified in genetic association studies. Integration of knowledge from genetic and phenotypic studies is essential to identify important gene targets for treatment and prevention of influenza virus infection.
Collapse
Affiliation(s)
- Kelvin Kai-Wang To
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Research Centre of Infection and Immunology, Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Jie Zhou
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Research Centre of Infection and Immunology, Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Jasper Fuk-Woo Chan
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Research Centre of Infection and Immunology, Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Kwok-Yung Yuen
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Research Centre of Infection and Immunology, Department of Microbiology, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
31
|
Toll-Like Receptor 3 Signaling via TRIF Contributes to a Protective Innate Immune Response to Severe Acute Respiratory Syndrome Coronavirus Infection. mBio 2015; 6:e00638-15. [PMID: 26015500 PMCID: PMC4447251 DOI: 10.1128/mbio.00638-15] [Citation(s) in RCA: 338] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Toll-like receptors (TLRs) are sensors that recognize molecular patterns from viruses, bacteria, and fungi to initiate innate immune responses to invading pathogens. The emergence of highly pathogenic coronaviruses severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV) is a concern for global public health, as there is a lack of efficacious vaccine platforms and antiviral therapeutic strategies. Previously, it was shown that MyD88, an adaptor protein necessary for signaling by multiple TLRs, is a required component of the innate immune response to mouse-adapted SARS-CoV infection in vivo. Here, we demonstrate that TLR3−/−, TLR4−/−, and TRAM−/− mice are more susceptible to SARS-CoV than wild-type mice but experience only transient weight loss with no mortality in response to infection. In contrast, mice deficient in the TLR3/TLR4 adaptor TRIF are highly susceptible to SARS-CoV infection, showing increased weight loss, mortality, reduced lung function, increased lung pathology, and higher viral titers. Distinct alterations in inflammation were present in TRIF−/− mice infected with SARS-CoV, including excess infiltration of neutrophils and inflammatory cell types that correlate with increased pathology of other known causes of acute respiratory distress syndrome (ARDS), including influenza virus infections. Aberrant proinflammatory cytokine, chemokine, and interferon-stimulated gene (ISG) signaling programs were also noted following infection of TRIF−/− mice that were similar to those seen in human patients with poor disease outcome following SARS-CoV or MERS-CoV infection. These findings highlight the importance of TLR adaptor signaling in generating a balanced protective innate immune response to highly pathogenic coronavirus infections. Toll-like receptors are a family of sensor proteins that enable the immune system to differentiate between “self” and “non-self.” Agonists and antagonists of TLRs have been proposed to have utility as vaccine adjuvants or antiviral compounds. In the last 15 years, the emergence of highly pathogenic coronaviruses SARS-CoV and MERS-CoV has caused significant disease accompanied by high mortality rates in human populations, but no approved therapeutic treatments or vaccines currently exist. Here, we demonstrate that TLR signaling through the TRIF adaptor protein protects mice from lethal SARS-CoV disease. Our findings indicate that a balanced immune response operating through both TRIF-driven and MyD88-driven pathways likely provides the most effective host cell intrinsic antiviral defense responses to severe SARS-CoV disease, while removal of either branch of TLR signaling causes lethal SARS-CoV disease in our mouse model. These data should inform the design and use of TLR agonists and antagonists in coronavirus-specific vaccine and antiviral strategies.
Collapse
|
32
|
Kebaabetswe LP, Haick AK, Gritsenko MA, Fillmore TL, Chu RK, Purvine SO, Webb-Robertson BJ, Matzke MM, Smith RD, Waters KM, Metz TO, Miura TA. Proteomic analysis reveals down-regulation of surfactant protein B in murine type II pneumocytes infected with influenza A virus. Virology 2015; 483:96-107. [PMID: 25965799 DOI: 10.1016/j.virol.2015.03.045] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 01/13/2015] [Accepted: 03/18/2015] [Indexed: 11/29/2022]
Abstract
Infection of type II alveolar epithelial (ATII) cells by influenza A viruses (IAV) correlates with severe respiratory disease in humans and mice. To understand pathogenic mechanisms during IAV infection of ATII cells, murine ATII cells were cultured to maintain a differentiated phenotype, infected with IAV-PR8, which causes severe lung pathology in mice, and proteomics analyses were performed using liquid chromatography-mass spectrometry. PR8 infection increased levels of proteins involved in interferon signaling, antigen presentation, and cytoskeleton regulation. Proteins involved in mitochondrial membrane permeability, energy metabolism, and chromatin formation had reduced levels in PR8-infected cells. Phenotypic markers of ATII cells in vivo were identified, confirming the differentiation status of the cultures. Surfactant protein B had decreased levels in PR8-infected cells, which was confirmed by immunoblotting and immunofluorescence assays. Analysis of ATII cell protein profiles will elucidate cellular processes in IAV pathogenesis, which may provide insight into potential therapies to modulate disease severity.
Collapse
Affiliation(s)
- Lemme P Kebaabetswe
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA
| | - Anoria K Haick
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA
| | - Marina A Gritsenko
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Thomas L Fillmore
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Rosalie K Chu
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Samuel O Purvine
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Bobbie-Jo Webb-Robertson
- Computational and Statistical Analytics Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Melissa M Matzke
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Richard D Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Katrina M Waters
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Thomas O Metz
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Tanya A Miura
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA.
| |
Collapse
|