1
|
Peña J, Dagdug L, Reguera D. Kinetic Description of Viral Capsid Self-Assembly Using Mesoscopic Non-Equilibrium Thermodynamics. ENTROPY (BASEL, SWITZERLAND) 2025; 27:281. [PMID: 40149205 PMCID: PMC11941536 DOI: 10.3390/e27030281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/05/2025] [Accepted: 03/06/2025] [Indexed: 03/29/2025]
Abstract
The self-assembly mechanisms of various complex biological structures, including viral capsids and carboxysomes, have been theoretically studied through numerous kinetic models. However, most of these models focus on the equilibrium aspects of a simplified kinetic description in terms of a single reaction coordinate, typically the number of proteins in a growing aggregate, which is often insufficient to describe the size and shape of the resulting structure. In this article, we use mesoscopic non-equilibrium thermodynamics (MNET) to derive the equations governing the non-equilibrium kinetics of viral capsid formation. The resulting kinetic equation is a Fokker-Planck equation, which considers viral capsid self-assembly as a diffusive process in the space of the relevant reaction coordinates. We discuss in detail the case of the self-assembly of a spherical (icosahedral) capsid with a fixed radius, which corresponds to a single degree of freedom, and indicate how to extend this approach to the self-assembly of spherical capsids that exhibit radial fluctuations, as well as to tubular structures and systems with higher degrees of freedom. Finally, we indicate how these equations can be solved in terms of the equivalent Langevin equations and be used to determine the rate of formation and size distribution of closed capsids, opening the door to the better understanding and control of the self- assembly process.
Collapse
Affiliation(s)
- Jason Peña
- Physics Department, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City 09340, Mexico;
| | - Leonardo Dagdug
- Physics Department, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City 09340, Mexico;
| | - David Reguera
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain;
- Universitat de Barcelona Institute of Complex Systems (UBICS), Martí i Franquès 1, 08028 Barcelona, Spain
| |
Collapse
|
2
|
Watanabe T, Hayashi M, Arai M, Matsushita S, Handa H, Kawano M. Interferon-γ production in response to the cytotoxic T lymphocyte epitope within an antigen incorporated in simian virus 40 virus-like particles. Heliyon 2025; 11:e41729. [PMID: 39897799 PMCID: PMC11786666 DOI: 10.1016/j.heliyon.2025.e41729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 12/05/2024] [Accepted: 01/04/2025] [Indexed: 02/04/2025] Open
Abstract
In a previous study, we showed that administration of antigen-incorporated virus-like particles (VLPs) derived from simian virus 40 (SV40) induces production of cytotoxic T lymphocytes (CTL), as well as antibodies against the incorporated antigen(s), without the need for an adjuvant; however, it remains unclear how immune cells recognize and respond to the SV40 capsid because SV40 VLPs did not upregulate expression of maturation markers on dendritic cells. In this study, administration of chicken ovalbumin (OVA) incorporated within SV40 VLPs induced interferon (IFN)-γ production in response to the OVA CTL epitope. IFN-γ production in response to the OVA CTL epitope was not inhibited in B cell-depleted mice, but it was inhibited in cluster of differentiation (CD)4+ T cell-depleted mice. Administration of SV40 VLPs upregulated expression of CD63/CD68/CD83/CD86/CD196, and induced secretion of C-C chemokine ligand (CCL)3 and CCL4, by B cells, as well as secretion of CCL4 by T cells and tumor necrosis factor-α by bone marrow-derived dendritic cells.
Collapse
Affiliation(s)
- Takeharu Watanabe
- Vaccine Sohyaku Group Modality Laboratories Sohyaku. Innovation Research Division Mitsubishi Tanabe Pharma Corporation, 1000 Kamoshida, Aoba-ku, Yokohama, 227-0033, Japan
| | - Masayuki Hayashi
- Vaccine Sohyaku Group Modality Laboratories Sohyaku. Innovation Research Division Mitsubishi Tanabe Pharma Corporation, 1000 Kamoshida, Aoba-ku, Yokohama, 227-0033, Japan
| | - Masaaki Arai
- Vaccine Sohyaku Group Modality Laboratories Sohyaku. Innovation Research Division Mitsubishi Tanabe Pharma Corporation, 1000 Kamoshida, Aoba-ku, Yokohama, 227-0033, Japan
| | - Sho Matsushita
- Department of Allergy and Immunology, Faculty of Medicine, Saitama Medical University, 38 Morohongo, Moroyama, Saitama, 350-0495, Japan
- Allergy Center, Saitama Medical University, 38 Morohongo, Moroyama, Saitama, 350-0495, Japan
| | - Hiroshi Handa
- Department of Molecular Pharmacology, Tokyo Medical University, Shinjuku, Tokyo, 160-8402, Japan
- Center for Future Medical Research, Institute of Medical Science, Tokyo Medical University, Shinjuku, Tokyo, 160-8402, Japan
| | - Masaaki Kawano
- Department of Allergy and Immunology, Faculty of Medicine, Saitama Medical University, 38 Morohongo, Moroyama, Saitama, 350-0495, Japan
- Allergy Center, Saitama Medical University, 38 Morohongo, Moroyama, Saitama, 350-0495, Japan
- Division of Analytical Science, Biomedical Research Center, Faculty of Medicine, Saitama Medical University, 38 Morohongo, Moroyama, Saitama, 350-0495, Japan
| |
Collapse
|
3
|
Luque A, Reguera D. Theoretical Studies on Assembly, Physical Stability, and Dynamics of Viruses. Subcell Biochem 2024; 105:693-741. [PMID: 39738961 DOI: 10.1007/978-3-031-65187-8_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
All matter must obey the general laws of physics and living matter is not an exception. Viruses have not only learnt how to cope with them but have managed to use them for their own survival. In this chapter, we will review some of the exciting physics that are behind viruses and discuss simple physical models that can shed some light on different aspects of the viral life cycle and viral properties. In particular, we will focus on how the structure and shape of the viral capsid, its assembly and stability, and the entry and exit of viral particles and their genomes can be explained using fundamental physics theories.
Collapse
Affiliation(s)
- Antoni Luque
- Department of Biology, University of Miami, Coral Gables, FL, USA
| | - David Reguera
- Department of Physics of the Condensed Matter, Universitat de Barcelona, Barcelona, Spain.
- Universitat de Barcelona Institute of Complex Systems (UBICS), Barcelona, Spain.
| |
Collapse
|
4
|
Seitz I, Saarinen S, Kumpula EP, McNeale D, Anaya-Plaza E, Lampinen V, Hytönen VP, Sainsbury F, Cornelissen JJLM, Linko V, Huiskonen JT, Kostiainen MA. DNA-origami-directed virus capsid polymorphism. NATURE NANOTECHNOLOGY 2023; 18:1205-1212. [PMID: 37460794 PMCID: PMC10575778 DOI: 10.1038/s41565-023-01443-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 06/06/2023] [Indexed: 10/15/2023]
Abstract
Viral capsids can adopt various geometries, most iconically characterized by icosahedral or helical symmetries. Importantly, precise control over the size and shape of virus capsids would have advantages in the development of new vaccines and delivery systems. However, current tools to direct the assembly process in a programmable manner are exceedingly elusive. Here we introduce a modular approach by demonstrating DNA-origami-directed polymorphism of single-protein subunit capsids. We achieve control over the capsid shape, size and topology by employing user-defined DNA origami nanostructures as binding and assembly platforms, which are efficiently encapsulated within the capsid. Furthermore, the obtained viral capsid coatings can shield the encapsulated DNA origami from degradation. Our approach is, moreover, not limited to a single type of capsomers and can also be applied to RNA-DNA origami structures to pave way for next-generation cargo protection and targeting strategies.
Collapse
Affiliation(s)
- Iris Seitz
- Department of Bioproducts and Biosystems, Aalto University, Aalto, Finland
| | - Sharon Saarinen
- Department of Bioproducts and Biosystems, Aalto University, Aalto, Finland
| | - Esa-Pekka Kumpula
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
| | - Donna McNeale
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia
| | | | - Vili Lampinen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Vesa P Hytönen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Frank Sainsbury
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia
| | - Jeroen J L M Cornelissen
- Department of Molecules and Materials, MESA+ Institute for Nanotechnology, University of Twente, Enschede, Netherlands
| | - Veikko Linko
- Department of Bioproducts and Biosystems, Aalto University, Aalto, Finland
- LIBER Center of Excellence, Aalto University, Aalto, Finland
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Juha T Huiskonen
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland.
| | - Mauri A Kostiainen
- Department of Bioproducts and Biosystems, Aalto University, Aalto, Finland.
- LIBER Center of Excellence, Aalto University, Aalto, Finland.
| |
Collapse
|
5
|
Waltmann C, Kennedy NW, Mills CE, Roth EW, Ikonomova SP, Tullman-Ercek D, Olvera de la Cruz M. Kinetic Growth of Multicomponent Microcompartment Shells. ACS NANO 2023; 17:15751-15762. [PMID: 37552700 DOI: 10.1021/acsnano.3c03353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
An important goal of systems and synthetic biology is to produce high value chemical species in large quantities. Microcompartments, which are protein nanoshells encapsulating catalytic enzyme cargo, could potentially function as tunable nanobioreactors inside and outside cells to generate these high value species. Modifying the morphology of microcompartments through genetic engineering of shell proteins is one viable strategy to tune cofactor and metabolite access to encapsulated enzymes. However, this is a difficult task without understanding how changing interactions between the many different types of shell proteins and enzymes affect microcompartment assembly and shape. Here, we use multiscale molecular dynamics and experimental data to describe assembly pathways available to microcompartments composed of multiple types of shell proteins with varied interactions. As the average interaction between the enzyme cargo and the multiple types of shell proteins is weakened, the shell assembly pathway transitions from (i) nucleating on the enzyme cargo to (ii) nucleating in the bulk and then binding the cargo as it grows to (iii) an empty shell. Atomistic simulations and experiments using the 1,2-propanediol utilization microcompartment system demonstrate that shell protein interactions are highly varied and consistent with our multicomponent, coarse-grained model. Furthermore, our results suggest that intrinsic bending angles control the size of these microcompartments. Overall, our simulations and experiments provide guidance to control microcomparmtent size and assembly by modulating the interactions between shell proteins.
Collapse
Affiliation(s)
- Curt Waltmann
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Nolan W Kennedy
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, Illinois 60208, United States
| | - Carolyn E Mills
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Eric W Roth
- Northwestern University Atomic and Nanoscale Characterization Experimentation Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Svetlana P Ikonomova
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Danielle Tullman-Ercek
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Monica Olvera de la Cruz
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
6
|
Weerachatyanukul W, Kiatmetha P, Raksat P, Boonkua S, Thongsum O, Jariyapong P, Chotwiwatthanakun C, Ounjai P, Metlagel Z. Viral Capsid Change upon Encapsulation of Double-Stranded DNA into an Infectious Hypodermal and Hematopoietic Necrosis Virus-like Particle. Viruses 2022; 15:110. [PMID: 36680151 PMCID: PMC9867196 DOI: 10.3390/v15010110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/20/2022] [Accepted: 12/26/2022] [Indexed: 01/04/2023] Open
Abstract
In this study, we aimed to encapsulate the sizable double-stranded DNA (dsDNA, 3.9 kbp) into a small-sized infectious hypodermal and hematopoietic necrosis virus-like particle (IHHNV-VLP; T = 1) and compared the changes in capsid structure between dsDNA-filled VLP and empty VLP. Based on our encapsulation protocol, IHHNV-VLP was able to load dsDNA at an efficiency of 30-40% (w/w) into its cavity. Structural analysis revealed two subclasses of IHHNV-VLP, so-called empty and dsDNA-filled VLPs. The three-dimensional (3D) structure of the empty VLP produced in E. coli was similar to that of the empty IHHNV-VLP produced in Sf9 insect cells. The size of the dsDNA-filled VLP was slightly bigger (50 Å) than its empty VLP counterpart; however, the capsid structure was drastically altered. The capsid was about 1.5-fold thicker due to the thickening of the capsid interior, presumably from DNA-capsid interaction evident from capsid protrusions or nodules on the interior surface. In addition, the morphological changes of the capsid exterior were particularly observed in the vicinity of the five-fold axes, where the counter-clockwise twisting of the "tripod" structure at the vertex of the five-fold channel was evident, resulting in a widening of the channel's opening. Whether these capsid changes are similar to virion capsid maturation in the host cells remains to be investigated. Nevertheless, the ability of IHHNV-VLP to encapsulate the sizable dsDNA has opened up the opportunity to package a dsDNA vector that can insert exogenous genes and target susceptible shrimp cells in order to halt viral infection.
Collapse
Affiliation(s)
- Wattana Weerachatyanukul
- Department of Anatomy, Faculty of Science, Mahidol University, Rama VI Rd., Ratchathewi, Bangkok 10400, Thailand
| | - Pauline Kiatmetha
- Department of Anatomy, Faculty of Science, Mahidol University, Rama VI Rd., Ratchathewi, Bangkok 10400, Thailand
| | - Ponlawoot Raksat
- Department of Biology, Faculty of Science, Mahidol University, Ratchathewi, Bangkok 10400, Thailand
| | - Supawich Boonkua
- Department of Anatomy, Faculty of Science, Mahidol University, Rama VI Rd., Ratchathewi, Bangkok 10400, Thailand
| | - Orawan Thongsum
- Department of Anatomy, Faculty of Science, Mahidol University, Rama VI Rd., Ratchathewi, Bangkok 10400, Thailand
| | - Pitchanee Jariyapong
- Department of Medical Science, School of Medicine, Walailak University, Thasala District, Nakhonsrithammarat 80160, Thailand
| | | | - Puey Ounjai
- Department of Biology, Faculty of Science, Mahidol University, Ratchathewi, Bangkok 10400, Thailand
| | - Zoltan Metlagel
- Lawrence Berkeley National Laboratory, Molecular Biophysics and Integrated Bioimaging Division, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
7
|
Majsterkiewicz K, Biela AP, Maity S, Sharma M, Piette BMAG, Kowalczyk A, Gaweł S, Chakraborti S, Roos WH, Heddle JG. Artificial Protein Cage with Unusual Geometry and Regularly Embedded Gold Nanoparticles. NANO LETTERS 2022; 22:3187-3195. [PMID: 35254086 PMCID: PMC9052746 DOI: 10.1021/acs.nanolett.1c04222] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Artificial protein cages have great potential in a number of areas including cargo capture and delivery and as artificial vaccines. Here, we investigate an artificial protein cage whose assembly is triggered by gold nanoparticles. Using biochemical and biophysical methods we were able to determine both the mechanical properties and the gross compositional features of the cage which, combined with mathematical models and biophysical data, allowed the structure of the cage to be predicted. The accuracy of the overall geometrical prediction was confirmed by the cryo-EM structure determined to sub-5 Å resolution. This showed the cage to be nonregular but similar to a dodecahedron, being constructed from 12 11-membered rings. Surprisingly, the structure revealed that the cage also contained a single, small gold nanoparticle at each 3-fold axis meaning that each cage acts as a synthetic framework for regular arrangement of 20 gold nanoparticles in a three-dimensional lattice.
Collapse
Affiliation(s)
- Karolina Majsterkiewicz
- Małopolska
Centre of Biotechnology, Jagiellonian University, Kraków 30-387, Poland
- Postgraduate
School of Molecular Medicine, ul. Żwirki i Wigury 61, Warsaw 02-091, Poland
| | - Artur P. Biela
- Małopolska
Centre of Biotechnology, Jagiellonian University, Kraków 30-387, Poland
- Institute
of Zoology and Biomedical Research, Department of Cell Biology and
Imaging, Jagiellonian University, Kraków 30-387, Poland
| | - Sourav Maity
- Moleculaire
Biofysica, Zernike Instituut, Rijksuniversiteit
Groningen, Groningen 9747 AG, Netherlands
| | - Mohit Sharma
- Małopolska
Centre of Biotechnology, Jagiellonian University, Kraków 30-387, Poland
- Postgraduate
School of Molecular Medicine, ul. Żwirki i Wigury 61, Warsaw 02-091, Poland
| | | | - Agnieszka Kowalczyk
- Małopolska
Centre of Biotechnology, Jagiellonian University, Kraków 30-387, Poland
- Faculty of
Mathematics and Computer Science, Jagiellonian
University, Kraków 30-348, Poland
| | - Szymon Gaweł
- Małopolska
Centre of Biotechnology, Jagiellonian University, Kraków 30-387, Poland
| | | | - Wouter H. Roos
- Moleculaire
Biofysica, Zernike Instituut, Rijksuniversiteit
Groningen, Groningen 9747 AG, Netherlands
| | - Jonathan G. Heddle
- Małopolska
Centre of Biotechnology, Jagiellonian University, Kraków 30-387, Poland
| |
Collapse
|
8
|
Edwardson TGW, Levasseur MD, Tetter S, Steinauer A, Hori M, Hilvert D. Protein Cages: From Fundamentals to Advanced Applications. Chem Rev 2022; 122:9145-9197. [PMID: 35394752 DOI: 10.1021/acs.chemrev.1c00877] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Proteins that self-assemble into polyhedral shell-like structures are useful molecular containers both in nature and in the laboratory. Here we review efforts to repurpose diverse protein cages, including viral capsids, ferritins, bacterial microcompartments, and designed capsules, as vaccines, drug delivery vehicles, targeted imaging agents, nanoreactors, templates for controlled materials synthesis, building blocks for higher-order architectures, and more. A deep understanding of the principles underlying the construction, function, and evolution of natural systems has been key to tailoring selective cargo encapsulation and interactions with both biological systems and synthetic materials through protein engineering and directed evolution. The ability to adapt and design increasingly sophisticated capsid structures and functions stands to benefit the fields of catalysis, materials science, and medicine.
Collapse
Affiliation(s)
| | | | - Stephan Tetter
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Angela Steinauer
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Mao Hori
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Donald Hilvert
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
9
|
Biela AP, Naskalska A, Fatehi F, Twarock R, Heddle JG. Programmable polymorphism of a virus-like particle. COMMUNICATIONS MATERIALS 2022; 3:7. [PMID: 35284827 PMCID: PMC7612486 DOI: 10.1038/s43246-022-00229-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
Virus-like particles (VLPs) have significant potential as artificial vaccines and drug delivery systems. The ability to control their size has wide ranging utility but achieving such controlled polymorphism using a single protein subunit is challenging as it requires altering VLP geometry. Here we achieve size control of MS2 bacteriophage VLPs via insertion of amino acid sequences in an external loop to shift morphology to significantly larger forms. The resulting VLP size and geometry is controlled by altering the length and type of the insert. Cryo electron microscopy structures of the new VLPs, in combination with a kinetic model of their assembly, show that the abundance of wild type (T = 3), T = 4, D3 and D5 symmetrical VLPs can be biased in this way. We propose a mechanism whereby the insert leads to a change in the dynamic behavior of the capsid protein dimer, affecting the interconversion between the symmetric and asymmetric conformers and thus determining VLP size and morphology.
Collapse
Affiliation(s)
- Artur P. Biela
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-392 Krakow, Poland
| | - Antonina Naskalska
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-392 Krakow, Poland
| | - Farzad Fatehi
- Departments of Mathematics, University of York, York YO10 5DD, UK
- York Cross-Disciplinary Centre for Systems Analysis, University of York, York YO10 5GE, UK
| | - Reidun Twarock
- Departments of Mathematics, University of York, York YO10 5DD, UK
- York Cross-Disciplinary Centre for Systems Analysis, University of York, York YO10 5GE, UK
- Department of Biology, University of York, York YO10 5DD, UK
| | - Jonathan G. Heddle
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-392 Krakow, Poland
| |
Collapse
|
10
|
Zhang X, Liu Y, Zheng B, Zang J, Lv C, Zhang T, Wang H, Zhao G. Protein interface redesign facilitates the transformation of nanocage building blocks to 1D and 2D nanomaterials. Nat Commun 2021; 12:4849. [PMID: 34381032 PMCID: PMC8357837 DOI: 10.1038/s41467-021-25199-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 07/28/2021] [Indexed: 01/09/2023] Open
Abstract
Although various artificial protein nanoarchitectures have been constructed, controlling the transformation between different protein assemblies has largely been unexplored. Here, we describe an approach to realize the self-assembly transformation of dimeric building blocks by adjusting their geometric arrangement. Thermotoga maritima ferritin (TmFtn) naturally occurs as a dimer; twelve of these dimers interact with each other in a head-to-side manner to generate 24-meric hollow protein nanocage in the presence of Ca2+ or PEG. By tuning two contiguous dimeric proteins to interact in a fully or partially side-by-side fashion through protein interface redesign, we can render the self-assembly transformation of such dimeric building blocks from the protein nanocage to filament, nanorod and nanoribbon in response to multiple external stimuli. We show similar dimeric protein building blocks can generate three kinds of protein materials in a manner that highly resembles natural pentamer building blocks from viral capsids that form different protein assemblies.
Collapse
Affiliation(s)
- Xiaorong Zhang
- grid.22935.3f0000 0004 0530 8290College of Food Science & Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing, 100083 China
| | - Yu Liu
- grid.22935.3f0000 0004 0530 8290College of Food Science & Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing, 100083 China
| | - Bowen Zheng
- grid.22935.3f0000 0004 0530 8290College of Food Science & Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing, 100083 China
| | - Jiachen Zang
- grid.22935.3f0000 0004 0530 8290College of Food Science & Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing, 100083 China
| | - Chenyan Lv
- grid.22935.3f0000 0004 0530 8290College of Food Science & Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing, 100083 China
| | - Tuo Zhang
- grid.22935.3f0000 0004 0530 8290College of Food Science & Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing, 100083 China
| | - Hongfei Wang
- grid.163032.50000 0004 1760 2008Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry, Key Laboratory of Energy Conversion and Storage Materials of Shanxi Province, Institute of Molecular Science, Shanxi University, Taiyuan, China
| | - Guanghua Zhao
- grid.22935.3f0000 0004 0530 8290College of Food Science & Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing, 100083 China
| |
Collapse
|
11
|
Xu C, Zhu W, Mao H, Zhang W, Yin GQ, Zhang XE, Li F. Switch from Polymorphic to Homogenous Self-Assembly of Virus-Like Particles of Simian Virus 40 through Double-Cysteine Substitution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2004484. [PMID: 33063476 DOI: 10.1002/smll.202004484] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 09/06/2020] [Indexed: 06/11/2023]
Abstract
Self-assembled virus-like particles (VLPs) hold great potential as natural nanomaterials for applications in many fields. For such purposes, monodisperse size distribution is a desirable property. However, the VLPs of simian virus 40 (SV40), a representative VLP platform, are characterized by polymorphism. In an attempt to eliminate the polymorphism, 15 mutants of the VLP subunit (VP1) are constructed through the substitution of double cysteines at the VP1 pentamer interfaces, generating a group of VLPs with altered size distributions. One of the mutants, SS2 (L102C/P300C), specifically forms homogenous T = 1-like tiny VLPs of 24 ± 3 nm in diameter. Moreover, the stability of the SS2 VLPs is markedly enhanced compared with that of wild-type VLPs. The homogeneous self-assembly and stability enhancement of SS2 VLPs can be attributed to the new disulfide bonds contributed by Cys102 and Cys300, which are identified by mass spectrometry and explored by molecular dynamics simulations. Endocytosis inhibition assays indicate that SS2 VLPs, like the polymorphic wild-type VLPs, preserve the multipathway feature of cellular uptake. SS2 VLPs may serve as an evolved version of SV40 VLPs in future studies and applications. The findings of this work would be useful for the design and fabrication of VLP-based materials and devices.
Collapse
Affiliation(s)
- Chengchen Xu
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, P. R. China
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences (CAS), Wuhan, 430071, P. R. China
| | - Weiwei Zhu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences (CAS), Wuhan, 430071, P. R. China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Hanjing Mao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences (CAS), Wuhan, 430071, P. R. China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Wenjing Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences (CAS), Wuhan, 430071, P. R. China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Gen-Quan Yin
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, P. R. China
| | - Xian-En Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences (CAS), Beijing, 100101, P. R. China
| | - Feng Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences (CAS), Wuhan, 430071, P. R. China
| |
Collapse
|
12
|
Saika K, Kato M, Sanada H, Matsushita S, Matsui M, Handa H, Kawano M. Induction of adaptive immune responses against antigens incorporated within the capsid of simian virus 40. J Gen Virol 2020; 101:853-862. [PMID: 32501197 DOI: 10.1099/jgv.0.001445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Simian virus 40 (SV40) is a monkey polyomavirus. The capsid structure is icosahedral and comprises VP1 units that measure 45 nm in diameter. Five SV40 VP1 molecules form one pentamer subunit, and a single icosahedral subunit comprises 72 pentamers; a single SV40 VP1 capsid comprises 360 SV40 VP1 molecules. In a previous study, we showed that an influenza A virus matrix protein 1 (M1) CTL epitope inserted within SV40 virus-like particles (VLPs) induced cytotoxic T lymphocytes (CTLs) without the need for an adjuvant. Here, to address whether SV40 VLPs induce adaptive immune responses against VLP-incorporated antigens, we prepared SV40 VLPs containing M1 or chicken ovalbumin (OVA). This was done by fusing M1 or OVA with the carboxyl terminus of SV40 VP2 and co-expressing them with SV40 VP1 in insect cells using a baculovirus vector. Intraperitoneal (i.p.) or intranasal administration of SV40 VLPs incorporating M1 induced the production of CTLs specific for the M1 epitope without the requirement for adjuvant. The production of antibodies against SV40 VLPs was also induced by i.p. administration of SV40 VLPs in the absence of adjuvant. Finally, the administration of SV40 VLPs incorporating OVA induced anti-OVA antibodies in the absence of adjuvant; in addition, the level of antibody production was comparable with that after i.p. administration of OVA plus alum adjuvant. These results suggest that the SV40 capsid incorporating foreign antigens can be used as a vaccine platform to induce adaptive immune responses without the need for adjuvant.
Collapse
Affiliation(s)
- Kikue Saika
- Department of Allergy and Immunology, Faculty of Medicine, Saitama Medical University, Moroyama-machi, Iruma-gun, Saitama 350-0495, Japan
| | - Masahiko Kato
- R&I Business Development, Business Strategy Development, Sysmex Corporation, 1-1-2 Murotani, Nishi-ku, Kobe 651-2241, Japan
| | - Hideaki Sanada
- R&I Business Development, Business Strategy Development, Sysmex Corporation, 1-1-2 Murotani, Nishi-ku, Kobe 651-2241, Japan
| | - Sho Matsushita
- Allergy Center, Saitama Medical University, Moroyama-machi, Iruma-gun, Saitama 350-0495, Japan.,Department of Allergy and Immunology, Faculty of Medicine, Saitama Medical University, Moroyama-machi, Iruma-gun, Saitama 350-0495, Japan
| | - Masanori Matsui
- Department of Microbiology, Faculty of Medicine, Saitama Medical University, Moroyama-machi, Iruma-gun, Saitama 350-0495, Japan
| | - Hiroshi Handa
- Department of Chemical Biology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Masaaki Kawano
- Department of Allergy and Immunology, Faculty of Medicine, Saitama Medical University, Moroyama-machi, Iruma-gun, Saitama 350-0495, Japan
| |
Collapse
|
13
|
Waltmann C, Asor R, Raviv U, Olvera de la Cruz M. Assembly and Stability of Simian Virus 40 Polymorphs. ACS NANO 2020; 14:4430-4443. [PMID: 32208635 PMCID: PMC7232851 DOI: 10.1021/acsnano.9b10004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Understanding viral assembly pathways is of critical importance to biology, medicine, and nanotechology. Here, we study the assembly path of a system with various structures, the simian vacuolating virus 40 (SV40) polymorphs. We simulate the templated assembly process of VP1 pentamers, which are the constituents of SV40, into icosahedal shells made of N = 12 pentamers (T = 1). The simulations include connections formed between pentamers by C-terminal flexible lateral units, termed here "C-terminal ligands", which are shown to control assembly behavior and shell dynamics. The model also incorporates electrostatic attractions between the N-terminal peptide strands (ligands) and the negatively charged cargo, allowing for agreement with experiments of RNA templated assembly at various pH and ionic conditions. During viral assembly, pentamers bound to any template increase its effective size due to the length and flexibility of the C-terminal ligands, which can connect to other VP1 pentamers and recruit them to a partially completed capsid. All closed shells formed other than the T = 1 feature the ability to dynamically rearrange and are thus termed "pseudo-closed". The N = 13 shell can even spontaneously "self-correct" by losing a pentamer and become a T = 1 capsid when the template size fluctuates. Bound pentamers recruiting additional pentamers to dynamically rearranging capsids allow closed shells to continue growing via the pseudo-closed growth mechanism, for which experimental evidence already exists. Overall, we show that the C-terminal ligands control the dynamic assembly paths of SV40 polymorphs.
Collapse
Affiliation(s)
- Curt Waltmann
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Roi Asor
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J Safra Campus, Givat Ram, Jerusalem, 9190401, Israel
- Center for Nanoscale Science and Technology, The Hebrew University of Jerusalem, Edmond J Safra Campus, Givat Ram, Jerusalem, 9190401, Israel
| | - Uri Raviv
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J Safra Campus, Givat Ram, Jerusalem, 9190401, Israel
- Center for Nanoscale Science and Technology, The Hebrew University of Jerusalem, Edmond J Safra Campus, Givat Ram, Jerusalem, 9190401, Israel
| | - Monica Olvera de la Cruz
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
14
|
Mendoza CI, Reguera D. Shape selection and mis-assembly in viral capsid formation by elastic frustration. eLife 2020; 9:52525. [PMID: 32314965 PMCID: PMC7182429 DOI: 10.7554/elife.52525] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 04/06/2020] [Indexed: 12/28/2022] Open
Abstract
The successful assembly of a closed protein shell (or capsid) is a key step in the replication of viruses and in the production of artificial viral cages for bio/nanotechnological applications. During self-assembly, the favorable binding energy competes with the energetic cost of the growing edge and the elastic stresses generated due to the curvature of the capsid. As a result, incomplete structures such as open caps, cylindrical or ribbon-shaped shells may emerge, preventing the successful replication of viruses. Using elasticity theory and coarse-grained simulations, we analyze the conditions required for these processes to occur and their significance for empty virus self-assembly. We find that the outcome of the assembly can be recast into a universal phase diagram showing that viruses with high mechanical resistance cannot be self-assembled directly as spherical structures. The results of our study justify the need of a maturation step and suggest promising routes to hinder viral infections by inducing mis-assembly.
Collapse
Affiliation(s)
- Carlos I Mendoza
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, México, Mexico
| | - David Reguera
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Barcelona, Spain.,Universitat de Barcelona Institute of Complex Systems (UBICS), Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
15
|
Martín-Bravo M, Gomez Llorente JM, Hernández-Rojas J. A minimal coarse-grained model for the low-frequency normal mode analysis of icosahedral viral capsids. SOFT MATTER 2020; 16:3443-3455. [PMID: 32196061 DOI: 10.1039/d0sm00299b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The main goal of this work is the design of a coarse-grained theoretical model of minimal resolution for the study of the physical properties of icosahedral virus capsids within the linear-response regime. In this model the capsid is represented as an interacting many-body system whose composing elements are capsid subunits (capsomers), which are treated as three-dimensional rigid bodies. The total interaction potential energy is written as a sum of pairwise capsomer-capsomer interactions. Based on previous work [Gomez Llorente et al., Soft Matter, 2014, 10, 3560], a minimal and complete anisotropic binary interaction that includes a full Hessian matrix of independent force constants is proposed. In this interaction model, capsomers have rotational symmetry around an axis of order n > 2. The full coarse-grained model is applied to analyse the low-frequency normal-mode spectrum of icosahedral T = 1 capsids. The model performance is evaluated by fitting its predicted spectrum to the full-atom results for the Satellite Tobacco Necrosis Virus (STNV) capsid [Dykeman and Sankey, Phys. Rev. Lett., 2008, 100, 028101]. Two capsomer choices that are compatible with the capsid icosahedral symmetry are checked, namely pentamers (n = 5) and trimers (n = 3). Both subunit types provide fair fits, from which the magnitude of the coarse-grained force constants for a real virus is obtained. The model is able to uncover latent instabilities whose analysis is fully consistent with the current knowledge about the STNV capsid, which does not self-assemble in the absence of RNA and is thermally unstable. The straightforward generalisability of the model beyond the linear regime and its completeness make it a promising tool to theoretically interpret many experimental data such as those provided by the atomic force microscopy or even to better understand processes far from equilibrium such as the capsid self-assembly.
Collapse
Affiliation(s)
- M Martín-Bravo
- Departamento de Física and IUdEA, Universidad de La Laguna, 38200 Tenerife, Spain.
| | - J M Gomez Llorente
- Departamento de Física and IUdEA, Universidad de La Laguna, 38200 Tenerife, Spain.
| | - J Hernández-Rojas
- Departamento de Física and IUdEA, Universidad de La Laguna, 38200 Tenerife, Spain.
| |
Collapse
|
16
|
Reguera D, Hernández-Rojas J, Gomez Llorente JM. Kinetics of empty viral capsid assembly in a minimal model. SOFT MATTER 2019; 15:7166-7172. [PMID: 31483421 DOI: 10.1039/c9sm01593k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The efficient construction of a protective protein shell or capsid is one of the most crucial steps in the replication cycle of a virus. The formation of the simplest capsid typically proceeds by the spontaneous assembly of identical building blocks. This process can also be achieved in vitro even in the absence of genetic material, thus opening the door to the production of artificial viral cages for a myriad of applications. In this work, we analyze the efficiency and the kinetic peculiarities of this self-assembly process using Brownian Dynamics simulations. We use a minimal model that considers identical assembly units and is able to reproduce successfully the correct final architecture of spherical capsids. The selection of a specific size and structure is achieved by changing a single parameter that imposes an angular anisotropy on the interaction. We analyze how the geometrical constraints of the interaction affect the efficiency of the assembly. We find that the optimal conditions for an efficient assembly from a kinetic point of view strongly depart from the lowest capsid energy corresponding to the minimum of the potential energy landscape. Our work illustrates the important differences between the equilibrium and dynamic characteristics of viral self-assembly, and provides important insights on how to design specific interactions for a successful assembly of artificial viral cages.
Collapse
Affiliation(s)
- D Reguera
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Martí i Franquès 1, 08028-Barcelona, Spain.
| | | | | |
Collapse
|
17
|
Ross JF, Wildsmith GC, Johnson M, Hurdiss DL, Hollingsworth K, Thompson RF, Mosayebi M, Trinh CH, Paci E, Pearson AR, Webb ME, Turnbull WB. Directed Assembly of Homopentameric Cholera Toxin B-Subunit Proteins into Higher-Order Structures Using Coiled-Coil Appendages. J Am Chem Soc 2019; 141:5211-5219. [PMID: 30856321 PMCID: PMC6449800 DOI: 10.1021/jacs.8b11480] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
![]()
The self-assembly
of proteins into higher order structures is ubiquitous
in living systems. It is also an essential process for the bottom-up
creation of novel molecular architectures and devices for synthetic
biology. However, the complexity of protein–protein interaction
surfaces makes it challenging to mimic natural assembly processes
in artificial systems. Indeed, many successful computationally designed
protein assemblies are prescreened for “designability”,
limiting the choice of components. Here, we report a simple and pragmatic
strategy to assemble chosen multisubunit proteins into more complex
structures. A coiled-coil domain appended to one face of the pentameric
cholera toxin B-subunit (CTB) enabled the ordered assembly of tubular
supra-molecular complexes. Analysis of a tubular structure determined
by X-ray crystallography has revealed a hierarchical assembly process
that displays features reminiscent of the polymorphic assembly of
polyomavirus proteins. The approach provides a simple and straightforward
method to direct the assembly of protein building blocks which present
either termini on a single face of an oligomer. This scaffolding approach
can be used to generate bespoke supramolecular assemblies of functional
proteins. Additionally, structural resolution of the scaffolded assemblies
highlight “native-state” forced protein–protein
interfaces, which may prove useful as starting conformations for future
computational design.
Collapse
Affiliation(s)
- James F Ross
- Astbury Centre for Structural Molecular Biology , University of Leeds , Leeds LS2 9JT , United Kingdom.,School of Chemistry , University of Leeds , Leeds LS2 9JT , United Kingdom.,School of Molecular and Cellular Biology , University of Leeds , Leeds LS2 9JT , United Kingdom
| | - Gemma C Wildsmith
- Astbury Centre for Structural Molecular Biology , University of Leeds , Leeds LS2 9JT , United Kingdom.,School of Chemistry , University of Leeds , Leeds LS2 9JT , United Kingdom
| | - Michael Johnson
- Astbury Centre for Structural Molecular Biology , University of Leeds , Leeds LS2 9JT , United Kingdom.,School of Chemistry , University of Leeds , Leeds LS2 9JT , United Kingdom
| | - Daniel L Hurdiss
- Astbury Centre for Structural Molecular Biology , University of Leeds , Leeds LS2 9JT , United Kingdom.,School of Molecular and Cellular Biology , University of Leeds , Leeds LS2 9JT , United Kingdom
| | - Kristian Hollingsworth
- Astbury Centre for Structural Molecular Biology , University of Leeds , Leeds LS2 9JT , United Kingdom.,School of Chemistry , University of Leeds , Leeds LS2 9JT , United Kingdom
| | - Rebecca F Thompson
- Astbury Centre for Structural Molecular Biology , University of Leeds , Leeds LS2 9JT , United Kingdom.,School of Molecular and Cellular Biology , University of Leeds , Leeds LS2 9JT , United Kingdom
| | - Majid Mosayebi
- School of Mathematics , University of Bristol , Bristol BS8 1TW , United Kingdom.,BrisSynBio, Life Sciences Building , University of Bristol , Bristol BS8 1TQ , United Kingdom
| | - Chi H Trinh
- Astbury Centre for Structural Molecular Biology , University of Leeds , Leeds LS2 9JT , United Kingdom.,School of Molecular and Cellular Biology , University of Leeds , Leeds LS2 9JT , United Kingdom
| | - Emanuele Paci
- Astbury Centre for Structural Molecular Biology , University of Leeds , Leeds LS2 9JT , United Kingdom.,School of Molecular and Cellular Biology , University of Leeds , Leeds LS2 9JT , United Kingdom
| | - Arwen R Pearson
- Institute for Nanostructure and Solid State Physics , Universität Hamburg , Hamburg D-22761 , Germany
| | - Michael E Webb
- Astbury Centre for Structural Molecular Biology , University of Leeds , Leeds LS2 9JT , United Kingdom.,School of Chemistry , University of Leeds , Leeds LS2 9JT , United Kingdom
| | - W Bruce Turnbull
- Astbury Centre for Structural Molecular Biology , University of Leeds , Leeds LS2 9JT , United Kingdom.,School of Chemistry , University of Leeds , Leeds LS2 9JT , United Kingdom
| |
Collapse
|
18
|
van Rosmalen MGM, Li C, Zlotnick A, Wuite GJL, Roos WH. Effect of dsDNA on the Assembly Pathway and Mechanical Strength of SV40 VP1 Virus-like Particles. Biophys J 2018; 115:1656-1665. [PMID: 30301514 DOI: 10.1016/j.bpj.2018.07.044] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 07/05/2018] [Accepted: 07/16/2018] [Indexed: 02/06/2023] Open
Abstract
Simian virus 40 (SV40) is a possible vehicle for targeted drug delivery systems because of its low immunogenicity, high infectivity, and high transfection efficiency. To use SV40 for biotechnology applications, more information is needed on its assembly process to efficiently incorporate foreign materials and to tune the mechanical properties of the structure. We use atomic force microscopy to determine the effect of double-stranded DNA packaging, buffer conditions, and incubation time on the morphology and strength of virus-like particles (VLPs) composed of SV40 VP1 pentamers. DNA-induced assembly results in a homogeneous population of native-like, ∼45 nm VLPs. In contrast, under high-ionic-strength conditions, the VP1 pentamers do not seem to interact consistently, resulting in a heterogeneous population of empty VLPs. The stiffness of both in-vitro-assembled empty and DNA-filled VLPs is comparable. Yet, the DNA increases the VLPs' resistance to large deformation forces by acting as a scaffold, holding the VP1 pentamers together. Both disulfide bridges and Ca2+, important in-vitro-assembly factors, affect the mechanical stability of the VLPs: the reducing agent DTT makes the VLPs less resistant to mechanical stress and prone to damage, whereas Ca2+-chelating EDTA induces a marked softening of the VLP. These results show that negatively charged polymers such as DNA can be used to generate homogeneous particles, thereby optimizing VLPs as vessels for drug delivery. Moreover, the storage buffer should be chosen such that VP1 interpentamer interactions are preserved.
Collapse
Affiliation(s)
| | - Chenglei Li
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana
| | - Adam Zlotnick
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana
| | - Gijs J L Wuite
- Natuur- en Sterrenkunde and LaserLaB, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| | - Wouter H Roos
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, Groningen, The Netherlands.
| |
Collapse
|
19
|
Kim HJ, Cho SY, Park MH, Kim HJ. Comparison of the size distributions and immunogenicity of human papillomavirus type 16 L1 virus-like particles produced in insect and yeast cells. Arch Pharm Res 2018; 41:544-553. [PMID: 29637494 DOI: 10.1007/s12272-018-1024-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 03/16/2018] [Indexed: 10/17/2022]
Abstract
Insect and yeast cells are considered the expression systems of choice for producing virus-like particles (VLPs), and numerous types of VLPs have been produced in these systems. However, previous studies were restricted to identifying the characteristics of individual VLP preparations. No direct comparison of the structures and immunogenic properties of insect and yeast-derived VLPs has so far been made. In the present study, the size distribution and immunogenic properties of human papillomavirus type 16 (HPV16) L1 VLPs produced in Spodoptera frugipedra-9 insect cells and Saccharomyces cerevisiae were compared. The insect cell-derived VLPs were larger than the yeast ones (P < 0.0001), with median sizes of 34 and 26 nm, respectively. In addition, the insect-derived VLPs appeared to be more diverse in size than the yeast-derived VLPs. Immunization of mice with 30 ng per dose of VLPs elicited 2.7- and 2.4-fold higher anti-HPV16 L1 IgG and anti-HPV16 neutralizing antibody titers than immunization with the same amounts of the yeast-derived VLPs after the 4th immunizations, respectively. Our results suggest that the choice of expression system critically affects the particle size and immunogenic property of HPV16 L1 VLPs.
Collapse
Affiliation(s)
- Hyoung Jin Kim
- Laboratory of Virology, College of Pharmacy, Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul, 06974, South Korea
| | - Seo Young Cho
- Laboratory of Virology, College of Pharmacy, Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul, 06974, South Korea
| | - Min-Hye Park
- Laboratory of Virology, College of Pharmacy, Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul, 06974, South Korea
| | - Hong-Jin Kim
- Laboratory of Virology, College of Pharmacy, Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul, 06974, South Korea.
| |
Collapse
|
20
|
Zhang W, Zhang XE, Li F. Virus-Based Nanoparticles of Simian Virus 40 in the Field of Nanobiotechnology. Biotechnol J 2018; 13:e1700619. [DOI: 10.1002/biot.201700619] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/05/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Wenjing Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences; Wuhan 430071 China
- University of Chinese Academy of Sciences; Beijing 101407 China
| | - Xian-En Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences; Beijing 100101 China
| | - Feng Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences; Wuhan 430071 China
| |
Collapse
|
21
|
Preventive, Diagnostic and Therapeutic Applications of Baculovirus Expression Vector System. TRENDS IN INSECT MOLECULAR BIOLOGY AND BIOTECHNOLOGY 2018. [PMCID: PMC7115001 DOI: 10.1007/978-3-319-61343-7_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Different strategies are being worked out for engineering the original baculovirus expression vector (BEV) system to produce cost-effective clinical biologics at commercial scale. To date, thousands of highly variable molecules in the form of heterologous proteins, virus-like particles, surface display proteins/antigen carriers, heterologous viral vectors and gene delivery vehicles have been produced using this system. These products are being used in vaccine production, tissue engineering, stem cell transduction, viral vector production, gene therapy, cancer treatment and development of biosensors. Recombinant proteins that are expressed and post-translationally modified using this system are also suitable for functional, crystallographic studies, microarray and drug discovery-based applications. Till now, four BEV-based commercial products (Cervarix®, Provenge®, Glybera® and Flublok®) have been approved for humans, and myriad of others are in different stages of preclinical or clinical trials. Five products (Porcilis® Pesti, BAYOVAC CSF E2®, Circumvent® PCV, Ingelvac CircoFLEX® and Porcilis® PCV) got approval for veterinary use, and many more are in the pipeline. In the present chapter, we have emphasized on both approved and other baculovirus-based products produced in insect cells or larvae that are important from clinical perspective and are being developed as preventive, diagnostic or therapeutic agents. Further, the potential of recombinant adeno-associated virus (rAAV) as gene delivery vector has been described. This system, due to its relatively extended gene expression, lack of pathogenicity and the ability to transduce a wide variety of cells, gained extensive popularity just after the approval of first AAV-based gene therapy drug alipogene tiparvovec (Glybera®). Numerous products based on AAV which are presently in different clinical trials have also been highlighted.
Collapse
|
22
|
Li C, Kneller AR, Jacobson SC, Zlotnick A. Single Particle Observation of SV40 VP1 Polyanion-Induced Assembly Shows That Substrate Size and Structure Modulate Capsid Geometry. ACS Chem Biol 2017; 12:1327-1334. [PMID: 28323402 DOI: 10.1021/acschembio.6b01066] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Simian virus 40 capsid protein (VP1) is a unique system for studying substrate-dependent assembly of a nanoparticle. Here, we investigate a simplest case of this system where 12 VP1 pentamers and a single polyanion, e.g., RNA, form a T = 1 particle. To test the roles of polyanion substrate length and structure during assembly, we characterized the assembly products with size exclusion chromatography, transmission electron microscopy, and single-particle resistive-pulse sensing. We found that 500 and 600 nt RNAs had the optimal length and structure for assembly of uniform T = 1 particles. Longer 800 nt RNA, shorter 300 nt RNA, and a linear 600 unit poly(styrene sulfonate) (PSS) polyelectrolyte produced heterogeneous populations of products. This result was surprising as the 600mer PSS and 500-600 nt RNA have similar mass and charge. Like ssRNA, PSS also has a short 4 nm persistence length, but unlike RNA, PSS lacks a compact tertiary structure. These data indicate that even for flexible substrates, shape as well as size affect assembly and are consistent with the hypothesis that work, derived from protein-protein and protein-substrate interactions, is used to compact the substrate.
Collapse
Affiliation(s)
- Chenglei Li
- Department
of Molecular and Cellular Biochemistry and ‡Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Andrew R. Kneller
- Department
of Molecular and Cellular Biochemistry and ‡Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Stephen C. Jacobson
- Department
of Molecular and Cellular Biochemistry and ‡Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Adam Zlotnick
- Department
of Molecular and Cellular Biochemistry and ‡Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
23
|
Kim H, Kim HJ. Yeast as an expression system for producing virus-like particles: what factors do we need to consider? Lett Appl Microbiol 2016; 64:111-123. [DOI: 10.1111/lam.12695] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 10/11/2016] [Accepted: 11/04/2016] [Indexed: 12/16/2022]
Affiliation(s)
- H.J. Kim
- Laboratory of Virology; College of Pharmacy; Chung-Ang University; Seoul South Korea
| | - H.-J. Kim
- Laboratory of Virology; College of Pharmacy; Chung-Ang University; Seoul South Korea
| |
Collapse
|
24
|
In vitro assembly of polymorphic virus-like particles from the capsid protein of a nodavirus. Virology 2016; 496:106-115. [DOI: 10.1016/j.virol.2016.05.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 05/19/2016] [Accepted: 05/30/2016] [Indexed: 11/18/2022]
|
25
|
Aznar M, Reguera D. Physical Ingredients Controlling Stability and Structural Selection of Empty Viral Capsids. J Phys Chem B 2016; 120:6147-59. [PMID: 27114062 DOI: 10.1021/acs.jpcb.6b02150] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
One of the crucial steps in the viral replication cycle is the self-assembly of its protein shell. Typically, each native virus adopts a unique architecture, but the coat proteins of many viruses have the capability to self-assemble in vitro into different structures by changing the assembly conditions. However, the mechanisms determining which of the possible capsid shapes and structures is selected by a virus are still not well-known. We present a coarse-grained model to analyze and understand the physical mechanisms controlling the size and structure selection in the assembly of empty viral capsids. Using this model and Monte Carlo simulations, we have characterized the phase diagram and stability of T = 1,3,4,7 and snub cube shells. In addition, we have studied the tolerance of different shells to changes in physical parameters related to ambient conditions, identifying possible strategies to induce misassembly or failure. Finally, we discuss the factors that select the shape of a capsid as spherical, faceted, elongated, or decapsidated. Our model sheds important light on the ingredients that control the assembly and stability of viral shells. This knowledge is essential to get capsids with well-defined size and structure that could be used for promising applications in medicine or bionanotechnology.
Collapse
Affiliation(s)
- María Aznar
- Statistical and Interdisciplinary Physics Section, Departament de Física de la Matèria Condensada, Universitat de Barcelona , Martí i Franquès 1, 08028 - Barcelona, Spain
| | - David Reguera
- Statistical and Interdisciplinary Physics Section, Departament de Física de la Matèria Condensada, Universitat de Barcelona , Martí i Franquès 1, 08028 - Barcelona, Spain
| |
Collapse
|
26
|
Somiya M, Kuroda S. Development of a virus-mimicking nanocarrier for drug delivery systems: The bio-nanocapsule. Adv Drug Deliv Rev 2015; 95:77-89. [PMID: 26482188 DOI: 10.1016/j.addr.2015.10.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Revised: 09/21/2015] [Accepted: 10/09/2015] [Indexed: 12/21/2022]
Abstract
As drug delivery systems, nanocarriers should be capable of executing the following functions: evasion of the host immune system, targeting to the diseased site, entering cells, escaping from endosomes, and releasing payloads into the cytoplasm. Since viruses perform some or all of these functions, they are considered naturally occurring nanocarriers. To achieve biomimicry of the hepatitis B virus (HBV), we generated the "bio-nanocapsule" (BNC)-which deploys the human hepatocyte-targeting domain, fusogenic domain, and polymerized-albumin receptor domain of HBV envelope L protein on its surface-by overexpressing the L protein in yeast cells. BNCs are capable of delivering various payloads to the cytoplasm of human hepatic cells specifically in vivo, which is achieved via formation of complexes with various materials (e.g., drugs, nucleic acids, and proteins) by electroporation, fusion with liposomes, or chemical modification. In this review, we describe BNC-related technology, discuss retargeting strategies for BNCs, and outline other virus-inspired nanocarriers.
Collapse
|
27
|
Lin YJ, Liu WT, Stark H, Huang CT. Expression of enterovirus 71 virus-like particles in transgenic enoki (Flammulina velutipes). Appl Microbiol Biotechnol 2015; 99:6765-74. [PMID: 25957149 DOI: 10.1007/s00253-015-6588-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 04/01/2015] [Accepted: 04/05/2015] [Indexed: 10/23/2022]
Abstract
No commercial vaccines are currently available for enterovirus 71 (EV71) infection. Oral virus-like particle (VLP) vaccines are regarded as a better choice for prevention from food-borne diseases compared with injected whole virus vaccines. Unfortunately, the application of oral VLP vaccines produced from transgenic plants was limited due to the concerns of gene contamination. Alternatively, using transgenic mushrooms retains the advantages of transgenic plants and tremendously reduce risks of gene contamination. Polycistronic expression vectors harboring the glyceraldehyde-3-phospho-dehydrogenase promoter to codrive EV71 structural protein P1 and protease 3C using the 2A peptide of porcine teschovirus-1 were constructed and introduced into Flammulina velutipes via Agrobacterium tumefaciens-mediated transformation. The analyses of the genomic PCR, Southern blotting, and RT-PCR showed that the genes of P1 and 3C were integrated into the chromosomal DNA through a single insertion, and their resulting mRNAs were transcribed. The Western blotting analysis combined with LC-MS/MS demonstrated that EV71 VLPs were composed of the four subunit proteins digested from P1 polyprotein by 3C protease. Through the use of a single particle electron microscope, images of 1705 particles with diameter similar to the EV71 viron were used for 3D reconstruction. Protrusions were observed on the surface in the 2D class averages, and a 3D reconstruction of the VLPs was obtained. In conclusion, EV71 VLPs were successfully produced in transgenic F. velutipes using a polycistronic expression strategy, which indicates that this approach is promising for the development of oral vaccines produced in mushrooms.
Collapse
Affiliation(s)
- Yu-Ju Lin
- Department of Biochemical Science and Technology, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taipei, Taiwan
| | | | | | | |
Collapse
|
28
|
Li TC, Iwasaki K, Katano H, Kataoka M, Nagata N, Kobayashi K, Mizutani T, Takeda N, Wakita T, Suzuki T. Characterization of self-assembled virus-like particles of Merkel cell polyomavirus. PLoS One 2015; 10:e0115646. [PMID: 25671590 PMCID: PMC4324643 DOI: 10.1371/journal.pone.0115646] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 11/25/2014] [Indexed: 12/17/2022] Open
Abstract
In our recombinant baculovirus system, VP1 protein of merkel cell polyomavirus (MCPyV), which is implicated as a causative agent in Merkel cell carcinoma, was self-assembled into MCPyV-like particles (MCPyV-LP) with two different sizes in insect cells, followed by being released into the culture medium. DNA molecules of 1.5- to 5-kb, which were derived from host insect cells, were packaged in large, ~50-nm spherical particles but not in small, ~25-nm particles. Structure reconstruction using cryo-electron microscopy showed that large MCPyV-LPs are composed of 72 pentameric capsomeres arranged in a T = 7 icosahedral surface lattice and are 48 nm in diameter. The MCPyV-LPs did not share antigenic determinants with BK- and JC viruses (BKPyV and JCPyV). The VLP-based enzyme immunoassay was applied to investigate age-specific prevalence of MCPyV infection in the general Japanese population aged 1–70 years. While seroprevalence of MCPyV increased with age in children and young individuals, its seropositivity in each age group was lower compared with BKPyV and JCPyV.
Collapse
Affiliation(s)
- Tian-Cheng Li
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kenji Iwasaki
- Institute for Protein Research, Osaka University, Osaka, Japan
| | - Harutaka Katano
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Michiyo Kataoka
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Noriyo Nagata
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kazumi Kobayashi
- Cellular and Structural Physiology Institute, Nagoya University, Nagoya, Japan
| | - Tetsuya Mizutani
- Research and Education center for Prevention of Global Infectious Diseases of Animals, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Naokazu Takeda
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Takaji Wakita
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tetsuro Suzuki
- Department of Infectious Diseases, Hamamatsu University School of Medicine, Shizuoka, Japan
| |
Collapse
|
29
|
Kawano M, Doi K, Fukuda H, Kita Y, Imai K, Inoue T, Enomoto T, Matsui M, Hatakeyama M, Yamaguchi Y, Handa H. SV40 VP1 major capsid protein in its self-assembled form allows VP1 pentamers to coat various types of artificial beads in vitro regardless of their sizes and shapes. ACTA ACUST UNITED AC 2014; 5:105-111. [PMID: 28435806 PMCID: PMC5374266 DOI: 10.1016/j.btre.2014.12.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 11/28/2014] [Accepted: 12/17/2014] [Indexed: 01/17/2023]
Abstract
Monomeric VP1 pentamers of simian virus 40 coat artificial beads larger than natural capsids. Polystyrene beads (100, 200, and 500 nm in diameter) can be covered by VP1 pentamers. Silica beads can also be covered by VP1 pentamers. VP1 pentamers can also coat angular-shaped magnetite-particle and rough-shaped liposomes. The self-reassembly property of VP1 may allow it to coat various artificial beads, regardless of their sizes or shapes.
The icosahedral capsid structure of simian virus 40 (diameter, 45 nm) consists of 72 pentameric subunits, with each subunit formed by five VP1 molecules. Electron microscopy, immuno-gold labeling, and ζ-potential analysis showed that purified recombinant VP1 pentamers covered polystyrene beads measuring 100, 200, and 500 nm in diameter, as well as silica beads. In addition to covering spherical beads, VP1 pentamers covered cubic magnetite beads, as well as the distorted surface structures of liposomes. These findings indicate that VP1 pentamers could coat artificial beads of various shapes and sizes larger than the natural capsid. Technology based on VP1 pentamers may be useful in providing a capsid-like surface for enclosed materials, enhancing their stability and cellular uptake for drug delivery systems.
Collapse
Key Words
- Artificial beads
- CMNPs, citrate-coated magnetic nanoparticles
- DMSO, dimethyl sulfoxide
- DOPE, 1,2-dioleoyl-sn-glocero-3-phosphoethanolamine
- DOTAP, N-[1-(2,3-dioleoyloxy)propyl-N,N,N-trimethyl ammonium chloride
- DTT, dithiothreitol
- Drug delivery
- EGF, epidermal growth factor
- EGTA, ethylene glycol-bis(2-aminoethylether)-N,N,N′,N′-tetraacetic acid
- EM, electron microscopy
- NP-40, nonidet P-40
- PLGA, poly-lactic-co-glycolic-acid
- PVA, polyvinyl alcohol
- Polyomavirus
- RCNMV, red clover necrotic mosaic virus
- SV40, simian virus 40
- Simian virus 40
- TEM, transmission electron microscopy
- TEOS, tetraethyl orthosilicate
- VLPs, virus-like particles
- VP1
- VP1 coating
- W/O, water in oil
- W/O/W, water in oil in water
Collapse
Affiliation(s)
- Masaaki Kawano
- Department of Molecular Biology, Faculty of Medicine, Saitama Medical University, 38 Morohongo, Moroyama-cho, Iruma-gun, Saitama 350-0495, Japan
| | - Koji Doi
- Department of Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Hajime Fukuda
- Department of Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Yoshinori Kita
- Department of Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Kensuke Imai
- Department of Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Takamasa Inoue
- Department of Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Teruya Enomoto
- Department of Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Masanori Matsui
- Department of Microbiology, Faculty of Medicine, Saitama Medical University, 38 Morohongo, Moroyama-cho, Iruma-gun, Saitama 350-0495, Japan
| | - Mamoru Hatakeyama
- Department of Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Yuki Yamaguchi
- Department of Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Hiroshi Handa
- Department of Nanoparticle Translational Research, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| |
Collapse
|
30
|
Kawano M, Matsui M, Handa H. SV40 virus-like particles as an effective delivery system and its application to a vaccine carrier. Expert Rev Vaccines 2014; 12:199-210. [DOI: 10.1586/erv.12.149] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
31
|
Kler S, Wang JCY, Dhason M, Oppenheim A, Zlotnick A. Scaffold properties are a key determinant of the size and shape of self-assembled virus-derived particles. ACS Chem Biol 2013; 8:2753-61. [PMID: 24093474 DOI: 10.1021/cb4005518] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Controlling the geometry of self-assembly will enable a greater diversity of nanoparticles than now available. Viral capsid proteins, one starting point for investigating self-assembly, have evolved to form regular particles. The polyomavirus SV40 assembles from pentameric subunits and can encapsidate anionic cargos. On short ssRNA (≤814 nt), SV40 pentamers form 22 nm diameter capsids. On RNA too long to fit a T = 1 particle, pentamers forms strings of 22 nm particles and heterogeneous particles of 29-40 nm diameter. However, on dsDNA SV40 forms 50 nm particles composed of 72 pentamers. A 7.2-Å resolution cryo-EM image reconstruction of 22 nm particles shows that they are built of 12 pentamers arranged with T = 1 icosahedral symmetry. At 3-fold vertices, pentamers each contribute to a three-helix triangle. This geometry of interaction is not seen in crystal structures of T = 7 viruses and provides a structural basis for the smaller capsids. We propose that the heterogeneous particles are actually mosaics formed by combining different geometries of interaction from T = 1 capsids and virions. Assembly can be trapped in novel conformations because SV40 interpentamer contacts are relatively strong. The implication is that by virtue of their large catalog of interactions, SV40 pentamers have the ability to self-assemble on and conform to a broad range of shapes.
Collapse
Affiliation(s)
- Stanislav Kler
- Department
of Hematology, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Joseph Che-Yen Wang
- Department
of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Mary Dhason
- Department
of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Ariella Oppenheim
- Department
of Hematology, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Adam Zlotnick
- Department
of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
32
|
Schreiber A, Schiller SM. Nanobiotechnology of protein-based compartments: steps toward nanofactories. BIOINSPIRED BIOMIMETIC AND NANOBIOMATERIALS 2013. [DOI: 10.1680/bbn.13.00008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
33
|
To build a virus on a nucleic acid substrate. Biophys J 2013; 104:1595-604. [PMID: 23561536 DOI: 10.1016/j.bpj.2013.02.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2012] [Revised: 01/10/2013] [Accepted: 02/08/2013] [Indexed: 11/21/2022] Open
Abstract
Many viruses package their genomes concomitant with assembly. Here, we show that this reaction can be described by three coefficients: association of capsid protein (CP) to nucleic acid (NA), KNA; CP-CP interaction, ω; and α, proportional to the work required to package NA. The value of α can vary as NA is packaged. A phase diagram of average lnα versus lnω identifies conditions where assembly is likely to fail or succeed. NA morphology can favor (lnα > 0) or impede (lnα < 0) assembly. As lnω becomes larger, capsids become more stable and assembly becomes more cooperative. Where (lnα + lnω) < 0, the CP is unable to contain the NA, so that assembly results in aberrant particles. This phase diagram is consistent with quantitative studies of cowpea chlorotic mottle virus, hepatitis B virus, and simian virus 40 assembling on ssRNA and dsDNA substrates. Thus, the formalism we develop is suitable for describing and predicting behavior of experimental studies of CP assembly on NA.
Collapse
|
34
|
Teunissen EA, de Raad M, Mastrobattista E. Production and biomedical applications of virus-like particles derived from polyomaviruses. J Control Release 2013; 172:305-321. [PMID: 23999392 DOI: 10.1016/j.jconrel.2013.08.026] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 08/18/2013] [Accepted: 08/20/2013] [Indexed: 10/26/2022]
Abstract
Virus-like particles (VLPs), aggregates of capsid proteins devoid of viral genetic material, show great promise in the fields of vaccine development and gene therapy. These particles spontaneously self-assemble after heterologous expression of viral structural proteins. This review will focus on the use of virus-like particles derived from polyomavirus capsid proteins. Since their first recombinant production 27 years ago these particles have been investigated for a myriad of biomedical applications. These virus-like particles are safe, easy to produce, can be loaded with a broad range of diverse cargoes and can be tailored for specific delivery or epitope presentation. We will highlight the structural characteristics of polyomavirus-derived VLPs and give an overview of their applications in diagnostics, vaccine development and gene delivery.
Collapse
Affiliation(s)
- Erik A Teunissen
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, University of Utrecht, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Markus de Raad
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, University of Utrecht, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Enrico Mastrobattista
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, University of Utrecht, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands.
| |
Collapse
|
35
|
Enomoto T, Kawano M, Fukuda H, Sawada W, Inoue T, Haw KC, Kita Y, Sakamoto S, Yamaguchi Y, Imai T, Hatakeyama M, Saito S, Sandhu A, Matsui M, Aoki I, Handa H. Viral protein-coating of magnetic nanoparticles using simian virus 40 VP1. J Biotechnol 2013; 167:8-15. [DOI: 10.1016/j.jbiotec.2013.06.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 06/04/2013] [Accepted: 06/07/2013] [Indexed: 11/29/2022]
|
36
|
Gao D, Zhang ZP, Li F, Men D, Deng JY, Wei HP, Zhang XE, Cui ZQ. Quantum dot-induced viral capsid assembling in dissociation buffer. Int J Nanomedicine 2013; 8:2119-28. [PMID: 23776332 PMCID: PMC3681329 DOI: 10.2147/ijn.s44534] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Viruses encapsulating inorganic nanoparticles are a novel type of nanostructure with applications in biomedicine and biosensors. However, the encapsulation and assembly mechanisms of these hybridized virus-based nanoparticles (VNPs) are still unknown. In this article, it was found that quantum dots (QDs) can induce simian virus 40 (SV40) capsid assembly in dissociation buffer, where viral capsids should be disassembled. The analysis of the transmission electron microscope, dynamic light scattering, sucrose density gradient centrifugation, and cryo-electron microscopy single particle reconstruction experimental results showed that the SV40 major capsid protein 1 (VP1) can be assembled into ≈25 nm capsids in the dissociation buffer when QDs are present and that the QDs are encapsulated in the SV40 capsids. Moreover, it was determined that there is a strong affinity between QDs and the SV40 VP1 proteins (KD = 2.19E-10 M), which should play an important role in QD encapsulation in the SV40 viral capsids. This study provides a new understanding of the assembly mechanism of SV40 virus-based nanoparticles with QDs, which may help in the design and construction of other similar virus-based nanoparticles.
Collapse
Affiliation(s)
- Ding Gao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Proteins are the work-horses of life and excute the essential processes involved in the growth and repair of cells. These roles include all aspects of cell signalling, metabolism and repair that allow living things to exist. They are not only chemical catalysts and machine components, they are also structural components of the cell or organism, capable of self-organisation into strong supramolecular cages, fibres and meshes. How proteins are encoded genetically and how they are sythesised in vivo is now well understood, and for an increasing number of proteins, the relationship between structure and function is known in exquisite detail. The next challenge in bionanoscience is to adapt useful protein systems to build new functional structures. Well-defined natural structures with potential useful shapes are a good starting point. With this in mind, in this chapter we discuss the properties of natural and artificial protein channels, nanotubes and cages with regard to recent progress and potential future applications. Chemistries for attaching together different proteins to form superstructures are considered as well as the difficulties associated with designing complex protein structures ab initio.
Collapse
Affiliation(s)
- Jonathan G. Heddle
- Heddle Initiative Research Unit RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198 Japan
| | - Jeremy R. H. Tame
- Protein Design Laboratory Yokohama City University 1-7—29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045 Japan
| |
Collapse
|
38
|
Kapur N, Thakral D, Durgapal H, Panda SK. Hepatitis E virus enters liver cells through receptor-dependent clathrin-mediated endocytosis. J Viral Hepat 2012; 19:436-48. [PMID: 22571906 DOI: 10.1111/j.1365-2893.2011.01559.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We investigated the virus-host interaction for hepatitis E virus (HEV) by performing competitive binding assays using in vitro assembled virus-like particles (VLPs). We used Escherichia coli expressed native capsid protein (pORF2) and its mutants with an attached Gly((5))-Ala (linker) reporter [enhanced green fluorescent protein (EGFP)/firefly luciferase (Fluc)]. Transmission electron microscopy and nanoparticle tracking showed near uniform particles of approximately 30-35 nm in diameter for pORF2 VLPs and 60-100 nm for reporter-linked VLPs. Binding of reporter-linked full-length (1-660aa) and N-terminal truncated (Δ1-112aa) pORF2 VLPs to Huh7 cell surfaces was found to be specific with 1.92 ± 0.065 × 10(5) sites per cell. Saturation binding indicated an equilibrium dissociation constant (K(d)) of 121.1 ± 23.83 and 123.8 ± 16.15 nm for pORF2-linker-EGFP and pORF2-linker-Fluc VLPs respectively. A similar binding pattern was observed for Δ1-112aa pORF2-linker-EGFP and Δ1-112aa pORF2-linker-Fluc VLPs with K(d) values of 123.6 ± 10.60 and 135.6 ± 16.19 nm respectively. The affinity (log K(i)) of pORF2 binding on Huh7 cells in the presence of EGFP-tagged and Fluc-tagged pORF2 VLPs was found to be approximately 2.0. However, no VLP formation or binding was observed with refolded C-terminal truncated (Δ458-660aa) pORF2. We investigated HEV internalization using fluorescent VLPs (EGFP-VLPs), which showed vesicle-mediated uptake starting at 5 min post-incubation. The uptake of VLPs could be stopped by inhibitors for clathrin-dependent endocytosis, but not by caveosome inhibitors. No binding and uptake of EGFP-VLPs were observed on non-hepatic cell lines (HeLa and SiHa). These findings suggest that HEV attaches to the host cell via a specific high affinity receptor and enters the cytoplasm by clathrin-mediated endocytosis.
Collapse
Affiliation(s)
- N Kapur
- Department of Pathology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | | | | | | |
Collapse
|
39
|
Zhang C, Gao D, Zhou G, Chen L, Zhang X, Cui Z, He Z. Label‐Free Homogeneous Immunosensor Based on FRET for the Detection of Virus Antibody in Serum. Chem Asian J 2012; 7:1764-7. [DOI: 10.1002/asia.201200221] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 04/17/2012] [Indexed: 11/10/2022]
Affiliation(s)
- Cuiling Zhang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072 (P. R. China), Fax: (+86) 27‐68754067
| | - Ding Gao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071 (P. R. China)
| | - Guohua Zhou
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072 (P. R. China), Fax: (+86) 27‐68754067
| | - Lu Chen
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072 (P. R. China), Fax: (+86) 27‐68754067
| | - Xian‐an Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071 (P. R. China)
| | - Zongqiang Cui
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071 (P. R. China)
| | - Zhike He
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072 (P. R. China), Fax: (+86) 27‐68754067
| |
Collapse
|
40
|
Li F, Chen Y, Chen H, He W, Zhang ZP, Zhang XE, Wang Q. Monofunctionalization of Protein Nanocages. J Am Chem Soc 2011; 133:20040-3. [DOI: 10.1021/ja207276g] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Feng Li
- Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123 China
| | - Yanhua Chen
- Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123 China
| | - Huiling Chen
- Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123 China
| | - Wei He
- Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123 China
| | - Zhi-Ping Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071 China
| | - Xian-En Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071 China
| | - Qiangbin Wang
- Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123 China
| |
Collapse
|
41
|
Wang T, Zhang Z, Gao D, Li F, Wei H, Liang X, Cui Z, Zhang XE. Encapsulation of gold nanoparticles by simian virus 40 capsids. NANOSCALE 2011; 3:4275-4282. [PMID: 21879117 DOI: 10.1039/c1nr10568j] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Viral capsid-nanoparticle hybrid structures constitute a new type of nanoarchitecture that can be used for various applications. We previously constructed a hybrid structure comprising quantum dots encapsulated by simian virus 40 (SV40) capsids for imaging viral infection pathways. Here, gold nanoparticles (AuNPs) are encapsulated into SV40 capsids and the effect of particle size and surface ligands (i.e. mPEG and DNA) on AuNP encapsulation is studied. Particle size and surface decoration play complex roles in AuNP encapsulation by SV40 capsids. AuNPs ≥15 nm (when coated with mPEG750 rather than mPEG2000), or ≥10 nm (when coated with 10T or 50T DNA) can be encapsulated. Encapsulation efficiency increased as the size of the AuNPs increased from 10 to 30 nm. In addition, the electrostatic interactions derived from negatively charged DNA ligands on the AuNP surfaces promote encapsulation when the AuNPs have a small diameter (i.e. 10 nm and 15 nm). Moreover, the SV40 capsid is able to carry mPEG750-modified 15-nm AuNPs into living Vero cells, whereas the mPEG750-modified 15-nm AuNPs alone cannot enter cells. These results will improve our understanding of the mechanisms underlying nanoparticle encapsulation in SV40 capsids and enable the construction of new functional hybrid nanostructures for cargo delivery.
Collapse
Affiliation(s)
- Tingjuan Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, No.44, Xiaohongshan, Wuhan 430071, P. R. China
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Bode SA, Minten IJ, Nolte RJM, Cornelissen JJLM. Reactions inside nanoscale protein cages. NANOSCALE 2011; 3:2376-2389. [PMID: 21461437 DOI: 10.1039/c0nr01013h] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Chemical reactions are traditionally carried out in bulk solution, but in nature confined spaces, like cell organelles, are used to obtain control in time and space of conversion. One way of studying these reactions in confinement is the development and use of small reaction vessels dispersed in solution, such as vesicles and micelles. The utilization of protein cages as reaction vessels is a relatively new field and very promising as these capsules are inherently monodisperse, in that way providing uniform reaction conditions, and are readily accessible to both chemical and genetic modifications. In this review, we aim to give an overview of the different kinds of nanoscale protein cages that have been employed as confined reaction spaces.
Collapse
Affiliation(s)
- Saskia A Bode
- Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
43
|
Roldão A, Mellado MCM, Castilho LR, Carrondo MJT, Alves PM. Virus-like particles in vaccine development. Expert Rev Vaccines 2011; 9:1149-76. [PMID: 20923267 DOI: 10.1586/erv.10.115] [Citation(s) in RCA: 591] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Virus-like particles (VLPs) are multiprotein structures that mimic the organization and conformation of authentic native viruses but lack the viral genome, potentially yielding safer and cheaper vaccine candidates. A handful of prophylactic VLP-based vaccines is currently commercialized worldwide: GlaxoSmithKline's Engerix (hepatitis B virus) and Cervarix (human papillomavirus), and Merck and Co., Inc.'s Recombivax HB (hepatitis B virus) and Gardasil (human papillomavirus) are some examples. Other VLP-based vaccine candidates are in clinical trials or undergoing preclinical evaluation, such as, influenza virus, parvovirus, Norwalk and various chimeric VLPs. Many others are still restricted to small-scale fundamental research, despite their success in preclinical tests. This article focuses on the essential role of VLP technology in new-generation vaccines against prevalent and emergent diseases. The implications of large-scale VLP production are discussed in the context of process control, monitorization and optimization. The main up- and down-stream technical challenges are identified and discussed accordingly. Successful VLP-based vaccine blockbusters are briefly presented concomitantly with the latest results from clinical trials and the recent developments in chimeric VLP-based technology for either therapeutic or prophylactic vaccination.
Collapse
Affiliation(s)
- António Roldão
- Instituto de Tecnologia Química e Biológica/Universidade Nova de Lisboa, Apartado 127, P-2781-901, Oeiras, Portugal
| | | | | | | | | |
Collapse
|
44
|
Cherstvy AG. Electrostatic interactions in biological DNA-related systems. Phys Chem Chem Phys 2011; 13:9942-68. [DOI: 10.1039/c0cp02796k] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
45
|
Affiliation(s)
- Adam Zlotnick
- Department of Biology, Indiana University Bloomington IN 47405 USA
| | - Bentley A. Fane
- Division of Plant Pathology and Microbiology, Department of Plant Sciences and The BIO5 Institute, University of Arizona Tucson AZ 85721 USA
| |
Collapse
|
46
|
Li F, Li K, Cui ZQ, Zhang ZP, Wei HP, Gao D, Deng JY, Zhang XE. Viral coat proteins as flexible nano-building-blocks for nanoparticle encapsulation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2010; 6:2301-2308. [PMID: 20842665 DOI: 10.1002/smll.201001078] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Viral capsid-nanoparticle hybrid structures offer new opportunities for nanobiotechnology. We previously generated virus-based nanoparticles (VNPs) of simian virus 40 (SV40) containing quantum dots (QDs) for cellular imaging. However, as an interesting issue of nano-bio interfaces, the mechanism of nanoparticle (NP) encapsulation by viral coat proteins remains unclear. Here, four kinds of QDs with the same core/shell but different surface coatings are tested for encapsulation. All the QDs can be encapsulated efficiently and there is no correlation between the encapsulation efficiency and the surface charge of the QDs. All the SV40 VNPs encapsulating differently modified QDs show similar structures, fluorescence properties, and activity in entering living cells. These results demonstrate the flexibility of SV40 major capsid protein VP1 in NP encapsulation and provide new clues to the mechanism of NP packaging by viral shells.
Collapse
Affiliation(s)
- Feng Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, No 44, Xiaohongshan, Wuhan 430071, PR China
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Mukherjee S, Kler S, Oppenheim A, Zlotnick A. Uncatalyzed assembly of spherical particles from SV40 VP1 pentamers and linear dsDNA incorporates both low and high cooperativity elements. Virology 2009; 397:199-204. [PMID: 19942248 DOI: 10.1016/j.virol.2009.10.050] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Revised: 10/18/2009] [Accepted: 10/31/2009] [Indexed: 11/24/2022]
Abstract
The capsid of SV40 virion is comprised of 72 pentamers of the major capsid protein, VP1. We examined the synergism between pentamer-pentamer interaction and pentamer-DNA interaction using a minimal system of purified VP1 and a linear dsDNA 600-mer, comparing electrophoresis with electron microscopy and size exclusion chromatography. At low VP1/DNA ratios, large tubes were observed that apparently did not survive native agarose gel electrophoresis. As the VP1 concentration increased, electrophoretic migration was slower and tubes were replaced by 200 A diameter particles and excess free pentamer. At high VP1/DNA ratios, a progressively larger fraction of particles was similar to 450 A diameter virions. VP1 association with DNA is very strong compared to the concentrations in these experiments yet, paradoxically, stable complexes appear only at high ratios of VP1 to DNA. These data suggest a DNA saturation-dependent nucleation event based on non-specific pentamer-DNA interaction that controls assembly and the ultimate capsid geometry.
Collapse
Affiliation(s)
- Santanu Mukherjee
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | | | | | | |
Collapse
|
48
|
Nguyen HD, Reddy VS, Brooks CL. Invariant polymorphism in virus capsid assembly. J Am Chem Soc 2009; 131:2606-14. [PMID: 19199626 DOI: 10.1021/ja807730x] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Directed self-assembly of designed viral capsids holds significant potential for applications in materials science and medicine. However, the complexity of preparing these systems for assembly and the difficulty of quantitative experimental measurements on the assembly process have limited access to critical mechanistic questions that dictate the final product yields and isomorphic forms. Molecular simulations provide a means of elucidating self-assembly of viral proteins into icosahedral capsids and are the focus of the present study. Using geometrically realistic coarse-grained models with specialized molecular dynamics methods, we delineate conditions of temperature and coat protein concentration that lead to the spontaneous self-assembly of T = 1 and T = 3 icosahedral capsids. In addition to the primary product of icosahedral capsids, we observe a ubiquitous presence of nonicosahedral yet highly symmetric and enclosed aberrant capsules in both T = 1 and T = 3 systems. This polymorphism in assembly products recapitulates the scope and morphology of particle types that have been observed in mis-assembly experiments of virus capsids. Moreover, we find that this structural polymorphism in the end point structures is an inherent property of the coat proteins and arises from condition-dependent kinetic mechanisms that are independent of the elemental mechanisms of capsid growth (as long as the building blocks of the coat proteins are all monomeric, dimeric, or trimeric) and the capsid T number. The kinetic mechanisms responsible for self-assembly of icosahedral capsids and aberrant capsules are deciphered; the self-assembly of icosahedral capsids requires a high level of assembly fidelity, whereas self-assembly of nonicosahedral capsules is a consequence of an off-pathway mechanism that is prevalent under nonoptimal conditions of temperature or protein concentration during assembly. The latter case involves kinetically trapped dislocations of pentamer-templated proteins with hexameric organization. These findings provide insights into the complex processes that govern viral capsid assembly and suggest some features of the assembly process that can be exploited to control the assembly of icosahedral capsids and nonicosahedral capsules.
Collapse
Affiliation(s)
- Hung D Nguyen
- Department of Chemistry and Biophysics Program, 930 North University Avenue, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | |
Collapse
|
49
|
Li F, Zhang ZP, Peng J, Cui ZQ, Pang DW, Li K, Wei HP, Zhou YF, Wen JK, Zhang XE. Imaging viral behavior in Mammalian cells with self-assembled capsid-quantum-dot hybrid particles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2009; 5:718-726. [PMID: 19242943 DOI: 10.1002/smll.200801303] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Unique spectral properties of quantum dots (QDs) enable ultrasensitive and long-term biolabeling. Aiming to trace the infection, movement, and localization of viruses in living cells, QD-containing virus-like particles (VLPs) of simian virus 40 (SV40), termed SVLP-QDs, are constructed by in vitro self-assembly of the major capsid protein of SV40. SVLP-QDs show homogeneity in size ( approximately 24 nm), similarity in spectral properties to unencapsidated QDs, and considerable stability. When incubated with living cells, SVLP-QDs are shown to enter the cells by caveolar endocytosis, travel along the microtubules, and accumulate in the endoplasmic reticulum. This process mimics the early infection steps of SV40. This is the first paradigm of imaging viral behaviors with encapsidated QDs in living cells. The method may provide a new alternative for various purposes, such as tracing viruses or viral components, targeted nanoparticle delivery, and probing of drug delivery.
Collapse
Affiliation(s)
- Feng Li
- State Key Laboratory of Virology, Wuhan Institute of Virology Chinese Academy of Sciences No.44, Xiaohongshan, Wuhan 430071, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Nguyen HD, Brooks CL. Generalized structural polymorphism in self-assembled viral particles. NANO LETTERS 2008; 8:4574-81. [PMID: 19367856 PMCID: PMC2772182 DOI: 10.1021/nl802828v] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The protein shells, called capsids, of nearly all spherical viruses adopt icosahedral symmetry; however, self-assembly of such empty structures often occurs with multiple misassembly steps resulting in the formation of aberrant structures. Using simple models that represent the coat proteins preassembled in the two different predetermined species that are common motifs of viral capsids (i.e., pentameric and hexameric capsomers), we perform molecular dynamics simulations of the spontaneous self-assembly of viral capsids of different sizes containing T = 1,3,4,7,9,12,13,16, and 19 proteins in their icosahedral repeating unit. We observe, in addition to icosahedral capsids, a variety of nonicosahedral yet highly ordered and enclosed capsules. Such structural polymorphism is demonstrated to be an inherent property of the coat proteins, independent of the capsid complexity and the elementary kinetic mechanisms. Moreover, there exist two distinctive classes of polymorphic structures: aberrant capsules that are larger than their respective icosahedral capsids, in T = 1-7 systems; and capsules that are smaller than their respective icosahedral capsids when T = 7-19. Different kinetic mechanisms responsible for self-assembly of those classes of aberrant structures are deciphered, providing insights into the control of the self-assembly of icosahedral capsids.
Collapse
Affiliation(s)
- Hung D Nguyen
- Department of Chemistry, 930 North University Avenue, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | |
Collapse
|