1
|
Molecular Basis of Epstein-Barr Virus Latency Establishment and Lytic Reactivation. Viruses 2021; 13:v13122344. [PMID: 34960613 PMCID: PMC8706188 DOI: 10.3390/v13122344] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 12/27/2022] Open
Abstract
Epstein–Barr virus (EBV) is a causative agent of infectious mononucleosis and several types of cancer. Like other herpesviruses, it establishes an asymptomatic, life-long latent infection, with occasional reactivation and shedding of progeny viruses. During latency, EBV expresses a small number of viral genes, and exists as an episome in the host–cell nucleus. Expression patterns of latency genes are dependent on the cell type, time after infection, and milieu of the cell (e.g., germinal center or peripheral blood). Upon lytic induction, expression of the viral immediate-early genes, BZLF1 and BRLF1, are induced, followed by early gene expression, viral DNA replication, late gene expression, and maturation and egress of progeny virions. Furthermore, EBV reactivation involves more than just progeny production. The EBV life cycle is regulated by signal transduction, transcription factors, promoter sequences, epigenetics, and the 3D structure of the genome. In this article, the molecular basis of EBV latency establishment and reactivation is summarized.
Collapse
|
2
|
Burton EM, Akinyemi IA, Frey TR, Xu H, Li X, Su LJ, Zhi J, McIntosh MT, Bhaduri-McIntosh S. A heterochromatin inducing protein differentially recognizes self versus foreign genomes. PLoS Pathog 2021; 17:e1009447. [PMID: 33730092 PMCID: PMC8007004 DOI: 10.1371/journal.ppat.1009447] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 03/29/2021] [Accepted: 03/02/2021] [Indexed: 12/16/2022] Open
Abstract
Krüppel-associated box-domain zinc finger protein (KRAB-ZFP) transcriptional repressors recruit TRIM28/KAP1 to heterochromatinize the mammalian genome while also guarding the host by silencing invading foreign genomes. However, how a KRAB-ZFP recognizes target sequences in the natural context of its own or foreign genomes is unclear. Our studies on B-lymphocytes permanently harboring the cancer-causing Epstein-Barr virus (EBV) have shown that SZF1, a KRAB-ZFP, binds to several lytic/replicative phase genes to silence them, thereby promoting the latent/quiescent phase of the virus. As a result, unless SZF1 and its binding partners are displaced from target regions on the viral genome, EBV remains dormant, i.e. refractory to lytic phase-inducing triggers. As SZF1 also heterochromatinizes the cellular genome, we performed in situ footprint mapping on both viral and host genomes in physically separated B-lymphocytes bearing latent or replicative/active EBV genomes. By analyzing footprints, we learned that SZF1 recognizes the host genome through a repeat sequence-bearing motif near centromeres. Remarkably, SZF1 does not use this motif to recognize the EBV genome. Instead, it uses distinct binding sites that lack obvious similarities to each other or the above motif, to silence the viral genome. Virus mutagenesis studies show that these distinct binding sites are not only key to maintaining the established latent phase but also silencing the lytic phase in newly-infected cells, thus enabling the virus to establish latency and transform cells. Notably, these binding sites on the viral genome, when also present on the human genome, are not used by SZF1 to silence host genes during latency. This differential approach towards target site recognition may reflect a strategy by which the host silences and regulates genomes of persistent invaders without jeopardizing its own homeostasis. Heterochromatin marks silenced portions of the human genome. Heterochromatin also serves as a defense strategy to silence foreign genomes. Yet, how the heterochromatin inducing KRAB-ZFP-TRIM28 machinery recognizes target sites on the native genome, whether self or foreign, is unclear. Using Epstein-Barr virus-infected cells in which a KRAB-ZFP, SZF1, silences lytic/replicative-phase genes of the virus, we performed in situ mapping of ZFP-footprints on cell and viral genomes. We find that while the ZFP uses a repeat sequence-bearing motif to target pericentromeric regions, it uses non-consensus sites to target viral genes. These findings point towards i) a mechanism for directing constitutive heterochromatin and ii) a strategy that allows the host to use the same heterochromatin machinery to regulate an invader without deregulating itself.
Collapse
Affiliation(s)
- Eric M. Burton
- Dept. of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, United States of America
| | - Ibukun A. Akinyemi
- Child Health Research Institute, Dept. of Pediatrics, University of Florida, Gainesville, Florida, United States of America
| | - Tiffany R. Frey
- Child Health Research Institute, Dept. of Pediatrics, University of Florida, Gainesville, Florida, United States of America
| | - Huanzhou Xu
- Division of Infectious Disease, Dept. of Pediatrics, University of Florida, Gainesville, Florida, United States of America
| | - Xiaofan Li
- Division of Infectious Disease, Dept. of Pediatrics, University of Florida, Gainesville, Florida, United States of America
| | - Lai Jing Su
- Child Health Research Institute, Dept. of Pediatrics, University of Florida, Gainesville, Florida, United States of America
| | - Jizu Zhi
- Dept of Pathology, Stony Brook University, Stony Brook, New York, United States of America
| | - Michael T. McIntosh
- Child Health Research Institute, Depts. of Pediatrics and of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, United States of America
- * E-mail: (MTM); (SB-M)
| | - Sumita Bhaduri-McIntosh
- Division of Infectious Disease, Depts. of Pediatrics and of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, United States of America
- * E-mail: (MTM); (SB-M)
| |
Collapse
|
3
|
Savoret J, Mesnard JM, Gross A, Chazal N. Antisense Transcripts and Antisense Protein: A New Perspective on Human Immunodeficiency Virus Type 1. Front Microbiol 2021; 11:625941. [PMID: 33510738 PMCID: PMC7835632 DOI: 10.3389/fmicb.2020.625941] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 12/14/2020] [Indexed: 12/13/2022] Open
Abstract
It was first predicted in 1988 that there may be an Open Reading Frame (ORF) on the negative strand of the Human Immunodeficiency Virus type 1 (HIV-1) genome that could encode a protein named AntiSense Protein (ASP). In spite of some controversy, reports began to emerge some years later describing the detection of HIV-1 antisense transcripts, the presence of ASP in transfected and infected cells, and the existence of an immune response targeting ASP. Recently, it was established that the asp gene is exclusively conserved within the pandemic group M of HIV-1. In this review, we summarize the latest findings on HIV-1 antisense transcripts and ASP, and we discuss their potential functions in HIV-1 infection together with the role played by antisense transcripts and ASPs in some other viruses. Finally, we suggest pathways raised by the study of antisense transcripts and ASPs that may warrant exploration in the future.
Collapse
Affiliation(s)
- Juliette Savoret
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, Université de Montpellier, Montpellier, France
| | - Jean-Michel Mesnard
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, Université de Montpellier, Montpellier, France
| | - Antoine Gross
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, Université de Montpellier, Montpellier, France
| | - Nathalie Chazal
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, Université de Montpellier, Montpellier, France
| |
Collapse
|
4
|
Kerr J. Early Growth Response Gene Upregulation in Epstein-Barr Virus (EBV)-Associated Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). Biomolecules 2020; 10:biom10111484. [PMID: 33114612 PMCID: PMC7692278 DOI: 10.3390/biom10111484] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 02/06/2023] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a chronic multisystem disease exhibiting a variety of symptoms and affecting multiple systems. Psychological stress and virus infection are important. Virus infection may trigger the onset, and psychological stress may reactivate latent viruses, for example, Epstein-Barr virus (EBV). It has recently been reported that EBV induced gene 2 (EBI2) was upregulated in blood in a subset of ME/CFS patients. The purpose of this study was to determine whether the pattern of expression of early growth response (EGR) genes, important in EBV infection and which have also been found to be upregulated in blood of ME/CFS patients, paralleled that of EBI2. EGR gene upregulation was found to be closely associated with that of EBI2 in ME/CFS, providing further evidence in support of ongoing EBV reactivation in a subset of ME/CFS patients. EGR1, EGR2, and EGR3 are part of the cellular immediate early gene response and are important in EBV transcription, reactivation, and B lymphocyte transformation. EGR1 is a regulator of immune function, and is important in vascular homeostasis, psychological stress, connective tissue disease, mitochondrial function, all of which are relevant to ME/CFS. EGR2 and EGR3 are negative regulators of T lymphocytes and are important in systemic autoimmunity.
Collapse
Affiliation(s)
- Jonathan Kerr
- Department of Microbiology, Norfolk & Norwich University Hospital (NNUH), Colney Lane, Norwich, Norfolk NR4 7UY, UK
| |
Collapse
|
5
|
Stolz ML, McCormick C. The bZIP Proteins of Oncogenic Viruses. Viruses 2020; 12:v12070757. [PMID: 32674309 PMCID: PMC7412551 DOI: 10.3390/v12070757] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/08/2020] [Accepted: 07/13/2020] [Indexed: 12/20/2022] Open
Abstract
Basic leucine zipper (bZIP) transcription factors (TFs) govern diverse cellular processes and cell fate decisions. The hallmark of the leucine zipper domain is the heptad repeat, with leucine residues at every seventh position in the domain. These leucine residues enable homo- and heterodimerization between ZIP domain α-helices, generating coiled-coil structures that stabilize interactions between adjacent DNA-binding domains and target DNA substrates. Several cancer-causing viruses encode viral bZIP TFs, including human T-cell leukemia virus (HTLV), hepatitis C virus (HCV) and the herpesviruses Marek’s disease virus (MDV), Epstein–Barr virus (EBV) and Kaposi’s sarcoma-associated herpesvirus (KSHV). Here, we provide a comprehensive review of these viral bZIP TFs and their impact on viral replication, host cell responses and cell fate.
Collapse
|
6
|
Kusano S, Ikeda M. Interaction of phospholipid scramblase 1 with the Epstein-Barr virus protein BZLF1 represses BZLF1-mediated lytic gene transcription. J Biol Chem 2019; 294:15104-15116. [PMID: 31434743 DOI: 10.1074/jbc.ra119.008193] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 08/15/2019] [Indexed: 11/06/2022] Open
Abstract
Human phospholipid scramblase 1 (PLSCR1) is strongly expressed in response to interferon (IFN) treatment and viral infection, and PLSCR1 has been suggested to play an important role in IFN-dependent antiviral responses. In this study, we showed that the basal expression of PLSCR1 was significantly elevated in Epstein-Barr virus (EBV)-infected nasopharyngeal carcinoma (NPC). PLSCR1 was observed to directly interact with the EBV immediate-early transactivator BZLF1 in vitro and in vivo, and this interaction repressed the BZLF1-mediated transactivation of an EBV lytic BMRF1 promoter construct. In addition, PLSCR1 expression decreased the BZLF1-mediated up-regulation of lytic BMRF1 mRNA and protein expression in WT and PLSCR1-knockout EBV-infected NPC cells. Furthermore, we showed that PLSCR1 represses the interaction between BZLF1 and CREB-binding protein (CBP), which enhances the BZLF1-mediated transactivation of EBV lytic promoters. These results reveal for the first time that PLSCR1 specifically interacts with BZLF1 and negatively regulates its transcriptional regulatory activity by preventing the formation of the BZLF1-CBP complex. This interaction may contribute to the establishment of latent EBV infection in EBV-infected NPC cells.
Collapse
Affiliation(s)
- Shuichi Kusano
- Division of Biological Information Technology, Joint Research Center for Human Retrovirus Infection, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima-shi, Kagoshima 890-8544, Japan
| | - Masanori Ikeda
- Division of Biological Information Technology, Joint Research Center for Human Retrovirus Infection, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima-shi, Kagoshima 890-8544, Japan
| |
Collapse
|
7
|
Dugan JP, Coleman CB, Haverkos B. Opportunities to Target the Life Cycle of Epstein-Barr Virus (EBV) in EBV-Associated Lymphoproliferative Disorders. Front Oncol 2019; 9:127. [PMID: 30931253 PMCID: PMC6428703 DOI: 10.3389/fonc.2019.00127] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 02/13/2019] [Indexed: 12/29/2022] Open
Abstract
Many lymphoproliferative disorders (LPDs) are considered "EBV associated" based on detection of the virus in tumor tissue. EBV drives proliferation of LPDs via expression of the viral latent genes and many pre-clinical and clinical studies have shown EBV-associated LPDs can be treated by exploiting the viral life cycle. After a brief review of EBV virology and the natural life cycle within a host we will discuss the importance of the viral gene programs expressed during specific viral phases, as well as within immunocompetent vs. immunocompromised hosts and corresponding EBV-associated LPDs. We will then review established and emerging treatment approaches for EBV-associated LPDs based on EBV gene expression programs. Patients with EBV-associated LPDs can have a poor performance status, multiple comorbidities, and/or are immunocompromised from organ transplantation, autoimmune disease, or other congenital or acquired immunodeficiency making them poor candidates to receive intensive cytotoxic chemotherapy. With the emergence of EBV-directed therapy there is hope that we can devise more effective therapies that confer milder toxicity.
Collapse
Affiliation(s)
- James P. Dugan
- Division of Hematology, University of Colorado, Aurora, CO, United States
| | - Carrie B. Coleman
- Division of Immunology, University of Colorado, Aurora, CO, United States
| | - Bradley Haverkos
- Division of Hematology, University of Colorado, Aurora, CO, United States
| |
Collapse
|
8
|
Zhu YP, Wang M, Xiang Y, Qiu L, Hu S, Zhang Z, Mattjus P, Zhu X, Zhang Y. Nach Is a Novel Subgroup at an Early Evolutionary Stage of the CNC-bZIP Subfamily Transcription Factors from the Marine Bacteria to Humans. Int J Mol Sci 2018; 19:ijms19102927. [PMID: 30261635 PMCID: PMC6213907 DOI: 10.3390/ijms19102927] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/19/2018] [Accepted: 09/22/2018] [Indexed: 02/07/2023] Open
Abstract
Normal growth and development, as well as adaptive responses to various intracellular and environmental stresses, are tightly controlled by transcriptional networks. The evolutionarily conserved genomic sequences across species highlights the architecture of such certain regulatory elements. Among them, one of the most conserved transcription factors is the basic-region leucine zipper (bZIP) family. Herein, we have performed phylogenetic analysis of these bZIP proteins and found, to our surprise, that there exist a few homologous proteins of the family members Jun, Fos, ATF2, BATF, C/EBP and CNC (cap’n’collar) in either viruses or bacteria, albeit expansion and diversification of this bZIP superfamily have occurred in vertebrates from metazoan. Interestingly, a specific group of bZIP proteins is identified, designated Nach (Nrf and CNC homology), because of their strong conservation with all the known CNC and NF-E2 p45 subunit-related factors Nrf1 and Nrf2. Further experimental evidence has also been provided, revealing that Nach1 and Nach2 from the marine bacteria exert distinctive functions, when compared with human Nrf1 and Nrf2, in the transcriptional regulation of antioxidant response element (ARE)-battery genes. Collectively, further insights into these Nach/CNC-bZIP subfamily transcription factors provide a novel better understanding of distinct biological functions of these factors expressed in distinct species from the marine bacteria to humans.
Collapse
Affiliation(s)
- Yu-Ping Zhu
- The Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering and Faculty of Sciences, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing 400044, China.
| | - Meng Wang
- The Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering and Faculty of Sciences, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing 400044, China.
| | - Yuancai Xiang
- The Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering and Faculty of Sciences, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing 400044, China.
| | - Lu Qiu
- The Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering and Faculty of Sciences, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing 400044, China.
| | - Shaofan Hu
- The Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering and Faculty of Sciences, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing 400044, China.
| | - Zhengwen Zhang
- Institute of Neuroscience and Psychology, School of Life Sciences, University of Glasgow, 42 Western Common Road, Glasgow G22 5PQ, Scotland, UK.
| | - Peter Mattjus
- Department of Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Artillerigatan 6A, III, BioCity, FI-20520 Turku, Finland.
| | - Xiaomei Zhu
- Shanghai Center for Quantitative Life Science and Department of Physics, Shanghai University, 99 Shangda Road, Shanghai 200444, China.
| | - Yiguo Zhang
- The Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering and Faculty of Sciences, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing 400044, China.
| |
Collapse
|
9
|
Encyclopedia of EBV-Encoded Lytic Genes: An Update. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1045:395-412. [DOI: 10.1007/978-981-10-7230-7_18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
10
|
Almohammed R, Osborn K, Ramasubramanyan S, Perez-Fernandez IBN, Godfrey A, Mancini EJ, Sinclair AJ. Mechanism of activation of the BNLF2a immune evasion gene of Epstein-Barr virus by Zta. J Gen Virol 2018; 99:805-817. [PMID: 29580369 PMCID: PMC6096924 DOI: 10.1099/jgv.0.001056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The human gamma herpes virus Epstein–Barr virus (EBV) exploits multiple routes to evade the cellular immune response. During the EBV lytic replication cycle, viral proteins are expressed that provide excellent targets for recognition by cytotoxic T cells. This is countered by the viral BNLF2a gene. In B cells during latency, where BNLF2a is not expressed, we show that its regulatory region is embedded in repressive chromatin. The expression of BNLF2a mirrors the expression of a viral lytic cycle transcriptional regulator, Zta (BZLF1, EB1, ZEBRA), in B cells and we propose that Zta plays a role in up-regulating BNLF2a. In cells undergoing EBV lytic replication, we identified two distinct regions of interaction of Zta with the chromatin-associated BNLF2a promoter. We identify five potential Zta-response elements (ZREs) in the promoter that are highly conserved between virus isolates. Zta binds to these elements in vitro and activates the expression of the BNLF2a promoter in both epithelial and B cells. We also found redundancy amongst the ZREs. The EBV genome undergoes a biphasic DNA methylation cycle during its infection cycle. One of the ZREs contains an integral CpG motif. We show that this can be DNA methylated during EBV latency and that both Zta binding and promoter activation are enhanced by its methylation. In summary, we find that the BNLF2a promoter is directly targeted by Zta and that DNA methylation within the proximal ZRE aids activation. The implications for regulation of this key viral gene during the reactivation of EBV from latency are discussed.
Collapse
Affiliation(s)
- Rajaei Almohammed
- School of Life Sciences, University of Sussex, Brighton, East Sussex, UK.,Present address: Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Kay Osborn
- School of Life Sciences, University of Sussex, Brighton, East Sussex, UK
| | - Sharada Ramasubramanyan
- School of Life Sciences, University of Sussex, Brighton, East Sussex, UK.,Present address: RS Mehta Jain Department of Biochemistry and Cell Biology, Vision Research Foundation, Sankara Nethralaya, Chennai, India
| | | | - Anja Godfrey
- School of Life Sciences, University of Sussex, Brighton, East Sussex, UK
| | - Erika J Mancini
- School of Life Sciences, University of Sussex, Brighton, East Sussex, UK
| | - Alison J Sinclair
- School of Life Sciences, University of Sussex, Brighton, East Sussex, UK
| |
Collapse
|
11
|
Kaposi's Sarcoma-Associated Herpesvirus K8 Is an RNA Binding Protein That Regulates Viral DNA Replication in Coordination with a Noncoding RNA. J Virol 2018; 92:JVI.02177-17. [PMID: 29321307 DOI: 10.1128/jvi.02177-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 01/03/2018] [Indexed: 12/16/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) lytic replication and constant primary infection of fresh cells are crucial for viral tumorigenicity. The virus-encoded bZIP family protein K8 plays an important role in viral DNA replication in both viral reactivation and de novo infection. The mechanism underlying the functional role of K8 in the viral life cycle is elusive. Here, we report that K8 is an RNA binding protein that also associates with many other proteins, including other RNA binding proteins. Many protein-protein interactions involving K8 are mediated by RNA. Using a UV cross-linking and immunoprecipitation (CLIP) procedure combined with high-throughput sequencing, RNAs that are associated with K8 in BCBL-1 cells were identified, including both viral (PAN, T1.4, T0.7, etc.) and cellular (MALAT-1, MRP, 7SK, etc.) RNAs. An RNA binding motif in K8 was defined, and mutation of the motif abolished the ability of K8 to bind to many noncoding RNAs, as well as viral DNA replication during de novo infection, suggesting that the K8 functions in viral replication are carried out through RNA association. The functions of K8 and associated T1.4 RNA were investigated in detail, and the results showed that T1.4 mediates the binding of K8 to ori-Lyt DNA. The T1.4-K8 complex physically bound to KSHV ori-Lyt DNA and recruited other proteins and cofactors to assemble a replication complex. Depletion of T1.4 abolished DNA replication in primary infection. These findings provide mechanistic insights into the role of K8 in coordination with T1.4 RNA in regulating KSHV DNA replication during de novo infection.IMPORTANCE Genomewide analyses of the mammalian transcriptome revealed that a large proportion of sequence previously annotated as noncoding regions is actually transcribed and gives rise to stable RNAs. The emergence of a large number of noncoding RNAs suggests that functional RNA-protein complexes, e.g., ribosomes or spliceosomes, are not ancient relics of the last ribo-organism but would be well adapted to a regulatory role in biology. K8 has been puzzling because of its unique characteristics, such as multiple regulatory roles in gene expression and DNA replication without DNA binding capability. This study reveals the mechanism underlying its regulatory role by demonstrating that K8 is an RNA binding protein that binds to DNA and initiates DNA replication in coordination with a noncoding RNA. It is suggested that many K8 functions, if not all, are carried out through its associated RNAs.
Collapse
|
12
|
The Epstein-Barr Virus BRRF1 Gene Is Dispensable for Viral Replication in HEK293 cells and Transformation. Sci Rep 2017; 7:6044. [PMID: 28729695 PMCID: PMC5519699 DOI: 10.1038/s41598-017-06413-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 06/14/2017] [Indexed: 12/13/2022] Open
Abstract
The Epstein-Barr virus (EBV) is a gamma-herpesvirus associated with several malignancies. It establishes a latent infection in B lymphocytes and is occasionally reactivated to enter the lytic cycle. Here we examined the role of the EBV gene BRRF1, which is expressed in the lytic state. We first confirmed, using a DNA polymerase inhibitor, that the BRRF1 gene is expressed with early kinetics. A BRRF1-deficient recombinant virus was constructed using a bacterial artificial chromosome system. No obvious differences were observed between the wild-type, BRRF1-deficient mutant and the revertant virus in HEK293 cells in terms of viral lytic protein expression, viral DNA synthesis, progeny production, pre-latent abortive lytic gene expression and transformation of primary B cells. However, reporter assays indicated that BRRF1 may activate transcription in promoter- and cell type-dependent manners. Taken together, BRRF1 is dispensable for viral replication in HEK293 cells and transformation of B cells, but it may have effects on transcription.
Collapse
|
13
|
Myster F, van Beurden SJ, Sorel O, Suárez NM, Vanderplasschen A, Davison AJ, Dewals BG. Genomic duplication and translocation of reactivation transactivator and bZIP-homolog genes is a conserved event in alcelaphine herpesvirus 1. Sci Rep 2016; 6:38607. [PMID: 27924936 PMCID: PMC5141506 DOI: 10.1038/srep38607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 11/09/2016] [Indexed: 12/25/2022] Open
Abstract
Alcelaphine herpesvirus 1 (AlHV-1) is a gammaherpesvirus carried asymptomatically by wildebeest. Upon cross-species transmission, AlHV-1 induces malignant catarrhal fever (MCF), a fatal lymphoproliferative disease of ruminants, including cattle. The strain C500 has been cloned as an infectious, pathogenic bacterial artificial chromosome (BAC) that is used to study MCF. Although AlHV-1 infection can be established in cell culture, multiple passages in vitro cause a loss of virulence associated with rearrangements of the viral genome. Here, sequencing of the BAC clone showed that the long unique region (LUR) of the genome is nearly identical to that of the previously sequenced strain from which the BAC was derived, and identified the duplication and translocation of a region from within LUR, containing the entire coding sequences of ORF50-encoding reactivation transactivator Rta and A6-encoding bZIP protein genes. The duplicated region was further located to a position within the terminal repeat (TR) and its deletion resulted in lower ORF50 expression levels and reduced viral fitness. Finally, the presence of a similar but not identical duplication and translocation containing both genes was found in AlHV-1 strain WC11. These results indicate that selection pressure for enhanced viral fitness may drive the duplication of ORF50 and A6 in AlHV-1.
Collapse
Affiliation(s)
- Françoise Myster
- Fundamental and Applied Research in Animals and Health (FARAH), Immunology-Vaccinology, Faculty of Veterinary Medicine (B43b), University of Liège, Belgium
| | - Steven J van Beurden
- Fundamental and Applied Research in Animals and Health (FARAH), Immunology-Vaccinology, Faculty of Veterinary Medicine (B43b), University of Liège, Belgium
| | - Océane Sorel
- Fundamental and Applied Research in Animals and Health (FARAH), Immunology-Vaccinology, Faculty of Veterinary Medicine (B43b), University of Liège, Belgium
| | - Nicolás M Suárez
- MRC - University of Glasgow Centre for Virus Research, Sir Michael Stoker Building, Glasgow G61 1QH, UK
| | - Alain Vanderplasschen
- Fundamental and Applied Research in Animals and Health (FARAH), Immunology-Vaccinology, Faculty of Veterinary Medicine (B43b), University of Liège, Belgium
| | - Andrew J Davison
- MRC - University of Glasgow Centre for Virus Research, Sir Michael Stoker Building, Glasgow G61 1QH, UK
| | - Benjamin G Dewals
- Fundamental and Applied Research in Animals and Health (FARAH), Immunology-Vaccinology, Faculty of Veterinary Medicine (B43b), University of Liège, Belgium
| |
Collapse
|
14
|
Germi R, Guigue N, Lupo J, Semenova T, Grossi L, Vermeulen O, Epaulard O, de Fraipont F, Morand P. Methylation of Epstein-Barr virus Rta promoter in EBV primary infection, reactivation and lymphoproliferation. J Med Virol 2016; 88:1814-20. [PMID: 26990870 DOI: 10.1002/jmv.24524] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2016] [Indexed: 11/09/2022]
Abstract
During Epstein-Barr virus (EBV) latency, the EBV genome is largely silenced by methylation. This silencing is overturned during the switch to the lytic cycle. A key event is the production of the viral protein Zta which binds to three Zta-response elements (ZRE) from the Rta promoter (Rp), two of which (ZRE2 and ZRE3) include three CpG motifs methylated in the latent genome. The bisulphite pyrosequencing reaction was used to quantify the methylation of ZRE2, ZRE3a, and ZRE3b in EBV-positive cell lines and in ex vivo samples of EBV-related diseases, in order to assess whether the level of methylation in these ZREs could provide additional information to viral DNA load and serology in the characterization of EBV-associated diseases. In PBMC from two patients with infectious mononucleosis, over time Rp became increasingly methylated whereas EBV load decreased. In tonsil from patients with chronic tonsillitis, the methylation was less than in EBV-associated tumors, regardless of the viral load. This was even more striking when only the ZRE3a and ZRE3b were considered since some samples presented unbalanced profiles on ZRE2. EBV reactivation in cell culture showed that the reduction in the overall level of methylation was closely related to the production of unmethylated virions. Thus, an assessment of the level of methylation may help to better characterize EBV replication in PBMC and in biopsies with high EBV load, during infectious mononucleosis and EBV-associated cancers. J. Med. Virol. 88:1814-1820, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Raphaële Germi
- Univ. Grenoble Alpes UMI 3265 UJF-CNRS EMBL, UVHCI, Grenoble, France.,Department of Virology, Grenoble Alpes University Hospital, Grenoble, France
| | - Nicolas Guigue
- Univ. Grenoble Alpes UMI 3265 UJF-CNRS EMBL, UVHCI, Grenoble, France.,Department of Virology, Grenoble Alpes University Hospital, Grenoble, France
| | - Julien Lupo
- Univ. Grenoble Alpes UMI 3265 UJF-CNRS EMBL, UVHCI, Grenoble, France.,Department of Virology, Grenoble Alpes University Hospital, Grenoble, France
| | - Touyana Semenova
- Univ. Grenoble Alpes UMI 3265 UJF-CNRS EMBL, UVHCI, Grenoble, France.,Department of Virology, Grenoble Alpes University Hospital, Grenoble, France
| | - Laurence Grossi
- Univ. Grenoble Alpes UMI 3265 UJF-CNRS EMBL, UVHCI, Grenoble, France
| | - Odile Vermeulen
- Department of Cancer Clinical Chemistry, Grenoble Alpes University Hospital, Grenoble, France
| | - Olivier Epaulard
- Univ. Grenoble Alpes UMI 3265 UJF-CNRS EMBL, UVHCI, Grenoble, France.,Department of Infectious Diseases, Grenoble Alpes University Hospital, Grenoble, France
| | - Florence de Fraipont
- Department of Cancer Clinical Chemistry, Grenoble Alpes University Hospital, Grenoble, France
| | - Patrice Morand
- Univ. Grenoble Alpes UMI 3265 UJF-CNRS EMBL, UVHCI, Grenoble, France.,Department of Virology, Grenoble Alpes University Hospital, Grenoble, France
| |
Collapse
|
15
|
Balan N, Osborn K, Sinclair AJ. Repression of CIITA by the Epstein-Barr virus transcription factor Zta is independent of its dimerization and DNA binding. J Gen Virol 2015; 97:725-732. [PMID: 26653871 DOI: 10.1099/jgv.0.000369] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Repression of the cellular CIITA gene is part of the immune evasion strategy of the γherpes virus Epstein-Barr virus (EBV) during its lytic replication cycle in B-cells. In part, this is mediated through downregulation of MHC class II gene expression via the targeted repression of CIITA, the cellular master regulator of MHC class II gene expression. This repression is achieved through a reduction in CIITA promoter activity, initiated by the EBV transcription and replication factor, Zta (BZLF1, EB1, ZEBRA). Zta is the earliest gene expressed during the lytic replication cycle. Zta interacts with sequence-specific elements in promoters, enhancers and the replication origin (ZREs), and also modulates gene expression through interaction with cellular transcription factors and co-activators. Here, we explore the requirements for Zta-mediated repression of the CIITA promoter. We find that repression by Zta is specific for the CIITA promoter and can be achieved in the absence of other EBV genes. Surprisingly, we find that the dimerization region of Zta is not required to mediate repression. This contrasts with an obligate requirement of this region to correctly orientate the DNA contact regions of Zta to mediate activation of gene expression through ZREs. Additional support for the model that Zta represses the CIITA promoter without direct DNA binding comes from promoter mapping that shows that repression does not require the presence of a ZRE in the CIITA promoter.
Collapse
Affiliation(s)
- Nicolae Balan
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | - Kay Osborn
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | | |
Collapse
|
16
|
Lin SJ, Wu SW, Chou YC, Lin JH, Huang YC, Chen MR, Ma N, Tsai CH. Novel expression and regulation of TIMP-1 in Epstein Barr virus-infected cells and its impact on cell survival. Virology 2015; 481:24-33. [PMID: 25765004 DOI: 10.1016/j.virol.2015.02.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 01/25/2015] [Accepted: 02/10/2015] [Indexed: 11/26/2022]
|
17
|
Murata T. Regulation of Epstein-Barr virus reactivation from latency. Microbiol Immunol 2015; 58:307-17. [PMID: 24786491 DOI: 10.1111/1348-0421.12155] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 04/03/2014] [Accepted: 04/26/2014] [Indexed: 12/13/2022]
Abstract
The Epstein-Barr virus (EBV) is a human gamma-herpesvirus that is implicated in various types of proliferative diseases. Upon infection, it predominantly establishes latency in B cells and cannot ever be eradicated; it persists for the host's lifetime. Reactivation of the virus from latency depends on expression of the viral immediate-early gene, BamHI Z fragment leftward open reading frame 1 (BZLF1). The BZLF1 promoter normally exhibits only low basal activity but is activated in response to chemical or biological inducers, such as 12-O-tetradecanoylphorbol-13-acetate, calcium ionophore, histone deacetylase inhibitor, or anti-Ig. Transcription from the BZLF1 promoter is activated by myocyte enhancer factor 2, specificity protein 1, b-Zip type transcription factors and mediating epigenetic modifications of the promoter, such as histone acetylation and H3K4me3. In contrast, repression of the promoter is mediated by transcriptional suppressors, such as ZEB, ZIIR-BP, and jun dimerization protein 2, causing suppressive histone modifications like histone H3K27me3, H3K9me2/3 and H4K20me3. Interestingly, there is little CpG DNA methylation of the promoter, indicating that DNA methylation is not crucial for suppression of BZLF1. This review will focus on the molecular mechanisms by which the EBV lytic switch is controlled and discuss the physiological significance of this switching for its survival and oncogenesis.
Collapse
Affiliation(s)
- Takayuki Murata
- Department of Virology, Nagoya University School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan; Division of Virology, Aichi Cancer Center Research Institute, 1-Kanokoden, Chikusa-ku, Nagoya, 464-8681, Japan
| |
Collapse
|
18
|
Abstract
Kaposi’s sarcoma-associated herpesvirus (KSHV) primarily persists as a latent episome in infected cells. During latent infection, only a limited number of viral genes are expressed that help to maintain the viral episome and prevent lytic reactivation. The latent KSHV genome persists as a highly ordered chromatin structure with bivalent chromatin marks at the promoter-regulatory region of the major immediate-early gene promoter. Various stimuli can induce chromatin modifications to an active euchromatic epigenetic mark, leading to the expression of genes required for the transition from the latent to the lytic phase of KSHV life cycle. Enhanced replication and transcription activator (RTA) gene expression triggers a cascade of events, resulting in the modulation of various cellular pathways to support viral DNA synthesis. RTA also binds to the origin of lytic DNA replication to recruit viral, as well as cellular, proteins for the initiation of the lytic DNA replication of KSHV. In this review we will discuss some of the pivotal genetic and epigenetic factors that control KSHV reactivation from the transcriptionally restricted latent program.
Collapse
|
19
|
Abstract
Ever since the discovery of Epstein-Barr virus (EBV) more than 50 years ago, this virus has been studied for its capacity to readily establish a latent infection, which is the prominent hallmark of this member of the herpesvirus family. EBV has become an important model for many aspects of herpesviral latency, but the molecular steps and mechanisms that lead to and promote viral latency have only emerged recently. It now appears that the virus exploits diverse facets of epigenetic gene regulation in the cellular host to establish a latent infection. Most viral genes are transcriptionally repressed, and viral chromatin is densely compacted during EBV's latent phase, but latent infection is not a dead end. In order to escape from this phase, epigenetic silencing must be reverted efficiently and quickly. It appears that EBV has perfected a clever strategy to overcome transcriptional repression of its many lytic genes to initiate virus de novo synthesis within a few hours after induction of its lytic cycle. This review tries to summarize the known molecular mechanisms, the current models, concepts, and ideas underlying this viral strategy. This review also attempts to identify and address gaps in our current understanding of EBV's epigenetic mechanisms within the infected cellular host.
Collapse
Affiliation(s)
- Wolfgang Hammerschmidt
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, and German Centre for Infection Research (DZIF), Partner site Munich, Marchioninistr. 25, 81377, Munich, Germany.
| |
Collapse
|
20
|
Price AM, Luftig MA. Dynamic Epstein-Barr virus gene expression on the path to B-cell transformation. Adv Virus Res 2014; 88:279-313. [PMID: 24373315 DOI: 10.1016/b978-0-12-800098-4.00006-4] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Epstein-Barr virus (EBV) is an oncogenic human herpesvirus in the γ-herpesvirinae subfamily that contains a 170-180kb double-stranded DNA genome. In vivo, EBV commonly infects B and epithelial cells and persists for the life of the host in a latent state in the memory B-cell compartment of the peripheral blood. EBV can be reactivated from its latent state, leading to increased expression of lytic genes that primarily encode for enzymes necessary to replicate the viral genome and structural components of the virion. Lytic cycle proteins also aid in immune evasion, inhibition of apoptosis, and the modulation of other host responses to infection. In vitro, EBV has the potential to infect primary human B cells and induce cellular proliferation to yield effectively immortalized lymphoblastoid cell lines, or LCLs. EBV immortalization of B cells in vitro serves as a model system for studying EBV-mediated lymphomagenesis. While much is known about the steady-state viral gene expression within EBV-immortalized LCLs and other EBV-positive cell lines, relatively little is known about the early events after primary B-cell infection. It was previously thought that upon latent infection, EBV only expressed the well-characterized latency-associated transcripts found in LCLs. However, recent work has characterized the early, but transient, expression of lytic genes necessary for efficient transformation and delayed responses in the known latency genes. This chapter summarizes these recent findings that show how dynamic and controlled expression of multiple EBV genes can control the activation of B cells, entry into the cell cycle, the inhibition of apoptosis, and innate and adaptive immune responses.
Collapse
Affiliation(s)
- Alexander M Price
- Department of Molecular Genetics and Microbiology, Center for Virology, Duke University Medical Center, Durham, North Carolina, 27710 USA
| | - Micah A Luftig
- Department of Molecular Genetics and Microbiology, Center for Virology, Duke University Medical Center, Durham, North Carolina, 27710 USA.
| |
Collapse
|
21
|
The A2 gene of alcelaphine herpesvirus-1 is a transcriptional regulator affecting cytotoxicity in virus-infected T cells but is not required for malignant catarrhal fever induction in rabbits. Virus Res 2014; 188:68-80. [PMID: 24732177 DOI: 10.1016/j.virusres.2014.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 03/31/2014] [Accepted: 04/03/2014] [Indexed: 01/10/2023]
Abstract
Alcelaphine herpesvirus-1 (AlHV-1) causes malignant catarrhal fever (MCF). The A2 gene of AlHV-1 is a member of the bZIP transcription factor family. We wished to determine whether A2 is a virulence gene or not and whether it is involved in pathogenesis by interference with host transcription pathways. An A2 gene knockout (A2ΔAlHV-1) virus, revertant (A2revAlHV-1) virus, and wild-type virus (wtAlHV-1) were used to infect three groups of rabbits. A2ΔAlHV-1-infected rabbits succumbed to MCF, albeit with a delayed onset compared to the control groups, so A2 is not a critical virulence factor. Differential gene transcription analysis by RNAseq and qRT-PCR validation of a selection of these was performed in infected large granular lymphocyte (LGL) T cells obtained in culture from the MCF-affected animals. A2 was involved in the transcriptional regulation of immunological, cell cycle and apoptosis pathways. In particular, there was a bias towards γδ T cell receptor (TCR) expression and downregulation of αβ TCR. TCR signalling, apoptosis, cell cycle, IFN-γ and NFAT pathways were affected. Of particular interest was partial inhibition of the cytotoxicity-associated pathways involving perforin and the granzymes A and B in the A2ΔAlHV-1-infected LGLs compared to controls. In functional assays, A2ΔAlHV-1-infected LGLs were significantly less cytotoxic than wtAlHV-1- and A2revAlHV-1-infected LGLs using rabbit corneal epithelial cells (SIRC) as targets. This implies that A2 is involved in a pathway enhancing the expression of LGL cytotoxicity. This is important as virus-infected T cell cytotoxicity in vivo has been suggested as a potential mechanism of disease induction in MCF.
Collapse
|
22
|
Gustems M, Woellmer A, Rothbauer U, Eck SH, Wieland T, Lutter D, Hammerschmidt W. c-Jun/c-Fos heterodimers regulate cellular genes via a newly identified class of methylated DNA sequence motifs. Nucleic Acids Res 2013; 42:3059-72. [PMID: 24371273 PMCID: PMC3950711 DOI: 10.1093/nar/gkt1323] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
CpG methylation in mammalian DNA is known to interfere with gene expression by inhibiting the binding of transactivators to their cognate sequence motifs or recruiting proteins involved in gene repression. An Epstein–Barr virus-encoded transcription factor, Zta, was the first example of a sequence-specific transcription factor that preferentially recognizes and selectively binds DNA sequence motifs with methylated CpG residues, reverses epigenetic silencing and activates gene transcription. The DNA binding domain of Zta is homologous to c-Fos, a member of the cellular AP-1 (activator protein 1) transcription factor family, which regulates cell proliferation and survival, apoptosis, transformation and oncogenesis. We have identified a novel AP-1 binding site termed meAP-1, which contains a CpG dinucleotide. If methylated, meAP-1 sites are preferentially bound by the AP-1 heterodimer c-Jun/c-Fos in vitro and in cellular chromatin in vivo. In activated human primary B cells, c-Jun/c-Fos locates to these methylated elements in promoter regions of transcriptionally activated genes. Reminiscent of the viral Zta protein, c-Jun/c-Fos is the first identified cellular member of the AP-1 family of transactivators that can induce expression of genes with methylated, hence repressed promoters, reversing epigenetic silencing.
Collapse
Affiliation(s)
- Montse Gustems
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health and German Centre for Infection Research (DZIF), Munich, D-81377, Germany, Biocenter at the Department of Biology II, Ludwig-Maximilians University Munich, Martinsried D-82152, Germany, Institute of Human Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg D-85764, Germany and Institute of Diabetes and Obesity, Helmholtz Zentrum München, German Research Center for Environmental Health, Garching D-85748, Germany
| | | | | | | | | | | | | |
Collapse
|
23
|
Murata T, Tsurumi T. Switching of EBV cycles between latent and lytic states. Rev Med Virol 2013; 24:142-53. [DOI: 10.1002/rmv.1780] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 11/19/2013] [Accepted: 11/20/2013] [Indexed: 11/10/2022]
Affiliation(s)
- Takayuki Murata
- Division of Virology; Aichi Cancer Center Research Institute; Nagoya Japan
- Department of Virology; Nagoya University School of Medicine; Nagoya Japan
| | - Tatsuya Tsurumi
- Division of Virology; Aichi Cancer Center Research Institute; Nagoya Japan
| |
Collapse
|
24
|
Abstract
The human gammaherpesviruses Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) establish long-term latent infections associated with diverse human cancers. Viral oncogenesis depends on the ability of the latent viral genome to persist in host nuclei as episomes that express a restricted yet dynamic pattern of viral genes. Multiple epigenetic events control viral episome generation and maintenance. This Review highlights some of the recent findings on the role of chromatin assembly, histone and DNA modifications, and higher-order chromosome structures that enable gammaherpesviruses to establish stable latent infections that mediate viral pathogenesis.
Collapse
|
25
|
Fu Q, He C, Mao ZR. Epstein-Barr virus interactions with the Bcl-2 protein family and apoptosis in human tumor cells. J Zhejiang Univ Sci B 2013; 14:8-24. [PMID: 23303627 DOI: 10.1631/jzus.b1200189] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Epstein-Barr virus (EBV), a human gammaherpesvirus carried by more than 90% of the world's population, is associated with malignant tumors such as Burkitt's lymphoma (BL), Hodgkin lymphoma, post-transplant lymphoma, extra-nodal natural killer/T cell lymphoma, and nasopharyngeal and gastric carcinomas in immune-compromised patients. In the process of infection, EBV faces challenges: the host cell environment is harsh, and the survival and apoptosis of host cells are precisely regulated. Only when host cells receive sufficient survival signals may they immortalize. To establish efficiently a lytic or long-term latent infection, EBV must escape the host cell immunologic mechanism and resist host cell apoptosis by interfering with multiple signaling pathways. This review details the apoptotic pathway disrupted by EBV in EBV-infected cells and describes the interactions of EBV gene products with host cellular factors as well as the function of these factors, which decide the fate of the host cell. The relationships between other EBV-encoded genes and proteins of the B-cell leukemia/lymphoma (Bcl) family are unknown. Still, EBV seems to contribute to establishing its own latency and the formation of tumors by modifying events that impact cell survival and proliferation as well as the immune response of the infected host. We discuss potential therapeutic drugs to provide a foundation for further studies of tumor pathogenesis aimed at exploiting novel therapeutic strategies for EBV-associated diseases.
Collapse
Affiliation(s)
- Qin Fu
- Department of Pathology and Pathophysiology, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | | | | |
Collapse
|
26
|
Contribution of myocyte enhancer factor 2 family transcription factors to BZLF1 expression in Epstein-Barr virus reactivation from latency. J Virol 2013; 87:10148-62. [PMID: 23843637 DOI: 10.1128/jvi.01002-13] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Reactivation of Epstein-Barr virus (EBV) from latency is dependent on expression of the viral transactivator BZLF1 protein, whose promoter (Zp) normally exhibits only low basal activity but is activated in response to chemical or biological inducers. Using a reporter assay system, we screened for factors that can activate Zp and isolated genes, including those encoding MEF2B, KLF4, and some cellular b-Zip family transcription factors. After confirming their importance and functional binding sites in reporter assays, we prepared recombinant EBV-BAC, in which the binding sites were mutated. Interestingly, the MEF2 mutant virus produced very low levels of BRLF1, another transactivator of EBV, in addition to BZLF1 in HEK293 cells. The virus failed to induce a subset of early genes, such as that encoding BALF5, upon lytic induction, and accordingly, could not replicate to produce progeny viruses in HEK293 cells, but this restriction could be completely lifted by exogenous supply of BRLF1, together with BZLF1. In B cells, induction of BZLF1 by chemical inducers was inhibited by point mutations in the ZII or the three SP1/KLF binding sites of EBV-BAC Zp, while leaky BZLF1 expression was less affected. Mutation of MEF2 sites severely impaired both spontaneous and induced expression of not only BZLF1, but also BRLF1 in comparison to wild-type or revertant virus cases. We also observed that MEF2 mutant EBV featured relatively high repressive histone methylation, such as H3K27me3, but CpG DNA methylation levels were comparable around Zp and the BRLF1 promoter (Rp). These findings shed light on BZLF1 expression and EBV reactivation from latency.
Collapse
|
27
|
[Epstein-Barr virus-associated lymphoproliferations and lymphomas]. DER PATHOLOGE 2013; 34:262-71. [PMID: 23512137 DOI: 10.1007/s00292-013-1750-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Epstein-Barr virus (EBV) is a lymphotropic herpesvirus infecting > 95 % of the worldwide population. In case of an immunodeficiency of various causes, the virus may lead to the development of a wide spectrum of lymphoproliferations and lymphomas. This encompasses mononucleosis-like lymphoproliferations, hyperplasias of various B-cell subsets as well as aggressive non-Hodgkin lymphomas and classical Hodgkin lymphoma. These lesions occur frequently extranodal and present with a polymorphous histology with angioinvasion and necrosis. Clinical data combined with the immunohistological detection of CD30 expression in the activated infected cells and the demonstration of EBV-encoded proteins and RNA transcripts are helpful for achieving precise classification of these lesions.
Collapse
|
28
|
Chromatin immunoprecipitation and microarray analysis suggest functional cooperation between Kaposi's Sarcoma-associated herpesvirus ORF57 and K-bZIP. J Virol 2013; 87:4005-16. [PMID: 23365430 DOI: 10.1128/jvi.03459-12] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The Kaposi's sarcoma-associated herpesvirus (KSHV) open reading frame 57 (ORF57)-encoded protein (Mta) is a multifunctional regulator of viral gene expression. ORF57 is essential for viral replication, so elucidation of its molecular mechanisms is important for understanding KSHV infection. ORF57 has been implicated in nearly every aspect of viral gene expression, including transcription, RNA stability, splicing, export, and translation. Here we demonstrate that ORF57 interacts with the KSHV K-bZIP protein in vitro and in cell extracts from lytically reactivated infected cells. To further test the biological relevance of the interaction, we performed a chromatin immunoprecipitation and microarray (ChIP-chip) analysis using anti-ORF57 antibodies and a KSHV tiling array. The results revealed four specific areas of enrichment, including the ORF4 and K8 (K-bZIP) promoters, as well as oriLyt, all of which interact with K-bZIP. In addition, ORF57 associated with DNA corresponding to the PAN RNA transcribed region, a known posttranscriptional target of ORF57. All of the peaks were RNase insensitive, demonstrating that ORF57 association with the viral genome is unlikely to be mediated exclusively by an RNA tether. Our data demonstrate that ORF57 associates with the viral genome by using at least two modes of recruitment, and they suggest that ORF57 and K-bZIP coregulate viral gene expression during lytic infection.
Collapse
|
29
|
Martínez FP, Tang Q. Leucine zipper domain is required for Kaposi sarcoma-associated herpesvirus (KSHV) K-bZIP protein to interact with histone deacetylase and is important for KSHV replication. J Biol Chem 2012; 287:15622-34. [PMID: 22416134 DOI: 10.1074/jbc.m111.315861] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The Kaposi sarcoma-associated herpesvirus (KSHV; or human herpesvirus-8)-encoded protein called K-bZIP (also named K8) was found to be multifunctional. In this study, we discovered that K-bZIP interacts with histone deacetylase (HDAC) 1/2 in 12-O-tetradecanoylphorbol-13-acetate-stimulated BCBL-1 lymphocyte cells. K-bZIP appears to repress HDAC activity through this interaction, which we determined to be independent of K-bZIP SUMOylation. We dissected the domains of K-bZIP and found that the leucine zipper (LZ) domain is essential for the interaction of K-bZIP and HDAC. In addition, we constructed a KSHV bacterial artificial chromosome (BAC) with LZ domain-deleted K-bZIP (KSHVdLZ) and transfected this mutated KSHV BAC DNA into HEK 293T cells. As a result, it was consistently found that K-bZIP without its LZ domain failed to interact with HDAC2. We also showed that the interaction between K-bZIP and HDAC is necessary for the inhibition of the lytic gene promoters (ORF50 and OriLyt) of KSHV by K-bZIP. Furthermore, we found that the LZ domain is also important for the interaction of K-bZIP with the promoters of ORF50 and OriLyt. Most interestingly, although it was found to have suppressive effects on the promoters of ORF50 and OriLyt, KSHVdLZ replicates at a significantly lower level than its BAC-derived revertant (KSHVdLZRev) or KSHVWT (BAC36) in HEK 293T cells. The defectiveness of KSHVdLZ replication can be partially rescued by siRNA against HDAC2. Our results suggest that the function of K-bZIP interaction with HDAC is two-layered. 1) K-bZIP inhibits HDAC activity generally so that KSHVdLZ replicates at a lower level than does KSHVWT. 2) K-bZIP can recruit HDAC to the promoters of OriLyt and ORF50 through interaction with HDAC for K-bZIP to have a temporary repressive effect on the two promoters.
Collapse
Affiliation(s)
- Francisco Puerta Martínez
- Department of Microbiology/Research Centers in Minority Institutions (RCMI) Program, Ponce School of Medicine, Ponce, Puerto Rico
| | | |
Collapse
|
30
|
Ramasubramanyan S, Osborn K, Flower K, Sinclair AJ. Dynamic chromatin environment of key lytic cycle regulatory regions of the Epstein-Barr virus genome. J Virol 2012; 86:1809-19. [PMID: 22090141 PMCID: PMC3264371 DOI: 10.1128/jvi.06334-11] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 11/10/2011] [Indexed: 12/28/2022] Open
Abstract
The ability of Epstein-Barr virus (EBV) to establish latency allows it to evade the immune system and to persist for the lifetime of its host; one distinguishing characteristic is the lack of transcription of the majority of viral genes. Entry into the lytic cycle is coordinated by the viral transcription factor, Zta (BZLF1, ZEBRA, and EB1), and downstream effectors, while viral genome replication requires the concerted action of Zta and six other viral proteins at the origins of lytic replication. We explored the chromatin context at key EBV lytic cycle promoters (BZLF1, BRLF1, BMRF1, and BALF5) and the origins of lytic replication during latency and lytic replication. We show that a repressive heterochromatin-like environment (trimethylation of histone H3 at lysine 9 [H3K9me3] and lysine 27 [H3K27me3]), which blocks the interaction of some transcription factors with DNA, encompasses the key early lytic regulatory regions. Epigenetic silencing of the EBV genome is also imposed by DNA methylation during latency. The chromatin environment changes during the lytic cycle with activation of histones H3, H4, and H2AX occurring at both the origins of replication and at the key lytic regulatory elements. We propose that Zta is able to reverse the effects of latency-associated repressive chromatin at EBV early lytic promoters by interacting with Zta response elements within the H3K9me3-associated chromatin and demonstrate that these interactions occur in vivo. Since the interaction of Zta with DNA is not inhibited by DNA methylation, it is clear that Zta uses two routes to overcome epigenetic silencing of its genome.
Collapse
|
31
|
Van Opdenbosch N, Favoreel H, Van de Walle GR. Histone modifications in herpesvirus infections. Biol Cell 2012; 104:139-64. [PMID: 22188068 DOI: 10.1111/boc.201100067] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 12/02/2011] [Indexed: 12/13/2022]
Abstract
In eukaryotic cells, gene expression is not only regulated by transcription factors but also by several epigenetic mechanisms including post-translational modifications of histone proteins. There are numerous histone modifications described to date and methylation, acetylation, ubiquitination and phosphorylation are amongst the best studied. In parallel, certain viruses interact with the very same regulatory mechanisms, hereby manipulating the normal epigenetic landscape of the host cell, to fit their own replication needs. This review concentrates on herpesviruses specifically and how they interfere with the histone-modifying enzymes to regulate their replication cycles. Herpesviruses vary greatly with respect to the cell types they infect and the clinical diseases they cause, yet they share various common features including their capacity to encode viral proteins which affect and interfere with the normal functions of histone-modifying enzymes. Studying the epigenetic manipulation/dysregulation of herpesvirus-host interactions not only generates novel insights into the pathogenesis of these viruses but may also have important therapeutic implications.
Collapse
Affiliation(s)
- Nina Van Opdenbosch
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, B-9820 Merelbeke, Belgium.
| | | | | |
Collapse
|
32
|
Human B cells on their route to latent infection – Early but transient expression of lytic genes of Epstein-Barr virus. Eur J Cell Biol 2012; 91:65-9. [DOI: 10.1016/j.ejcb.2011.01.014] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2010] [Revised: 01/26/2011] [Accepted: 01/27/2011] [Indexed: 01/24/2023] Open
|
33
|
Flower K, Thomas D, Heather J, Ramasubramanyan S, Jones S, Sinclair AJ. Epigenetic control of viral life-cycle by a DNA-methylation dependent transcription factor. PLoS One 2011; 6:e25922. [PMID: 22022468 PMCID: PMC3191170 DOI: 10.1371/journal.pone.0025922] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 09/13/2011] [Indexed: 12/15/2022] Open
Abstract
Epstein-Barr virus (EBV) encoded transcription factor Zta (BZLF1, ZEBRA, EB1) is the prototype of a class of transcription factor (including C/EBPalpha) that interact with CpG-containing DNA response elements in a methylation-dependent manner. The EBV genome undergoes a biphasic methylation cycle; it is extensively methylated during viral latency but is reset to an unmethylated state following viral lytic replication. Zta is expressed transiently following infection and again during the switch between latency and lytic replication. The requirement for CpG-methylation at critical Zta response elements (ZREs) has been proposed to regulate EBV replication, specifically it could aid the activation of viral lytic gene expression from silenced promoters on the methylated genome during latency in addition to preventing full lytic reactivation from the non-methylated EBV genome immediately following infection. We developed a computational approach to predict the location of ZREs which we experimentally assessed using in vitro and in vivo DNA association assays. A remarkably different binding motif is apparent for the CpG and non-CpG ZREs. Computational prediction of the location of these binding motifs in EBV revealed that the majority of lytic cycle genes have at least one and many have multiple copies of methylation-dependent CpG ZREs within their promoters. This suggests that the abundance of Zta protein coupled with the methylation status of the EBV genome act together to co-ordinate the expression of lytic cycle genes at the majority of EBV promoters.
Collapse
Affiliation(s)
- Kirsty Flower
- School of Life Sciences, University of Sussex, Brighton, United Kingdom
- Epigenetics Unit, Department of Surgery and Cancer, Imperial College, London, United Kingdom
| | - David Thomas
- School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - James Heather
- School of Life Sciences, University of Sussex, Brighton, United Kingdom
- Infection and Immunity Division, University College London, London, United Kingdom
| | | | - Susan Jones
- School of Life Sciences, University of Sussex, Brighton, United Kingdom
- The James Hutton Institute, Dundee, United Kingdom
| | - Alison J. Sinclair
- School of Life Sciences, University of Sussex, Brighton, United Kingdom
- * E-mail:
| |
Collapse
|
34
|
Analysis of an ankyrin-like region in Epstein Barr Virus encoded (EBV) BZLF-1 (ZEBRA) protein: implications for interactions with NF-κB and p53. Virol J 2011; 8:422. [PMID: 21892957 PMCID: PMC3180424 DOI: 10.1186/1743-422x-8-422] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Accepted: 09/05/2011] [Indexed: 12/19/2022] Open
Abstract
Background The carboxyl terminal of Epstein-Barr virus (EBV) ZEBRA protein (also termed BZLF-1 encoded replication protein Zta or ZEBRA) binds to both NF-κB and p53. The authors have previously suggested that this interaction results from an ankyrin-like region of the ZEBRA protein since ankyrin proteins such as IκB interact with NF-κB and p53 proteins. These interactions may play a role in immunopathology and viral carcinogenesis in B lymphocytes as well as other cell types transiently infected by EBV such as T lymphocytes, macrophages and epithelial cells. Methods Randomization of the ZEBRA terminal amino acid sequence followed by statistical analysis suggest that the ZEBRA carboxyl terminus is most closely related to ankyrins of the invertebrate cactus IκB-like protein. This observation is consistent with an ancient origin of ZEBRA resulting from a recombination event between an ankyrin regulatory protein and a fos/jun DNA binding factor. In silico modeling of the partially solved ZEBRA carboxyl terminus structure using PyMOL software demonstrate that the carboxyl terminus region of ZEBRA can form a polymorphic structure termed ZANK (ZEBRA ANKyrin-like region) similar to two adjacent IκB ankyrin domains. Conclusions Viral capture of an ankyrin-like domain provides a mechanism for ZEBRA binding to proteins in the NF-κB and p53 transcription factor families, and also provides support for a process termed "Ping-Pong Evolution" in which DNA viruses such as EBV are formed by exchange of information with the host genome. An amino acid polymorphism in the ZANK region is identified in ZEBRA from tumor cell lines including Akata that could alter binding of Akata ZEBRA to the p53 tumor suppressor and other ankyrin binding protein, and a novel model of antagonistic binding interactions between ZANK and the DNA binding regions of ZEBRA is suggested that may be explored in further biochemical and molecular biological models of viral replication.
Collapse
|
35
|
Sei E, Conrad NK. Delineation of a core RNA element required for Kaposi's sarcoma-associated herpesvirus ORF57 binding and activity. Virology 2011; 419:107-16. [PMID: 21889182 DOI: 10.1016/j.virol.2011.08.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 07/14/2011] [Accepted: 08/11/2011] [Indexed: 11/28/2022]
Abstract
The Kaposi's sarcoma-associated herpesvirus (KSHV) ORF57 protein is an essential multifunctional regulator of gene expression. ORF57 interaction with RNA is necessary for ORF57-mediated posttranscriptional functions, but little is known about the RNA elements that drive ORF57-RNA specificity. Here, we investigate the cis-acting factors on the KSHV PAN RNA that dictate ORF57 binding and activity. We show that ORF57 binds directly to the 5' end of PAN RNA in KSHV-infected cells. Furthermore, we employ in vitro and cell-based assays to define a 30-nucleotide (nt) core ORF57-responsive element (ORE) that is necessary and sufficient for ORF57 binding and activity. Mutational analysis of the core ORE further suggests that a 9-nt sequence is a specific binding site for ORF57. These studies provide insight into ORF57 specificity determinants and lay a foundation for future analyses of cellular and viral ORF57 targets.
Collapse
Affiliation(s)
- Emi Sei
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9048, USA
| | | |
Collapse
|
36
|
Clyde K, Glaunsinger BA. Getting the message direct manipulation of host mRNA accumulation during gammaherpesvirus lytic infection. Adv Virus Res 2011; 78:1-42. [PMID: 21040830 DOI: 10.1016/b978-0-12-385032-4.00001-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The Gammaherpesvirinae subfamily of herpesviruses comprises lymphotropic viruses, including the oncogenic human pathogens Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus. During lytic infection, gammaherpesviruses manipulate host gene expression to optimize the cellular environment for viral replication and to evade the immune response. Additionally, although a lytically infected cell will itself be killed in the process of viral replication, lytic infection can contribute to pathogenesis by inducing the secretion of paracrine factors with functions in cell survival and proliferation, and angiogenesis. The mechanisms by which these viruses manipulate host gene expression are varied and target the accumulation of cellular mRNAs and their translation, signaling pathways, and protein stability. Here, we discuss how gammaherpesviral proteins directly influence host mRNA biogenesis and stability, either selectively or globally, in order to fine-tune the cellular environment to the advantage of the virus. Appreciation of the mechanisms by which these viruses interface with and adapt normal cellular processes continues to inform our understanding of gammaherpesviral biology and the regulation of mRNA accumulation and turnover in our own cells.
Collapse
Affiliation(s)
- Karen Clyde
- Department of Plant and Microbial Biology, University of California, Berkeley, USA
| | | |
Collapse
|
37
|
Bergbauer M, Kalla M, Schmeinck A, Göbel C, Rothbauer U, Eck S, Benet-Pagès A, Strom TM, Hammerschmidt W. CpG-methylation regulates a class of Epstein-Barr virus promoters. PLoS Pathog 2010; 6:e1001114. [PMID: 20886097 PMCID: PMC2944802 DOI: 10.1371/journal.ppat.1001114] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Accepted: 08/20/2010] [Indexed: 12/15/2022] Open
Abstract
DNA methylation is the major modification of eukaryotic genomes and plays an essential role in mammalian gene regulation. In general, cytosine-phosphatidyl-guanosine (CpG)-methylated promoters are transcriptionally repressed and nuclear proteins such as MECP2, MBD1, MBD2, and MBD4 bind CpG-methylated DNA and contribute to epigenetic silencing. Methylation of viral DNA also regulates gene expression of Epstein-Barr virus (EBV), which is a model of herpes virus latency. In latently infected human B cells, the viral DNA is CpG-methylated, the majority of viral genes is repressed and virus synthesis is therefore abrogated. EBV's BZLF1 encodes a transcription factor of the AP-1 family (Zta) and is the master gene to overcome viral gene repression. In a genome-wide screen, we now identify and characterize those viral genes, which Zta regulates. Among them are genes essential for EBV's lytic phase, which paradoxically depend on strictly CpG-methylated promoters for their Zta-induced expression. We identified novel DNA recognition motifs, termed meZRE (methyl-Zta-responsive element), which Zta selectively binds in order to 'read' DNA in a methylation- and sequence-dependent manner unlike any other known protein. Zta is a homodimer but its binding characteristics to meZREs suggest a sequential, non-palindromic and bipartite DNA recognition element, which confers superior DNA binding compared to CpG-free ZREs. Our findings indicate that Zta has evolved to transactivate cytosine-methylated, hence repressed, silent promoters as a rule to overcome epigenetic silencing.
Collapse
MESH Headings
- B-Lymphocytes/pathology
- B-Lymphocytes/virology
- Blotting, Western
- Cells, Cultured
- Chromatin Immunoprecipitation
- CpG Islands/genetics
- DNA Methylation
- DNA, Viral/genetics
- DNA, Viral/metabolism
- Electrophoretic Mobility Shift Assay
- Epigenesis, Genetic
- Epstein-Barr Virus Infections/genetics
- Epstein-Barr Virus Infections/pathology
- Epstein-Barr Virus Infections/virology
- Gene Expression Regulation, Viral
- Genes, Viral
- Herpesvirus 4, Human/physiology
- Humans
- Immunoprecipitation
- Kidney/cytology
- Kidney/metabolism
- Kidney/virology
- Luciferases/metabolism
- Promoter Regions, Genetic/genetics
- RNA, Messenger/genetics
- Response Elements/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Transcription Factor AP-1/metabolism
- Virus Latency/genetics
- Virus Replication
Collapse
Affiliation(s)
- Martin Bergbauer
- Department of Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
| | - Markus Kalla
- Department of Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
| | - Anne Schmeinck
- Department of Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
| | - Christine Göbel
- Department of Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
| | - Ulrich Rothbauer
- Biocenter at the Department of Biology II, Ludwig-Maximilians University Munich, Martinsried, Germany
| | - Sebastian Eck
- Institute of Human Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Anna Benet-Pagès
- Institute of Human Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Tim M. Strom
- Institute of Human Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Wolfgang Hammerschmidt
- Department of Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
- * E-mail:
| |
Collapse
|
38
|
The Epstein-Barr virus BZLF1 protein inhibits tumor necrosis factor receptor 1 expression through effects on cellular C/EBP proteins. J Virol 2010; 84:12362-74. [PMID: 20861254 DOI: 10.1128/jvi.00712-10] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The Epstein-Barr virus immediate-early protein, BZLF1 (Z), initiates the switch between latent and lytic infection and plays an essential role in mediating viral replication. Z also inhibits expression of the major receptor for tumor necrosis factor (TNF), TNFR1, thus repressing TNF cytokine signaling, but the mechanism for this effect is unknown. Here, we demonstrate that Z prevents both C/EBPα- and C/EBPβ-mediated activation of the TNFR1 promoter (TNFR1p) by interacting directly with both C/EBP family members. We show that Z interacts directly with C/EBPα and C/EBPβ in vivo and that a Z mutant altered at alanine residue 204 in the bZIP domain is impaired for the ability to interact with both C/EBP proteins. Furthermore, we find that the Z(A204D) mutant is attenuated in the ability to inhibit the TNFR1p but mediates lytic viral reactivation and replication in vitro in 293 cells as well as wild-type Z. Although Z does not bind directly to the TNFR1p in EMSA studies, chromatin immunoprecipitation studies indicate that Z is complexed with this promoter in vivo. The Z(A204D) mutant has reduced interaction with the TNFR1p in vivo but is similar to wild-type Z in its ability to complex with the IL-8 promoter. Finally, we show that the effect of Z on C/EBPα- and C/EBPβ-mediated activation is promoter dependent. These results indicate that Z modulates the effects of C/EBPα and C/EBPβ in a promoter-specific manner and that in some cases (including that of the TNFR1p), Z inhibits C/EBPα- and C/EBPβ-mediated activation.
Collapse
|
39
|
Epstein-Barr virus interferes with the amplification of IFNalpha secretion by activating suppressor of cytokine signaling 3 in primary human monocytes. PLoS One 2010; 5:e11908. [PMID: 20689596 PMCID: PMC2912847 DOI: 10.1371/journal.pone.0011908] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Accepted: 07/07/2010] [Indexed: 11/19/2022] Open
Abstract
Background Epstein-Barr virus is recognized to cause lymphoproliferative disorders and is also associated with cancer. Evidence suggests that monocytes are likely to be involved in EBV pathogenesis, especially due to a number of cellular functions altered in EBV-infected monocytes, a process that may affect efficient host defense. Because type I interferons (IFNs) are crucial mediators of host defense against viruses, we investigated the effect of EBV infection on the IFNα pathway in primary human monocytes. Methodology/Principal Findings Infection of monocytes with EBV induced IFNα secretion but inhibited the positive feedback loop for the amplification of IFNα. We showed that EBV infection induced the expression of suppressor of cytokine signaling 3 (SOCS3) and, to a lesser extent, SOCS1, two proteins known to interfere with the amplification of IFNα secretion mediated by the JAK/STAT signal transduction pathway. EBV infection correlated with a blockage in the activation of JAK/STAT pathway members and affected the level of phosphorylated IFN regulatory factor 7 (IRF7). Depletion of SOCS3, but not SOCS1, by small interfering RNA (siRNA) abrogated the inhibitory effect of EBV on JAK/STAT pathway activation and significantly restored IFNα secretion. Finally, transfection of monocytes with the viral protein Zta caused the upregulation of SOCS3, an event that could not be recapitulated with mutated Zta. Conclusions/Significance We propose that EBV protein Zta activates SOCS3 protein as an immune escape mechanism that both suppresses optimal IFNα secretion by human monocytes and favors a state of type I IFN irresponsiveness in these cells. This immunomodulatory effect is important to better understand the aspects of the immune response to EBV.
Collapse
|
40
|
Rothe R, Liguori L, Villegas-Mendez A, Marques B, Grunwald D, Drouet E, Lenormand JL. Characterization of the cell-penetrating properties of the Epstein-Barr virus ZEBRA trans-activator. J Biol Chem 2010; 285:20224-33. [PMID: 20385549 PMCID: PMC2888435 DOI: 10.1074/jbc.m110.101550] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 04/08/2010] [Indexed: 11/06/2022] Open
Abstract
The Epstein-Barr virus basic leucine zipper transcriptional activator ZEBRA was shown recently to cross the outer membrane of live cells and to accumulate in the nucleus of lymphocytes. We investigated the potential application of the Epstein-Barr virus trans-activator ZEBRA as a transporter protein to facilitate transduction of cargo proteins. Analysis of different truncated forms of ZEBRA revealed that the minimal domain (MD) required for internalization spans residues 170-220. MD efficiently transported reporter proteins such as enhanced green fluorescent protein (EGFP) and beta-galactosidase in several normal and tumor cell lines. Functionality of internalized cargo proteins was confirmed by beta-galactosidase activity in transduced cells, and no MD-associated cell toxicity was detected. Translocation of MD through the cell membrane required binding to cell surface-associated heparan sulfate proteoglycans as shown by strong inhibition of protein uptake in the presence of heparin. We found that internalization was blocked at 4 degrees C, whereas no ATP was required as shown by an only 25% decreased uptake efficiency in energy-depleted cells. Common endocytotic inhibitors such as nystatin, chlorpromazine, and wortmannin had no significant impact on MD-EGFP uptake. Only methyl-beta-cyclodextrin inhibited MD-EGFP uptake by 40%, implicating the lipid raft-mediated endocytotic pathway. These data suggest that MD-reporter protein transduction occurs mostly via direct translocation through the lipid bilayer and not by endocytosis. This mechanism of MD-mediated internalization is suitable for the efficient delivery of biologically active proteins and renders ZEBRA-MD a promising candidate for therapeutic protein delivery applications.
Collapse
Affiliation(s)
- Romy Rothe
- From TheREx-HumProTher, TIMC-IMAG Laboratory, CNRS UMR5525, University Joseph Fourier, UFR de Médecine, 38700 La Tronche
| | - Lavinia Liguori
- the Fondation RTRA “Nanosciences,” University Joseph Fourier, TIMC-GMCAO, 38706 La Tronche
| | - Ana Villegas-Mendez
- From TheREx-HumProTher, TIMC-IMAG Laboratory, CNRS UMR5525, University Joseph Fourier, UFR de Médecine, 38700 La Tronche
| | - Bruno Marques
- From TheREx-HumProTher, TIMC-IMAG Laboratory, CNRS UMR5525, University Joseph Fourier, UFR de Médecine, 38700 La Tronche
| | - Didier Grunwald
- iRTSV-TS, U873 INSERM, Commissariat à l'Energie Atomique Grenoble, 17 rue des Martyrs, 38054 Grenoble Cedex 9, and
| | - Emmanuel Drouet
- the Unit of Virus Host Cell Interactions, UMR5233 University Joseph Fourier EMBL-CNRS, 6 rue Jules Horowitz, F-38042 Grenoble Cedex 9, France
| | - Jean-Luc Lenormand
- From TheREx-HumProTher, TIMC-IMAG Laboratory, CNRS UMR5525, University Joseph Fourier, UFR de Médecine, 38700 La Tronche
| |
Collapse
|
41
|
Evidence for DNA hairpin recognition by Zta at the Epstein-Barr virus origin of lytic replication. J Virol 2010; 84:7073-82. [PMID: 20444899 DOI: 10.1128/jvi.02666-09] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Epstein-Barr virus immediate-early protein (Zta) plays an essential role in viral lytic activation and pathogenesis. Zta is a basic zipper (b-Zip) domain-containing protein that binds multiple sites in the viral origin of lytic replication (OriLyt) and is required for lytic-cycle DNA replication. We present evidence that Zta binds to a sequence-specific, imperfect DNA hairpin formed by an inverted repeat within the upstream essential element (UEE) of OriLyt. Mutations in the OriLyt sequence that are predicted to disrupt hairpin formation also disrupt Zta binding in vitro. Restoration of the hairpin rescues the defect. We also show that OriLyt DNA isolated from replicating cells contains a nuclease-sensitive region that overlaps with the inverted-repeat region of the UEE. Furthermore, point mutations in Zta that disrupt specific recognition of the UEE hairpin are defective for activation of lytic replication. These data suggest that Zta acts by inducing and/or stabilizing a DNA hairpin structure during productive infection. The DNA hairpin at OriLyt with which Zta interacts resembles DNA structures formed at other herpesvirus origins and may therefore represent a common secondary structure used by all herpesvirus family members during the initiation of DNA replication.
Collapse
|
42
|
Reinke AW, Grigoryan G, Keating AE. Identification of bZIP interaction partners of viral proteins HBZ, MEQ, BZLF1, and K-bZIP using coiled-coil arrays. Biochemistry 2010; 49:1985-97. [PMID: 20102225 DOI: 10.1021/bi902065k] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Basic-region leucine-zipper transcription factors (bZIPs) contain a segment rich in basic amino acids that can bind DNA, followed by a leucine zipper that can interact with other leucine zippers to form coiled-coil homo- or heterodimers. Several viruses encode proteins containing bZIP domains, including four that encode bZIPs lacking significant homology to any human protein. We investigated the interaction specificity of these four viral bZIPs by using coiled-coil arrays to assess self-associations as well as heterointeractions with 33 representative human bZIPs. The arrays recapitulated reported viral-human interactions and also uncovered new associations. MEQ and HBZ interacted with multiple human partners and had unique interaction profiles compared to any human bZIPs, whereas K-bZIP and BZLF1 displayed homospecificity. New interactions detected included HBZ with MAFB, MAFG, ATF2, CEBPG, and CREBZF and MEQ with NFIL3. These were confirmed in solution using circular dichroism. HBZ can heteroassociate with MAFB and MAFG in the presence of MARE-site DNA, and this interaction is dependent on the basic region of HBZ. NFIL3 and MEQ have different yet overlapping DNA-binding specificities and can form a heterocomplex with DNA. Computational design considering both affinity for MEQ and specificity with respect to other undesired bZIP-type interactions was used to generate a MEQ dimerization inhibitor. This peptide, anti-MEQ, bound MEQ both stably and specifically, as assayed using coiled-coil arrays and circular dichroism in solution. Anti-MEQ also inhibited MEQ binding to DNA. These studies can guide further investigation of the function of viral and human bZIP complexes.
Collapse
Affiliation(s)
- Aaron W Reinke
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | |
Collapse
|
43
|
de Souza RF, Iyer LM, Aravind L. Diversity and evolution of chromatin proteins encoded by DNA viruses. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1799:302-18. [PMID: 19878744 PMCID: PMC3243496 DOI: 10.1016/j.bbagrm.2009.10.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Revised: 10/21/2009] [Accepted: 10/22/2009] [Indexed: 11/23/2022]
Abstract
Double-stranded DNA viruses display a great variety of proteins that interact with host chromatin. Using the wealth of available genomic and functional information, we have systematically surveyed chromatin-related proteins encoded by dsDNA viruses. The distribution of viral chromatin-related proteins is primarily influenced by viral genome size and the superkingdom to which the host of the virus belongs. Smaller viruses usually encode multifunctional proteins that mediate several distinct interactions with host chromatin proteins and viral or host DNA. Larger viruses additionally encode several enzymes, which catalyze manipulations of chromosome structure, chromatin remodeling and covalent modifications of proteins and DNA. Among these viruses, it is also common to encounter transcription factors and DNA-packaging proteins such as histones and IHF/HU derived from cellular genomes, which might play a role in constituting virus-specific chromatin states. Through all size ranges a subset of domains in viral chromatin proteins appears to have been derived from those found in host proteins. Examples include the Zn-finger domains of the E6 and E7 proteins of papillomaviruses, SET domain methyltransferases and Jumonji-related demethylases in certain nucleocytoplasmic large DNA viruses and BEN domains in poxviruses and polydnaviruses. In other cases, chromatin-interacting modules, such as the LXCXE motif, appear to have been widely disseminated across distinct viral lineages, resulting in similar retinoblastoma targeting strategies. Viruses, especially those with large linear genomes, have evolved a number of mechanisms to manipulate viral chromosomes in the process of replication-associated recombination. These include topoisomerases, Rad50/SbcC-like ABC ATPases and a novel recombinase system in bacteriophages utilizing RecA and Rad52 homologs. Larger DNA viruses also encode SWI2/SNF2 and A18-like ATPases which appear to play specialized roles in transcription and recombination. Finally, it also appears that certain domains of viral provenance have given rise to key functions in eukaryotic chromatin such as a HEH domain of chromosome tethering proteins and the TET/JBP-like cytosine and thymine hydroxylases.
Collapse
Affiliation(s)
- Robson F. de Souza
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, United States of America
| | - Lakshminarayan M. Iyer
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, United States of America
| | - L. Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, United States of America
| |
Collapse
|
44
|
Evaluation of a prediction protocol to identify potential targets of epigenetic reprogramming by the cancer associated Epstein Barr virus. PLoS One 2010; 5:e9443. [PMID: 20195470 PMCID: PMC2829078 DOI: 10.1371/journal.pone.0009443] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Accepted: 12/02/2009] [Indexed: 12/15/2022] Open
Abstract
Background Epstein Barr virus (EBV) infects the majority of the human population, causing fatal diseases in a small proportion in conjunction with environmental factors. Following primary infection, EBV remains latent in the memory B cell population for life. Recurrent reactivation of the virus occurs, probably due to activation of the memory B-lymphocytes, resulting in viral replication and re-infection of B-lymphocytes. Methylation of the viral DNA at CpG motifs leads to silencing of viral gene expression during latency. Zta, the key viral protein that mediates the latency/reactivation balance, interacts with methylated DNA. Zta is a transcription factor for both viral and host genes. A sub-set of its DNA binding sites (ZREs) contains a CpG motif, which is recognised in its methylated form. Detailed analysis of the promoter of the viral gene BRLF1 revealed that interaction with a methylated CpG ZRE (RpZRE3) is key to overturning the epigenetic silencing of the gene. Methodology and Principal Findings Here we question whether we can use this information to identify which host genes contain promoters with similar response elements. A computational search of human gene promoters identified 274 targets containing the 7-nucleotide RpZRE3 core element. DNA binding analysis of Zta with 17 of these targets revealed that the flanking context of the core element does not have a profound effect on the ability of Zta to interact with the methylated sites. A second juxtaposed ZRE was observed for one promoter. Zta was able to interact with this site, although co-occupancy with the RpZRE3 core element was not observed. Conclusions/Significance This research demonstrates 274 human promoters have the potential to be regulated by Zta to overturn epigenetic silencing of gene expression during viral reactivation from latency.
Collapse
|
45
|
Rennekamp AJ, Lieberman PM. Initiation of lytic DNA replication in Epstein-Barr virus: search for a common family mechanism. Future Virol 2010; 5:65-83. [PMID: 22468146 PMCID: PMC3314400 DOI: 10.2217/fvl.09.69] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Herpesviruses are a complex family of dsDNA viruses that are a major cause of human disease. All family members share highly related viral replication proteins, such as DNA polymerase, ssDNA-binding proteins and processivity factors. Consequently, it is generally thought that lytic replication occurs through a common and conserved mechanism. However, considerable evidence indicates that proteins controlling initiation of DNA replication vary greatly among the herepesvirus subfamilies. In this article, we focus on some of the known mechanisms that regulate Epstein-Barr virus lytic-cycle replication, and compare this to other herpesvirus family members. Our reading of the literature leads us to conclude that diverse viral mechanisms generate a common nucleoprotein prereplication structure that can be recognized by a highly conserved family of viral replication enzymes.
Collapse
Affiliation(s)
- Andrew J Rennekamp
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA and The University of Pennsylvania, Biomedical Graduate Program in Cell & Molecular Biology, The School of Medicine, Philadelphia, PA 19104, USA, Tel.: +1 215 898 9523, Fax: +1 251 898 0663,
| | - Paul M Lieberman
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA, Tel.: +1 215 898 9491, Fax: +1 215 898 0663,
| |
Collapse
|
46
|
AP-1 homolog BZLF1 of Epstein-Barr virus has two essential functions dependent on the epigenetic state of the viral genome. Proc Natl Acad Sci U S A 2009; 107:850-5. [PMID: 20080764 DOI: 10.1073/pnas.0911948107] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
EBV, a member of the herpes virus family, is a paradigm for human tumor viruses and a model of viral latency amenable for study in vitro. It induces resting human B lymphocytes to proliferate indefinitely in vitro and initially establishes a strictly latent infection in these cells. BZLF1, related to the cellular activating protein 1 (AP-1) family of transcription factors, is the viral master gene essential and sufficient to mediate the switch to induce the EBV lytic phase in latently infected B cells. Enigmatically, after infection BZLF1 is expressed very early in the majority of primary B cells, but its early expression fails to induce the EBV lytic phase. We show that the early expression of BZLF1 has a critical role in driving the proliferation of quiescent naïve and memory B cells but not of activated germinal center B cells. BZLF1's initial failure to induce the EBV lytic phase relies on the viral DNA at first being unmethylated. We have found that the eventual and inevitable methylation of viral DNA is a prerequisite for productive infection in stably, latently infected B cells which then yield progeny virus lacking cytosine-phosphatidyl-guanosine (CpG) methylation. This progeny virus then can repeat EBV's epigenetically regulated, biphasic life cycle. Our data indicate that the viral BZLF1 protein is crucial both to establish latency and to escape from it. Our data also indicate that EBV has evolved to appropriate its host's mode of methylating DNA for its own epigenetic regulation.
Collapse
|
47
|
Functional interaction between Epstein-Barr virus replication protein Zta and host DNA damage response protein 53BP1. J Virol 2009; 83:11116-22. [PMID: 19656881 DOI: 10.1128/jvi.00512-09] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Epstein-Barr virus (EBV; human herpesvirus 4) poses major clinical problems worldwide. Following primary infection, EBV enters a form of long-lived latency in B lymphocytes, expressing few viral genes, and it persists for the lifetime of the host with sporadic bursts of viral replication. The switch between latency and replication is governed by the action of a multifunctional viral protein Zta (also called BZLF1, ZEBRA, and Z). Using a global proteomic approach, we identified a host DNA damage repair protein that specifically interacts with Zta: 53BP1. 53BP1 is intimately connected with the ATM signal transduction pathway, which is activated during EBV replication. The interaction of 53BP1 with Zta requires the C-terminal ends of both proteins. A series of Zta mutants that show a wild-type ability to perform basic functions of Zta, such as dimer formation, interaction with DNA, and the transactivation of viral genes, were shown to have lost the ability to induce the viral lytic cycle. Each of these mutants also is compromised in the C-terminal region for interaction with 53BP1. In addition, the knockdown of 53BP1 expression reduced viral replication, suggesting that the association between Zta and 53BP1 is involved in the viral replication cycle.
Collapse
|
48
|
Katsumura KR, Maruo S, Wu Y, Kanda T, Takada K. Quantitative evaluation of the role of Epstein-Barr virus immediate-early protein BZLF1 in B-cell transformation. J Gen Virol 2009; 90:2331-2341. [PMID: 19553389 DOI: 10.1099/vir.0.012831-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The Epstein-Barr virus (EBV) immediate-early transactivator BZLF1 plays a key role in switching EBV infection from the latent to the lytic form by stimulating the expression cascade of lytic genes; it also regulates the expression of several cellular genes. Recently, we reported that BZLF1 is expressed in primary human B cells early after EBV infection. To investigate whether this BZLF1 expression early after infection plays a role in the EBV-induced growth transformation of primary B cells, we generated BZLF1-knockout EBV and quantitatively evaluated its transforming ability compared with that of wild-type EBV. We found that the 50% transforming dose of BZLF1-knockout EBV was quite similar to that of wild-type EBV. Established lymphoblastoid cell lines (LCLs) harbouring BZLF1-knockout EBV were indistinguishable from LCLs harbouring wild-type EBV in their pattern of latent gene expression and in their growth in vitro. Furthermore, the copy numbers of EBV episomes were very similar in the LCLs harbouring BZLF1-knockout EBV and in those harbouring wild-type EBV. These data indicate that disrupting BZLF1 expression in the context of the EBV genome, and the resultant inability to enter lytic replication, have little impact on the growth of LCLs and the steady-state copy number of EBV episomes in established LCLs.
Collapse
Affiliation(s)
- Koichi Ricardo Katsumura
- Department of Tumor Virology, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan
| | - Seiji Maruo
- Department of Tumor Virology, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan
| | - Yi Wu
- Department of Tumor Virology, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan
| | - Teru Kanda
- Research Center for Infection-Associated Cancer, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan
| | - Kenzo Takada
- Department of Tumor Virology, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan
| |
Collapse
|
49
|
Heather J, Flower K, Isaac S, Sinclair AJ. The Epstein-Barr virus lytic cycle activator Zta interacts with methylated ZRE in the promoter of host target gene egr1. J Gen Virol 2009; 90:1450-1454. [PMID: 19264650 PMCID: PMC2885059 DOI: 10.1099/vir.0.007922-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Activation of the host gene egr1 is essential for the lytic replication of Epstein–Barr virus (EBV). egr1 is activated by Zta (BZLF1, ZEBRA). Zta interacts directly with DNA through a series of closely related Zta-response elements (ZREs). Here we dissect the mechanism used by Zta to interact with the egr1 promoter and identify a weak interaction with egr1ZRE that is dependent on the distal part of egr1ZRE. Furthermore, we demonstrate that the ability of Zta to interact with egr1ZRE is enhanced at least tenfold by methylation. The ability of Zta to transactivate a reporter construct driven by the egr1 promoter can be enhanced by methylation. As the ability of Zta to interact with a methylated ZRE in the EBV genome correlates with its ability to activate the expression of the endogenous viral gene BRLF1, this suggests that Zta may also have the capability to overturn epigenetic control of egr1.
Collapse
Affiliation(s)
- James Heather
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | - Kirsty Flower
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | - Samine Isaac
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | | |
Collapse
|
50
|
Rothe R, Lenormand JL. Expression and purification of ZEBRA fusion proteins and applications for the delivery of macromolecules into mammalian cells. CURRENT PROTOCOLS IN PROTEIN SCIENCE 2008; Chapter 18:18.11.1-18.11.29. [PMID: 19016434 DOI: 10.1002/0471140864.ps1811s54] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The recent development of peptide carriers for efficient and specific delivery of biologically active molecules into mammalian cells represents a major advance in the study of both normal and uncontrolled cell growth. In the past few years, this technology has been successfully applied to the delivery of therapeutic molecules in animal models, and now some of these carriers are available in the clinic for the treatment of some human diseases. This unit describes the production, in a bacterial expression system, of reporter proteins (EGFP and beta-galactosidase) fused to a transduction domain of the Epstein-Barr virus ZEBRA protein, as well as purification of the fusion proteins. The purified fusion proteins can be added to any of a large spectrum of mammalian cells and the internalization process measured by flow cytometry and fluorescence microscopy on live cells. Fluorescence microscopy on fixed cells is used to study their intracellular distribution.
Collapse
Affiliation(s)
- Romy Rothe
- HumProTher Laboratory, TheREx-GREPI, University of Joseph Fourier, UFR de Médecine, La Tronche, France
| | | |
Collapse
|