1
|
Lu Y, Li S, Yang S, Wang C, Fu Y, Yu H, Huang X, Zhao J, Shao Y, Wang Z, Cui Y, Chen J, Guo Q, Kuang L, Liu G. Variation in innate immune responses to porcine epidemic diarrhea virus infection in piglets at different ages. Microb Pathog 2024; 196:106958. [PMID: 39303959 DOI: 10.1016/j.micpath.2024.106958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/14/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
Porcine epidemic diarrhea virus (PEDV) poses a significant threat to pigs, with piglets under seven days old facing a mortality rate of up to 100 %. This study aimed to explore the maturation of the immune system in piglets across different age groups and their corresponding immune responses to PEDV infection. Real-time quantitative PCR was employed to assess the relative mRNA expression of inflammation-related factors in infected pigs compared to non-infected counterparts at varying ages. Additionally, flow cytometry was utilized to analyze the relative counts of CD4+ and CD8+ T cells, as well as CD21+ B cells, in peripheral blood, spleen, mesenteric lymph nodes, and Peyer's patches of piglets at different developmental stages. Our findings revealed a notable increase in IFN-α and IFN-γ, a decrease in TNF-α, and elevated expression of IL-1β, IL-6, IL-10, and IL-17 following PEDV infection. Furthermore, the numbers of CD4+ and CD8+ T cells, along with CD21+ B cells, exhibited a gradual rise with the advancement of piglets' age. Overall, our study underscores the progressive enhancement of piglets' resistance to PEDV infection as their immune system matures over time.
Collapse
Affiliation(s)
- Yabin Lu
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals (XJ-KLNDSCHA), College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, China; State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Shuxian Li
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals (XJ-KLNDSCHA), College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, China; State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Shanshan Yang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Caiying Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Yuguang Fu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Haoyuan Yu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Xin Huang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Jing Zhao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Yongheng Shao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Zemei Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Yaru Cui
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Jianing Chen
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Qingyong Guo
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals (XJ-KLNDSCHA), College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Ling Kuang
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals (XJ-KLNDSCHA), College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, China.
| | - Guangliang Liu
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals (XJ-KLNDSCHA), College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, China; State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China.
| |
Collapse
|
2
|
Cui Z, Zhou L, Hu X, Zhao S, Xu P, Li W, Chen J, Zhang Y, Xia P. Immune Molecules' mRNA Expression in Porcine Alveolar Macrophages Co-Infected with Porcine Reproductive and Respiratory Syndrome Virus and Porcine Circovirus Type 2. Viruses 2023; 15:v15030777. [PMID: 36992486 PMCID: PMC10058123 DOI: 10.3390/v15030777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/12/2023] [Accepted: 03/14/2023] [Indexed: 03/31/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) and porcine circovirus 2 (PCV2) are economically important pathogens in swine, and pigs with dual infections of PCV2 and PRRSV consistently have more severe clinical symptoms and interstitial pneumonia. However, the synergistic pathogenesis mechanism induced by PRRSV and PCV2 co-infection has not yet been illuminated. Therefore, the aim of this study was to characterize the kinetic changes of immune regulatory molecules, inflammatory factors and immune checkpoint molecules in porcine alveolar macrophages (PAMs) in individuals infected or co-infected with PRRSV and/or PCV2. The experiment was divided into six groups: a negative control group (mock, no infected virus), a group infected with PCV2 alone (PCV2), a group infected with PRRSV alone (PRRSV), a PCV2-PRRSV co-infected group (PCV2-PRRSV inoculated with PCV2, followed by PRRSV 12 h later), a PRRSV-PCV2 co-infected group (PRRSV-PCV2 inoculated with PRRSV, followed by PCV2 12 h later) and a PCV2 + PRRSV co-infected group (PCV2 + PRRSV, inoculated with PCV2 and PRRSV at the same time). Then, PAM samples from the different infection groups and the mock group were collected at 6, 12, 24, 36 and 48 h post-infection (hpi) to detect the viral loads of PCV2 and PRRSV and the relative quantification of immune regulatory molecules, inflammatory factors and immune checkpoint molecules. The results indicated that PCV2 and PRRSV co-infection, regardless of the order of infection, had no effect on promoting PCV2 replication, while PRRSV and PCV2 co-infection was able to promote PRRSV replication. The immune regulatory molecules (IFN-α and IFN-γ) were significantly down-regulated, while inflammatory factors (TNF-α, IL-1β, IL-10 and TGF-β) and immune checkpoint molecules (PD-1, LAG-3, CTLA-4 and TIM-3) were significantly up-regulated in the PRRSV and PCV2 co-infection groups, especially in PAMs with PCV2 inoculation first followed by PRRSV. The dynamic changes in the aforementioned immune molecules were associated with a high viral load, immunosuppression and cell exhaustion, which may explain, at least partially, the underlying mechanism of the enhanced pulmonary lesions by dual infection with PCV2 and PRRSV in PAMs.
Collapse
Affiliation(s)
- Zhiying Cui
- College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China
| | - Likun Zhou
- College of Life Science, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China
| | - Xingxing Hu
- Zhongnong Huada (Wuhan) Testing Technology Co., Ltd., Luoshi South Road#519, Hongshan District, Wuhan 430070, China
| | - Shijie Zhao
- College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China
| | - Pengli Xu
- College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China
| | - Wen Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China
| | - Jing Chen
- College of Life Science, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China
| | - Yina Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China
| | - Pingan Xia
- College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China
| |
Collapse
|
3
|
Pan H, Huan C, Zhang W, Hou Y, Zhou Z, Yao J, Gao S. PDZK1 upregulates nitric oxide production through the PI3K/ERK2 pathway to inhibit porcine circovirus type 2 replication. Vet Microbiol 2022; 272:109514. [PMID: 35917623 DOI: 10.1016/j.vetmic.2022.109514] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 07/01/2022] [Accepted: 07/14/2022] [Indexed: 10/17/2022]
Abstract
Porcine circovirus type 2 (PCV2) is the causative agent of porcine circovirus-associated disease. Changes in host cell gene expression are induced by PCV2 infection. Here, we showed that porcine PDZ Domain-Containing 1 (PDZK1) expression was enhanced during PCV2 infection and that overexpression of PDZK1 inhibited the expression of PCV2 Cap protein. PCV2 genomic DNA copy number and viral titers were decreased in PDZK1-overexpressing PK-15B6 cells. PDZK1 knockdown enhanced the replication of PCV2. Overexpression of PDZK1 activated the phosphoinositide 3-kinase (PI3K)/ERK2 signaling pathway to enhance nitric oxide (NO) levels, while PDZK1 knockdown had the opposite effects. A PI3K inhibitor (LY294002) and a NO synthase inhibitor (L-NAME hydrochloride) decreased the activity of PDZK1 in restricting PCV2 replication. ERK2 knockdown enhanced the proliferation of PCV2 by decreasing levels of NO. Levels of interleukin (IL)- 4 mRNA were reduced in PDZK1 knockdown and ERK2 knockdown PK-15B6 cells. Increased IL-4 mRNA levels were unable to decrease NO production in PDZK1-overexpressing cells. Thus, we conclude that PDZK1 affected PCV2 replication by regulating NO production via PI3K/ERK2 signaling. PDZK1 affected IL-4 expression through the PI3K/ERK2 pathway, but PDZK1 modulation of PCV2 replication occurred independently of IL-4. Our results contribute to understanding the biological functions of PDZK1 and provide a theoretical basis for the pathogenic mechanisms of PCV2.
Collapse
Affiliation(s)
- Haochun Pan
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou 225009, Jiangsu, China; College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Changchao Huan
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou 225009, Jiangsu, China; College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Wei Zhang
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou 225009, Jiangsu, China; College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Yutong Hou
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou 225009, Jiangsu, China; College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Ziyan Zhou
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou 225009, Jiangsu, China; College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Jingting Yao
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou 225009, Jiangsu, China; College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Song Gao
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou 225009, Jiangsu, China; College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, China.
| |
Collapse
|
4
|
Abstract
AbstractPorcine circovirus type 2 (PCV2), which serves as a major causative agent of PCV2-associated diseases and causes severe loss to the pig industry worldwide, can dysregulate the immune response and induce immunosuppression in PCV2-infected pigs. Similar to PCV2, porcine circovirus type 3 (PCV3), a newly identified swine circovirus which might be closely associated with porcine dermatitis and nephropathy syndrome, reproductive disorder, and multisystemic inflammatory responses, also interferes with host immune defense. Interaction between host immune system and PCVs is considered to be a crucial determinant of pathogenicity in pigs. Here, we sought to briefly discuss the current knowledge regarding the interaction of porcine circovirus type 2 and/or 3 with host immune cells and immune responses to better depict the viral immunomodulatory capacity, pathogenic mechanisms, and the future research direction in host immune responses to infection with PCV2 and PCV3.
Collapse
|
5
|
Vangroenweghe FACJ, Thas O. Seasonal Variation in Prevalence of Mycoplasma hyopneumoniae and Other Respiratory Pathogens in Peri-Weaned, Post-Weaned, and Fattening Pigs with Clinical Signs of Respiratory Diseases in Belgian and Dutch Pig Herds, Using a Tracheobronchial Swab Sampling Technique, and Their Associations with Local Weather Conditions. Pathogens 2021; 10:pathogens10091202. [PMID: 34578234 PMCID: PMC8471121 DOI: 10.3390/pathogens10091202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/04/2021] [Accepted: 09/14/2021] [Indexed: 11/16/2022] Open
Abstract
Besides Mycoplasma hyopneumoniae (M. hyopneumoniae), many other viruses and bacteria can concurrently be present in pigs. These pathogens can provoke clinical signs, known as porcine respiratory disease complex (PRDC). A sampling technique on live animals, namely tracheobronchial swab (TBS) sampling, was applied to detect different PRDC pathogens in pigs using PCR. The objective was to determine prevalence of different PRDC pathogens and their variations during different seasons, including correlations with local weather conditions. A total of 974 pig farms and 22,266 pigs were sampled using TBS over a 5-year period. TBS samples were analyzed using mPCR and results were categorized and analyzed according to the season of sampling and local weather data. In samples of peri-weaned and post-weaned piglets, influenza A virus in swine (IAV-S), porcine reproductive and respiratory syndrome virus-European strain (PRRSV1), and M. hyopneumoniae were found as predominant pathogens. In fattening pigs, M. hyopneumoniae, porcine circovirus type 2 (PCV-2) and PRRSV1 were predominant pathogens. Pathogen prevalence in post-weaned and finishing pigs was highest during winter, except for IAV-S and A. pleuropneumoniae, which were more prevalent during autumn. Associations between prevalence of several PRDC pathogens, i.e., M. hyopneumoniae, PCV-2 and PRRSV, and specific weather conditions could be demonstrated. In conclusion, the present study showed that many respiratory pathogens are present during the peri-weaning, post-weaning, and fattening periods, which may complicate the clinical picture of respiratory diseases. Interactions between PRDC pathogens and local weather conditions over the 5-year study period were demonstrated.
Collapse
Affiliation(s)
- Frédéric A. C. J. Vangroenweghe
- Business Unit Swine & Ruminants, Elanco Animal Health, Plantijn en Moretuslei 1A, 2018 Antwerpen, Belgium
- Unit of Porcine Health Management, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
- Correspondence: ; Tel.: +32-477-558-562
| | - Olivier Thas
- I-BioStat, Data Science Institute, Campus Diepenbeek, Hasselt University, Agoralaan Gebouw D, 3590 Diepenbeek, Belgium;
- Department of Applied Mathematics, Computer Science and Statistics, Faculty of Sciences, Ghent University, Krijgslaan 281, 9000 Ghent, Belgium
- National Institute of Applied Statistics Research Australia (NIASRA), University of Wollongong, Northfield Ave, Wollongong, NSW 2522, Australia
| |
Collapse
|
6
|
Rakibuzzaman A, Ramamoorthy S. Comparative immunopathogenesis and biology of recently discovered porcine circoviruses. Transbound Emerg Dis 2021; 68:2957-2968. [PMID: 34288522 DOI: 10.1111/tbed.14244] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 07/02/2021] [Accepted: 07/16/2021] [Indexed: 12/15/2022]
Abstract
Porcine circoviruses are important pathogens of production swine. Porcine circovirus type 1 (PCV1) is non-pathogenic, and discovered as a contaminant of a porcine kidney cell line, PK-15. The discovery of pathogenic variant, PCV2, occurred in the late 90s in association with post-weaning multi-systemic wasting disease syndrome (PMWS), which is characterized by wasting, respiratory signs and lymphadenopathy in weanling pigs. A new PCV type, designated as PCV3, was discovered in 2016, in pigs manifesting porcine dermatitis and nephropathy syndrome (PDNS), respiratory distress and reproductive failure. Pathological manifestations of PCV3 Infections include systemic inflammation, vasculitis and myocarditis. A fourth PCV type, PCV4, was identified in 2020 in pigs with PDNS, respiratory and enteric signs. All the pathogenic PCV types are detected in both healthy and morbid pigs. They cause chronic, systemic infections with various clinical manifestations. Dysregulation of the immune system homeostasis is a pivotal trigger for pathogenesis in porcine circoviral infections. While the study of PCV3 immunobiology is still in its infancy lessons learned from PCV2 and other circular replication-associated protein (Rep)-encoding single stranded (ss) (CRESS) DNA viruses can inform the field of exploration for PCV3. Viral interactions with the innate immune system, interference with dendritic cell function coupled with the direct loss of lymphocytes compromises both innate and adaptive immunity in PCV2 infections. Dysregulated immune responses leading to the establishment of a pro-inflammatory state, immune complex associated hypersensitivity, and the necrosis of lymphocytes and immune cells are key features of PCV3 immunopathogenesis. A critical overview of the comparative immunopathology of PCV2 and PCV3/4, and directions for future research in the field are presented in this review.
Collapse
Affiliation(s)
- Agm Rakibuzzaman
- Department of Microbiological Sciences, North Dakota State University, Fargo, North Dakota, USA
| | - Sheela Ramamoorthy
- Department of Microbiological Sciences, North Dakota State University, Fargo, North Dakota, USA
| |
Collapse
|
7
|
Cui X, Wang X, Gao Q, Liu X, Kai Y, Chen C, Gao S. Colonisation of mice and pigs by a chimeric porcine circovirus 1-2 prototype vaccine strain and a PCV2 isolate originating in China and their induction of cytokines. J Virol Methods 2020; 283:113905. [PMID: 32502500 DOI: 10.1016/j.jviromet.2020.113905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 10/24/2022]
Abstract
A chimeric porcine circovirus (PCV) 1-2b vaccine strain and its parental wild-type PCV2b strain from China (PCV2-J) were used separately to vaccinate BALB/c mice and tissue and serum samples were collected from the mice to investigate whether the replication properties of the viruses differed. The spleen lymphocytes from the infected mice were cultured in vitro; the amounts of interferon-γ-secreting cells (IFN-γ-SCs) and levels of interleukin (IL) 2, IL-4 and IL-10 in the culture fluids were monitored. The results showed that PCV1-2b induced higher levels of antibody production in the infected mice than the PCV2b-J isolate. Viremia declined gradually in both infection groups and the DNA copy numbers were nearly equal in both groups of mouse tissues tested. The IFN-γ-SC levels were clearly up-regulated in both the PCV1-2b- and PCV2b-J-infected mice. In both mouse groups, IL-2 was up-regulated, and IL-10 was detected at low levels, while IL-4 was always below the limit of detection. Similar experiments were performed in pigs and the results showed that when infected with either PCV1-2b or PCV2b-J the pigs experienced high-level antibody responses, with no significant differences between the infection groups. In the pig model, the development of IFN-γ-SCs in response to PCV1-2b and PCV2b-J infections was detected. However, the PCV1-2b strain tended to elicit more IFN-γ-SCs in the peripheral blood mononuclear cell population of the infected pigs from 21 to 28 days post infection than the PCV2b-J isolate did. The concentrations of IL-2 were transiently different between the PCV1-2b and PCV2b-J infected pigs, while those of IL-10 and IL-2 were similar in both groups, but were lower than those elicited in mice. These results indicated that BALB/c mouse could be used as an alternate model for evaluating the efficacy of attenuated PCV1-2b vaccines.
Collapse
Affiliation(s)
- Xiang Cui
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs. Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses. Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, PR China; College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Xiaobo Wang
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs. Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses. Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, PR China; College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Qingqing Gao
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs. Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses. Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, PR China; College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Xiufan Liu
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs. Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses. Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, PR China; College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Yan Kai
- Jiangsu Provincial Center for Animal Disease Control and Prevention, Nanjing, Jiangsu 210036, China
| | - Changhai Chen
- Jiangsu Provincial Center for Animal Disease Control and Prevention, Nanjing, Jiangsu 210036, China
| | - Song Gao
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs. Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses. Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, PR China; College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China.
| |
Collapse
|
8
|
Liu G, Qiao X, Chang C, Hua T, Wang J, Tang B, Zhang D. Reduction of Postweaning Multisystemic Wasting Syndrome-Associated Clinical Symptoms by Virus-Like Particle Vaccine Against Porcine Parvovirus and Porcine Circovirus Type 2. Viral Immunol 2020; 33:444-456. [PMID: 32255758 DOI: 10.1089/vim.2019.0201] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The porcine circovirus type 2 (PCV2) capsid (Cap) protein and porcine parvovirus (PPV) VP2 protein have been studied in vaccines to control postweaning multisystemic wasting syndrome (PMWS). Virus-like particle (VLP) vaccines are nonreplicative vectors that deliver epitopes and induce immune responses. However, most VLP vaccines are recombinant proteins expressed in eukaryotic systems and are expensive and complex. In this study, the full-length PCV2-Cap and PPV-VP2 proteins were expressed in Escherichia coli, which self-assembled into VLPs. The highly soluble proteins were purified using Ni-chelating affinity chromatography. The proteins self-assembled into VLPs of ∼20 nm (Cap VLP) and 25 nm (VP2 VLP) in diameter. The immunogenicities of Cap VLP and VP2 VLP were determined in piglets coinfected with PPV and PCV2 postimmunization. The results suggested that Cap VLP and VP2 VLP did not antagonize each other. The combined vaccine induced stronger humoral and cellular immune responses and provided the best protection against PPV and PCV2 coinfection. On a farm containing PMWS-infected pigs, the combined Cap VLP and VP2 VLP vaccine significantly improved piglet growth indices; the average daily weight gains were significantly higher than those of the Cap VLP vaccine and nonimmunized groups. Thus, Cap and VP2 protein expression in E. coli is feasible for large-scale VLP vaccine production. The combined vaccine may be a promising candidate vaccine for better preventing PMWS-associated diseases coinfected with PCV2 and PPV.
Collapse
Affiliation(s)
- Guoyang Liu
- Institute of Veterinary Immunology and Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China.,National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Xuwen Qiao
- Institute of Veterinary Immunology and Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China.,National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Chen Chang
- Institute of Veterinary Immunology and Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China.,National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Tao Hua
- Institute of Veterinary Immunology and Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China.,National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Jichun Wang
- Institute of Veterinary Immunology and Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China.,National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Bo Tang
- Institute of Veterinary Immunology and Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China.,National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Daohua Zhang
- Institute of Veterinary Immunology and Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China.,National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| |
Collapse
|
9
|
Wang Q, Zhou H, Hao Q, Li M, Liu J, Fan H. Coinfection with porcine circovirus type 2 and Streptococcus suis serotype 2 enhances pathogenicity by dysregulation of the immune responses in piglets. Vet Microbiol 2020; 243:108653. [PMID: 32273000 DOI: 10.1016/j.vetmic.2020.108653] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 03/11/2020] [Accepted: 03/17/2020] [Indexed: 02/06/2023]
Abstract
Porcine circovirus type 2 (PCV-2) and Streptococcus suis (S. suis) are common pathogens in pigs. Both pathogens are associated with the porcine respiratory disease complex. Clinically, coinfection of PCV-2 and S. suis are often detected in pigs with respiratory symptoms, while interactions between the two pathogens during coinfection and the coinfection pathogenesis are poorly understood. In this study, a piglet model coinfected with PCV-2 and Streptococcus suis serotype 2 (SS2) was established; coinfection of piglets increased the contents of SS2 in blood, and piglets showed more severe pneumonia, myocarditis and arthritis. Peripheral blood mononuclear cells (PBMCs) were collected and coinfected piglets showed high expression levels of inflammatory cytokines and TLR2, TLR4, while levels of CD4, CD8 and MHC II were reduced. In addition, in order to further explore the mechanisms of coinfection induced cytokine overexpression, an in vitro model of coinfection with PCV-2 and SS2 was established using cells of the porcine monocytic line 3D4/21. Similar to the in vivo results,coinfected cells exhibited increased expression of the cytokines IL-6, IL-8, TNF-α and the receptors TLR2, TLR4, while they showed a lower expression of MHC II than cells infected with SS2 alone. Furthermore, in coinfected 3D4/21 cells, both MAPK and NF-κB signaling pathways were activated, and the increased expression of IL-8 was related to TLR4. In general, coinfection with PCV-2 and SS2 exacerbated the inflammatory response and probably impaired macrophage antigen presentation, resulting in immune dysregulation and increasing the severity of host infection.
Collapse
Affiliation(s)
- Qing Wang
- MOE Joint International Reasearch Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Hong Zhou
- MOE Joint International Reasearch Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Qinfang Hao
- MOE Joint International Reasearch Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Minxue Li
- MOE Joint International Reasearch Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Junchi Liu
- MOE Joint International Reasearch Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Hongjie Fan
- MOE Joint International Reasearch Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
10
|
Porcine Circovirus Type 2 Induces Single Immunoglobulin Interleukin-1 Related Receptor (SIGIRR) Downregulation to Promote Interleukin-1β Upregulation in Porcine Alveolar Macrophage. Viruses 2019; 11:v11111021. [PMID: 31684202 PMCID: PMC6893714 DOI: 10.3390/v11111021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 10/31/2019] [Accepted: 11/01/2019] [Indexed: 12/18/2022] Open
Abstract
Multisystemic inflammation in pigs affected by porcine circovirus type 2 (PCV2) indicates the disordered expression of inflammatory cytokines. However, the PCV2-induced expression profile of inflammation cytokines and its regulating mechanism remain poorly understood. In this study, inflammatory cytokines and receptors in porcine alveolar macrophages (PAMs) after PCV2 infection were profiled in vitro by an RT2 ProfilerTM PCR array assay. The regulatory mechanism of interleukin-1β (IL-1β) expression was investigated. Results showed that 49 of 84 inflammation cytokines and receptors were differentially expressed (p < 0.05, absolute fold change ≥2) in PAMs at different stages post-PCV2 infection. Moreover, the overexpression of single-immunoglobulin interleukin-1 related receptor (SIGIRR) or the blocking of NF-κB activation by its inhibitor markedly decreased IL-1β secretion. This finding suggested that PCV2-induced overexpression of IL-1β was associated with the downregulation of SIGIRR and the activation of NF-κB. Furthermore, the excessive activity of NF-κB in SIGIRR-knockout PAMs cell line, indicating that SIGIRR negatively regulated IL-1β production by inhibiting the activation of NF-κB. Overall, PCV2-induced downregulation of SIGIRR induction of NF-κB activation is a critical process in enhancing IL-1β production in PAMs. This study may provide insights into the underlying inflammatory response that occurs in pigs following PCV2 infection.
Collapse
|
11
|
Du Q, Zhang H, He M, Zhao X, He J, Cui B, Yang X, Tong D, Huang Y. Interleukin-10 Promotes Porcine Circovirus Type 2 Persistent Infection in Mice and Aggravates the Tissue Lesions by Suppression of T Cell Infiltration. Front Microbiol 2019; 10:2050. [PMID: 31551984 PMCID: PMC6747007 DOI: 10.3389/fmicb.2019.02050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 08/20/2019] [Indexed: 12/31/2022] Open
Abstract
Interleukin (IL)-10, as a key anti-inflammatory cytokine, increases during porcine circovirus type 2 (PCV2) infection, but the role of IL-10 in the process remains to be defined. In the present study, using an IL-10 deficient mice model, we found that IL-10 deficiency prevented the reduction of splenic lymphocytes (CD45+ cells) induced by PCV2 and promoted CD4+ and CD8+ T cell infiltration in lungs through inducting more T cell chemokines (CCL3, CXCL9, and CXCL10). Simultaneously, PCV2 infection induced a significant increase of pro-inflammatory cytokines and PCV2-specific antibodies in IL-10 deficient mice than in wild-type mice, resulting in a lower viral load in lung and a milder lung lesion in IL-10 deficient mice relative to wild-type mice. Moreover, the amounts of pulmonary CD4+ and CD8+ T cells were all inversely correlated with the lung lesions, as well as the viral load of PCV2. These results demonstrate that PCV2 infection employs IL-10 to block the transfer of T cells to the lungs of mice, and IL-10 attenuates the production of pro-inflammatory cytokines and PCV2-specific antibodies. The lack of T cell infiltration, pro-inflammatory cytokines, and PCV2-specific antibodies promote PCV2 replication, leading to a more severe lung lesion in mice.
Collapse
Affiliation(s)
- Qian Du
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Huan Zhang
- College of Life Science, Northwest A&F University, Yangling, China
| | - Mingrui He
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Xuan Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Jia He
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Beibei Cui
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Xuefeng Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Dewen Tong
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yong Huang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| |
Collapse
|
12
|
Salines M, Dumarest M, Andraud M, Mahé S, Barnaud E, Cineux M, Eveno E, Eono F, Dorenlor V, Grasland B, Bourry O, Pavio N, Rose N. Natural viral co-infections in pig herds affect hepatitis E virus (HEV) infection dynamics and increase the risk of contaminated livers at slaughter. Transbound Emerg Dis 2019; 66:1930-1945. [PMID: 31067014 DOI: 10.1111/tbed.13224] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 04/30/2019] [Accepted: 05/02/2019] [Indexed: 12/23/2022]
Abstract
Hepatitis E virus (HEV) is a zoonotic pathogen, in particular genotype 3 HEV is mainly transmitted to humans through the consumption of contaminated pork products. This study aimed at describing HEV infection patterns in pig farms and at assessing the impact of immunomodulating co-infections namely Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) and Porcine Circovirus Type 2 (PCV2), as well as other individual factors such as piglets' immunity and litters' characteristics on HEV dynamics. A longitudinal follow-up was conducted in three farrow-to-finish farms known to be HEV infected. Overall, 360 piglets were individually monitored from birth to slaughter with regular blood and faecal sampling as well as blood and liver samples collected at slaughterhouse. Virological and serological analyses were performed to detect HEV, PCV2 and PRRSV genome and antibodies. The links between 12 explanatory variables and four outcomes describing HEV dynamics were assessed using cox-proportional hazard models and logistic regression. HEV infection dynamics was found highly variable between farms and in a lower magnitude between batches. HEV positive livers were more likely related to short time-intervals between HEV infection and slaughter time (<40 days, OR = 4.1 [3.7-4.5]). In addition to an influence of piglets' sex and sows' parity, the sequence of co-infections was strongly associated with different HEV dynamics: a PRRSV or PCV2/PRRSV pre- or co-infection was associated with a higher age at HEV shedding (Hazard Ratio = 0.3 [0.2-0.5]), as well as a higher age at HEV seroconversion (HR = 0.5 [0.3-0.9] and HR = 0.4 [0.2-0.7] respectively). A PCV2/PRRSV pre- or co-infection was associated with a longer duration of shedding (HR = 0.5 [0.3-0.8]). Consequently, a PRRSV or PCV2/PRRSV pre- or co-infection was strongly associated with a higher risk of having positive livers at slaughter (OR = 4.1 [1.9-8.9] and OR = 6.5 [3.2-13.2] respectively). In conclusion, co-infections with immunomodulating viruses were found to affect HEV dynamics in the farrow-to-finish pig farms that were followed in this study.
Collapse
Affiliation(s)
- Morgane Salines
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Ploufragan-Plouzané Laboratory, Ploufragan, France.,Bretagne-Loire University, Rennes, France
| | - Marine Dumarest
- ANSES, Laboratoire de Santé Animale, UMR 1161 Virology, Maisons-Alfort, France.,INRA, UMR 1161 Virology, Maisons-Alfort, France.,Ecole Nationale Vétérinaire d'Alfort, UMR 1161 Virology, Maisons-Alfort, France
| | - Mathieu Andraud
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Ploufragan-Plouzané Laboratory, Ploufragan, France.,Bretagne-Loire University, Rennes, France
| | - Sophie Mahé
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Ploufragan-Plouzané Laboratory, Ploufragan, France.,Bretagne-Loire University, Rennes, France
| | - Elodie Barnaud
- ANSES, Laboratoire de Santé Animale, UMR 1161 Virology, Maisons-Alfort, France.,INRA, UMR 1161 Virology, Maisons-Alfort, France.,Ecole Nationale Vétérinaire d'Alfort, UMR 1161 Virology, Maisons-Alfort, France
| | - Maelan Cineux
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Ploufragan-Plouzané Laboratory, Ploufragan, France.,Bretagne-Loire University, Rennes, France
| | - Eric Eveno
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Ploufragan-Plouzané Laboratory, Ploufragan, France.,Bretagne-Loire University, Rennes, France
| | - Florent Eono
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Ploufragan-Plouzané Laboratory, Ploufragan, France.,Bretagne-Loire University, Rennes, France
| | - Virginie Dorenlor
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Ploufragan-Plouzané Laboratory, Ploufragan, France.,Bretagne-Loire University, Rennes, France
| | - Béatrice Grasland
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Ploufragan-Plouzané Laboratory, Ploufragan, France.,Bretagne-Loire University, Rennes, France
| | - Olivier Bourry
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Ploufragan-Plouzané Laboratory, Ploufragan, France.,Bretagne-Loire University, Rennes, France
| | - Nicole Pavio
- ANSES, Laboratoire de Santé Animale, UMR 1161 Virology, Maisons-Alfort, France.,INRA, UMR 1161 Virology, Maisons-Alfort, France.,Ecole Nationale Vétérinaire d'Alfort, UMR 1161 Virology, Maisons-Alfort, France
| | - Nicolas Rose
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Ploufragan-Plouzané Laboratory, Ploufragan, France.,Bretagne-Loire University, Rennes, France
| |
Collapse
|
13
|
Affiliation(s)
- Yashpal Singh Malik
- ICAR-Indian Veterinary Research Institute (ICAR-IVRI), Izatnagar, Uttar Pradesh India
| | - Raj Kumar Singh
- ICAR-Indian Veterinary Research Institute (ICAR-IVRI), Izatnagar, Uttar Pradesh India
| | - Mahendra Pal Yadav
- ICAR-Indian Veterinary Research Institute (ICAR-IVRI), Izatnagar, Uttar Pradesh, India, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, India
| |
Collapse
|
14
|
Porcine reproductive and respiratory syndrome virus induces concurrent elevation of High Mobility Group Box-1 protein and pro-inflammatory cytokines in experimentally infected piglets. Cytokine 2019; 113:21-30. [DOI: 10.1016/j.cyto.2018.06.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 05/31/2018] [Accepted: 06/01/2018] [Indexed: 01/01/2023]
|
15
|
Huang J, Yang C, Jia R, Wang M, Chen S, Liu M, Zhu D, Zhao X, Yang Q, Wu Y, Zhang L, Yin Z, Jing B, Cheng A. Induction of a protective response in ducks vaccinated with a DNA vaccine encoding engineered duck circovirus Capsid protein. Vet Microbiol 2018; 225:40-47. [DOI: 10.1016/j.vetmic.2018.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/10/2018] [Accepted: 09/11/2018] [Indexed: 12/14/2022]
|
16
|
Dvorak CM, Puvanendiran S, Murtaugh MP. Porcine circovirus 2 infection induces IFNβ expression through increased expression of genes involved in RIG-I and IRF7 signaling pathways. Virus Res 2018; 253:38-47. [DOI: 10.1016/j.virusres.2018.05.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 05/29/2018] [Accepted: 05/30/2018] [Indexed: 12/12/2022]
|
17
|
Du Q, Wu X, Wang T, Yang X, Wang Z, Niu Y, Zhao X, Liu SL, Tong D, Huang Y. Porcine Circovirus Type 2 Suppresses IL-12p40 Induction via Capsid/gC1qR-Mediated MicroRNAs and Signalings. THE JOURNAL OF IMMUNOLOGY 2018; 201:533-547. [PMID: 29858268 DOI: 10.4049/jimmunol.1800250] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 05/03/2018] [Indexed: 12/22/2022]
Abstract
Porcine circovirus (PCV) type 2 (PCV2), an immunosuppression pathogen, is often found to increase the risk of other pathogenic infections. Yet the relative immune mechanisms determining the susceptibility of PCV2-infected animals remain unclear. In this study, we confirmed that PCV2 infection suppressed IL-12p40 expression and host Th1 immune response, leading to a weakened pathogenic clearance upon porcine reproductive respiratory syndrome virus (PRRSV) or Haemophilus parasuis infection. PCV2 infection suppressed pathogens, LPS/IFN-γ, or LPS/R848-induced IL-12p40 expression in porcine alveolar macrophages. PCV2 capsid (Cap) was the major component to suppress IL-12p40 induction by LPS/IFN-γ, LPS/R848, PRRSV, or H. parasuis Either wild-type PCV2 or mutants PCV2-replicase 1 and PCV type 1-Cap2, which contained PCV2 Cap, significantly decreased IL-12p40 levels and increased the replication of PRRSV and H. parasuis in the lung tissues relative to mock or PCV type 1 infection. gC1qR, a Cap binding protein, was not involved in IL-12p40 induction but mediated the inhibitory effect of PCV2 Cap on IL-12p40 induction. PCV2 also activated PI3K/Akt1 and p38 MAPK signalings to inhibit IL-12p40 expression via inhibition of NF-κB p65 binding to il12B promoter and upregulation of miR-23a and miR-29b. Knockdown of Akt1 and p38 MAPK downregulated miR-23a and miR-29b and increased IL-12p40 expression. Inhibition of miR-23a and miR-29b attenuated the inhibitory effect of PCV2 on IL-12p40 induction, resulting in an increased IL-12p40 expression and Th1 cell population and reduced susceptibility to PRRSV or H. parasuis Taken together, these results demonstrate that PCV2 infection suppresses IL-12p40 expression to lower host Th1 immunity to increase the risk of other pathogenic infection via gC1qR-mediated PI3K/Akt1 and p38 MAPK signaling activation.
Collapse
Affiliation(s)
- Qian Du
- College of Veterinary Medicine, Northwest A&F University, Yangling, China 712100
| | - Xingchen Wu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China 712100
| | - Tongtong Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China 712100
| | - Xuefeng Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China 712100
| | - Zhenyu Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China 712100
| | - Yingying Niu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China 712100
| | - Xiaomin Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, China 712100
| | - Shan-Lu Liu
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210.,Viruses and Emerging Pathogens Program, Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210.,Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210; and.,Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210
| | - Dewen Tong
- College of Veterinary Medicine, Northwest A&F University, Yangling, China 712100;
| | - Yong Huang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China 712100;
| |
Collapse
|
18
|
Yang N, Li J, Yang Q, Qiao J, Cui D, Liu F, Li H, Zhou S. Reduced antigen presentation capability and modified inflammatory/immunosuppressive cytokine expression of induced monocyte-derived dendritic cells from peripheral blood of piglets infected with porcine circovirus type 2. Arch Virol 2018; 163:1231-1239. [DOI: 10.1007/s00705-018-3735-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 01/06/2018] [Indexed: 12/01/2022]
|
19
|
Han J, Zhang S, Zhang Y, Chen M, Lv Y. Porcine circovirus type 2 increases interleukin-1beta and interleukin-10 production via the MyD88-NF-kappa B signaling pathway in porcine alveolar macrophages in vitro. J Vet Sci 2018; 18:183-191. [PMID: 27456771 PMCID: PMC5489465 DOI: 10.4142/jvs.2017.18.2.183] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 03/17/2016] [Accepted: 06/08/2016] [Indexed: 11/20/2022] Open
Abstract
Porcine alveolar macrophages (PAMs) represent the first line of defense in the porcine lung after infection with porcine circovirus type 2 (PCV2) via the respiratory tract. However, PCV2 infection impairs the microbicidal capability of PAMs and alters cytokine production and/or secretion. At present, the reason for the imbalance of cytokines has not been fully elucidated, and the regulatory mechanisms involved are unclear. In this study, we investigated the expression levels and regulation of interleukin-1beta (IL-1β) and IL-10 in PAMs following incubation with PCV2 in vitro. Levels of IL-1β and IL-10 increased in PAM supernatants, and the distribution of nuclear factor kappa B (NF-κB) p65staining in nucleus, expression of MyD88 and p-IκB in cytoplasm, and DNA-binding activity of NF-κB increased after incubation with PCV2, while p65 expression in PAM cytoplasm decreased. However, when PAMs were co-incubated with PCV2 and small interfering RNA targeting MyD88, those effects were reversed. Additionally, mRNA expression levels of Toll-like receptors (TLR)-2, -3, -4, -7, -8, and -9 increased when PAMs were incubated with PCV2. These results show that PCV2 induces increased IL-1β and IL-10 production in PAMs, and these changes in expression are related to the TLR-MyD88-NF-κB signaling pathway.
Collapse
Affiliation(s)
- Junyuan Han
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuxia Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yaqun Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Mengmeng Chen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yingjun Lv
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
20
|
Identification and functional analysis of the novel ORF6 protein of porcine circovirus type 2 in vitro. Vet Res Commun 2017; 42:1-10. [PMID: 29177583 DOI: 10.1007/s11259-017-9702-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Accepted: 11/08/2017] [Indexed: 12/19/2022]
Abstract
In the present study, the function of a novel ORF6 gene in the PCV2 genome was determined and functionally analyzed in vitro. ORF6 expression was demonstrated by indirect immunofluorescence in PCV2-infected cells. The antibody against ORF6 was detected in PCV2-infected pigs. The start codon of ORF6 was mutated and an infectious clone was used to create an ORF6-deficient mutant virus. Viral DNA replication curves and immunofluorescence analysis indicated that ORF6 is unnecessary for viral replication and ORF6 deletion reduces viral DNA replication in PK-15 cells. The activities of caspases 3 and 8 in ORF6-deficient virus-infected cells were significantly different from those in wild-type virus-infected cells. The ORF6 protein can increase the expression of IFN-β, TNF-α, IL-1b, IL-10, and IL-12p40. These results demonstrated that the newly discovered ORF6 protein may be involved in caspases regulation and the expression of multiple cytokines in PCV2-infected cells. The functions of this gene in viral pathogenesis remain to be further elucidated.
Collapse
|
21
|
Liu J, Zhang X, Ma C, Jiang P, Yun S. Hsp90 inhibitor reduces porcine circovirus 2 replication in the porcine monocytic line 3D4/31. Virus Genes 2016; 53:95-99. [DOI: 10.1007/s11262-016-1385-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Accepted: 08/19/2016] [Indexed: 12/19/2022]
|
22
|
Li Y, Liu H, Wang P, Wang L, Sun Y, Liu G, Zhang P, Kang L, Jiang S, Jiang Y. RNA-Seq Analysis Reveals Genes Underlying Different Disease Responses to Porcine Circovirus Type 2 in Pigs. PLoS One 2016; 11:e0155502. [PMID: 27171165 PMCID: PMC4865221 DOI: 10.1371/journal.pone.0155502] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 04/30/2016] [Indexed: 11/18/2022] Open
Abstract
Porcine circovirus type 2 (PCV2), an economically important pathogen, causes postweaning multisystemic wasting syndrome (PMWS) and other syndrome diseases collectively known as porcine circovirus-associated disease (PCVAD). Previous studies revealed breed-dependent differences in porcine susceptibility to PCV2; however, the genetic mechanism underlying different resistance to PCV2 infection remains largely unknown. In this study, we found that Yorkshire × Landrace (YL) pigs exhibited serious clinical features typifying PCV2 disease, while the Laiwu (a Chinese indigenous pig breed, LW) pigs showed little clinical symptoms of the disease during PCV2 infection. At 35 days post infection (dpi), the PCV2 DNA copy in YL pigs was significantly higher than that in LW pigs (P < 0.05). The serum level of IL-4, IL-6, IL-8, IL-12 and TGF-β1 in LW pigs and TNF-α in YL pigs increased significantly at the early infected stages, respectively; while that of IL-10 and IFN-γ in YL pigs was greatly increased at 35 dpi. RNA-seq analysis revealed that, at 35 dpi, 83 genes were up-regulated and 86 genes were down-regulated in the lung tissues of LW pigs, while in YL pigs, the numbers were 187 and 18, respectively. In LW pigs, the differentially expressed genes (DEGs) were mainly involved in complement and coagulation cascades, metabolism of xenobiotics by cytochrome P450, RIG-I-like receptor signaling and B cell receptor signaling pathways. Four up-regulated genes (TFPI, SERPNC1, SERPNA1, and SERPNA5) that are enriched in complement and coagulation cascades pathway were identified in the PCV2-infected LW pigs, among which the mRNA expression of SERPNA1, as well as three genes including TGF-β1, TGF-β2 and VEGF that are regulated by SERPNA1 was significantly increased (P < 0.05). We speculate that higher expression of SERPNA1 may effectively suppress excessive inflammation reaction and reduce the pathological degree of lung tissue in PCV2-infected pigs. Collectively, our findings indicate that the susceptibility to PCV2 infection depends on a genetic difference between LW and YL pigs, and SERPNA1 likely plays an important role in the resistance of LW pigs to PCV2 infection.
Collapse
Affiliation(s)
- Yanping Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Hao Liu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Pengfei Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Liyuan Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Yi Sun
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Gen Liu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Ping Zhang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Li Kang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Shijin Jiang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Yunliang Jiang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| |
Collapse
|
23
|
Qin Y, Li H, Qiao J. TLR2/MyD88/NF-κB signalling pathway regulates IL-8 production in porcine alveolar macrophages infected with porcine circovirus 2. J Gen Virol 2016; 97:445-452. [PMID: 26581603 DOI: 10.1099/jgv.0.000345] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Yao Qin
- College of Veterinary Medicine, China Agricultural University, 2 Yuan-Ming-Yuan West Road, Beijing 100193, PR China
| | - Haihua Li
- Tianjin Institute of Animal Husbandry and Veterinary Medicine, Jin-Jing Road, Tianjin 300381, PR China
| | - Jiayun Qiao
- Tianjin Institute of Animal Husbandry and Veterinary Medicine, Jin-Jing Road, Tianjin 300381, PR China
| |
Collapse
|
24
|
Kekarainen T, Segalés J. Porcine circovirus 2 immunology and viral evolution. Porcine Health Manag 2015; 1:17. [PMID: 28405423 PMCID: PMC5382452 DOI: 10.1186/s40813-015-0012-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 11/11/2015] [Indexed: 02/08/2023] Open
Abstract
Porcine circovirus 2 (PCV2) has and is still causing important economic losses to pig industry. This is due to PCV2-systemic disease (PCV2-SD), formerly known as postweaning multi-systemic wasting syndrome (PMWS), which increases mortality rates and slows down the growth of the animals, as well as other conditions collectively included within the so-called porcine circovirus diseases (PCVD). PCV2-SD affected pigs are considered to be immunosuppressed, with severe lymphocyte depletion and evidence of secondary infections. However, PCV2-infected pigs not developing the disease are able to mount humoral and cellular immune responses and clear the virus or limit the infection. On the contrary, insufficient amounts of neutralizing antibodies have been linked to increased PCV2 replication, severe lymphoid lesions and development of PCV2-SD. Central role in controlling PCV2 infection are played by the antigen specific memory T cells. These cells persist long term post-infection or vaccination and are able to expand rapidly after recall antigen recognition. Most farms in the main pig producing countries are applying vaccination against PCV2 to prevent the disease and improve the farm performance. Vaccines do not induce sterilizing immunity and PCV2 keeps on circulating even in farms applying vaccination. This, together with the high mutation rate of PCV2, world-wide fluctuations in the genotype dominance and emergence of novel genetic variants, warrant close molecular survey of the virus in the field.
Collapse
Affiliation(s)
- Tuija Kekarainen
- Centre de Recerca en Sanitat Animal (CReSA), Institute of Agrifood Research and Technology (IRTA), Bellaterra, Cerdanyola del Vallès, Spain
| | - Joaquim Segalés
- Centre de Recerca en Sanitat Animal (CReSA), Institute of Agrifood Research and Technology (IRTA), Bellaterra, Cerdanyola del Vallès, Spain.,Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès, Spain
| |
Collapse
|
25
|
Choi CY, Oh HN, Jun Lee S, Chun T. ORF2 protein of porcine circovirus type 2 promotes phagocytic activity of porcine macrophages by inhibiting proteasomal degradation of complement component 1, q subcomponent binding protein (C1QBP) through physical interaction. J Gen Virol 2015; 96:3294-3301. [DOI: 10.1099/jgv.0.000282] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Chang-Yong Choi
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Republic of Korea
| | - Hae-Na Oh
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Republic of Korea
| | - Suk Jun Lee
- Department of Biomedical Laboratory Science, College of Health Science, Cheongju University, Cheongju-si 360-764, Republic of Korea
| | - Taehoon Chun
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Republic of Korea
| |
Collapse
|
26
|
Richmond O, Cecere T, Erdogan E, Meng X, Piñeyro P, Subramaniam S, Todd S, LeRoith T. PD-L1 expression is increased in monocyte derived dendritic cells in response to porcine circovirus type 2 and porcine reproductive and respiratory syndrome virus infections. Vet Immunol Immunopathol 2015; 168:24-9. [DOI: 10.1016/j.vetimm.2015.09.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 09/17/2015] [Accepted: 09/22/2015] [Indexed: 11/29/2022]
|
27
|
Choi CY, Rho SB, Kim HS, Han J, Bae J, Lee SJ, Jung WW, Chun T. The ORF3 protein of porcine circovirus type 2 promotes secretion of IL-6 and IL-8 in porcine epithelial cells by facilitating proteasomal degradation of regulator of G protein signalling 16 through physical interaction. J Gen Virol 2015; 96:1098-1108. [DOI: 10.1099/vir.0.000046] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 01/06/2015] [Indexed: 12/27/2022] Open
Affiliation(s)
- Chang-Yong Choi
- Division of Biotechnology, School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Republic of Korea
| | - Seung Bae Rho
- Research Institute, National Cancer Center, Goyang-si 410-769, Republic of Korea
| | - Hyun-Sook Kim
- Department of Integrated Biomedical and Life Science, College of Health Science, Korea University, Seoul 136-703, Republic of Korea
| | - Jihye Han
- Division of Biotechnology, School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Republic of Korea
| | - Joonbeom Bae
- Division of Biotechnology, School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Republic of Korea
| | - Suk Jun Lee
- Department of Biomedical Laboratory Science, College of Health Science, Cheongju University, Cheongju-si 360-764, Republic of Korea
| | - Woon-Won Jung
- Department of Biomedical Laboratory Science, College of Health Science, Cheongju University, Cheongju-si 360-764, Republic of Korea
| | - Taehoon Chun
- Division of Biotechnology, School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Republic of Korea
| |
Collapse
|
28
|
Identification of microRNAs in PCV2 subclinically infected pigs by high throughput sequencing. Vet Res 2015; 46:18. [PMID: 25879589 PMCID: PMC4346106 DOI: 10.1186/s13567-014-0141-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 12/18/2014] [Indexed: 11/17/2022] Open
Abstract
Porcine circovirus type 2 (PCV2) is the essential etiological infectious agent of PCV2-systemic disease and has been associated with other swine diseases, all of them collectively known as porcine circovirus diseases. MicroRNAs (miRNAs) are a new class of small non-coding RNAs that regulate gene expression post-transcriptionally. miRNAs play an increasing role in many biological processes. The study of miRNA-mediated host-pathogen interactions has emerged in the last decade due to the important role that miRNAs play in antiviral defense. The objective of this study was to identify the miRNA expression pattern in PCV2 subclinically infected and non-infected pigs. For this purpose an experimental PCV2 infection was carried out and small-RNA libraries were constructed from tonsil and mediastinal lymph node (MLN) of infected and non-infected pigs. High throughput sequencing determined differences in miRNA expression in MLN between infected and non-infected while, in tonsil, a very conserved pattern was observed. In MLN, miRNA 126-3p, miRNA 126-5p, let-7d-3p, mir-129a and mir-let-7b-3p were up-regulated whereas mir-193a-5p, mir-574-5p and mir-34a down-regulated. Prediction of functional analysis showed that these miRNAs can be involved in pathways related to immune system and in processes related to the pathogenesis of PCV2, although functional assays are needed to support these predictions. This is the first study on miRNA gene expression in pigs infected with PCV2 using a high throughput sequencing approach in which several host miRNAs were differentially expressed in response to PCV2 infection.
Collapse
|
29
|
Abstract
Swine are used in biomedical research as models for biomedical research and for teaching. This chapter covers normative biology and behavior along with common and emerging swine diseases. Xenotransplantation is discussed along with similarities and differences of swine immunology.
Collapse
Affiliation(s)
- Kristi L. Helke
- Departments of Comparative Medicine and Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA
| | | | - Raimon Duran-Struuck
- Columbia Center of Translational Immunology, Department of Surgery; Institute of Comparative Medicine; Columbia University Medical Center, New York, NY, USA
| | - M. Michael Swindle
- Medical University of South Carolina, Department of Comparative Medicine and Department of Surgery, Charleston, SC, USA
| |
Collapse
|
30
|
Sylla S, Cong YL, Sun YX, Yang GL, Ding XM, Yang ZQ, Zhou YL, Yang M, Wang CF, Ding Z. Protective immunity conferred by porcine circovirus 2 ORF2-based DNA vaccine in mice. Microbiol Immunol 2014; 58:398-408. [DOI: 10.1111/1348-0421.12158] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Revised: 05/08/2014] [Accepted: 05/13/2014] [Indexed: 11/30/2022]
Affiliation(s)
- Seydou Sylla
- Laboratory of Infectious Disease, College of Veterinary Medicine; Jilin University; Xi’an Road 5333 Changchun Jilin 130062 China
- Institut Supérieur des Sciences et de Médecine Vétérinaire; Dalaba 09 Guinea
| | - Yan-Long Cong
- Laboratory of Infectious Disease, College of Veterinary Medicine; Jilin University; Xi’an Road 5333 Changchun Jilin 130062 China
| | - Yi-Xue Sun
- Laboratory of Infectious Disease, College of Veterinary Medicine; Jilin University; Xi’an Road 5333 Changchun Jilin 130062 China
| | - Gui-Lian Yang
- Engineering Research Center of Jilin Province for Animals Probiotics; College of Animal Science and Technology
| | - Xue-Mei Ding
- College of Animal Science; College of Veterinary Medicine Jilin University 5333 Xi’an Rd
| | - Zhan-Qing Yang
- Laboratory of Infectious Disease, College of Veterinary Medicine; Jilin University; Xi’an Road 5333 Changchun Jilin 130062 China
| | - Yu-Long Zhou
- Laboratory of Infectious Disease, College of Veterinary Medicine; Jilin University; Xi’an Road 5333 Changchun Jilin 130062 China
| | - Minnan Yang
- Laboratory of Infectious Disease, College of Veterinary Medicine; Jilin University; Xi’an Road 5333 Changchun Jilin 130062 China
| | - Chun-Feng Wang
- Engineering Research Center of Jilin Province for Animals Probiotics; College of Animal Science and Technology
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi; Jilin Agricultural University; 2888 Xinchen Rd Changchun Jilin 130062 China
| | - Zhuang Ding
- Laboratory of Infectious Disease, College of Veterinary Medicine; Jilin University; Xi’an Road 5333 Changchun Jilin 130062 China
| |
Collapse
|
31
|
Duan D, Zhang S, Li X, Guo H, Chen M, Zhang Y, Han J, Lv Y. Activation of the TLR/MyD88/NF-κB signal pathway contributes to changes in IL-4 and IL-12 production in piglet lymphocytes infected with porcine circovirus type 2 in vitro. PLoS One 2014; 9:e97653. [PMID: 24841678 PMCID: PMC4026386 DOI: 10.1371/journal.pone.0097653] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 04/22/2014] [Indexed: 01/27/2023] Open
Abstract
Porcine circovirus type 2 (PCV2) causes immunosuppression in pigs. One causative factor is an imbalance in cytokine levels in the blood and lymphoid tissues. Many studies have reported changes in cytokine production, but the regulatory mechanisms involved have not yet been elucidated. In this study, we investigated alteration and regulation of IL-4 and IL-12 production in lymphocytes following incubation with PCV2 in vitro. The levels of IL-4 decreased and levels of IL-12 increased in lymphocyte supernatants, and the DNA-binding activity of NF-κB and the expression of p65 in the nucleus and p-IκB in the cytoplasm of lymphocytes increased after incubation with PCV2. However, these effects were reversed when lymphocytes were coincubated with PCV2 and the NF-κB inhibitor BAY11-7082. In addition, the expression of MyD88 protein increased and the expression of mRNA for the toll-like receptors (TLRs) TLR2, TLR3, TLR4 and TLR9 was upregulated when lymphocytes were incubated with PCV2. However, no change was seen in TLR7 and TLR8 mRNA expression. In conclusion, this study showed that PCV2 induced a decrease in IL-4 and an increase in IL-12 production in lymphocytes, and these changes were regulated by the TLR-MyD88-NF-κB signal pathway.
Collapse
Affiliation(s)
- Dianning Duan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Shuxia Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xiaolin Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Hua Guo
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Mengmeng Chen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yaqun Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Junyuan Han
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yingjun Lv
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- * E-mail:
| |
Collapse
|
32
|
Ferrari L, Borghetti P, De Angelis E, Martelli P. Memory T cell proliferative responses and IFN-γ productivity sustain long-lasting efficacy of a Cap-based PCV2 vaccine upon PCV2 natural infection and associated disease. Vet Res 2014; 45:44. [PMID: 24735253 PMCID: PMC3999888 DOI: 10.1186/1297-9716-45-44] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 04/01/2014] [Indexed: 01/15/2023] Open
Abstract
Porcine circovirus type 2 (PCV2) vaccination represents an important measure to cope with PCV2 infection; however, data regarding the modulation of the immune cell compartment are still limited, especially under field conditions. This study is aimed at investigating the features of the cellular immune response in conventional piglets induced by vaccination using a capsid (Cap) protein-based PCV2 vaccine compared to unvaccinated animals when exposed to PCV2 natural infection. Immune reactivity was evaluated by quantifying peripheral cell subsets involved in the anti-viral response and characterizing the interferon-gamma (IFN-γ) secreting cell (SC) responsiveness both in vivo and upon in vitro whole PCV2 recall. The vaccination triggered an early and intense IFN-γ secreting cell response and induced the activation of peripheral lymphocytes. The early increase of IFN-γ SC frequencies resulted in a remarkable and transient tendency to increased IFN-γ productivity in vaccinated pigs. In vaccinated animals, soon before the onset of infection occurred 15-16 weeks post-vaccination, the recalled PCV2-specific immune response was characterized by moderate PCV2-specific IFN-γ secreting cell frequencies and augmented productivity together with reactive CD4+CD8+ memory T cells. Conversely, upon infection, unvaccinated animals showed very high frequencies of IFN-γ secreting cells and a tendency to lower productivity, which paralleled with effector CD4-CD8+ cytotoxic cell responsiveness. The study shows that PCV2 vaccination induces a long-lasting immunity sustained by memory T cells and IFN-γ secreting cells that potentially played a role in preventing the onset of infection; the extent and duration of this reactivity can be an important feature for evaluating the protective immunity induced by vaccination.
Collapse
Affiliation(s)
- Luca Ferrari
- Department of Veterinary Science, University of Parma, Via del Taglio, 10, 43126 Parma, Italy.
| | | | | | | |
Collapse
|
33
|
Yin SH, Xiao CT, Gerber PF, Beach NM, Meng XJ, Halbur PG, Opriessnig T. Concurrent porcine circovirus type 2a (PCV2a) or PCV2b infection increases the rate of amino acid mutations of porcine reproductive and respiratory syndrome virus (PRRSV) during serial passages in pigs. Virus Res 2013; 178:445-51. [PMID: 24036229 PMCID: PMC7126594 DOI: 10.1016/j.virusres.2013.09.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 09/04/2013] [Accepted: 09/04/2013] [Indexed: 11/05/2022]
Abstract
The genetic variability of PRRSV during serial passage in PCV2-infected pigs was investigated. PRRSV structural genes ORF6 and ORF7 mutated at various degrees over time in vivo. A significantly higher mutation rate was observed when pigs were co-infected with PCV2.
Porcine reproductive and respiratory syndrome virus (PRRSV) has a high degree of genetic and antigenic variability. The purpose of this study was to determine if porcine circovirus type 2 (PCV2) infection increases genetic variability of PRRSV during serial passages in pigs and to determine if there is a difference in the PRRSV mutation rate between pigs concurrently infected with PCV2a or PCV2b. After 8 consecutive passages of PRRSV alone (group 1), PRRSV with PCV2a (group 2), or PCV2b (group 3) in pigs, the sequences of PRRSV structural genes for open reading frame (ORF) 5, ORF6, ORF7 and the partial non-structural protein gene (Nsp) 2 were determined. The total number of identified amino acid mutations in ORF5, ORF6, ORF7 and Nsp2 sequences was 30 for PRRSV infection only, 63 for PRRSV/PCV2a concurrent infection, and 77 for PRRSV/PCV2b concurrent infection when compared with the original VR2385 virus used to infect the passage 1 pigs. Compared to what occurred in pigs infected with PRRSV only, the mutation rates in ORF5 and ORF6 were significantly higher for concurrent PRRSV/PCV2b infected pigs. The PRRSV/PCV2a pigs had a significantly higher mutation rate in ORF7. The results from this study indicated that, besides ORF5 and Nsp2, the PRRSV structural genes ORF6 and ORF7 were shown to mutate at various degrees when the PRRSV was passaged over time in vivo. Furthermore, a significantly higher mutation rate of PRRSV was observed when pigs were co-infected with PCV2 highlighting the importance of concurrent infections on PRRSV evolution and control.
Collapse
Affiliation(s)
- Shuang-Hui Yin
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Li W, Liu S, Wang Y, Deng F, Yan W, Yang K, Chen H, He Q, Charreyre C, Audoneet JC. Transcription analysis of the porcine alveolar macrophage response to porcine circovirus type 2. BMC Genomics 2013; 14:353. [PMID: 23711280 PMCID: PMC3680065 DOI: 10.1186/1471-2164-14-353] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 05/11/2013] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Porcine circovirus type 2 (PCV2) is the causal agent of postweaning multisystemic wasting syndrome (PMWS), which has severely impacted the swine industry worldwide. PCV2 triggers a weak and atypical innate immune response, but the key genes and mechanisms by which the virus interferes with host innate immunity have not yet been elucidated. In this study, genes that control the response of primary porcine alveolar macrophages (PAMs), the main target of PCV2, were profiled in vitro. RESULTS PAMs were successfully infected by PCV2-WH strain, as evidenced quantitative real-time polymerase chain reaction (qPCR) and immunofluorescence assay (IFA) results. Infection-related differential gene expression was investigated using pig microarrays from the US Pig Genome Coordination Program and validated by real-time PCR and enzyme-linked immunosorbent assay (ELISA). Microarray analysis at 24 and 48 hours post-infection (HPI) revealed 266 and 175 unique genes, respectively, that were differentially expressed (false discovery rate <0.05; fold-change >2). Only six genes were differentially expressed between 24 and 48 HPI. The up-regulated genes were principally related to immune response, cytokine activity, locomotion, regulation of cell proliferation, apoptosis, cell growth arrest, and antigen procession and presentation. The down-regulated genes were mainly involved in terpenoid biosynthesis, carbohydrate metabolism, translation, proteasome degradation, signal transducer activity, and ribosomal proteins, which were representative of the reduced vital activity of PCV2-infected cells. CONCLUSIONS PCV2 infection of PAMs causes up-regulation of genes related to inflammation, indicating that PCV2 may induce systematic inflammation. PCV2 persistently induced cytokines, mainly through the Toll-like receptor (TLR) 1 and TLR9 pathways, which may promote high levels of cytokine secretion. PCV2 may prevent apoptosis in PAMs by up-regulating SERPINB9 expression, possibly to lengthen the duration of PCV2 replication-permissive conditions. The observed gene expression profile may provide insights into the underlying immunological response and pathological changes that occur in pigs following PCV2 infection.
Collapse
Affiliation(s)
- Wentao Li
- Division of Animal Infectious Disease, State Key Laboratory of Agricultural Microbiology College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Lin CM, Jeng CR, Liu JP, Lin EC, Chang CC, Huang YL, Tsai YC, Chia MY, Wan CH, Pang VF. Immune gene expression profiles in swine inguinal lymph nodes with different viral loads of porcine circovirus type 2. Vet Microbiol 2013; 162:519-529. [DOI: 10.1016/j.vetmic.2012.11.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 11/04/2012] [Accepted: 11/07/2012] [Indexed: 01/19/2023]
|
36
|
Hua T, Wang X, Bai J, Zhang L, Liu J, Jiang P. Attenuation of porcine circovirus type-2b by replacement with the Rep gene of porcine circovirus type-1. Virus Res 2013; 173:270-9. [PMID: 23454919 DOI: 10.1016/j.virusres.2013.02.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 02/18/2013] [Accepted: 02/18/2013] [Indexed: 10/27/2022]
Abstract
Porcine circovirus type-2 (PCV2) is the primary causative agent of porcine circovirus-associated diseases and has 4 main ORFs, ORF1 (Rep gene), ORF2 (Cap gene), ORF3 within ORF1, and ORF4, which is overlapped with ORF3, and 1 origin (Ori) of replication located between ORF1 and ORF2. The chimeric PCV1-2, containing the PCV2 capsid, PCV1 rep, and Ori genes, is attenuated in pigs. In order to verify the role of the Rep gene or Ori in the virulence of PCV2, 3 chimeric viruses [PCV2b-Ori1 (PCV1 Ori gene cloned into the backbone of PCV2b), PCV2b-rep1 (PCV1 Rep gene cloned into the backbone of PCV2b), and PCV2b-rep1-Ori1 (PCV1 Rep and Ori genes cloned into the backbone of PCV2b)] and 2 wild-type recombinant PCV2b and PCV1 were constructed and identified. The experimental results in piglets showed that clinical symptoms, viremia, viral load, lesions in lymphoid and lung tissues, and IL-10 and TNF-α expression levels in PBMCs in the PCV2b-rep1-Ori1 and PCV2b-rep1 groups were significantly decreased, compared to PCV2-infected piglets. Meanwhile, histological lesions of lymphoid and lung tissues, viral loads in lymphoid tissues, viremia, and TNF-α expression in PBMCs were not significantly different between groups PCV2b-Ori1 and PCV2b, suggesting that the Rep gene (ORF1) likely contributes to viral pathogenicity in vivo.
Collapse
Affiliation(s)
- Tao Hua
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | | | | | | |
Collapse
|
37
|
Abstract
Porcine circovirus type 2 (PCV2) is the primary causative agent of porcine circovirus-associated disease (PCVAD). The virus preferentially targets the lymphoid tissues, which leads to lymphoid depletion and immunosuppression in pigs. The disease is exacerbated by immunostimulation or concurrent infections with other pathogens. PCV2 resides in certain immune cells, such as macrophage and dendritic cells, and modulates their functions. Upregulation of IL-10 and proinflammatory cytokines in infected pigs may contribute to pathogenesis. Pig genetics influence host susceptibility to PCV2, but the viral genetic determinants for virulence remain unknown. PCV2 DNA and proteins interact with various cellular genes that control immune responses to regulate virus replication and pathogenesis. Both neutralizing antibodies and cell-mediated immunity are important immunological correlates of protection. Despite the availability of effective vaccines, variant strains of PCV2 continue to emerge. Although tremendous progress has been made toward understanding PCV2 pathogenesis and immune interactions, many important questions remain.
Collapse
Affiliation(s)
- Xiang-Jin Meng
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061;
| |
Collapse
|
38
|
Borghetti P, Morganti M, Saleri R, Ferrari L, De Angelis E, Cavalli V, Cacchioli A, Corradi A, Martelli P. Innate pro-inflammatory and adaptive immune cytokines in PBMC of vaccinated and unvaccinated pigs naturally exposed to porcine circovirus type 2 (PCV2) infection vary with the occurrence of the disease and the viral burden. Vet Microbiol 2012; 163:42-53. [PMID: 23290117 DOI: 10.1016/j.vetmic.2012.12.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 10/11/2012] [Accepted: 12/05/2012] [Indexed: 12/12/2022]
Abstract
Pro-inflammatory (IL-8, TNF-α, IL-1β) and immune (IFN-γ, IL-10) cytokines were evaluated in PCV2-vaccinated and unvaccinated pigs exposed to natural PCV2 infection retrospectively selected according to the time of the onset of viremia and the viral burden, and the presence of PMWS clinical signs. In a farrow-to-finish herd with a history of PMWS in animals aged older than 15 weeks, at weaning (21 ± 3 days of age), vaccinated pigs were intramuscularly inoculated with one dose of Porcilis(®) PCV vaccine+adjuvant whereas the adjuvant alone was administered to the control animals. Thirty animals bled at 16 weeks of age (before the occurrence of the natural infection and the onset of the disease) and then at 19, 20, 22 and 26 weeks of age, were categorized as: (a) vaccinated non-infected and non-PMWS-affected (PCV2-vac), (b) unvaccinated spontaneously infected/non-PMWS-affected (Ctrl) and (c) unvaccinated spontaneously infected/PMWS-affected (Ctrl-PMWS+) pigs. A major evidence of this study is that PMWS-affected animals were not able to mount an efficient innate pro-inflammatory response to cope with PCV2 infection as demonstrated by the low levels of pro-inflammatory cytokines, namely IL-8, TNF-α and IL-1β, and IFN-γ. Conversely, significantly increased gene expression levels of IL-8, TNF-α and IL-1β were detected especially in the PCV2-vac group at the early phase of the infection. Moreover, in PMWS diseased animals, a significant increase of IL-10 occurred at the early phase of infection, while, vaccinated pigs, in addition to the low viremia burden and its frequency and the absence of PMWS disease, showed a more stable IFN-γ response.
Collapse
Affiliation(s)
- Paolo Borghetti
- Department of Veterinary Sciences, University of Parma, Via del Taglio, 10 - 43126 Parma, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Cheng S, Zhang M, Li W, Wang Y, Liu Y, He Q. Proteomic analysis of porcine alveolar macrophages infected with porcine circovirus type 2. J Proteomics 2012; 75:3258-69. [DOI: 10.1016/j.jprot.2012.03.039] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 03/06/2012] [Accepted: 03/23/2012] [Indexed: 01/20/2023]
|
40
|
Subclinical porcine circovirus type 2 infection does not modulate the immune response to an Aujeszky's disease virus vaccine. Vet J 2012; 194:84-8. [PMID: 22464756 DOI: 10.1016/j.tvjl.2012.02.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 01/27/2012] [Accepted: 02/22/2012] [Indexed: 11/22/2022]
Abstract
Porcine circovirus type 2 (PCV2) negatively modulates the immune response in vitro. The objective of this study was to investigate if PCV2 interferes with the development of the immune response to Aujeszky's disease virus (ADV) vaccine, using an in vivo experimental subclinical model. Pigs were divided into four groups: (group CC) not infected with PCV2 and not vaccinated against ADV; (group IC) infected with PCV2 but not vaccinated against ADV; (group CV) not infected with PCV2 but vaccinated against ADV, and (group IV) infected with PCV2 and vaccinated against ADV. Pigs in groups IC and IV were inoculated intranasally with PCV2 and 14 days later, pigs in the CV and IV groups were vaccinated IM with a gE(-)tk(-) attenuated ADV vaccine. Clinical signs and weight gains were recorded from days 0 to 35 post-PCV2 inoculation (PI), at which point the pigs were euthanased and examined post-mortem. Throughout the experiment the PCV2 load was quantified in serum, antibodies to PCV2 and ADV were determined and antigen-specific cellular responses against both viruses were measured using an interferon-γ ELISPOT. PCV2 inoculated animals developed subclinical infection and had lower weight gain relative to non-infected controls. No differences were observed between the CV and IV groups in terms of the humoral or cellular immune responses to vaccination against Aujeszky's disease, suggesting that subclinical infection with PCV2 does not alter the response to this vaccine.
Collapse
|
41
|
Microarray analysis of mediastinal lymph node of pigs naturally affected by postweaning multisystemic wasting syndrome. Virus Res 2012; 165:134-42. [PMID: 22366492 DOI: 10.1016/j.virusres.2012.02.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 02/03/2012] [Accepted: 02/07/2012] [Indexed: 12/21/2022]
Abstract
Postweaning multisystemic wasting syndrome (PMWS) is one of the pig diseases with major economic impact worldwide. Clinical, pathologic and some immunologic aspects of this disease are relatively well-known, but the molecular mechanisms underlying the pathogenic mechanisms of the disease are still poorly understood. The objective of the present study was to investigate the global transcriptome changes in the mediastinal lymph nodes from pigs naturally affected by PMWS, as well as healthy counterparts, using the Affymetrix Porcine Genechip(®). From 366 transcripts showing significant differential abundance in the PMWS group of pigs relative to healthy animals, 229 showed higher and 137 lower abundance. A relative increased abundance of mRNAs coded by a large set of genes involved in the inflammatory responses (e.g. cytokines, acute phase proteins, and respiratory burst) was observed in PMWS affected pigs. The Gpnmb and Lgals3 genes, which have antagonistic functions in regulation of inflammatory processes, showed high mRNA levels in diseased pigs. The complement system was altered by PMWS, notably by the lower levels of Cr1 mRNA, which might favour both complement deposition and secondary infections by impairing phagocytosis. Decreased mRNA abundance of several genes involved in lymphocyte activation/differentiation, such as Cd79b, Cd19, Cd21 and MybL1, and the high level of Vsig4 mRNA, which can compromise the activation of residing T-cells, pointed towards a defective adaptive immunity. This is the first study on gene expression in pigs naturally affected by PMWS. The present results allowed identifying potential mechanisms underlying the inflammation and lymphocyte depletion in lymphoid tissues by complement mediated damage and immunosuppression, which are key features of PMWS.
Collapse
|
42
|
Darwich L, Mateu E. Immunology of porcine circovirus type 2 (PCV2). Virus Res 2011; 164:61-7. [PMID: 22178803 DOI: 10.1016/j.virusres.2011.12.003] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 11/24/2011] [Accepted: 12/01/2011] [Indexed: 10/14/2022]
Abstract
The emergence of porcine circovirus type 2 (PCV2) associated diseases and particularly postweaning multisystemic wasting syndrome (PMWS) was a shock for the swine industry and formulated a considerable challenge for researchers in the area of viral immunology in swine. The unique features of PMWS of which emaciation and lymphoid depletion were the most evident indicated a deep involvement of the immune system of the pig in the pathogenesis of this condition and indicated that PCV2 was a singular pathogen. Also, the multifactorial nature of the disease complicated the understanding of PMWS pathogenesis. Nowadays, it is known that PCV2 deeply affects the functionality of the immune system of the pig but also the industry has been able to produce efficacious vaccines. In the present paper some of the most relevant immunological features of PMWS and of PCV2 infection in general will be reviewed.
Collapse
Affiliation(s)
- Laila Darwich
- Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | | |
Collapse
|
43
|
Beach NM, Meng XJ. Efficacy and future prospects of commercially available and experimental vaccines against porcine circovirus type 2 (PCV2). Virus Res 2011; 164:33-42. [PMID: 22005075 DOI: 10.1016/j.virusres.2011.09.041] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 09/30/2011] [Accepted: 09/30/2011] [Indexed: 01/14/2023]
Abstract
Porcine circovirus type 2 (PCV2) is the causative agent of an economically significant collection of disease syndromes in pigs, now known as porcine circovirus associated diseases (PCVADs) in the United States or porcine circovirus diseases (PCVDs) in Europe. Inactivated and subunit vaccines based on PCV2a genotype are commercially available and have been shown to be effective at decreasing mortality and increasing growth parameters in commercial swine herds. Since 2003, there has been a drastic global shift in the predominant prevalence of PCV2b genotype in swine populations, concurrently in most but not all cases with increased severity of clinical disease. Although the current commercial vaccines based on PCV2a do confer cross-protection against PCV2b, novel experimental vaccines based on PCV2b genotype such as modified live-attenuated vaccines are being developed and may provide a superior protection and reduce vaccine costs. In this review, we discuss the current understanding of the impact of PCV2 infection on the host immune response, review the efficacy of the currently available commercial PCV2 vaccines in experimental and field conditions, and provide insight into novel experimental approaches that are useful in the development of next generation vaccines against PCV2.
Collapse
Affiliation(s)
- Nathan M Beach
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0913, USA
| | | |
Collapse
|
44
|
Sinha A, Shen H, Schalk S, Beach N, Huang Y, Meng X, Halbur P, Opriessnig T. Porcine reproductive and respiratory syndrome virus (PRRSV) influences infection dynamics of porcine circovirus type 2 (PCV2) subtypes PCV2a and PCV2b by prolonging PCV2 viremia and shedding. Vet Microbiol 2011; 152:235-46. [DOI: 10.1016/j.vetmic.2011.05.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 03/19/2011] [Accepted: 05/04/2011] [Indexed: 01/08/2023]
|
45
|
Ramírez-Boo M, Núnez E, Jorge I, Navarro P, Fernandes LT, Segalés J, Garrido JJ, Vázquez J, Moreno Á. Quantitative proteomics by 2-DE, 16O/18O labelling and linear ion trap mass spectrometry analysis of lymph nodes from piglets inoculated by porcine circovirus type 2. Proteomics 2011; 11:3452-69. [DOI: 10.1002/pmic.201000610] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Revised: 05/18/2011] [Accepted: 05/30/2011] [Indexed: 12/13/2022]
|
46
|
Leukogram abnormalities in gnotobiotic pigs infected with porcine circovirus type 2. Vet Microbiol 2011; 154:185-90. [PMID: 21784586 DOI: 10.1016/j.vetmic.2011.06.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Revised: 05/25/2011] [Accepted: 06/21/2011] [Indexed: 11/23/2022]
Abstract
Porcine circovirus type 2 (PCV2) is a single-stranded circular DNA virus that is the causative agent of porcine circovirus associated disease (PCVAD), a disease complex affecting swine around the world. Although this virus is believed to negatively affect the host's immune system, the mechanism by which PCV2 induces disease is not completely understood. This report describes a series of PCV2 experiments using the gnotobiotic pig model in which a relationship was demonstrated between abnormal leukograms and development of clinical disease in PCV2-infected pigs. When compared to control pigs the leukogram was characterized by a decrease in lymphocytes within 14 days post inoculation (dpi) followed by an increase in neutrophils 7-14 days later. No significant changes in the circulating monocyte, basophil, and eosinophil cell populations were detected. The combination of an absolute neutrophilia and lymphopenia produced a neutrophil/lymphocyte ratio that was predictive of clinical disease and was inversely correlated with the presence of neutralizing antibodies. Based on previous reports, the lymphopenia may be attributed to a direct cytolytic effect of the virus and could negatively affect the pig's immune response. The role of the neutrophilia in the pathogenesis of PCVAD in gnotobiotic pigs is unknown.
Collapse
|
47
|
Chae JS, Choi KS. Proinflammatory cytokine expression in the lung of pigs with porcine circovirus type 2-associated respiratory disease. Res Vet Sci 2011; 90:321-3. [DOI: 10.1016/j.rvsc.2010.05.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Revised: 12/04/2009] [Accepted: 05/18/2010] [Indexed: 10/19/2022]
|
48
|
Zhang H, Lunney JK, Baker RB, Opriessnig T. Cytokine and chemokine mRNA expression profiles in tracheobronchial lymph nodes from pigs singularly infected or coinfected with porcine circovirus type 2 (PCV2) and Mycoplasma hyopneumoniae (MHYO). Vet Immunol Immunopathol 2011; 140:152-8. [DOI: 10.1016/j.vetimm.2010.11.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 10/27/2010] [Accepted: 11/22/2010] [Indexed: 01/13/2023]
|
49
|
Doster AR, Subramaniam S, Yhee JY, Kwon BJ, Yu CH, Kwon SY, Osorio FA, Sur JH. Distribution and characterization of IL-10-secreting cells in lymphoid tissues of PCV2-infected pigs. J Vet Sci 2010; 11:177-83. [PMID: 20706023 PMCID: PMC2924477 DOI: 10.4142/jvs.2010.11.3.177] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Distribution and characterization of interlukin-10 (IL-10)-secreting cells in lymphoid tissues of pigs naturally infected with porcine circovirus type 2 (PCV2) were evaluated in accordance with PCV2 antigen detection. After screening a total of 56 pigs showing the symptoms of postweaning multisystemic wasting syndrome (PMWS), 15 pigs were PCV2 positive and 5 pigs, which showed stronger positive signals over multiples tissues were further investigated. This study showed that in PCV2-infected lymphoid tissues, particularly mandibular lymph node, spleen and tonsil, IL-10 expression was mainly localized in T-cell rich areas but rarely in B cell rich areas. IL-10 was highly expressed in bystander cells but rarely in PCV2-infected cells. Elevated IL-10 expression was predominantly associated with T cells, but rarely with B cells or with macrophages. The results of this study provide evidence for the role of IL-10 in chronic PCV2 infection and its relation to PCV2 antigen in affected tissues. Constantly elevated levels of IL-10 lead to immunosuppression in persistent and chronic viral infections. The increased IL-10 expression observed in PCV2 infection in this study suggests that IL-10-mediated immunosuppression may play an important role in the pathogenesis and maintenance of naturally occurring PCV2 infection.
Collapse
Affiliation(s)
- Alan R Doster
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska 68583, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Resendes AR, Majó N, van den Ingh TSGAM, Mateu E, Domingo M, Calsamiglia M, Segalés J. Apoptosis in postweaning multisystemic wasting syndrome (PMWS) hepatitis in pigs naturally infected with porcine circovirus type 2 (PCV2). Vet J 2010; 189:72-6. [PMID: 20817515 DOI: 10.1016/j.tvjl.2010.06.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Revised: 06/25/2010] [Accepted: 06/25/2010] [Indexed: 01/26/2023]
Abstract
The degree of apoptosis in the livers of pigs with hepatitis due to naturally-occurring postweaning multisystemic wasting syndrome (PMWS) was evaluated semi-quantitatively by immunohistochemical detection of the apoptotic marker cleaved caspase-3 (CCasp3). The amount and distribution of porcine circovirus type 2 (PCV2) virus in the liver was evaluated using in situ hybridisation. Livers with mild, stage I hepatitis exhibited similar degrees of apoptosis to controls; those with stage II lesions had variable apoptotic rates, ranging from mild to high, and in livers with more severe, stage III hepatitis, high levels of hepatocyte apoptosis was a feature. Statistical analyses indicated a positive association between the rate of apoptosis, the severity of the hepatitis and the amount of PCV2 DNA in the liver. Double immunolabelling for CCasp3 and PCV2 DNA revealed a predominance of cells labelling only for PCV2, followed by fewer cells labelling only for CCasp3, and the least number labelling for both. The findings suggest that apoptosis, possibly triggered by PCV2 infection and/or hepatic inflammation, plays a key role in the pathogenesis of hepatitis in pigs with naturally-occurring PMWS.
Collapse
Affiliation(s)
- Ana R Resendes
- Centre de Recerca en Sanitat Animal, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain
| | | | | | | | | | | | | |
Collapse
|