1
|
Hassan MSH, Sharif S. Immune responses to avian influenza viruses in chickens. Virology 2025; 603:110405. [PMID: 39837219 DOI: 10.1016/j.virol.2025.110405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/28/2024] [Accepted: 01/09/2025] [Indexed: 01/23/2025]
Abstract
Chickens are a key species in both the manifestation of avian influenza and the potential for zoonotic transmission. Avian influenza virus (AIV) infection in chickens can range from asymptomatic or mild disease with low pathogenic AIVs (LPAIVs) to systemic fatal disease with high pathogenic AIVs (HPAIVs). During AIV infection in chickens, Toll-like receptor 7 and melanoma differentiation-associated gene 5 are upregulated to detect the single-stranded ribonucleic acid genomes of AIV, triggering a signaling cascade that produces interferons (IFNs) and pro-inflammatory cytokines. These inflammatory mediators induce the expression of antiviral proteins and recruit immune system cells, such as macrophages and dendritic cells, to the infection site. AIV evades these antiviral responses primarily through its non-structural protein 1, which suppresses type I IFNs, influencing viral pathogenicity. The uncontrolled release of pro-inflammatory cytokines may contribute to the pathogenicity and high mortality associated with HPAIV infections. AIV modulates apoptosis in chicken cells to enhance its replication, with variations in apoptosis pathways influenced by viral strain and host cell type. The presentation of AIV antigens to T and B cells leads to the production of neutralizing antibodies and the targeted destruction of infected cells by CD8+ T cells, respectively, which enhances protection and establishes immunological memory. This review explores the diverse innate and adaptive immune responses in chickens to different AIVs, focusing on the dynamics of these responses relative to protection, susceptibility, and potential immunopathology. By understanding these immune mechanisms, informed strategies for controlling AIV infection and improving chicken health can be developed.
Collapse
Affiliation(s)
- Mohamed S H Hassan
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada; Department of Avian and Rabbit Medicine, Faculty of Veterinary Medicine, Assiut University, Assiut 71515, Egypt
| | - Shayan Sharif
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
| |
Collapse
|
2
|
Stegeman SK, Kourko O, Amsden H, Pellizzari Delano IE, Mamatis JE, Roth M, Colpitts CC, Gee K. RNA Viruses, Toll-Like Receptors, and Cytokines: The Perfect Storm? J Innate Immun 2025; 17:126-153. [PMID: 39820070 PMCID: PMC11845175 DOI: 10.1159/000543608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 01/13/2025] [Indexed: 01/19/2025] Open
Abstract
BACKGROUND The interactions between viruses and the host immune response are nuanced and intricate. The cytokine response arguably plays a central role in dictating the outcome of virus infection, balancing inflammation, and healing, which is crucial to resolving infection without destructive immunopathologies. SUMMARY Early innate immune responses are key to the generation of a beneficial or detrimental immune response. These initial responses are regulated by a plethora of surface bound, endosomal, and cytoplasmic innate immune receptors known as pattern recognition receptors. Of these, the Toll-like receptors (TLRs) play an important role in the induction of cytokines during virus infection. Recognizing pathogen-associated molecular patterns (PAMPs) such as viral proteins and/or nucleotide sequences, the TLRs act as sentinels for the initiation and propagation of immune responses. KEY MESSAGES TLRs are important receptors for initiating the innate response to single-stranded RNA (ssRNA) viruses like influenza A virus (IAV), severe acute respiratory syndrome coronavirus-1 (SARS-CoV-1), SARS-CoV-2, Middle East respiratory syndrome coronavirus, dengue virus, and Ebola virus. Infection with these viruses is also associated with aberrant expression of proinflammatory cytokines that contribute to a harmful cytokine storm response. Herein we discuss the connections between these ssRNA viruses, cytokine storm, and the roles of TLRs. BACKGROUND The interactions between viruses and the host immune response are nuanced and intricate. The cytokine response arguably plays a central role in dictating the outcome of virus infection, balancing inflammation, and healing, which is crucial to resolving infection without destructive immunopathologies. SUMMARY Early innate immune responses are key to the generation of a beneficial or detrimental immune response. These initial responses are regulated by a plethora of surface bound, endosomal, and cytoplasmic innate immune receptors known as pattern recognition receptors. Of these, the Toll-like receptors (TLRs) play an important role in the induction of cytokines during virus infection. Recognizing pathogen-associated molecular patterns (PAMPs) such as viral proteins and/or nucleotide sequences, the TLRs act as sentinels for the initiation and propagation of immune responses. KEY MESSAGES TLRs are important receptors for initiating the innate response to single-stranded RNA (ssRNA) viruses like influenza A virus (IAV), severe acute respiratory syndrome coronavirus-1 (SARS-CoV-1), SARS-CoV-2, Middle East respiratory syndrome coronavirus, dengue virus, and Ebola virus. Infection with these viruses is also associated with aberrant expression of proinflammatory cytokines that contribute to a harmful cytokine storm response. Herein we discuss the connections between these ssRNA viruses, cytokine storm, and the roles of TLRs.
Collapse
Affiliation(s)
- Sophia K Stegeman
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Olena Kourko
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Heather Amsden
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | | | - John E Mamatis
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Madison Roth
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Che C Colpitts
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Katrina Gee
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
3
|
Huang Y, Urban C, Hubel P, Stukalov A, Pichlmair A. Protein turnover regulation is critical for influenza A virus infection. Cell Syst 2024; 15:911-929.e8. [PMID: 39368468 DOI: 10.1016/j.cels.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 08/16/2024] [Accepted: 09/13/2024] [Indexed: 10/07/2024]
Abstract
The abundance of a protein is defined by its continuous synthesis and degradation, a process known as protein turnover. Here, we systematically profiled the turnover of proteins in influenza A virus (IAV)-infected cells using a pulse-chase stable isotope labeling by amino acids in cell culture (SILAC)-based approach combined with downstream statistical modeling. We identified 1,798 virus-affected proteins with turnover changes (tVAPs) out of 7,739 detected proteins (data available at pulsechase.innatelab.org). In particular, the affected proteins were involved in RNA transcription, splicing and nuclear transport, protein translation and stability, and energy metabolism. Many tVAPs appeared to be known IAV-interacting proteins that regulate virus propagation, such as KPNA6, PPP6C, and POLR2A. Notably, our analysis identified additional IAV host and restriction factors, such as the splicing factor GPKOW, that exhibit significant turnover rate changes while their total abundance is minimally affected. Overall, we show that protein turnover is a critical factor both for virus replication and antiviral defense.
Collapse
Affiliation(s)
- Yiqi Huang
- Institute of Virology, Technical University of Munich, School of Medicine, Munich, Germany
| | - Christian Urban
- Institute of Virology, Technical University of Munich, School of Medicine, Munich, Germany
| | - Philipp Hubel
- Core Facility Hohenheim, Universität Hohenheim, Stuttgart, Germany
| | - Alexey Stukalov
- Institute of Virology, Technical University of Munich, School of Medicine, Munich, Germany
| | - Andreas Pichlmair
- Institute of Virology, Technical University of Munich, School of Medicine, Munich, Germany; Institute of Virology, Helmholtz Munich, Munich, Germany; German Centre for Infection Research (DZIF), Partner Site, Munich, Germany.
| |
Collapse
|
4
|
Faist A, Janowski J, Kumar S, Hinse S, Çalışkan DM, Lange J, Ludwig S, Brunotte L. Virus Infection and Systemic Inflammation: Lessons Learnt from COVID-19 and Beyond. Cells 2022; 11:2198. [PMID: 35883640 PMCID: PMC9316821 DOI: 10.3390/cells11142198] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/28/2022] [Accepted: 07/09/2022] [Indexed: 02/06/2023] Open
Abstract
Respiratory infections with newly emerging zoonotic viruses such as SARS-CoV-2, the etiological agent of COVID-19, often lead to the perturbation of the human innate and adaptive immune responses causing severe disease with high mortality. The responsible mechanisms are commonly virus-specific and often include either over-activated or delayed local interferon responses, which facilitate efficient viral replication in the primary target organ, systemic viral spread, and rapid onset of organ-specific and harmful inflammatory responses. Despite the distinct replication strategies, human infections with SARS-CoV-2 and highly pathogenic avian influenza viruses demonstrate remarkable similarities and differences regarding the mechanisms of immune induction, disease dynamics, as well as the long-term sequelae, which will be discussed in this review. In addition, we will highlight some important lessons about the effectiveness of antiviral and immunomodulatory therapeutic strategies that this pandemic has taught us.
Collapse
Affiliation(s)
- Aileen Faist
- Institute of Virology, University of Muenster, 48149 Muenster, Germany; (A.F.); (J.J.); (S.K.); (S.H.); (D.M.Ç.); (J.L.); (S.L.)
- CiM-IMPRS, International Max Planck Research School—Molecular Biomedicine, Westfaelische Wilhelms-University Muenster, 48149 Muenster, Germany
| | - Josua Janowski
- Institute of Virology, University of Muenster, 48149 Muenster, Germany; (A.F.); (J.J.); (S.K.); (S.H.); (D.M.Ç.); (J.L.); (S.L.)
- SP BioSciences Graduate Program, University of Muenster, 48149 Muenster, Germany
| | - Sriram Kumar
- Institute of Virology, University of Muenster, 48149 Muenster, Germany; (A.F.); (J.J.); (S.K.); (S.H.); (D.M.Ç.); (J.L.); (S.L.)
- EvoPAD Research Training Group 2220, University of Muenster, 48149 Muenster, Germany
| | - Saskia Hinse
- Institute of Virology, University of Muenster, 48149 Muenster, Germany; (A.F.); (J.J.); (S.K.); (S.H.); (D.M.Ç.); (J.L.); (S.L.)
| | - Duygu Merve Çalışkan
- Institute of Virology, University of Muenster, 48149 Muenster, Germany; (A.F.); (J.J.); (S.K.); (S.H.); (D.M.Ç.); (J.L.); (S.L.)
- EvoPAD Research Training Group 2220, University of Muenster, 48149 Muenster, Germany
| | - Julius Lange
- Institute of Virology, University of Muenster, 48149 Muenster, Germany; (A.F.); (J.J.); (S.K.); (S.H.); (D.M.Ç.); (J.L.); (S.L.)
| | - Stephan Ludwig
- Institute of Virology, University of Muenster, 48149 Muenster, Germany; (A.F.); (J.J.); (S.K.); (S.H.); (D.M.Ç.); (J.L.); (S.L.)
- CiM-IMPRS, International Max Planck Research School—Molecular Biomedicine, Westfaelische Wilhelms-University Muenster, 48149 Muenster, Germany
- EvoPAD Research Training Group 2220, University of Muenster, 48149 Muenster, Germany
- Interdisciplinary Center for Clinical Research, University of Muenster, 48149 Muenster, Germany
| | - Linda Brunotte
- Institute of Virology, University of Muenster, 48149 Muenster, Germany; (A.F.); (J.J.); (S.K.); (S.H.); (D.M.Ç.); (J.L.); (S.L.)
- Interdisciplinary Center for Clinical Research, University of Muenster, 48149 Muenster, Germany
| |
Collapse
|
5
|
Evseev D, Magor KE. Molecular Evolution of the Influenza A Virus Non-structural Protein 1 in Interspecies Transmission and Adaptation. Front Microbiol 2021; 12:693204. [PMID: 34671321 PMCID: PMC8521145 DOI: 10.3389/fmicb.2021.693204] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 09/06/2021] [Indexed: 12/03/2022] Open
Abstract
The non-structural protein 1 (NS1) of influenza A viruses plays important roles in viral fitness and in the process of interspecies adaptation. It is one of the most polymorphic and mutation-tolerant proteins of the influenza A genome, but its evolutionary patterns in different host species and the selective pressures that underlie them are hard to define. In this review, we highlight some of the species-specific molecular signatures apparent in different NS1 proteins and discuss two functions of NS1 in the process of viral adaptation to new host species. First, we consider the ability of NS1 proteins to broadly suppress host protein expression through interaction with CPSF4. This NS1 function can be spontaneously lost and regained through mutation and must be balanced against the need for host co-factors to aid efficient viral replication. Evidence suggests that this function of NS1 may be selectively lost in the initial stages of viral adaptation to some new host species. Second, we explore the ability of NS1 proteins to inhibit antiviral interferon signaling, an essential function for viral replication without which the virus is severely attenuated in any host. Innate immune suppression by NS1 not only enables viral replication in tissues, but also dampens the adaptive immune response and immunological memory. NS1 proteins suppress interferon signaling and effector functions through a variety of protein-protein interactions that may differ from host to host but must achieve similar goals. The multifunctional influenza A virus NS1 protein is highly plastic, highly versatile, and demonstrates a diversity of context-dependent solutions to the problem of interspecies adaptation.
Collapse
Affiliation(s)
| | - Katharine E. Magor
- Department of Biological Sciences, Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
6
|
Ji ZX, Wang XQ, Liu XF. NS1: A Key Protein in the "Game" Between Influenza A Virus and Host in Innate Immunity. Front Cell Infect Microbiol 2021; 11:670177. [PMID: 34327148 PMCID: PMC8315046 DOI: 10.3389/fcimb.2021.670177] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 06/25/2021] [Indexed: 12/24/2022] Open
Abstract
Since the influenza pandemic occurred in 1918, people have recognized the perniciousness of this virus. It can cause mild to severe infections in animals and humans worldwide, with extremely high morbidity and mortality. Since the first day of human discovery of it, the “game” between the influenza virus and the host has never stopped. NS1 protein is the key protein of the influenza virus against host innate immunity. The interaction between viruses and organisms is a complex and dynamic process, in which they restrict each other, but retain their own advantages. In this review, we start by introducing the structure and biological characteristics of NS1, and then investigate the factors that affect pathogenicity of influenza which determined by NS1. In order to uncover the importance of NS1, we analyze the interaction of NS1 protein with interferon system in innate immunity and the molecular mechanism of host antagonism to NS1 protein, highlight the unique biological function of NS1 protein in cell cycle.
Collapse
Affiliation(s)
- Zhu-Xing Ji
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Xiao-Quan Wang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Xiu-Fan Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| |
Collapse
|
7
|
Chen S, Miao X, Huangfu D, Zhao X, Zhang M, Qin T, Peng D, Liu X. H5N1 avian influenza virus without 80-84 amino acid deletion at the NS1 protein hijacks the innate immune system of dendritic cells for an enhanced mammalian pathogenicity. Transbound Emerg Dis 2020; 68:2401-2413. [PMID: 33124785 DOI: 10.1111/tbed.13904] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/01/2020] [Accepted: 10/27/2020] [Indexed: 12/24/2022]
Abstract
NS gene is generally considered to be related to the virulence of highly pathogenic avian influenza virus (AIV). In recent years, the strains with five amino acids added to the 80-84 positions of the NS1 protein have become prevalent in H5N1 subtype AIVs isolated from mammals. However, the pathogenicity and mechanism of this pattern in mammals remain unclear. In this study, H5N1 subtype AIVs without 80-84 amino acids of the NS1 protein (rNSΔ5aa ) and a mutant virus (rNS5aa-R ) with no deletion of 80-84 amino acids of the NS1 protein were used to determine the pathogenicity in mice. Our results showed that rNS5aa-R possessed an enhanced pathogenicity compared with rNSΔ5aa in vivo and in vitro, which was accompanied by high expression of IL-6, MX1 and CXCL10 in murine lungs. Furthermore, we found that rNS5aa-R increased the infection ability to dendritic cells (DCs). Besides, rNS5aa-R enhanced the expression of phenotypic markers (CD80, CD86, CD40 and MHCII), activation marker CD69, inflammatory cytokines (IL-6, TNF-α and IL-10) and antagonized interferon (IFN-α) of DCs, in comparison to rNSΔ5aa . Moreover, rNS5aa-R induced DCs to quickly migrate into nearby cervical lymph nodes by highly upregulating CCR7, and CD86 showed a high expression on the migrated DCs. We also found that rNS5aa-R -infected DCs significantly promoted the allogeneic CD4+ T-cell proliferation. These findings suggested that rNS5aa-R strongly induced the innate immune response compared with the rNSΔ5aa , which is conducive to activate a wide immune response, resulting in a strong cytokine storm and causing an enhanced pathogenicity of H5N1 subtype AIVs in mammals.
Collapse
Affiliation(s)
- Sujuan Chen
- College of Veterinary Medicine, Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China.,Joint Laboratory Safety of International Cooperation of Agriculture&Agricultural-Products, The Ministry of Education of China, Yangzhou, Jiangsu, China.,Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, Jiangsu, China
| | - Xinyu Miao
- College of Veterinary Medicine, Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
| | - Dandan Huangfu
- College of Veterinary Medicine, Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xinyi Zhao
- College of Veterinary Medicine, Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
| | - Minxia Zhang
- College of Veterinary Medicine, Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
| | - Tao Qin
- College of Veterinary Medicine, Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China.,Joint Laboratory Safety of International Cooperation of Agriculture&Agricultural-Products, The Ministry of Education of China, Yangzhou, Jiangsu, China.,Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, Jiangsu, China
| | - Daxin Peng
- College of Veterinary Medicine, Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China.,Joint Laboratory Safety of International Cooperation of Agriculture&Agricultural-Products, The Ministry of Education of China, Yangzhou, Jiangsu, China.,Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, Jiangsu, China
| | - Xiufan Liu
- College of Veterinary Medicine, Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China.,Joint Laboratory Safety of International Cooperation of Agriculture&Agricultural-Products, The Ministry of Education of China, Yangzhou, Jiangsu, China
| |
Collapse
|
8
|
Wang H, Tian Z, Xu Y, Wang Q, Ding SW, Li Y. Altering Intracellular Localization of the RNA Interference Factors by Influenza A Virus Non-structural Protein 1. Front Microbiol 2020; 11:590904. [PMID: 33281788 PMCID: PMC7688628 DOI: 10.3389/fmicb.2020.590904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/19/2020] [Indexed: 11/17/2022] Open
Abstract
Influenza A virus (IAV) causes seasonal infections and periodic pandemics in humans. The non-structural protein 1 (NS1) of IAV is the main viral antagonist of the innate immune responses that play a key role in influenza pathogenesis. However, the mechanism to disrupt the host cell homeostasis by IAV NS1 remains poorly understood. Here, we show that expression of NS1 from the WSN strain, but not PR8 strain, of IAV, markedly induced nuclear import of the host RNA interference (RNAi) factors such as Argonaute-2 and microRNA 16. We found that the single residue substitution of aspartic acid with histidine at position 101 (D101H) of IAV-PR8 NS1 was sufficient to induce the nuclear import process and to enhance the virulence of IAV-PR8 in mice. However, we observed no significant differences between the wild-type and mutant IAV-PR8 in virus titers or induction of the interferon response in lung tissues, indicating a novel role of NS1 in the virulence determination of IAV in a mammalian host. Moreover, our bioinformatic analysis of 69,057 NS1 sequences from all IAV subtypes deposited in the NCBI database revealed that the NS1-H101 gene of IAV-WSN was widespread among H1N1 viruses isolated in 1933 but disappeared completely after 1940. Thus, IAV NS1 (H101) is a mutation selected against during evolution of IAV, suggesting that mutation H101 confers an important biological phenotype.
Collapse
Affiliation(s)
- Hua Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Zhonghui Tian
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Yan Xu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Qi Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Shou-Wei Ding
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, United States
| | - Yang Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
9
|
Suttie A, Deng YM, Greenhill AR, Dussart P, Horwood PF, Karlsson EA. Inventory of molecular markers affecting biological characteristics of avian influenza A viruses. Virus Genes 2019; 55:739-768. [PMID: 31428925 PMCID: PMC6831541 DOI: 10.1007/s11262-019-01700-z] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 08/09/2019] [Indexed: 12/20/2022]
Abstract
Avian influenza viruses (AIVs) circulate globally, spilling over into domestic poultry and causing zoonotic infections in humans. Fortunately, AIVs are not yet capable of causing sustained human-to-human infection; however, AIVs are still a high risk as future pandemic strains, especially if they acquire further mutations that facilitate human infection and/or increase pathogenesis. Molecular characterization of sequencing data for known genetic markers associated with AIV adaptation, transmission, and antiviral resistance allows for fast, efficient assessment of AIV risk. Here we summarize and update the current knowledge on experimentally verified molecular markers involved in AIV pathogenicity, receptor binding, replicative capacity, and transmission in both poultry and mammals with a broad focus to include data available on other AIV subtypes outside of A/H5N1 and A/H7N9.
Collapse
Affiliation(s)
- Annika Suttie
- Virology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, 5 Monivong Blvd, PO Box #983, Phnom Penh, Cambodia
- School of Health and Life Sciences, Federation University, Churchill, Australia
- World Health Organization Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Yi-Mo Deng
- World Health Organization Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Andrew R Greenhill
- School of Health and Life Sciences, Federation University, Churchill, Australia
| | - Philippe Dussart
- Virology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, 5 Monivong Blvd, PO Box #983, Phnom Penh, Cambodia
| | - Paul F Horwood
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
| | - Erik A Karlsson
- Virology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, 5 Monivong Blvd, PO Box #983, Phnom Penh, Cambodia.
| |
Collapse
|
10
|
Nogales A, Martinez-Sobrido L, Topham DJ, DeDiego ML. Modulation of Innate Immune Responses by the Influenza A NS1 and PA-X Proteins. Viruses 2018; 10:v10120708. [PMID: 30545063 PMCID: PMC6315843 DOI: 10.3390/v10120708] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 12/06/2018] [Accepted: 12/08/2018] [Indexed: 12/14/2022] Open
Abstract
Influenza A viruses (IAV) can infect a broad range of animal hosts, including humans. In humans, IAV causes seasonal annual epidemics and occasional pandemics, representing a serious public health and economic problem, which is most effectively prevented through vaccination. The defense mechanisms that the host innate immune system provides restrict IAV replication and infection. Consequently, to successfully replicate in interferon (IFN)-competent systems, IAV has to counteract host antiviral activities, mainly the production of IFN and the activities of IFN-induced host proteins that inhibit virus replication. The IAV multifunctional proteins PA-X and NS1 are virulence factors that modulate the innate immune response and virus pathogenicity. Notably, these two viral proteins have synergistic effects in the inhibition of host protein synthesis in infected cells, although using different mechanisms of action. Moreover, the control of innate immune responses by the IAV NS1 and PA-X proteins is subject to a balance that can determine virus pathogenesis and fitness, and recent evidence shows co-evolution of these proteins in seasonal viruses, indicating that they should be monitored for enhanced virulence. Importantly, inhibition of host gene expression by the influenza NS1 and/or PA-X proteins could be explored to develop improved live-attenuated influenza vaccines (LAIV) by modulating the ability of the virus to counteract antiviral host responses. Likewise, both viral proteins represent a reasonable target for the development of new antivirals for the control of IAV infections. In this review, we summarize the role of IAV NS1 and PA-X in controlling the antiviral response during viral infection.
Collapse
Affiliation(s)
- Aitor Nogales
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York, NY 14642, USA.
- Centro de Investigación en Sanidad Animal (CISA)-INIA, Valdeolmos, 28130 Madrid, Spain.
| | - Luis Martinez-Sobrido
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York, NY 14642, USA.
| | - David J Topham
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York, NY 14642, USA.
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, New York, NY 14642, USA.
| | - Marta L DeDiego
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York, NY 14642, USA.
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, New York, NY 14642, USA.
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| |
Collapse
|
11
|
Jegede A, Fu Q, Lin M, Kumar A, Guan J. Aerosol exposure enhanced infection of low pathogenic avian influenza viruses in chickens. Transbound Emerg Dis 2018; 66:435-444. [PMID: 30307712 DOI: 10.1111/tbed.13039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/10/2018] [Accepted: 10/02/2018] [Indexed: 01/17/2023]
Abstract
To assess the impact of different routes of inoculation on experimental infection of avian influenza (AI) viruses in chickens, this study compared virus replication and cytokine gene expression in respiratory and gastrointestinal organ tissues of chickens, which were inoculated with four low pathogenic subtypes, H6N1, H10N7, H10N8, and H13N6 AI viruses via the aerosol, intranasal, and oral routes respectively. Aerosol inoculation with the H6N1, H10N7, and H10N8 viruses significantly increased viral titres and upregulated the interferon (IFN)-γ, interleukin (IL)-6, and IL-1β genes in the trachea and lung tissues compared to intranasal or oral inoculation. Furthermore, one or two out of six chickens died following exposure to aerosolized H6N1 or H10N8 virus respectively. The H13N6 virus reached the lung via aerosol inoculation although failed to establish infection. Collectively, chickens were more susceptible to aerosolized AI viruses compared to intranasal or oral inoculation, and virus aerosols might post a significant threat to poultry health.
Collapse
Affiliation(s)
- Akinlolu Jegede
- Ottawa Laboratory (Fallowfield), Canadian Food Inspection Agency, Ottawa, Ontario, Canada
| | - Qigao Fu
- Ottawa Laboratory (Fallowfield), Canadian Food Inspection Agency, Ottawa, Ontario, Canada
| | - Min Lin
- Ottawa Laboratory (Fallowfield), Canadian Food Inspection Agency, Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Ashok Kumar
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Jiewen Guan
- Ottawa Laboratory (Fallowfield), Canadian Food Inspection Agency, Ottawa, Ontario, Canada
| |
Collapse
|
12
|
Hatayama K, Nosaka N, Yamada M, Yashiro M, Fujii Y, Tsukahara H, Liu K, Nishibori M, Matsukawa A, Morishima T. Combined effect of anti-high-mobility group box-1 monoclonal antibody and peramivir against influenza A virus-induced pneumonia in mice. J Med Virol 2018; 91:361-369. [PMID: 30281823 DOI: 10.1002/jmv.25330] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 09/27/2018] [Indexed: 12/11/2022]
Abstract
Human pandemic H1N1 2009 influenza virus causes significant morbidity and mortality with severe acute lung injury due to the excessive inflammatory reaction, even with neuraminidase inhibitor use. The anti-inflammatory effect of anti-high-mobility group box-1 (HMGB1) monoclonal antibody (mAb) against influenza pneumonia has been reported. In this study, we evaluated the combined effect of anti-HMGB1 mAb and peramivir against pneumonia induced by influenza A (H1N1) virus in mice. Nine-week-old male C57BL/6 mice were inoculated with H1N1 and treated with intramuscularly administered peramivir at 2 and 3 days post-infection (dpi). The anti-HMGB1 mAb or a control mAb was administered at 2, 3, and 4 dpi. Survival rates were assessed, and lung lavage and pathological analyses were conducted at 5 and 7 dpi. The combination of peramivir with the anti-HMGB1 mAb significantly improved survival rate whereas the anti-HMGB1 mAb alone did not affect virus proliferation in the lungs. This combination therapy also significantly ameliorated histopathological changes, neutrophil infiltration, and macrophage aggregation by inhibiting HMGB1, inflammatory cytokines, and oxidative stress. Fluorescence immunostaining showed that the anti-HMGB1 mAb inhibited HMGB1 translocation from type I alveolar epithelial cells. In summary, combining anti-HMGB1 with conventional anti-influenza therapy might be useful against severe influenza virus infection.
Collapse
Affiliation(s)
- Kazuki Hatayama
- Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Nobuyuki Nosaka
- Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Mutsuko Yamada
- Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Masato Yashiro
- Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yosuke Fujii
- Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hirokazu Tsukahara
- Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Keyue Liu
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Masahiro Nishibori
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Akihiro Matsukawa
- Department of Pathology and Experimental Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Tsuneo Morishima
- Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.,Department of Pediatrics, Aichi Medical University, Japan
| |
Collapse
|
13
|
PR8 virus harbouring H5N1 NS gene contributed for THP-1 cell tropism. Virusdisease 2018; 29:548-552. [PMID: 30539061 DOI: 10.1007/s13337-018-0499-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 10/03/2018] [Indexed: 10/28/2022] Open
Abstract
Innate immune cells are key player in immune response to influenza virus infection. Influenza infected monocytes exacerbate the disease pathology. However, monocytes differ in susceptibilities to influenza virus infection. Herein, susceptibilities of U937 and THP-1 monocytic cells to PR8 virus infection, the associated cellular factor- sialic acid (SA) receptor distribution and viral factor were determined. Moreover, amino acid sequences in hemagglutinin (HA) receptor binding domain (RBD) of PR8 virus that determine SA preferences were analysed. PR8 infected U937 cells express significantly higher numbers of nucleoprotein positive cells suggesting U937 cells being more susceptible to influenza virus than THP-1 cells. Lectin staining suggested similar pattern of SA receptor distribution in both cells. Interestingly, sequence analysis of RBD suggested their preferences for alpha 2,3 SA receptors suggesting RBD sequences are not always determining for SA preferences. Furthermore, the resistance barrier on THP-1 cells was overcome by H5N1 NS gene. In conclusion, the study demonstrated that decreased susceptibility of THP-1 cells to PR8 virus could not be related to the SA receptor distribution, and H5N1 NS gene was sufficient to determine tropism for THP-1 cells. Hence, mechanistic basis of NS gene on cell tropism and contribution of other internal genes remained to be determined.
Collapse
|
14
|
Pathogenesis and Transmission of Genetically Diverse Swine-Origin H3N2 Variant Influenza A Viruses from Multiple Lineages Isolated in the United States, 2011-2016. J Virol 2018; 92:JVI.00665-18. [PMID: 29848587 DOI: 10.1128/jvi.00665-18] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 05/24/2018] [Indexed: 11/20/2022] Open
Abstract
While several swine-origin influenza A H3N2 variant (H3N2v) viruses isolated from humans prior to 2011 have been previously characterized for their virulence and transmissibility in ferrets, the recent genetic and antigenic divergence of H3N2v viruses warrants an updated assessment of their pandemic potential. Here, four contemporary H3N2v viruses isolated during 2011 to 2016 were evaluated for their replicative ability in both in vitro and in vivo in mammalian models as well as their transmissibility among ferrets. We found that all four H3N2v viruses possessed similar or enhanced replication capacities in a human bronchial epithelium cell line (Calu-3) compared to a human seasonal influenza virus, suggestive of strong fitness in human respiratory tract cells. The majority of H3N2v viruses examined in our study were mildly virulent in mice and capable of replicating in mouse lungs with different degrees of efficiency. In ferrets, all four H3N2v viruses caused moderate morbidity and exhibited comparable titers in the upper respiratory tract, but only 2 of the 4 viruses replicated in the lower respiratory tract in this model. Furthermore, despite efficient transmission among cohoused ferrets, recently isolated H3N2v viruses displayed considerable variance in their ability to transmit by respiratory droplets. The lack of a full understanding of the molecular correlates of virulence and transmission underscores the need for close genotypic and phenotypic monitoring of H3N2v viruses and the importance of continued surveillance to improve pandemic preparedness.IMPORTANCE Swine-origin influenza viruses of the H3N2 subtype, with the hemagglutinin (HA) and neuraminidase (NA) derived from historic human seasonal influenza viruses, continue to cross species barriers and cause human infections, posing an indelible threat to public health. To help us better understand the potential risk associated with swine-origin H3N2v viruses that emerged in the United States during the 2011-2016 influenza seasons, we use both in vitro and in vivo models to characterize the abilities of these viruses to replicate, cause disease, and transmit in mammalian hosts. The efficient respiratory droplet transmission exhibited by some of the H3N2v viruses in the ferret model combined with the existing evidence of low immunity against such viruses in young children and older adults highlight their pandemic potential. Extensive surveillance and risk assessment of H3N2v viruses should continue to be an essential component of our pandemic preparedness strategy.
Collapse
|
15
|
Cheng J, Zhang C, Tao J, Li B, Shi Y, Liu H. Effects of the S42 residue of the H1N1 swine influenza virus NS1 protein on interferon responses and virus replication. Virol J 2018; 15:57. [PMID: 29587786 PMCID: PMC5870223 DOI: 10.1186/s12985-018-0971-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 03/21/2018] [Indexed: 01/02/2023] Open
Abstract
Background The influenza A virus non-structural protein 1 (NS1) is a multifunctional protein that plays an important role in virus replication, virulence and inhibition of the host antiviral immune response. In the avian influenza virus or human influenza virus, specific amino acids of NS1 have been shown to be important for the virus to antagonize host antiviral defenses and promote viral replication. However, little research has been reported regarding the swine influenza virus (SIV) NS1 protein. Methods To study the effects of the key amino acids of NS1, we rescued NS1 mutants (S42P, D92E, and S42P/D92E) of the A/swine/Shanghai/3/2014(H1N1) strain and compared their replication ability and cytokine production as well as the intracellular localization in cultured cells. Results We found that the S42P and D92E mutation displayed no changes on NS1 nuclear localization. The S42P (but not D92E) mutation suppressed protein synthesis and reduced virus growth properties, and there was an inability to antagonize host cell interferon production and IRF3 activation, which led to high levels of IFN-α and IFN-β production. Conclusion We conclude that the S42 residue of the NS1 of the A/swine/Shanghai/3/2014(H1N1) strain is the key amino acid in regulating the host IFN response by blocking the activation of IRF3 and thus facilitates virus replication.
Collapse
Affiliation(s)
- Jinghua Cheng
- Department of Animal Infectious Disease, Institute of Animal Science & Veterinary Medicine, Shanghai Academy of Agricultural Science, No. 2901 Beidi Road, Minhang District, Shanghai, People's Republic of China
| | - Chunling Zhang
- Department of Animal Infectious Disease, Institute of Animal Science & Veterinary Medicine, Shanghai Academy of Agricultural Science, No. 2901 Beidi Road, Minhang District, Shanghai, People's Republic of China
| | - Jie Tao
- Department of Animal Infectious Disease, Institute of Animal Science & Veterinary Medicine, Shanghai Academy of Agricultural Science, No. 2901 Beidi Road, Minhang District, Shanghai, People's Republic of China
| | - Benqiang Li
- Department of Animal Infectious Disease, Institute of Animal Science & Veterinary Medicine, Shanghai Academy of Agricultural Science, No. 2901 Beidi Road, Minhang District, Shanghai, People's Republic of China
| | - Ying Shi
- Department of Animal Infectious Disease, Institute of Animal Science & Veterinary Medicine, Shanghai Academy of Agricultural Science, No. 2901 Beidi Road, Minhang District, Shanghai, People's Republic of China
| | - Huili Liu
- Department of Animal Infectious Disease, Institute of Animal Science & Veterinary Medicine, Shanghai Academy of Agricultural Science, No. 2901 Beidi Road, Minhang District, Shanghai, People's Republic of China.
| |
Collapse
|
16
|
Thanh HD, Tran VT, Nguyen DT, Hung VK, Kim W. Novel reassortant H5N6 highly pathogenic influenza A viruses in Vietnamese quail outbreaks. Comp Immunol Microbiol Infect Dis 2018; 56:45-57. [PMID: 29406283 DOI: 10.1016/j.cimid.2018.01.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 11/06/2017] [Accepted: 01/08/2018] [Indexed: 10/18/2022]
Abstract
Avian influenza A H5N6 virus is a highly contagious infectious agent that affects domestic poultry and humans in South Asian countries. Vietnam may be an evolutionary hotspot for influenza viruses and therefore could serve as a source of pandemic strains. In 2015, two novel reassortant H5N6 influenza viruses designated as A/quail/Vietnam/CVVI01/2015 and A/quail/Vietnam/CVVI03/2015 were isolated from dead quails during avian influenza outbreaks in central Vietnam, and the whole genome sequences were analyzed. The genetic analysis indicated that hemagglutinin, neuraminidase, and polymerase basic protein 2 genes of the two H5N6 viruses are most closely related to an H5N2 virus (A/chicken/Zhejiang/727079/2014) and H10N6 virus (A/chicken/Jiangxi/12782/2014) from China and an H6N6 virus (A/duck/Yamagata/061004/2014) from Japan. The HA gene of the isolates belongs to clade 2.3.4.4, which caused human fatalities in China during 2014-2016. The five other internal genes showed high identity to an H5N2 virus (A/chicken/Heilongjiang/S7/2014) from China. A whole-genome phylogenetic analysis revealed that these two outbreak strains are novel H6N6-like PB2 gene reassortants that are most closely related to influenza virus strain A/environment/Guangdong/ZS558/2015, which was detected in a live poultry market in China. This report describes the first detection of novel H5N6 reassortants in poultry during an outbreak as well as genetic characterization of these strains to better understand the antigenic evolution of influenza viruses.
Collapse
Affiliation(s)
- Hien Dang Thanh
- Department of Microbiology, Chung-Ang University, College of Medicine, Seoul, South Korea; Central Vietnam Veterinary Institute, Nha Trang, Viet Nam
| | - Van Trung Tran
- Department of Microbiology, Chung-Ang University, College of Medicine, Seoul, South Korea
| | - Duc Tan Nguyen
- Central Vietnam Veterinary Institute, Nha Trang, Viet Nam
| | - Vu-Khac Hung
- Central Vietnam Veterinary Institute, Nha Trang, Viet Nam
| | - Wonyong Kim
- Department of Microbiology, Chung-Ang University, College of Medicine, Seoul, South Korea.
| |
Collapse
|
17
|
Kalaiyarasu S, Kumar M, Senthil Kumar D, Bhatia S, Dash SK, Bhat S, Khetan RK, Nagarajan S. Highly pathogenic avian influenza H5N1 virus induces cytokine dysregulation with suppressed maturation of chicken monocyte-derived dendritic cells. Microbiol Immunol 2017; 60:687-693. [PMID: 27730669 DOI: 10.1111/1348-0421.12443] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 09/28/2016] [Accepted: 10/03/2016] [Indexed: 01/01/2023]
Abstract
One of the major causes of death in highly pathogenic avian influenza virus (HPAIV) infection in chickens is acute induction of pro-inflammatory cytokines (cytokine storm), which leads to severe pathology and acute mortality. DCs and respiratory tract macrophages are the major antigen presenting cells that are exposed to mucosal pathogens. We hypothesized that chicken DCs are a major target for induction of cytokine dysregulation by H5N1 HPAIV. It was found that infection of chicken peripheral blood monocyte-derived dendritic cells (chMoDCs) with H5N1 HPAIV produces high titers of progeny virus with more rounding and cytotoxicity than with H9N2 LPAIV. Expression of maturation markers (CD40, CD80 and CD83) was weaker in both H5N1 and H9N2 groups than in a LPS control group. INF-α, -β and -γ were significantly upregulated in the H5N1 group. Pro-inflammatory cytokines (IL-1β, TNF-α and IL-18) were highly upregulated in early mid (IL-1), and late (IL-6) phases of H5N1 virus infection. IL-8 (CXCLi2) mRNA expression was significantly stronger in the H5N1 group from 6 hr of infection. TLR3, 7, 15 and 21 were upregulated 24 hr after infection by H5N1 virus compared with H9N2 virus, with maximum expression of TLR 3 mRNA. Similarly, greater H5N1 virus-induced apoptotic cell death and cytotoxicity, as measured by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling and lactate dehydrogenase assays, respectively, were found. Thus, both H5N1 and H9N2 viruses evade the host immune system by inducing impairment of chMoDCs maturation and enhancing cytokine dysregulation in H5N1 HPAIV-infected cells.
Collapse
Affiliation(s)
- Semmannan Kalaiyarasu
- ICAR-National Institute of High Security Animal Diseases, Anand Nagar, Bhopal-462022, Madhya Pradesh, India.
| | - Manoj Kumar
- ICAR-National Institute of High Security Animal Diseases, Anand Nagar, Bhopal-462022, Madhya Pradesh, India
| | - Dhanapal Senthil Kumar
- ICAR-National Institute of High Security Animal Diseases, Anand Nagar, Bhopal-462022, Madhya Pradesh, India
| | - Sandeep Bhatia
- ICAR-National Institute of High Security Animal Diseases, Anand Nagar, Bhopal-462022, Madhya Pradesh, India
| | - Sandeep Kumar Dash
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly-243122, Uttar Pradesh, India
| | - Sushant Bhat
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly-243122, Uttar Pradesh, India
| | - Rohit K Khetan
- ICAR-National Institute of High Security Animal Diseases, Anand Nagar, Bhopal-462022, Madhya Pradesh, India
| | - Shanmugasundaram Nagarajan
- ICAR-National Institute of High Security Animal Diseases, Anand Nagar, Bhopal-462022, Madhya Pradesh, India
| |
Collapse
|
18
|
Mishra A, Vijayakumar P, Raut AA. Emerging avian influenza infections: Current understanding of innate immune response and molecular pathogenesis. Int Rev Immunol 2017; 36:89-107. [PMID: 28272907 DOI: 10.1080/08830185.2017.1291640] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The highly pathogenic avian influenza viruses (HPAIVs) cause severe disease in gallinaceous poultry species, domestic ducks, various aquatic and terrestrial wild bird species as well as humans. The outcome of the disease is determined by complex interactions of multiple components of the host, the virus, and the environment. While the host-innate immune response plays an important role for clearance of infection, excessive inflammatory immune response (cytokine storm) may contribute to morbidity and mortality of the host. Therefore, innate immunity response in avian influenza infection has two distinct roles. However, the viral pathogenic mechanism varies widely in different avian species, which are not completely understood. In this review, we summarized the current understanding and gaps in host-pathogen interaction of avian influenza infection in birds. In first part of this article, we summarized influenza viral pathogenesis of gallinaceous and non-gallinaceous avian species. Then we discussed innate immune response against influenza infection, cytokine storm, differential host immune responses against different pathotypes, and response in different avian species. Finally, we reviewed the systems biology approach to study host-pathogen interaction in avian species for better characterization of molecular pathogenesis of the disease. Wild aquatic birds act as natural reservoir of AIVs. Better understanding of host-pathogen interaction in natural reservoir is fundamental to understand the properties of AIV infection and development of improved vaccine and therapeutic strategies against influenza.
Collapse
Affiliation(s)
- Anamika Mishra
- a Pathogenomics Laboratory , OIE Reference Laboratory for Avian Influenza, ICAR-National Institute of High Security Animal Diseases , Bhopal , Madhya Pradesh , India
| | - Periyasamy Vijayakumar
- a Pathogenomics Laboratory , OIE Reference Laboratory for Avian Influenza, ICAR-National Institute of High Security Animal Diseases , Bhopal , Madhya Pradesh , India
| | - Ashwin Ashok Raut
- a Pathogenomics Laboratory , OIE Reference Laboratory for Avian Influenza, ICAR-National Institute of High Security Animal Diseases , Bhopal , Madhya Pradesh , India
| |
Collapse
|
19
|
Na W, Lyoo KS, Yoon SW, Yeom M, Kang B, Moon H, Kim HK, Jeong DG, Kim JK, Song D. Attenuation of the virulence of a recombinant influenza virus expressing the naturally truncated NS gene from an H3N8 equine influenza virus in mice. Vet Res 2016; 47:115. [PMID: 27846859 PMCID: PMC5111206 DOI: 10.1186/s13567-016-0400-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 10/10/2016] [Indexed: 11/29/2022] Open
Abstract
Equine influenza virus (EIV) causes a highly contagious disease in horses and other equids. Recently, we isolated an H3N8 EIV (A/equine/Kyonggi/SA1/2011) from a domestic horse in South Korea that exhibited symptoms of respiratory disease, and found that the EIV strain contained a naturally mutated NS gene segment encoding a truncated NS1 protein. In order to determine whether there was an association between the NS gene truncation and viral virulence, a reverse genetics system was applied to generate various NS gene recombinant viruses using the backbone of the H1N1 A/Puerto Rico/8/1934 (PR/8) virus. In a mouse model, the recombinant PR/8 virus containing the mutated NS gene of the Korean H3N8 EIV strain showed a dramatically reduced virulence: it induced no weight loss, no clinical signs and no histopathological lesions. However, the mice infected with the recombinant viruses with NS genes of PR/8 and H3N8 A/equine/2/Miami/1963 showed severe clinical signs including significant weight loss and 100% mortality. In addition, the levels of the pro-inflammatory cytokines; IL-6, CCL5, and IFN-γ, in the lungs of mice infected with the recombinant viruses expressing a full-length NS1 were significantly higher than those of mice infected with the virus with the NS gene from the Korean H3N8 EIV strain. In this study, our results suggest that the C-terminal moiety of NS1 contains a number of virulence determinants and might be a suitable target for the development of a vaccine candidate against equine influenza.
Collapse
Affiliation(s)
- Woonsung Na
- College of Pharmacy, Korea University, Sejong, Republic of Korea
| | - Kwang-Soo Lyoo
- Korea Zoonosis Research Institute, Chonbuk National University, Iksan, Republic of Korea
| | - Sun-Woo Yoon
- Viral Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Minjoo Yeom
- College of Pharmacy, Korea University, Sejong, Republic of Korea
| | - Bokyu Kang
- Research Unit, Green Cross Veterinary Products, Yong-in, Republic of Korea
| | - Hyoungjoon Moon
- Research Unit, Green Cross Veterinary Products, Yong-in, Republic of Korea
| | - Hye Kwon Kim
- Korea Zoonosis Research Institute, Chonbuk National University, Iksan, Republic of Korea
| | - Dae Gwin Jeong
- Korea Zoonosis Research Institute, Chonbuk National University, Iksan, Republic of Korea
| | - Jeong-Ki Kim
- College of Pharmacy, Korea University, Sejong, Republic of Korea.
| | - Daesub Song
- College of Pharmacy, Korea University, Sejong, Republic of Korea.
| |
Collapse
|
20
|
G45R on nonstructural protein 1 of influenza A virus contributes to virulence by increasing the expression of proinflammatory cytokines in mice. Arch Virol 2016; 162:45-55. [PMID: 27664027 DOI: 10.1007/s00705-016-3072-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 09/15/2016] [Indexed: 01/15/2023]
Abstract
Nonstructural protein 1 (NS1) is a multifunctional protein that is a viral replication enhancer and virulence factor. In this study, we investigated the effect of the amino acid substitution G45R on the NS1 of A/Puerto Rico/8/1934 (H1N1) (G45R/NS1) on viral virulence and host gene expression in a mouse model and the human lung cell line A549. The G45R/NS1 virus had increased virulence by inducing an earlier and robust proinflammatory cytokine response in mice. Mice infected with the G45R/NS1 virus lost more body weight and had lower survival rates than mice infected with the wild type (WT/NS1) virus. Replication of the G45R/NS1 virus was higher than that of the WT/NS1 virus in vitro, but the replication of both viruses was similar in mouse lungs. In A549 cells, the majority of G45R/NS1 protein was localized in the cytoplasm whereas the majority of WT/NS1 protein was localized in the nucleus. Microarray analysis revealed that A549 cells infected with the G45R/NS1 virus had higher expression of genes encoding proteins associated with the innate immune response and cytokine activity than cells infected with the WT/NS1 virus. These data agree with cytokine production observed in mouse lungs. Our findings suggest that G45R on NS1 protein contributes to viral virulence by increasing the expression of inflammatory cytokines early in infection.
Collapse
|
21
|
Han D, Wei T, Zhang S, Wang M, Tian H, Cheng J, Xiao J, Hu Y, Chen M. The therapeutic effects of sodium cromoglycate against influenza A virus H5N1 in mice. Influenza Other Respir Viruses 2016; 10:57-66. [PMID: 26176755 PMCID: PMC4687497 DOI: 10.1111/irv.12334] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2015] [Indexed: 11/30/2022] Open
Abstract
Objectives To identify the protective role of sodium cromoglycate in mice during influenza virus infection. Design H5N1 virus‐infected mice were treated with the mast cell stabilizer sodium cromoglycate (SCG) to investigate its therapeutic effect. Sample The nose, trachea and lungs from mice were collected. Main outcome measures Virus replication and host responses were determined by plaque assay, quantitative PCR, immunohistochemistry, and histology. Results SCG‐treated mice survived better than did PBS‐treated mice after H5N1 virus infection. Mild pathological changes with fewer inflammatory cell infiltration and fewer virus antigens were observed in the nose, trachea, and lungs of SCG‐treated mice on days 3 and 5 post‐infection. However, no significant changes in viral load in the lungs were detected between SCG‐ and PBS‐treated mice. Furthermore, significantly decreased expression of interleukin‐6, tumor necrosis factor‐a, Toll‐like receptor 3, and TIR‐domain‐containing adapter‐inducing interferon‐b was detected in the lungs of SCG‐treated mice, and no higher expression of interferon‐c was detected. Conclusion These results suggest that SCG has therapeutic roles in H5N1 virus‐infected mice by alleviating the inflammatory response rather than inhibition of viral replication in the lungs.
Collapse
Affiliation(s)
- Deping Han
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Tangting Wei
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Siyi Zhang
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Ming Wang
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China.,Key Laboratory of Veterinary Bioproduction and Chemical Medicine of the Ministry of Agriculture, Zhongmu Institutes of China Animal Husbandry Industry Co., Ltd., Beijing, China
| | - Haiyan Tian
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jinlong Cheng
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jin Xiao
- Key Laboratory of Veterinary Bioproduction and Chemical Medicine of the Ministry of Agriculture, Zhongmu Institutes of China Animal Husbandry Industry Co., Ltd., Beijing, China
| | - Yanxin Hu
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Mingyong Chen
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
22
|
Lyoo KS, Na W, Yeom M, Jeong DG, Kim CU, Kim JK, Song D. Virulence of a novel reassortant canine H3N2 influenza virus in ferret, dog and mouse models. Arch Virol 2016; 161:1915-23. [PMID: 27138550 DOI: 10.1007/s00705-016-2868-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 04/15/2016] [Indexed: 10/21/2022]
Abstract
An outbreak of a canine influenza virus (CIV) H3N2 reassortant derived from pandemic (pdm) H1N1 and CIV H3N2 in companion animals has underscored the urgent need to monitor CIV infections for potential zoonotic transmission of influenza viruses to humans. In this study, we assessed the virulence of a novel CIV H3N2 reassortant, VC378, which was obtained from a dog that was coinfected with pdm H1N1 and CIV H3N2, in ferrets, dogs, and mice. Significantly enhanced virulence of VC378 was demonstrated in mice, although the transmissibility and pathogenicity of VC378 were similar to those of classical H3N2 in ferrets and dogs. This is notable because mice inoculated with an equivalent dose of classical CIV H3N2 showed no clinical signs and no lethality. We found that the PA and NS gene segments of VC378 were introduced from pdmH1N1, and these genes included the amino acid substitutions PA-P224S and NS-I123V, which were previously found to be associated with increased virulence in mice. Thus, we speculate that the natural reassortment between pdm H1N1 and CIV H3N2 can confer virulence and that continuous surveillance is needed to monitor the evolution of CIV in companion animals.
Collapse
Affiliation(s)
- Kwang-Soo Lyoo
- Korea Zoonosis Research Institute, Chonbuk National University, Iksan, Jeonbuk, 561-756, Republic of Korea
| | - Woonsung Na
- Korea Research Institute of Bioscience and Biotechnology, Taejon, 305-806, Republic of Korea.,Department of Pharmacy, College of Pharmacy, Korea University, Sejong, 339-700, Republic of Korea
| | - Minjoo Yeom
- Department of Pharmacy, College of Pharmacy, Korea University, Sejong, 339-700, Republic of Korea
| | - Dae-Gwin Jeong
- Korea Research Institute of Bioscience and Biotechnology, Taejon, 305-806, Republic of Korea
| | - Chang-Ung Kim
- Korea Research Institute of Bioscience and Biotechnology, Taejon, 305-806, Republic of Korea
| | - Jeong-Ki Kim
- Department of Pharmacy, College of Pharmacy, Korea University, Sejong, 339-700, Republic of Korea.
| | - Daesub Song
- Department of Pharmacy, College of Pharmacy, Korea University, Sejong, 339-700, Republic of Korea.
| |
Collapse
|
23
|
Genome Wide Host Gene Expression Analysis in Chicken Lungs Infected with Avian Influenza Viruses. PLoS One 2016; 11:e0153671. [PMID: 27071061 PMCID: PMC4829244 DOI: 10.1371/journal.pone.0153671] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 04/01/2016] [Indexed: 12/24/2022] Open
Abstract
The molecular pathogenesis of avian influenza infection varies greatly with individual bird species and virus strain. The molecular pathogenesis of the highly pathogenic avian influenza virus (HPAIV) or the low pathogenic avian influenza virus (LPAIV) infection in avian species remains poorly understood. Thus, global immune response of chickens infected with HPAI H5N1 (A/duck/India/02CA10/2011) and LPAI H9N2 (A/duck/India/249800/2010) viruses was studied using microarray to identify crucial host genetic components responsive to these infection. HPAI H5N1 virus induced excessive expression of type I IFNs (IFNA and IFNG), cytokines (IL1B, IL18, IL22, IL13, and IL12B), chemokines (CCL4, CCL19, CCL10, and CX3CL1) and IFN stimulated genes (OASL, MX1, RSAD2, IFITM5, IFIT5, GBP 1, and EIF2AK) in lung tissues. This dysregulation of host innate immune genes may be the critical determinant of the severity and the outcome of the influenza infection in chickens. In contrast, the expression levels of most of these genes was not induced in the lungs of LPAI H9N2 virus infected chickens. This study indicated the relationship between host immune genes and their roles in pathogenesis of HPAIV infection in chickens.
Collapse
|
24
|
Han D, Hu Y, Teng K, Deng X. Lower expression of sialic acid receptors in the cecum of silky fowl (Gallus gallus domesticus Brisson) compared to white leghorn. Poult Sci 2016; 95:1290-5. [PMID: 26976896 DOI: 10.3382/ps/pew065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 01/14/2016] [Indexed: 12/17/2022] Open
Abstract
Avian influenza virus has received increasing attention in recent years because of the potential for recombination with the human virus. Distributions of sialic acid receptors on target cells are determinants of the susceptibilities of different species to influenza virus infection. In this study, the distribution of sialic acid receptors in the respiratory and gastrointestinal tracts of Silky Fowl and White Leghorn chickens were compared. The results showed that sialic acid-α-2,3-galactose receptors and sialic acid-α6-galactose receptors were both observed in Silky Fowl and White Leghorn, but fewer positive cells were detected in Silky Fowl with significant difference in the cecum. The lower abundance of sialic acid receptors likely results from the lower abundance of CD3 and F4/80 immune cells in the cecum of Silky Fowl.
Collapse
Affiliation(s)
- Deping Han
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding, and Reproduction of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China
| | - Yanxin Hu
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Kedao Teng
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Xuemei Deng
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding, and Reproduction of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China
| |
Collapse
|
25
|
Dahiru Rogo L, Rezaei F, Shafiei-Jandaghi NZ, Ghavami N, Fatemi-Nasab G, Mokhtari-Azad T. Analysis of amino acid changes in NS protein of influenza A/(H3N2) virus in Iranian isolates. Future Virol 2015. [DOI: 10.2217/fvl.15.90] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aim: Roles of NS gene of influenza A virus in virulence and replication are well established but extent of its variation in seasonal influenza A (H3N2) viruses in Iran is not well known. Materials & methods: NS gene of 37 (A/H3N2) virus isolates were sequenced and analyzed for information on genetic changes. Results: Data analysis of NS1 protein revealed two amino acid substitutions E26K and Q193R in almost all strains. Substitutions in T58P in 27.0%, A86S in 13.5% and each of V11G, M81I and P85T in 2.7% Iranian strains were also observed. Mutations in NS2/NEP protein were observed in K36E, Q101L and F107S. Conclusion: Many mutations were observed for the first time in Iranian strains. Their function remains to be determined.
Collapse
Affiliation(s)
- Lawal Dahiru Rogo
- Department of Medical Virology, School of Public Health, Tehran University of Medical Sciences, International Campus, Tehran, Iran
- Department of Medical Laboratory Science, Faculty of Allied Health Sciences, College of Health Sciences, Bayero University Kano, PMB 3011, Nigeria
| | - Farhad Rezaei
- Department of Medical Virology, School of Public Health, Tehran University of Medical Sciences, International Campus, Tehran, Iran
- National Influenza Center, Department of Medical Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Nazanin Z Shafiei-Jandaghi
- Department of Medical Virology, School of Public Health, Tehran University of Medical Sciences, International Campus, Tehran, Iran
- National Influenza Center, Department of Medical Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Nastaran Ghavami
- Department of Medical Virology, School of Public Health, Tehran University of Medical Sciences, International Campus, Tehran, Iran
- National Influenza Center, Department of Medical Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ghazal Fatemi-Nasab
- Department of Medical Virology, School of Public Health, Tehran University of Medical Sciences, International Campus, Tehran, Iran
- National Influenza Center, Department of Medical Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Talat Mokhtari-Azad
- Department of Medical Virology, School of Public Health, Tehran University of Medical Sciences, International Campus, Tehran, Iran
- National Influenza Center, Department of Medical Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
26
|
Thor SW, Nguyen H, Balish A, Hoang AN, Gustin KM, Nhung PT, Jones J, Thu NN, Davis W, Ngoc TNT, Jang Y, Sleeman K, Villanueva J, Kile J, Gubareva LV, Lindstrom S, Tumpey TM, Davis CT, Long NT. Detection and Characterization of Clade 1 Reassortant H5N1 Viruses Isolated from Human Cases in Vietnam during 2013. PLoS One 2015; 10:e0133867. [PMID: 26244768 PMCID: PMC4526568 DOI: 10.1371/journal.pone.0133867] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 07/03/2015] [Indexed: 02/03/2023] Open
Abstract
Highly pathogenic avian influenza (HPAI) H5N1 is endemic in Vietnamese poultry and has caused sporadic human infection in Vietnam since 2003. Human infections with HPAI H5N1 are of concern due to a high mortality rate and the potential for the emergence of pandemic viruses with sustained human-to-human transmission. Viruses isolated from humans in southern Vietnam have been classified as clade 1 with a single genome constellation (VN3) since their earliest detection in 2003. This is consistent with detection of this clade/genotype in poultry viruses endemic to the Mekong River Delta and surrounding regions. Comparison of H5N1 viruses detected in humans from southern Vietnamese provinces during 2012 and 2013 revealed the emergence of a 2013 reassortant virus with clade 1.1.2 hemagglutinin (HA) and neuraminidase (NA) surface protein genes but internal genes derived from clade 2.3.2.1a viruses (A/Hubei/1/2010-like; VN12). Closer analysis revealed mutations in multiple genes of this novel genotype (referred to as VN49) previously associated with increased virulence in animal models and other markers of adaptation to mammalian hosts. Despite the changes identified between the 2012 and 2013 genotypes analyzed, their virulence in a ferret model was similar. Antigenically, the 2013 viruses were less cross-reactive with ferret antiserum produced to the clade 1 progenitor virus, A/Vietnam/1203/2004, but reacted with antiserum produced against a new clade 1.1.2 WHO candidate vaccine virus (A/Cambodia/W0526301/2012) with comparable hemagglutination inhibition titers as the homologous antigen. Together, these results indicate changes to both surface and internal protein genes of H5N1 viruses circulating in southern Vietnam compared to 2012 and earlier viruses.
Collapse
Affiliation(s)
- Sharmi W. Thor
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Hieu Nguyen
- Institute Pasteur-Ho Chi Minh City, National Influenza Center-2, Ho Chi Minh City, Vietnam
| | - Amanda Balish
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Anh Nguyen Hoang
- Institute Pasteur-Ho Chi Minh City, National Influenza Center-2, Ho Chi Minh City, Vietnam
| | - Kortney M. Gustin
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Pham Thi Nhung
- Institute Pasteur-Ho Chi Minh City, National Influenza Center-2, Ho Chi Minh City, Vietnam
| | - Joyce Jones
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Ngoc Nguyen Thu
- Institute Pasteur-Ho Chi Minh City, National Influenza Center-2, Ho Chi Minh City, Vietnam
| | - William Davis
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Thao Nguyen Thi Ngoc
- Institute Pasteur-Ho Chi Minh City, National Influenza Center-2, Ho Chi Minh City, Vietnam
| | - Yunho Jang
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Katrina Sleeman
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Julie Villanueva
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - James Kile
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
- Influenza Program, Centers for Disease Control and Prevention- Vietnam, Hanoi, Vietnam
| | - Larisa V. Gubareva
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Stephen Lindstrom
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Terrence M. Tumpey
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - C. Todd Davis
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
- * E-mail: (NTL); (CTD)
| | - Nguyen Thanh Long
- Institute Pasteur-Ho Chi Minh City, National Influenza Center-2, Ho Chi Minh City, Vietnam
- * E-mail: (NTL); (CTD)
| |
Collapse
|
27
|
Abstract
Signal transducer and activators of transcription-3 (STAT3) regulates diverse biological functions including cell growth, differentiation, and apoptosis. In addition, STAT3 plays a key role in regulating host immune and inflammatory responses and in the pathogenesis of many cancers. Several studies reported differential regulation of STAT3 in a range of viral infections. Interestingly, STAT3 appears to direct seemingly contradictory responses and both pro- and antiviral roles of STAT3 have been described. This review summarized the currently known functions of STAT3 in the regulation of viral replication and pathogenesis of viral infections. Some of the key unanswered questions and the gap in our current understanding of the role of STAT3 in viral pathogenesis are discussed.
Collapse
|
28
|
Kuchipudi SV, Tellabati M, Sebastian S, Londt BZ, Jansen C, Vervelde L, Brookes SM, Brown IH, Dunham SP, Chang KC. Highly pathogenic avian influenza virus infection in chickens but not ducks is associated with elevated host immune and pro-inflammatory responses. Vet Res 2014; 45:118. [PMID: 25431115 PMCID: PMC4246556 DOI: 10.1186/s13567-014-0118-3] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 10/31/2014] [Indexed: 11/15/2022] Open
Abstract
Highly pathogenic avian influenza (HPAI) H5N1 viruses cause severe infection in chickens at near complete mortality, but corresponding infection in ducks is typically mild or asymptomatic. To understand the underlying molecular differences in host response, primary chicken and duck lung cells, infected with two HPAI H5N1 viruses and a low pathogenicity avian influenza (LPAI) H2N3 virus, were subjected to RNA expression profiling. Chicken cells but not duck cells showed highly elevated immune and pro-inflammatory responses following HPAI virus infection. HPAI H5N1 virus challenge studies in chickens and ducks corroborated the in vitro findings. To try to determine the underlying mechanisms, we investigated the role of signal transducer and activator of transcription-3 (STAT-3) in mediating pro-inflammatory response to HPAIV infection in chicken and duck cells. We found that STAT-3 expression was down-regulated in chickens but was up-regulated or unaffected in ducks in vitro and in vivo following H5N1 virus infection. Low basal STAT-3 expression in chicken cells was completely inhibited by H5N1 virus infection. By contrast, constitutively active STAT-3 detected in duck cells was unaffected by H5N1 virus infection. Transient constitutively-active STAT-3 transfection in chicken cells significantly reduced pro-inflammatory response to H5N1 virus infection; on the other hand, chemical inhibition of STAT-3 activation in duck cells increased pro-inflammatory gene expression following H5N1 virus infection. Collectively, we propose that elevated pro-inflammatory response in chickens is a major pathogenicity factor of HPAI H5N1 virus infection, mediated in part by the inhibition of STAT-3.
Collapse
Affiliation(s)
- Suresh V Kuchipudi
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, College Road, Loughborough, Nottingham LE12 5RD, Leicestershire, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Mechanisms of action and efficacy of statins against influenza. BIOMED RESEARCH INTERNATIONAL 2014; 2014:872370. [PMID: 25478576 PMCID: PMC4244940 DOI: 10.1155/2014/872370] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 09/08/2014] [Accepted: 09/10/2014] [Indexed: 12/31/2022]
Abstract
The influenza virus (IV) is known to be a resistant virus with frequent mutations, causing severe respiratory diseases in the upper respiratory system. Public health concerns about clinical efficacy of all conventional drugs are ambiguous; therefore, finding additional therapeutic agents is critical to prevent and control influenza outbreaks. Influenza is associated with the induction of proinflammatory cytokines. Scientists have reported that anti-inflammatory drugs, with pleiotropic effects, reduce the burden of severe influenza diseases. Therefore, statins, which are cardioprotective drugs with anti-inflammatory and immunomodulatory effects, may help patients suffering from influenza virus (IV). This review delineates the potential use of statins as an alternative therapy in treating influenza related illness.
Collapse
|
30
|
Magnitude of influenza virus replication and cell damage is associated with interleukin-6 production in primary cultures of human tracheal epithelium. Respir Physiol Neurobiol 2014; 202:16-23. [PMID: 25064661 DOI: 10.1016/j.resp.2014.07.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 07/15/2014] [Accepted: 07/15/2014] [Indexed: 01/22/2023]
Abstract
Primary cultures of human tracheal epithelium were infected with influenza viruses to examine the relationships between the magnitude of viral replication and infection-induced cell damage and cytokine production in airway epithelial cells. Infection with four strains of the type A influenza virus increased the detached cell number and lactate dehydrogenase (LDH) levels in the supernatants. The detached cell number and LDH levels were related to the viral titers and interleukin (IL)-6 levels and the nuclear factor kappa B (NF-κB) p65 activation. Treatment of the cells with an anti-IL-6 receptor antibody and an NF-κB inhibitor, caffeic acid phenethyl ester, reduced the detached cell number, viral titers and the LDH levels and improved cell viability after infection with the pandemic influenza virus [A/Sendai-H/N0633/2009 (H1N1) pdm09]. A caspase-3 inhibitor, benzyloxycarbonyl-DEVD-fluoromethyl ketone, reduced the detached cell number and viral titers. Influenza viral infection-induced cell damage may be partly related to the magnitude of viral replication, NF-κB-p65-mediated IL-6 production and caspase-3 activation.
Collapse
|
31
|
Li Y, Chen S, Zhang X, Fu Q, Zhang Z, Shi S, Zhu Y, Gu M, Peng D, Liu X. A 20-amino-acid deletion in the neuraminidase stalk and a five-amino-acid deletion in the NS1 protein both contribute to the pathogenicity of H5N1 avian influenza viruses in mallard ducks. PLoS One 2014; 9:e95539. [PMID: 24743258 PMCID: PMC3990698 DOI: 10.1371/journal.pone.0095539] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Accepted: 03/28/2014] [Indexed: 01/21/2023] Open
Abstract
Since 2003, H5N1-subtype avian influenza viruses (AIVs) with both a deletion of 20 amino acids in the stalk of the neuraminidase (NA) glycoprotein (A−) and a deletion of five amino acids at positions 80 to 84 in the non-structural protein NS1 (S−) have become predominant. To understand the influence of these double deletions in the NA and NS1 proteins on the pathogenicity of H5N1-subtype AIVs, we selected A/mallard/Huadong/S/2005 as a parental strain to generate rescued wild-type A−S− and three variants (A−S+ with a five-amino-acid insertion in the NS1 protein, A+S− with a 20-amino-acid insertion in the NA stalk, and A+S+ with insertions in both NA and NS1 proteins) and evaluated their biological characteristics and virulence. The titers of the AIVs with A− and/or S− replicated in DEF cells were higher than that of A+S+, and the A−S− virus exhibited a replication predominance when co-infected with the other variants in DEF cells. In addition, A−S− induced a more significant increase in the expression of immune-related genes in peripheral blood mononuclear cells of mallard ducks in vitro compared with the other variants. Furthermore, an insertion in the NA and/or NS1 proteins of AIVs resulted in a notable decrease in virulence in ducks, as determined by intravenous pathogenicity index, and the two insertions exerted a synergistic effect on the attenuation of pathogenicity in ducks. In addition, compared with A+S+ and A+S−, the A−S+ and A−S− viruses that were introduced via the intranasal inoculation route exhibited a faster replication ability in the lungs of ducks. These data indicate that both the deletions in the NA stalk and the NS1 protein contribute to the high pathogenicity of H5N1 AIVs in ducks.
Collapse
Affiliation(s)
- Yanfang Li
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, P.R. China
| | - Sujuan Chen
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, P.R. China
| | - Xiaojian Zhang
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, P.R. China
| | - Qiang Fu
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, P.R. China
| | - Zhiye Zhang
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, P.R. China
| | - Shaohua Shi
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, P.R. China
| | - Yinbiao Zhu
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, P.R. China
| | - Min Gu
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, P.R. China
| | - Daxin Peng
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, P.R. China
- * E-mail: (DP); (XL)
| | - Xiufan Liu
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, P.R. China
- * E-mail: (DP); (XL)
| |
Collapse
|
32
|
Pu L, Jiang T, Liu JY, Deng YQ, Wang P, Nian QG, Yu XD, Zhu SY, Zhang YL, Qin CF. Methylprednisolone treatment fails to protect mice from the H5N1 influenza A virus-induced proinflammatory response and mortality. J Infect 2014; 69:297-9. [PMID: 24680866 DOI: 10.1016/j.jinf.2014.03.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Revised: 03/21/2014] [Accepted: 03/23/2014] [Indexed: 01/23/2023]
Affiliation(s)
- Lin Pu
- Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Tao Jiang
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Jing-Yuan Liu
- Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yong-Qiang Deng
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Peng Wang
- Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Qing-Gong Nian
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Xue-Dong Yu
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Shun-Ya Zhu
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Yong-Li Zhang
- Beijing Ditan Hospital, Capital Medical University, Beijing, China.
| | - Cheng-Feng Qin
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; Graduate School, Anhui Medical University, Hefei, China.
| |
Collapse
|
33
|
Kash JC, Xiao Y, Davis AS, Walters KA, Chertow DS, Easterbrook JD, Dunfee RL, Sandouk A, Jagger BW, Schwartzman LM, Kuestner RE, Wehr NB, Huffman K, Rosenthal RA, Ozinsky A, Levine RL, Doctrow SR, Taubenberger JK. Treatment with the reactive oxygen species scavenger EUK-207 reduces lung damage and increases survival during 1918 influenza virus infection in mice. Free Radic Biol Med 2014; 67:235-47. [PMID: 24140866 PMCID: PMC3927540 DOI: 10.1016/j.freeradbiomed.2013.10.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 10/07/2013] [Accepted: 10/08/2013] [Indexed: 12/16/2022]
Abstract
The 1918 influenza pandemic caused over 40 million deaths worldwide, with 675,000 deaths in the United States alone. Studies in several experimental animal models showed that 1918 influenza virus infection resulted in severe lung pathology associated with dysregulated immune and cell death responses. To determine if reactive oxygen species produced by host inflammatory responses play a central role in promoting severity of lung pathology, we treated 1918 influenza virus-infected mice with the catalytic catalase/superoxide dismutase mimetic, salen-manganese complex EUK-207 beginning 3 days postinfection. Postexposure treatment of mice infected with a lethal dose of the 1918 influenza virus with EUK-207 resulted in significantly increased survival and reduced lung pathology without a reduction in viral titers. In vitro studies also showed that EUK-207 treatment did not affect 1918 influenza viral replication. Immunohistochemical analysis showed a reduction in the detection of the apoptosis marker cleaved caspase-3 and the oxidative stress marker 8-oxo-2'-deoxyguanosine in lungs of EUK-207-treated animals compared to vehicle controls. High-throughput sequencing and RNA expression microarray analysis revealed that treatment resulted in decreased expression of inflammatory response genes and increased lung metabolic and repair responses. These results directly demonstrate that 1918 influenza virus infection leads to an immunopathogenic immune response with excessive inflammatory and cell death responses that can be limited by treatment with the catalytic antioxidant EUK-207.
Collapse
Affiliation(s)
- John C Kash
- Laboratory of Infectious Diseases, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Yongli Xiao
- Laboratory of Infectious Diseases, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - A Sally Davis
- Laboratory of Infectious Diseases, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Daniel S Chertow
- Laboratory of Infectious Diseases, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Judith D Easterbrook
- Laboratory of Infectious Diseases, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rebecca L Dunfee
- Laboratory of Infectious Diseases, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Aline Sandouk
- Laboratory of Infectious Diseases, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Brett W Jagger
- Laboratory of Infectious Diseases, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Louis M Schwartzman
- Laboratory of Infectious Diseases, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Nancy B Wehr
- Laboratory of Biochemistry, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Karl Huffman
- Pulmonary Center, Department of Medicine, Boston University Medical School, Boston, MA 02118, USA
| | - Rosalind A Rosenthal
- Pulmonary Center, Department of Medicine, Boston University Medical School, Boston, MA 02118, USA
| | | | - Rodney L Levine
- Laboratory of Biochemistry, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Susan R Doctrow
- Pulmonary Center, Department of Medicine, Boston University Medical School, Boston, MA 02118, USA
| | - Jeffery K Taubenberger
- Laboratory of Infectious Diseases, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
34
|
Vergara-Alert J, Busquets N, Ballester M, Chaves AJ, Rivas R, Dolz R, Wang Z, Pleschka S, Majó N, Rodríguez F, Darji A. The NS segment of H5N1 avian influenza viruses (AIV) enhances the virulence of an H7N1 AIV in chickens. Vet Res 2014; 45:7. [PMID: 24460592 PMCID: PMC3922795 DOI: 10.1186/1297-9716-45-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 01/17/2014] [Indexed: 12/25/2022] Open
Abstract
Some outbreaks involving highly pathogenic avian influenza viruses (HPAIV) of subtypes H5 and H7 were caused by avian-to-human transmissions. In nature, different influenza A viruses can reassort leading to new viruses with new characteristics. We decided to investigate the impact that the NS-segment of H5 HPAIV would have on viral pathogenicity of a classical avian H7 HPAIV in poultry, a natural host. We focussed this study based on our previous work that demonstrated that single reassortment of the NS-segment from an H5 HPAIV into an H7 HPAIV changes the ability of the virus to replicate in mammalian hosts. Our present data show that two different H7-viruses containing an NS-segment from H5–types (FPV NS GD or FPV NS VN) show an overall highly pathogenic phenotype compared with the wild type H7–virus (FPV), as characterized by higher viral shedding and earlier manifestation of clinical signs. Correlating with the latter, higher amounts of IFN-β mRNA were detected in the blood of NS-reassortant infected birds, 48 h post-infection (pi). Although lymphopenia was detected in chickens from all AIV-infected groups, also 48 h pi those animals challenged with NS-reassortant viruses showed an increase of peripheral monocyte/macrophage-like cells expressing high levels of IL-1β, as determined by flow cytometry. Taken together, these findings highlight the importance of the NS-segment in viral pathogenicity which is directly involved in triggering antiviral and pro-inflammatory cytokines found during HPAIV pathogenesis in chickens.
Collapse
Affiliation(s)
- Júlia Vergara-Alert
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès 08193, Spain.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Although influenza A and B viruses are primarily known as respiratory viruses and mainly infected only the upper respiratory tract in humans, patients with influenza often develop signs and symptoms that are not due to the respiratory system. Frequently individuals with influenza develop headaches, meningismus, and even seizures in addition to their typical respiratory symptoms. In the past decades, influenza viruses have also been associated with serious non-respiratory signs. The famous 1918 strain of influenza was associated with von Economo's encephalitis lethargica and postencephalitic parkinsonism. In the 1960s influenza virus infections in children were associated with Reye's syndrome characterized often by fatty non-inflammatory hepatic disease and an encephalopathy with marked non-inflammatory cerebral edema. Intermittently children with influenza develop focal myalgia and myositis. Guillain–Barré syndrome was epidemiologically associated with the 1978 killed influenza vaccine but not subsequent vaccines. Although occasional children with influenza have developed encephalopathy, from 2000 through 2004 there was an increase in the number of serious cases of acute necrotizing encephalopathy accompanying infection with the influenza A 2009 strain. The current H5N1 strain of bird influenza occasionally infects humans with a high mortality rate and some appear to have central nervous signs. This chapter explores what is known about these influenza neurologic associations.
Collapse
Affiliation(s)
- Larry E Davis
- Neurology Service, New Mexico VA Health Care System and Department of Neurology, University of New Mexico School of Medicine, Albuquerque, NM, USA.
| | - Fredrick Koster
- Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| | | |
Collapse
|
36
|
Park SJ, Lee EH, Choi EH, Pascua PNQ, Kwon HI, Kim EH, Lim GJ, Decano A, Kim SM, Choi YK. Avian-derived NS gene segments alter pathogenicity of the A/Puerto Rico/8/34 virus. Virus Res 2013; 179:64-72. [PMID: 24269912 DOI: 10.1016/j.virusres.2013.11.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 11/06/2013] [Accepted: 11/11/2013] [Indexed: 02/02/2023]
Abstract
While the effect of the influenza A virus non-structural protein (NS) on cytokine production during viral infection is well known, inconsistent results have been observed with some other influenza A virus backbone studied. In this study, in order to focus on the impact of the avian NS gene segments on viral virulence, the NS genes encoded by different strains of avian influenza A viruses were incorporated into an identical [A/Puerto Rico/8/1934(H1N1), PR8] virus background to generate various NS recombinant viruses. Thus, PR8NS, PR8×[A/Hong Kong/483/97(H5N1) 483NS, PR8×[A/Ck/Korea/150/03(H9N2) 150NS, and PR8×[A/EM/Korea/W149/06(H5N1) W149NS were constructed utilizing reverse genetics. Here, we show the effects of each of these recombinant viruses upon viral pathogenesis and cytokine production during viral replication in vivo. In this regard, we found that infection of mice with the PR8×150NS recombinant virus resulted in the lowest pathogenicity (6.0×10(4)MLD50), yet elicited the highest levels of TNF-α production in bronchoalveolar lavage (BAL) fluid compared to infection with the other recombinant influenza viruses. In contrast, infection with the PR8 virus showed the highest pathogenicity (1.0×10(2)MLD50) as well as relatively high cytokine levels (IL-1α, IL-1β, IL-17, and eotaxin) in mouse BAL fluid. In addition, the PR8 and PR8×483NS viruses induced severe and extensive inflammation in infected lungs compared with that of PR8×150 NS recombinant virus-infected mice. These results clearly demonstrate that the NS genes of diverse influenza A strains can variable impact pathogenicity, histopathology, and cytokine production in mice even when expressed in an identical genetic background.
Collapse
Affiliation(s)
- Su-Jin Park
- College of Medicine and Medical Research Institute, Chungbuk National University, 12 Gaeshin-Dong Henugduk-Ku, Cheongju 361-763, Republic of Korea
| | - Eun Ho Lee
- College of Medicine and Medical Research Institute, Chungbuk National University, 12 Gaeshin-Dong Henugduk-Ku, Cheongju 361-763, Republic of Korea
| | - Eun Hye Choi
- College of Medicine and Medical Research Institute, Chungbuk National University, 12 Gaeshin-Dong Henugduk-Ku, Cheongju 361-763, Republic of Korea
| | - Philippe Noriel Q Pascua
- College of Medicine and Medical Research Institute, Chungbuk National University, 12 Gaeshin-Dong Henugduk-Ku, Cheongju 361-763, Republic of Korea
| | - Hyeok-Il Kwon
- College of Medicine and Medical Research Institute, Chungbuk National University, 12 Gaeshin-Dong Henugduk-Ku, Cheongju 361-763, Republic of Korea
| | - Eun-Ha Kim
- College of Medicine and Medical Research Institute, Chungbuk National University, 12 Gaeshin-Dong Henugduk-Ku, Cheongju 361-763, Republic of Korea
| | - Gyo-Jin Lim
- College of Medicine and Medical Research Institute, Chungbuk National University, 12 Gaeshin-Dong Henugduk-Ku, Cheongju 361-763, Republic of Korea
| | - Arun Decano
- College of Medicine and Medical Research Institute, Chungbuk National University, 12 Gaeshin-Dong Henugduk-Ku, Cheongju 361-763, Republic of Korea
| | - Se Mi Kim
- College of Medicine and Medical Research Institute, Chungbuk National University, 12 Gaeshin-Dong Henugduk-Ku, Cheongju 361-763, Republic of Korea
| | - Young-Ki Choi
- College of Medicine and Medical Research Institute, Chungbuk National University, 12 Gaeshin-Dong Henugduk-Ku, Cheongju 361-763, Republic of Korea.
| |
Collapse
|
37
|
Highly pathological influenza A virus infection is associated with augmented expression of PD-1 by functionally compromised virus-specific CD8+ T cells. J Virol 2013; 88:1636-51. [PMID: 24257598 DOI: 10.1128/jvi.02851-13] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
One question that continues to challenge influenza A research is why some strains of virus are so devastating compared to their more mild counterparts. We approached this question from an immunological perspective, investigating the CD8(+) T cell response in a mouse model system comparing high- and low-pathological influenza virus infections. Our findings reveal that the early (day 0 to 5) viral titer was not the determining factor in the outcome of disease. Instead, increased numbers of antigen-specific CD8(+) T cells and elevated effector function on a per-cell basis were found in the low-pathological infection and correlated with reduced illness and later-time-point (day 6 to 10) viral titer. High-pathological infection was associated with increased PD-1 expression on influenza virus-specific CD8(+) T cells, and blockade of PD-L1 in vivo led to reduced virus titers and increased CD8(+) T cell numbers in high- but not low-pathological infection, though T cell functionality was not restored. These data show that high-pathological acute influenza virus infection is associated with a dysregulated CD8(+) T cell response, which is likely caused by the more highly inflamed airway microenvironment during the early days of infection. Therapeutic approaches specifically aimed at modulating innate airway inflammation may therefore promote efficient CD8(+) T cell activity. We show that during a severe influenza virus infection, one type of immune cell, the CD8 T cell, is less abundant and less functional than in a more mild infection. This dysregulated T cell phenotype correlates with a lower rate of virus clearance in the severe infection and is partially regulated by the expression of a suppressive coreceptor called PD-1. Treatment with an antibody that blocks PD-1 improves T cell functionality and increases virus clearance.
Collapse
|
38
|
Liu Q, Liu DY, Yang ZQ. Characteristics of human infection with avian influenza viruses and development of new antiviral agents. Acta Pharmacol Sin 2013; 34:1257-69. [PMID: 24096642 PMCID: PMC3791557 DOI: 10.1038/aps.2013.121] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 08/01/2013] [Indexed: 12/21/2022]
Abstract
Since 1997, several epizootic avian influenza viruses (AIVs) have been transmitted to humans, causing diseases and even deaths. The recent emergence of severe human infections with AIV (H7N9) in China has raised concerns about efficient interpersonal viral transmission, polygenic traits in viral pathogenicity and the management of newly emerging strains. The symptoms associated with viral infection are different in various AI strains: H5N1 and newly emerged H7N9 induce severe pneumonia and related complications in patients, while some H7 and H9 subtypes cause only conjunctivitis or mild respiratory symptoms. The virulence and tissue tropism of viruses as well as the host responses contribute to the pathogenesis of human AIV infection. Several preventive and therapeutic approaches have been proposed to combat AIV infection, including antiviral drugs such as M2 inhibitors, neuraminidase inhibitors, RNA polymerase inhibitors, attachment inhibitors and signal-transduction inhibitors etc. In this article, we summarize the recent progress in researches on the epidemiology, clinical features, pathogenicity determinants, and available or potential antivirals of AIV.
Collapse
Affiliation(s)
- Qiang Liu
- State Key Laboratory of Virology/Institute of Medical Virology, School of Medicine, Wuhan University, Wuhan 430071, China
- The First College of Clinical Medical Science, China Three Gorges University/Yichang Central People's Hospital, Yichang 443000, China
| | - Dong-ying Liu
- State Key Laboratory of Virology/Institute of Medical Virology, School of Medicine, Wuhan University, Wuhan 430071, China
- Department of Microbiology, School of Medicine, Wuhan University, Wuhan 430071, China
| | - Zhan-qiu Yang
- State Key Laboratory of Virology/Institute of Medical Virology, School of Medicine, Wuhan University, Wuhan 430071, China
| |
Collapse
|
39
|
Kimura G, Ueda K, Eto S, Watanabe Y, Masuko T, Kusama T, Barnes PJ, Ito K, Kizawa Y. Toll-like receptor 3 stimulation causes corticosteroid-refractory airway neutrophilia and hyperresponsiveness in mice. Chest 2013; 144:99-105. [PMID: 23348232 DOI: 10.1378/chest.12-2610] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND RNA virus infections, such as rhinovirus and respiratory syncytial virus, induce exacerbations in patients with COPD and asthma, and the inflammation is corticosteroid refractory. The main aim of this study is to establish a murine model induced by a Toll-like receptor 3 (TLR3) agonist, an RNA virus mimic, and investigate the response to corticosteroid. METHODS A/J mice were given polyinosinic-polycytidylic acid (poly[I:C]), a TLR3 agonist, intranasally, in the presence or absence of cigarette smoke exposure. Inflammatory cell accumulation and C-X-C motif chemokine (CXCL) 1, interferon (IFN), and CXCL10 production in BAL fluid (BALF) were determined by flow cytometry and enzyme-linked immunosorbent assay, respectively, and airway hyperresponsiveness (AHR) to histamine/methacholine was determined by a two-chambered, double-flow plethysmography system. BALB/c and C57BL/6J mice were also used for comparisons. RESULTS Intranasal treatment of poly(I:C) significantly induced airway neutrophilia; production of CXCL1, IFN-β, and CXCL10; and necrotic cell accumulation in BALF. It also increased airway responsiveness to histamine or methacholine inhalation. This poly(I:C)-dependent airway inflammation and AHR was not inhibited by the corticosteroid fluticasone propionate (FP) (up to 0.5 mg/mL intranasal), although FP strongly inhibited lipopolysaccharide (TLR4 agonist)-induced airway neutrophilia. Furthermore, cigarette smoke exposure significantly increased TLR3 expression in murine lung tissue and exacerbated poly(I:C)-induced neutrophilia and AHR. CONCLUSIONS These results suggest that TLR3 stimulation is involved in corticosteroid-refractory airway inflammation in lung, which is enhanced by cigarette smoking, and this may provide a model for understanding virus-induced exacerbations in COPD and their therapy.
Collapse
Affiliation(s)
- Genki Kimura
- Department of Physiology and Anatomy, Nihon University School of Pharmacy, Funabashi, Chiba, Japan
| | - Keitaro Ueda
- Department of Physiology and Anatomy, Nihon University School of Pharmacy, Funabashi, Chiba, Japan
| | - Shouichi Eto
- Department of Physiology and Anatomy, Nihon University School of Pharmacy, Funabashi, Chiba, Japan
| | - Yuji Watanabe
- Department of Physiology and Anatomy, Nihon University School of Pharmacy, Funabashi, Chiba, Japan
| | - Takashi Masuko
- Department of Physiology and Anatomy, Nihon University School of Pharmacy, Funabashi, Chiba, Japan
| | - Tadashi Kusama
- Department of Physiology and Anatomy, Nihon University School of Pharmacy, Funabashi, Chiba, Japan
| | - Peter J Barnes
- Airway Disease Section, National Heart and Lung Institute, Imperial College, London, England
| | - Kazuhiro Ito
- Airway Disease Section, National Heart and Lung Institute, Imperial College, London, England
| | - Yasuo Kizawa
- Department of Physiology and Anatomy, Nihon University School of Pharmacy, Funabashi, Chiba, Japan.
| |
Collapse
|
40
|
Chi Y, Zhu Y, Wen T, Cui L, Ge Y, Jiao Y, Wu T, Ge A, Ji H, Xu K, Bao C, Zhu Z, Qi X, Wu B, Shi Z, Tang F, Xing Z, Zhou M. Cytokine and chemokine levels in patients infected with the novel avian influenza A (H7N9) virus in China. J Infect Dis 2013; 208:1962-7. [PMID: 23990573 DOI: 10.1093/infdis/jit440] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
H7N9 avian influenza is an emerging viral disease in China caused by avian influenza A (H7N9) virus. We investigated host cytokine and chemokine profiles in serum samples of H7N9 patients by multiplex-microbead immunoassays. Statistical analysis showed that IP-10, IL-6, IL-17, and IL-2 were increased in H7N9 infected patients. Furthermore, IL-6 and the chemokine IP-10 were significantly higher in severe H7N9 patients compared to nonsevere H7N9 cases. We suggest that proinflammatory cytokine responses, characterized by a combined Th1/Th17 cytokine induction, are partially responsible for the disease progression of patients with H7N9 infection.
Collapse
Affiliation(s)
- Ying Chi
- Key Laboratory of Enteric Pathogenic Microbiology, Ministry of Health, Institute of Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Differential immune response of mallard duck peripheral blood mononuclear cells to two highly pathogenic avian influenza H5N1 viruses with distinct pathogenicity in mallard ducks. Arch Virol 2013; 159:339-43. [DOI: 10.1007/s00705-013-1820-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 07/01/2013] [Indexed: 10/26/2022]
|
42
|
Dankar SK, Miranda E, Forbes NE, Pelchat M, Tavassoli A, Selman M, Ping J, Jia J, Brown EG. Influenza A/Hong Kong/156/1997(H5N1) virus NS1 gene mutations F103L and M106I both increase IFN antagonism, virulence and cytoplasmic localization but differ in binding to RIG-I and CPSF30. Virol J 2013; 10:243. [PMID: 23886034 PMCID: PMC3733596 DOI: 10.1186/1743-422x-10-243] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 07/23/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The genetic basis for avian to mammalian host switching in influenza A virus is largely unknown. The human A/HK/156/1997 (H5N1) virus that transmitted from poultry possesses NS1 gene mutations F103L + M106I that are virulence determinants in the mouse model of pneumonia; however their individual roles have not been determined. The emergent A/Shanghai/patient1/2013(H7N9)-like viruses also possess these mutations which may contribute to their virulence and ability to switch species. METHODS NS1 mutant viruses were constructed by reverse genetics and site directed mutagenesis on human and mouse-adapted backbones. Mouse infections assessed virulence, virus yield, tissue infection, and IFN induction. NS1 protein properties were assessed for subcellular distribution, IFN antagonism (mouse and human), CPSF30 and RIG-I domain binding, host transcription (microarray); and the natural prevalence of 103L and 106I mutants was assessed. RESULTS Each of the F103L and M106I mutations contributes additively to virulence to reduce the lethal dose by >800 and >3,200 fold respectively by mediating alveolar tissue infection with >100 fold increased infectious yields. The 106I NS1 mutant lost CPSF binding but the 103L mutant maintained binding that correlated with an increased general decrease in host gene expression in human but not mouse cells. Each mutation positively modulated the inhibition of IFN induction in mouse cells and activation of the IFN-β promoter in human cells but not in combination in human cells indicating negative epistasis. Each of the F103L and M106I mutations restored a defect in cytoplasmic localization of H5N1 NS1 in mouse cells. Human H1N1 and H3N2 NS1 proteins bound to the CARD, helicase and RD RIG-I domains, whereas the H5N1 NS1 with the same consensus 103F and 106M mutations did not bind these domains, which was totally or partially restored by the M106I or F103L mutations respectively. CONCLUSIONS The F103L and M106I mutations in the H5N1 NS1 protein each increased IFN antagonism and mediated interstitial pneumonia in mice that was associated with increased cytoplasmic localization and altered host factor binding. These mutations may contribute to the ability of previous HPAI H5N1 and recent LPAI H7N9 and H6N1 (NS1-103L+106M) viruses to switch hosts and cause disease in humans.
Collapse
Affiliation(s)
- Samar K Dankar
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Rd, Ottawa, Ontario K1H 8M5, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Influenza A viruses (IAV) are significant pathogens able to repeatedly switch hosts to infect multiple avian and mammalian species, including humans. The unpredictability of IAV evolution and interspecies movement creates continual public health challenges, such as the emergence of the 2009 pandemic H1N1 virus from swine, as well as pandemic threats from the ongoing H5N1 and the recent H7N9 epizootics. In the last decade there has been increased concern about the “dual use” nature of microbiology, and a set of guidelines covering “dual use research of concern” includes seven categories of potentially problematic scientific experiments. In this Perspective, we consider how in nature IAV continually undergo “dual use experiments” as a matter of evolution and selection, and we conclude that studying these properties of IAV is critical for mitigating and preventing future epidemics and pandemics.
Collapse
|
44
|
Cornelissen JBWJ, Vervelde L, Post J, Rebel JMJ. Differences in highly pathogenic avian influenza viral pathogenesis and associated early inflammatory response in chickens and ducks. Avian Pathol 2013; 42:347-64. [PMID: 23782222 DOI: 10.1080/03079457.2013.807325] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
We studied the immunological responses in the lung, brain and spleen of ducks and chickens within the first 7 days after infection with H7N1 highly pathogenic avian influenza (HPAI). Infection with HPAI caused significant morbidity and mortality in chickens, while in ducks the infection was asymptomatic. The HPAI viral mRNA load was higher in all investigated tissues of chickens compared with duck tissues. In the lung, brain and spleen of HPAI-infected chickens, a high, but delayed, pro-inflammatory response of IL-6 and IL-1β mRNA was induced, including up-regulation of IFN-β, IFN-γ, TLR3 and MDA-5 mRNA from 1 day post infection (p.i.). Whereas in ducks already at 8 h p.i., a quicker but lower response was found for IL-6, IL-1β and iNOS mRNA followed by a delayed activation of TLR7, RIG-I, MDA5 and IFN-γ mRNA response. Virus-infected areas in the lung of chickens co-localized with KUL-01⁺ (macrophages, dendritic cells), CD4⁺, and CD8α⁺ cells, during the first day after infection. However, only KUL-01⁺ cells co-localized with the virus after 1 day p.i. In ducks, CVI-ChNL-68.1⁺ (macrophage-like cells), CD4⁺ and CD8α⁺ cells and apoptosis co-localized with the virus within 8 h p.i. Apoptosis was detected in the brain and lung of HPAI-infected chickens after 2 days p.i. and apoptotic cells co-localized with virus-infected areas. In conclusion, excessive delayed cytokine inflammatory responses but inadequate cellular immune responses may contribute to pathogenesis in chickens, while ducks initiate a fast lower cytokine response followed by the activation of major pattern recognition receptors (TLR7, RIG-I, MDA5) and a persistent cellular response.
Collapse
Affiliation(s)
- J B W J Cornelissen
- Department of Infection Biology, Central Veterinary Institute of Wageningen UR, P.O. Box 65, 8200 AB Lelystad, The Netherlands.
| | | | | | | |
Collapse
|
45
|
Belser JA, Tumpey TM. H5N1 pathogenesis studies in mammalian models. Virus Res 2013; 178:168-85. [PMID: 23458998 DOI: 10.1016/j.virusres.2013.02.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 12/14/2012] [Accepted: 02/06/2013] [Indexed: 12/21/2022]
Abstract
H5N1 influenza viruses are capable of causing severe disease and death in humans, and represent a potential pandemic subtype should they acquire a transmissible phenotype. Due to the expanding host and geographic range of this virus subtype, there is an urgent need to better understand the contribution of both virus and host responses following H5N1 virus infection to prevent and control human disease. The use of mammalian models, notably the mouse and ferret, has enabled the detailed study of both complex virus-host interactions as well as the contribution of individual viral proteins and point mutations which influence virulence. In this review, we describe the behavior of H5N1 viruses which exhibit high and low virulence in numerous mammalian species, and highlight the contribution of inoculation route to virus pathogenicity. The involvement of host responses as studied in both inbred and outbred mammalian models is discussed. The roles of individual viral gene products and molecular determinants which modulate the severity of H5N1 disease in vivo are presented. This research contributes not only to our understanding of influenza virus pathogenesis, but also identifies novel preventative and therapeutic targets to mitigate the disease burden caused by avian influenza viruses.
Collapse
Affiliation(s)
- Jessica A Belser
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, United States
| | | |
Collapse
|
46
|
Yin J, Liu S, Zhu Y. An overview of the highly pathogenic H5N1 influenza virus. Virol Sin 2013; 28:3-15. [PMID: 23325419 PMCID: PMC7090813 DOI: 10.1007/s12250-013-3294-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 12/31/2012] [Indexed: 11/17/2022] Open
Abstract
Since the first human case of H5N1 avian influenza virus infection was reported in 1997, this highly pathogenic virus has infected hundreds of people around the world and resulted in many deaths. The ability of H5N1 to cross species boundaries, and the presence of polymorphisms that enhance virulence, present challenges to developing clear strategies to prevent the pandemic spread of this highly pathogenic avian influenza (HPAI) virus. This review summarizes the current understanding of, and recent research on, the avian influenza H5N1 virus, including transmission, virulence, pathogenesis, clinical characteristics, treatment and prevention.
Collapse
Affiliation(s)
- Jingchuan Yin
- The State Key laboratory of Virology and College of Life Sciences, Wuhan University, Wuhan 430072, China
| | | | | |
Collapse
|
47
|
Chan RWY, Leung CYH, Nicholls JM, Peiris JSM, Chan MCW. Proinflammatory cytokine response and viral replication in mouse bone marrow derived macrophages infected with influenza H1N1 and H5N1 viruses. PLoS One 2012; 7:e51057. [PMID: 23226456 PMCID: PMC3511392 DOI: 10.1371/journal.pone.0051057] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 10/29/2012] [Indexed: 12/15/2022] Open
Abstract
The pathogenesis of human influenza H5N1 virus infection remains poorly understood and controversial. Cytokine dysregulation in human infection has been hypothesized to contribute to disease severity. We developed in vitro cultures of mouse bone marrow derived macrophages (BMDMΦ) from C57BL/6N mouse to compare influenza A (H5N1 and H1N1) virus replication and pro-inflammatory cytokine and chemokine responses. While both H1N1 and H5N1 viruses infected the mouse bone marrow derived macrophages, only the H1N1 virus had showed evidence of productive viral replication from the infected cells. In comparison with human seasonal influenza H1N1 (A/HK/54/98) and mouse adapted influenza H1N1 (A/WSN/33) viruses, the highly pathogenic influenza H5N1 virus (A/HK/483/97) was a more potent inducer of the chemokine, CXCL 10 (IP-10), while there was not a clear differential TNF-α protein expression pattern. Although human influenza viruses rarely cause infection in mice without prior adaption, the use of in vitro cell cultures of primary mouse cells is of interest, especially given the availability of gene-defective (knock-out) mice for specific genes.
Collapse
Affiliation(s)
- Renee W. Y. Chan
- Centre of Influenza Research and School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Department of Pathology, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong SAR, China
| | - Connie Y. H. Leung
- Centre of Influenza Research and School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - John M. Nicholls
- Department of Pathology, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong SAR, China
| | - J. S. Malik Peiris
- Centre of Influenza Research and School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- HKU-Pasteur Research Centre, Hong Kong SAR, China
- * E-mail: (MCWC); (JSMP)
| | - Michael C. W. Chan
- Centre of Influenza Research and School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- * E-mail: (MCWC); (JSMP)
| |
Collapse
|
48
|
Hontecillas R, Roberts PC, Carbo A, Vives C, Horne WT, Genis S, Velayudhan B, Bassaganya-Riera J. Dietary abscisic acid ameliorates influenza-virus-associated disease and pulmonary immunopathology through a PPARγ-dependent mechanism. J Nutr Biochem 2012; 24:1019-27. [PMID: 22995385 DOI: 10.1016/j.jnutbio.2012.07.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Revised: 06/27/2012] [Accepted: 07/10/2012] [Indexed: 01/13/2023]
Abstract
The anti-inflammatory phytohormone abscisic acid (ABA) modulates immune and inflammatory responses in mouse models of colitis and obesity. ABA has been identified as a ligand of lanthionine synthetase C-like 2, a novel therapeutic target upstream of the peroxisome proliferator-activated receptor γ (PPARγ) pathway. The goal of this study was to investigate the immune modulatory mechanisms underlying the anti-inflammatory efficacy of ABA against influenza-associated pulmonary inflammation. Wild-type (WT) and conditional knockout mice with defective PPARγ expression in lung epithelial and hematopoietic cells (cKO) treated orally with or without ABA (100 mg/kg diet) were challenged with influenza A/Udorn (H3N2) to assess ABA's impact in disease, lung lesions and gene expression. Dietary ABA ameliorated disease activity and lung inflammatory pathology, accelerated recovery and increased survival in WT mice. ABA suppressed leukocyte infiltration and monocyte chemotactic protein 1 mRNA expression in WT mice through PPARγ since this effect was abrogated in cKO mice. ABA ameliorated disease when administered therapeutically on the same day of the infection to WT but not mice lacking PPARγ in myeloid cells. We also show that ABA's greater impact is between days 7 and 10 postchallenge when it regulates the expression of genes involved in resolution, like 5-lipoxygenase and other members of the 5-lipoxygenase pathway. Furthermore, ABA significantly increased the expression of the immunoregulatory cytokine interleukin-10 in WT mice. Our results show that ABA, given preventively or therapeutically, ameliorates influenza-virus-induced pathology by activating PPARγ in pulmonary immune cells, suppressing initial proinflammatory responses and promoting resolution.
Collapse
Affiliation(s)
- Raquel Hontecillas
- Nutritional Immunology and Molecular Medicine Laboratory (www.nimml.org), Virginia Bioinformatics Institute, Virginia Tech., Blacksburg, VA 24061, USA.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Sundararajan A, Huan L, Richards KA, Marcelin G, Alam S, Joo H, Yang H, Webby RJ, Topham DJ, Sant AJ, Sangster MY. Host differences in influenza-specific CD4 T cell and B cell responses are modulated by viral strain and route of immunization. PLoS One 2012; 7:e34377. [PMID: 22457834 PMCID: PMC3311631 DOI: 10.1371/journal.pone.0034377] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 03/01/2012] [Indexed: 12/11/2022] Open
Abstract
The antibody response to influenza infection is largely dependent on CD4 T cell help for B cells. Cognate signals and secreted factors provided by CD4 T cells drive B cell activation and regulate antibody isotype switching for optimal antiviral activity. Recently, we analyzed HLA-DR1 transgenic (DR1) mice and C57BL/10 (B10) mice after infection with influenza virus A/New Caledonia/20/99 (NC) and defined epitopes recognized by virus-specific CD4 T cells. Using this information in the current study, we demonstrate that the pattern of secretion of IL-2, IFN-γ, and IL-4 by CD4 T cells activated by NC infection is largely independent of epitope specificity and the magnitude of the epitope-specific response. Interestingly, however, the characteristics of the virus-specific CD4 T cell and the B cell response to NC infection differed in DR1 and B10 mice. The response in B10 mice featured predominantly IFN-γ-secreting CD4 T cells and strong IgG2b/IgG2c production. In contrast, in DR1 mice most CD4 T cells secreted IL-2 and IgG production was IgG1-biased. Infection of DR1 mice with influenza PR8 generated a response that was comparable to that in B10 mice, with predominantly IFN-γ-secreting CD4 T cells and greater numbers of IgG2c than IgG1 antibody-secreting cells. The response to intramuscular vaccination with inactivated NC was similar in DR1 and B10 mice; the majority of CD4 T cells secreted IL-2 and most IgG antibody-secreting cells produced IgG2b or IgG2c. Our findings identify inherent host influences on characteristics of the virus-specific CD4 T cell and B cell responses that are restricted to the lung environment. Furthermore, we show that these host influences are substantially modulated by the type of infecting virus via the early induction of innate factors. Our findings emphasize the importance of immunization strategy for demonstrating inherent host differences in CD4 T cell and B cell responses.
Collapse
Affiliation(s)
- Aarthi Sundararajan
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Lifang Huan
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Katherine A. Richards
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Glendie Marcelin
- Department of Infectious Diseases, Division of Virology, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Shabnam Alam
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - HyeMee Joo
- Baylor Institute for Immunology Research, Baylor University Medical Center, Dallas, Texas, United States of America
| | - Hongmei Yang
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Richard J. Webby
- Department of Infectious Diseases, Division of Virology, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - David J. Topham
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Andrea J. Sant
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Mark Y. Sangster
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
- * E-mail:
| |
Collapse
|
50
|
Boivin GA, Pothlichet J, Skamene E, Brown EG, Loredo-Osti JC, Sladek R, Vidal SM. Mapping of clinical and expression quantitative trait loci in a sex-dependent effect of host susceptibility to mouse-adapted influenza H3N2/HK/1/68. THE JOURNAL OF IMMUNOLOGY 2012; 188:3949-60. [PMID: 22427645 DOI: 10.4049/jimmunol.1103320] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Seasonal influenza outbreaks and recurrent influenza pandemics present major challenges to public health. By studying immunological responses to influenza in different host species, it may be possible to discover common mechanisms of susceptibility in response to various influenza strains. This could lead to novel therapeutic targets with wide clinical application. Using a mouse-adapted strain of influenza (A/HK/1/68-MA20 [H3N2]), we produced a mouse model of severe influenza that reproduces the hallmark high viral load and overexpression of cytokines associated with susceptibility to severe influenza in humans. We mapped genetic determinants of the host response using a panel of 29 closely related mouse strains (AcB/BcA panel of recombinant congenic strains) created from influenza-susceptible A/J and influenza-resistant C57BL/6J (B6) mice. Combined clinical quantitative trait loci (QTL) and lung expression QTL mapping identified candidate genes for two sex-specific QTL on chromosomes 2 and 17. The former includes the previously described Hc gene, a deficit of which is associated with the susceptibility phenotype in females. The latter includes the phospholipase gene Pla2g7 and Tnfrsf21, a member of the TNFR superfamily. Confirmation of the gene underlying the chromosome 17 QTL may reveal new strategies for influenza treatment.
Collapse
Affiliation(s)
- Gregory A Boivin
- Department of Human Genetics, McGill University, Montreal, Quebec H3A 1B1, Canada
| | | | | | | | | | | | | |
Collapse
|