1
|
Nelson CW, Mirabello L. Human papillomavirus genomics: Understanding carcinogenicity. Tumour Virus Res 2023; 15:200258. [PMID: 36812987 PMCID: PMC10063409 DOI: 10.1016/j.tvr.2023.200258] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/01/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Human papillomavirus (HPV) causes virtually all cervical cancers and many cancers at other anatomical sites in both men and women. However, only 12 of 448 known HPV types are currently classified as carcinogens, and even the most carcinogenic type - HPV16 - only rarely leads to cancer. HPV is therefore necessary but insufficient for cervical cancer, with other contributing factors including host and viral genetics. Over the last decade, HPV whole genome sequencing has established that even fine-scale within-type HPV variation influences precancer/cancer risks, and that these risks vary by histology and host race/ethnicity. In this review, we place these findings in the context of the HPV life cycle and evolution at various levels of viral diversity: between-type, within-type, and within-host. We also discuss key concepts necessary for interpreting HPV genomic data, including features of the viral genome; events leading to carcinogenesis; the role of APOBEC3 in HPV infection and evolution; and methodologies that use deep (high-coverage) sequencing to characterize within-host variation, as opposed to relying on a single representative (consensus) sequence. Given the continued high burden of HPV-associated cancers, understanding HPV carcinogenicity remains important for better understanding, preventing, and treating cancers attributable to infection.
Collapse
Affiliation(s)
- Chase W Nelson
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, 20850, USA; Institute for Comparative Genomics, American Museum of Natural History, New York, NY, 10024, USA.
| | - Lisa Mirabello
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, 20850, USA.
| |
Collapse
|
2
|
Olo Ndela E, Roux S, Henke C, Sczyrba A, Sime Ngando T, Varsani A, Enault F. Reekeekee- and roodoodooviruses, two different Microviridae clades constituted by the smallest DNA phages. Virus Evol 2022; 9:veac123. [PMID: 36694818 PMCID: PMC9865509 DOI: 10.1093/ve/veac123] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/19/2022] [Accepted: 12/22/2022] [Indexed: 12/25/2022] Open
Abstract
Small circular single-stranded DNA viruses of the Microviridae family are both prevalent and diverse in all ecosystems. They usually harbor a genome between 4.3 and 6.3 kb, with a microvirus recently isolated from a marine Alphaproteobacteria being the smallest known genome of a DNA phage (4.248 kb). A subfamily, Amoyvirinae, has been proposed to classify this virus and other related small Alphaproteobacteria-infecting phages. Here, we report the discovery, in meta-omics data sets from various aquatic ecosystems, of sixteen complete microvirus genomes significantly smaller (2.991-3.692 kb) than known ones. Phylogenetic analysis reveals that these sixteen genomes represent two related, yet distinct and diverse, novel groups of microviruses-amoyviruses being their closest known relatives. We propose that these small microviruses are members of two tentatively named subfamilies Reekeekeevirinae and Roodoodoovirinae. As known microvirus genomes encode many overlapping and overprinted genes that are not identified by gene prediction software, we developed a new methodology to identify all genes based on protein conservation, amino acid composition, and selection pressure estimations. Surprisingly, only four to five genes could be identified per genome, with the number of overprinted genes lower than that in phiX174. These small genomes thus tend to have both a lower number of genes and a shorter length for each gene, leaving no place for variable gene regions that could harbor overprinted genes. Even more surprisingly, these two Microviridae groups had specific and different gene content, and major differences in their conserved protein sequences, highlighting that these two related groups of small genome microviruses use very different strategies to fulfill their lifecycle with such a small number of genes. The discovery of these genomes and the detailed prediction and annotation of their genome content expand our understanding of ssDNA phages in nature and are further evidence that these viruses have explored a wide range of possibilities during their long evolution.
Collapse
Affiliation(s)
| | | | - Christian Henke
- Computational Metagenomics, Bielefeld University, Universitätsstraße 27, Bielefeld 30501, Germany,Center for Biotechnology, Bielefeld University, Universitätsstraße 27, Bielefeld 33615, Germany
| | - Alexander Sczyrba
- Computational Metagenomics, Bielefeld University, Universitätsstraße 27, Bielefeld 30501, Germany,Center for Biotechnology, Bielefeld University, Universitätsstraße 27, Bielefeld 33615, Germany
| | - Télesphore Sime Ngando
- Université Clermont Auvergne, CNRS, Laboratoire Microorganismes: Genome et Environnement, Clermont-Ferrand F-63000, France
| | | | | |
Collapse
|
3
|
Functional benefit of structural disorder for the replication of measles, Nipah and Hendra viruses. Essays Biochem 2022; 66:915-934. [PMID: 36148633 DOI: 10.1042/ebc20220045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/18/2022] [Accepted: 08/25/2022] [Indexed: 12/24/2022]
Abstract
Measles, Nipah and Hendra viruses are severe human pathogens within the Paramyxoviridae family. Their non-segmented, single-stranded, negative-sense RNA genome is encapsidated by the nucleoprotein (N) within a helical nucleocapsid that is the substrate used by the viral RNA-dependent-RNA-polymerase (RpRd) for transcription and replication. The RpRd is a complex made of the large protein (L) and of the phosphoprotein (P), the latter serving as an obligate polymerase cofactor and as a chaperon for N. Both the N and P proteins are enriched in intrinsically disordered regions (IDRs), i.e. regions devoid of stable secondary and tertiary structure. N possesses a C-terminal IDR (NTAIL), while P consists of a large, intrinsically disordered N-terminal domain (NTD) and a C-terminal domain (CTD) encompassing alternating disordered and ordered regions. The V and W proteins, two non-structural proteins that are encoded by the P gene via a mechanism of co-transcriptional edition of the P mRNA, are prevalently disordered too, sharing with P the disordered NTD. They are key players in the evasion of the host antiviral response and were shown to phase separate and to form amyloid-like fibrils in vitro. In this review, we summarize the available information on IDRs within the N, P, V and W proteins from these three model paramyxoviruses and describe their molecular partnership. We discuss the functional benefit of disorder to virus replication in light of the critical role of IDRs in affording promiscuity, multifunctionality, fine regulation of interaction strength, scaffolding functions and in promoting liquid-liquid phase separation and fibrillation.
Collapse
|
4
|
Pley C, Lourenço J, McNaughton AL, Matthews PC. Spacer Domain in Hepatitis B Virus Polymerase: Plugging a Hole or Performing a Role? J Virol 2022; 96:e0005122. [PMID: 35412348 PMCID: PMC9093120 DOI: 10.1128/jvi.00051-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/14/2022] [Indexed: 11/25/2022] Open
Abstract
Hepatitis B virus (HBV) polymerase is divided into terminal protein, spacer, reverse transcriptase, and RNase domains. Spacer has previously been considered dispensable, merely acting as a tether between other domains or providing plasticity to accommodate deletions and mutations. We explore evidence for the role of spacer sequence, structure, and function in HBV evolution and lineage, consider its associations with escape from drugs, vaccines, and immune responses, and review its potential impacts on disease outcomes.
Collapse
Affiliation(s)
- Caitlin Pley
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
- Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - José Lourenço
- Department of Zoology, University of Oxford, Oxford, United Kingdom
- Biosystems and Integrative Sciences Institute, University of Lisbon, Lisbon, Portugal
| | - Anna L. McNaughton
- Population Health Science, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- Nuffield Department of Medicine, University of Oxford Medawar Building, Oxford, United Kingdom
| | - Philippa C. Matthews
- Nuffield Department of Medicine, University of Oxford Medawar Building, Oxford, United Kingdom
- The Francis Crick Institute, London, United Kingdom
- Division of Infection and Immunity, University College London, London, United Kingdom
| |
Collapse
|
5
|
van der Meijden E, Feltkamp M. The Human Polyomavirus Middle and Alternative T-Antigens; Thoughts on Roles and Relevance to Cancer. Front Microbiol 2018; 9:398. [PMID: 29568287 PMCID: PMC5852106 DOI: 10.3389/fmicb.2018.00398] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 02/21/2018] [Indexed: 01/08/2023] Open
Abstract
Approximately 15–20% of human cancer is related to infection, which renders them potentially preventable by antimicrobial or antiviral therapy. Human polyomaviruses (PyVs) are relevant in this regard, as illustrated by the involvement of Merkel cell polyomavirus (MCPyV) in the development of Merkel cell carcinoma. The polyomavirus Small and Large tumor antigen (ST and LT) have been extensively studied with respect to their role in oncogenesis. Recently it was shown that a number of human PyVs, including MCPyV and the trichodysplasia spinulosa polyomavirus (TSPyV), express additional T-antigens called Middle T (MT) and alternative T (ALT). ALT is encoded by ORF5, also known as the alternative T open reading frame (ALTO), which also encodes the second exon of MT, and overlaps out-of-frame with the second exon of LT. Previously, MT was considered unique for oncogenic rodent polyomaviruses, and ALT was still unknown. In this mini-review, we want to point out there are important reasons to explore the involvement of MT and ALT in human cellular transformation. First, just like their rodent equivalents, MT and ALT probably disrupt cellular pathways that control signaling and proliferation. Second, expression of the MT and ALT-encoding ORF5/ALTO characterizes a monophyletic polyomavirus clade that includes human and animal PyVs with known oncogenic potential. And third, ORF5/ALTO is subject to strong positive selection aimed specifically at a short linear motif within MT and ALT that overlaps completely with the RB-binding motif in LT. The latter suggests tight interplay between these T-antigens with possible consequences for cell transformation.
Collapse
Affiliation(s)
- Els van der Meijden
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands
| | - Mariet Feltkamp
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
6
|
Mirabello L, Yeager M, Yu K, Clifford GM, Xiao Y, Zhu B, Cullen M, Boland JF, Wentzensen N, Nelson CW, Raine-Bennett T, Chen Z, Bass S, Song L, Yang Q, Steinberg M, Burdett L, Dean M, Roberson D, Mitchell J, Lorey T, Franceschi S, Castle PE, Walker J, Zuna R, Kreimer AR, Beachler DC, Hildesheim A, Gonzalez P, Porras C, Burk RD, Schiffman M. HPV16 E7 Genetic Conservation Is Critical to Carcinogenesis. Cell 2017; 170:1164-1174.e6. [PMID: 28886384 PMCID: PMC5674785 DOI: 10.1016/j.cell.2017.08.001] [Citation(s) in RCA: 212] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 06/05/2017] [Accepted: 08/01/2017] [Indexed: 12/29/2022]
Abstract
Although most cervical human papillomavirus type 16 (HPV16) infections become undetectable within 1-2 years, persistent HPV16 causes half of all cervical cancers. We used a novel HPV whole-genome sequencing technique to evaluate an exceptionally large collection of 5,570 HPV16-infected case-control samples to determine whether viral genetic variation influences risk of cervical precancer and cancer. We observed thousands of unique HPV16 genomes; very few women shared the identical HPV16 sequence, which should stimulate a careful re-evaluation of the clinical implications of HPV mutation rates, transmission, clearance, and persistence. In case-control analyses, HPV16 in the controls had significantly more amino acid changing variants throughout the genome. Strikingly, E7 was devoid of variants in precancers/cancers compared to higher levels in the controls; we confirmed this in cancers from around the world. Strict conservation of the 98 amino acids of E7, which disrupts Rb function, is critical for HPV16 carcinogenesis, presenting a highly specific target for etiologic and therapeutic research.
Collapse
Affiliation(s)
- Lisa Mirabello
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA.
| | - Meredith Yeager
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA; Cancer Genomics Research Laboratory, Leidos Biomedical Research, Inc., Frederick, MD, USA
| | - Kai Yu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Gary M Clifford
- Infections and Cancer Epidemiology Group, International Agency for Research on Cancer 150, Cours Albert Thomas, 69372 Lyon Cedex 08, France
| | - Yanzi Xiao
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Bin Zhu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Michael Cullen
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA; Cancer Genomics Research Laboratory, Leidos Biomedical Research, Inc., Frederick, MD, USA
| | - Joseph F Boland
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA; Cancer Genomics Research Laboratory, Leidos Biomedical Research, Inc., Frederick, MD, USA
| | - Nicolas Wentzensen
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Chase W Nelson
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York City, NY, USA
| | - Tina Raine-Bennett
- Women's Health Research Institute, Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Zigui Chen
- Department of Microbiology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Sara Bass
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA; Cancer Genomics Research Laboratory, Leidos Biomedical Research, Inc., Frederick, MD, USA
| | - Lei Song
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA; Cancer Genomics Research Laboratory, Leidos Biomedical Research, Inc., Frederick, MD, USA
| | - Qi Yang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA; Cancer Genomics Research Laboratory, Leidos Biomedical Research, Inc., Frederick, MD, USA
| | - Mia Steinberg
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA; Cancer Genomics Research Laboratory, Leidos Biomedical Research, Inc., Frederick, MD, USA
| | - Laurie Burdett
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA; Cancer Genomics Research Laboratory, Leidos Biomedical Research, Inc., Frederick, MD, USA
| | - Michael Dean
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - David Roberson
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA; Cancer Genomics Research Laboratory, Leidos Biomedical Research, Inc., Frederick, MD, USA
| | - Jason Mitchell
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA; Cancer Genomics Research Laboratory, Leidos Biomedical Research, Inc., Frederick, MD, USA
| | - Thomas Lorey
- Regional Laboratory, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Silvia Franceschi
- Infections and Cancer Epidemiology Group, International Agency for Research on Cancer 150, Cours Albert Thomas, 69372 Lyon Cedex 08, France
| | - Philip E Castle
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Joan Walker
- University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Rosemary Zuna
- University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Aimée R Kreimer
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Daniel C Beachler
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA; HealthCore Inc., Safety and Epidemiology, Wilmington, DE, USA
| | - Allan Hildesheim
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Paula Gonzalez
- Agencia Costarricense de Investigaciones Biomédicas (ACIB), former Proyecto Epidemiológico Guanacaste, Fundación INCIENSA, Guanacaste, Costa Rica
| | - Carolina Porras
- Agencia Costarricense de Investigaciones Biomédicas (ACIB), former Proyecto Epidemiológico Guanacaste, Fundación INCIENSA, Guanacaste, Costa Rica
| | - Robert D Burk
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA; Departments of Pediatrics, Microbiology and Immunology, and Obstetrics & Gynecology and Women's Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Mark Schiffman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| |
Collapse
|
7
|
Longhi S, Bloyet LM, Gianni S, Gerlier D. How order and disorder within paramyxoviral nucleoproteins and phosphoproteins orchestrate the molecular interplay of transcription and replication. Cell Mol Life Sci 2017; 74:3091-3118. [PMID: 28600653 PMCID: PMC11107670 DOI: 10.1007/s00018-017-2556-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 06/01/2017] [Indexed: 01/01/2023]
Abstract
In this review, we summarize computational and experimental data gathered so far showing that structural disorder is abundant within paramyxoviral nucleoproteins (N) and phosphoproteins (P). In particular, we focus on measles, Nipah, and Hendra viruses and highlight both commonalities and differences with respect to the closely related Sendai virus. The molecular mechanisms that control the disorder-to-order transition undergone by the intrinsically disordered C-terminal domain (NTAIL) of their N proteins upon binding to the C-terminal X domain (XD) of the homologous P proteins are described in detail. By having a significant residual disorder, NTAIL-XD complexes are illustrative examples of "fuzziness", whose possible functional significance is discussed. Finally, the relevance of N-P interactions as promising targets for innovative antiviral approaches is underscored, and the functional advantages of structural disorder for paramyxoviruses are pinpointed.
Collapse
Affiliation(s)
- Sonia Longhi
- Aix-Marseille Univ, AFMB UMR 7257, 163, avenue de Luminy, Case 932, 13288, Marseille Cedex 09, France.
- CNRS, AFMB UMR 7257, 13288, Marseille, France.
| | - Louis-Marie Bloyet
- CIRI, International Center for Infectiology Research, Université de Lyon, Lyon, France
- INSERM, U1111, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
- Université Claude Bernard Lyon 1, Centre International de Recherche en Infectiologie, Lyon, France
- CNRS, UMR5308, Lyon, France
| | - Stefano Gianni
- Istituto Pasteur, Fondazione Cenci Bolognetti and Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, 00185, Rome, Italy
| | - Denis Gerlier
- CIRI, International Center for Infectiology Research, Université de Lyon, Lyon, France
- INSERM, U1111, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
- Université Claude Bernard Lyon 1, Centre International de Recherche en Infectiologie, Lyon, France
- CNRS, UMR5308, Lyon, France
| |
Collapse
|
8
|
Upadhyay M, Vivekanandan P. Depletion of CpG Dinucleotides in Papillomaviruses and Polyomaviruses: A Role for Divergent Evolutionary Pressures. PLoS One 2015; 10:e0142368. [PMID: 26544572 PMCID: PMC4636234 DOI: 10.1371/journal.pone.0142368] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 10/21/2015] [Indexed: 12/31/2022] Open
Abstract
Background Papillomaviruses and polyomaviruses are small ds-DNA viruses infecting a wide-range of vertebrate hosts. Evidence supporting co-evolution of the virus with the host does not fully explain the evolutionary path of papillomaviruses and polyomaviruses. Studies analyzing CpG dinucleotide frequencies in virus genomes have provided interesting insights on virus evolution. CpG dinucleotide depletion has not been extensively studied among papillomaviruses and polyomaviruses. We sought to analyze the relative abundance of dinucleotides and the relative roles of evolutionary pressures in papillomaviruses and polyomaviruses. Methods We studied 127 full-length sequences from papillomaviruses and 56 full-length sequences from polyomaviruses. We analyzed the relative abundance of dinucleotides, effective codon number (ENC), differences in synonymous codon usage. We examined the association, if any, between the extent of CpG dinucleotide depletion and the evolutionary lineage of the infected host. We also investigated the contribution of mutational pressure and translational selection to the evolution of papillomaviruses and polyomaviruses. Results All papillomaviruses and polyomaviruses are CpG depleted. Interestingly, the evolutionary lineage of the infected host determines the extent of CpG depletion among papillomaviruses and polyomaviruses. CpG dinucleotide depletion was more pronounced among papillomaviruses and polyomaviruses infecting human and other mammals as compared to those infecting birds. Our findings demonstrate that CpG depletion among papillomaviruses is linked to mutational pressure; while CpG depletion among polyomaviruses is linked to translational selection. We also present evidence that suggests methylation of CpG dinucleotides may explain, at least in part, the depletion of CpG dinucleotides among papillomaviruses but not polyomaviruses. Conclusions The extent of CpG depletion among papillomaviruses and polyomaviruses is linked to the evolutionary lineage of the infected host. Our results highlight the existence of divergent evolutionary pressures leading to CpG dinucleotide depletion among small ds-DNA viruses infecting vertebrate hosts.
Collapse
Affiliation(s)
- Mohita Upadhyay
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, 006, India
| | - Perumal Vivekanandan
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, 006, India
- * E-mail:
| |
Collapse
|
9
|
Habchi J, Longhi S. Structural Disorder within Paramyxoviral Nucleoproteins and Phosphoproteins in Their Free and Bound Forms: From Predictions to Experimental Assessment. Int J Mol Sci 2015; 16:15688-726. [PMID: 26184170 PMCID: PMC4519920 DOI: 10.3390/ijms160715688] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 06/26/2015] [Accepted: 06/29/2015] [Indexed: 01/10/2023] Open
Abstract
We herein review available computational and experimental data pointing to the abundance of structural disorder within the nucleoprotein (N) and phosphoprotein (P) from three paramyxoviruses, namely the measles (MeV), Nipah (NiV) and Hendra (HeV) viruses. We provide a detailed molecular description of the mechanisms governing the disorder-to-order transition that the intrinsically disordered C-terminal domain (NTAIL) of their N proteins undergoes upon binding to the C-terminal X domain (PXD) of the homologous P proteins. We also show that NTAIL-PXD complexes are "fuzzy", i.e., they possess a significant residual disorder, and discuss the possible functional significance of this fuzziness. Finally, we emphasize the relevance of N-P interactions involving intrinsically disordered proteins as promising targets for new antiviral approaches, and end up summarizing the general functional advantages of disorder for viruses.
Collapse
Affiliation(s)
- Johnny Habchi
- Aix-Marseille Université, Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257, 163, Avenue de Luminy, Case 932, 13288 Marseille, France.
- Centre National pour la Recherche Scientifique (CNRS), AFMB UMR 7257, 163, Avenue de Luminy, Case 932, 13288 Marseille, France.
| | - Sonia Longhi
- Aix-Marseille Université, Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257, 163, Avenue de Luminy, Case 932, 13288 Marseille, France.
- Centre National pour la Recherche Scientifique (CNRS), AFMB UMR 7257, 163, Avenue de Luminy, Case 932, 13288 Marseille, France.
| |
Collapse
|
10
|
Félez-Sánchez M, Trösemeier JH, Bedhomme S, González-Bravo MI, Kamp C, Bravo IG. Cancer, Warts, or Asymptomatic Infections: Clinical Presentation Matches Codon Usage Preferences in Human Papillomaviruses. Genome Biol Evol 2015; 7:2117-35. [PMID: 26139833 PMCID: PMC4558848 DOI: 10.1093/gbe/evv129] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Viruses rely completely on the hosts’ machinery for translation of viral transcripts. However, for most viruses infecting humans, codon usage preferences (CUPrefs) do not match those of the host. Human papillomaviruses (HPVs) are a showcase to tackle this paradox: they present a large genotypic diversity and a broad range of phenotypic presentations, from asymptomatic infections to productive lesions and cancer. By applying phylogenetic inference and dimensionality reduction methods, we demonstrate first that genes in HPVs are poorly adapted to the average human CUPrefs, the only exception being capsid genes in viruses causing productive lesions. Phylogenetic relationships between HPVs explained only a small proportion of CUPrefs variation. Instead, the most important explanatory factor for viral CUPrefs was infection phenotype, as orthologous genes in viruses with similar clinical presentation displayed similar CUPrefs. Moreover, viral genes with similar spatiotemporal expression patterns also showed similar CUPrefs. Our results suggest that CUPrefs in HPVs reflect either variations in the mutation bias or differential selection pressures depending on the clinical presentation and expression timing. We propose that poor viral CUPrefs may be central to a trade-off between strong viral gene expression and the potential for eliciting protective immune response.
Collapse
Affiliation(s)
- Marta Félez-Sánchez
- Infections and Cancer Laboratory, Catalan Institute of Oncology, L'Hospitalet de Llobregat, Barcelona, Spain Virus and Cancer Laboratory. Bellvitge Institute of Biomedical Research (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Jan-Hendrik Trösemeier
- Molecular Bioinformatics, Institute of Computer Science, Johann Wolfgang Goethe University, Frankfurt am Main, Germany Paul-Ehrlich-Institut, Federal Institute for Vaccines and Biomedicines, Langen, Germany
| | - Stéphanie Bedhomme
- Infections and Cancer Laboratory, Catalan Institute of Oncology, L'Hospitalet de Llobregat, Barcelona, Spain Virus and Cancer Laboratory. Bellvitge Institute of Biomedical Research (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain Département d'Ecologie Evolutive Centre d'Ecologie Fonctionnelle et Evolutive, CNRS - UMR 5175, Montpellier, France
| | | | - Christel Kamp
- Paul-Ehrlich-Institut, Federal Institute for Vaccines and Biomedicines, Langen, Germany
| | - Ignacio G Bravo
- Infections and Cancer Laboratory, Catalan Institute of Oncology, L'Hospitalet de Llobregat, Barcelona, Spain Virus and Cancer Laboratory. Bellvitge Institute of Biomedical Research (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
11
|
Order and Disorder in the Replicative Complex of Paramyxoviruses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 870:351-81. [PMID: 26387109 DOI: 10.1007/978-3-319-20164-1_12] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In this review we summarize available data showing the abundance of structural disorder within the nucleoprotein (N) and phosphoprotein (P) from three paramyxoviruses, namely the measles (MeV), Nipah (NiV) and Hendra (HeV) viruses. We provide a detailed description of the molecular mechanisms that govern the disorder-to-order transition that the intrinsically disordered C-terminal domain (NTAIL) of their N proteins undergoes upon binding to the C-terminal X domain (XD) of the homologous P proteins. We also show that a significant flexibility persists within NTAIL-XD complexes, which therefore provide illustrative examples of "fuzziness". The functional implications of structural disorder for viral transcription and replication are discussed in light of the ability of disordered regions to establish a complex molecular partnership and to confer a considerable reach to the elements of the replicative machinery.
Collapse
|
12
|
Affiliation(s)
- Johnny Habchi
- Aix-Marseille Université , Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257, 13288, Marseille, France
| | | | | | | |
Collapse
|
13
|
Xue B, Blocquel D, Habchi J, Uversky AV, Kurgan L, Uversky VN, Longhi S. Structural disorder in viral proteins. Chem Rev 2014; 114:6880-911. [PMID: 24823319 DOI: 10.1021/cr4005692] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Bin Xue
- Department of Cell Biology, Microbiology and Molecular Biology, College of Fine Arts and Sciences, and ‡Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida , Tampa, Florida 33620, United States
| | | | | | | | | | | | | |
Collapse
|
14
|
Varsani A, Kraberger S, Jennings S, Porzig EL, Julian L, Massaro M, Pollard A, Ballard G, Ainley DG. A novel papillomavirus in Adélie penguin (Pygoscelis adeliae) faeces sampled at the Cape Crozier colony, Antarctica. J Gen Virol 2014; 95:1352-1365. [PMID: 24686913 DOI: 10.1099/vir.0.064436-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Papillomaviruses are epitheliotropic viruses that have circular dsDNA genomes encapsidated in non-enveloped virions. They have been found to infect a variety of mammals, reptiles and birds, but so far they have not been found in amphibians. Using a next-generation sequencing de novo assembly contig-informed recovery, we cloned and Sanger sequenced the complete genome of a novel papillomavirus from the faecal matter of Adélie penguins (Pygoscelis adeliae) nesting on Ross Island, Antarctica. The genome had all the usual features of a papillomavirus and an E9 ORF encoding a protein of unknown function that is found in all avian papillomaviruses to date. This novel papillomavirus genome shared ~60 % pairwise identity with the genomes of the other three known avian papillomaviruses: Fringilla coelebs papillomavirus 1 (FcPV1), Francolinus leucoscepus papillomavirus 1 (FlPV1) and Psittacus erithacus papillomavirus 1. Pairwise identity analysis and phylogenetic analysis of the major capsid protein gene clearly indicated that it represents a novel species, which we named Pygoscelis adeliae papillomavirus 1 (PaCV1). No evidence of recombination was detected in the genome of PaCV1, but we did detect a recombinant region (119 nt) in the E6 gene of FlPV1 with the recombinant region being derived from ancestral FcPV1-like sequences. Previously only paramyxoviruses, orthomyxoviruses and avian pox viruses have been genetically identified in penguins; however, the majority of penguin viral identifications have been based on serology or histology. This is the first report, to our knowledge, of a papillomavirus associated with a penguin species.
Collapse
Affiliation(s)
- Arvind Varsani
- Electron Microscope Unit, Division of Medical Biochemistry, Department of Clinical Laboratory Sciences, University of Cape Town, Observatory, 7700, South Africa.,Department of Plant Pathology and Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611, USA.,School of Biological Sciences and Biomolecular Interaction Centre, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Simona Kraberger
- School of Biological Sciences and Biomolecular Interaction Centre, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Scott Jennings
- Department of Fisheries and Wildlife, Oregon Cooperative Fish and Wildlife Research Unit, US Geological Survey, Oregon State University, Corvallis, OR, USA
| | | | - Laurel Julian
- School of Biological Sciences and Biomolecular Interaction Centre, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Melanie Massaro
- School of Environmental Sciences, Charles Sturt University, Albury, NSW 2640, Australia
| | | | - Grant Ballard
- Point Blue Conservation Science, Petaluma, CA 94954, USA
| | | |
Collapse
|
15
|
Lo MK, Søgaard TM, Karlin DG. Evolution and structural organization of the C proteins of paramyxovirinae. PLoS One 2014; 9:e90003. [PMID: 24587180 PMCID: PMC3934983 DOI: 10.1371/journal.pone.0090003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 01/24/2014] [Indexed: 12/21/2022] Open
Abstract
The phosphoprotein (P) gene of most Paramyxovirinae encodes several proteins in overlapping frames: P and V, which share a common N-terminus (PNT), and C, which overlaps PNT. Overlapping genes are of particular interest because they encode proteins originated de novo, some of which have unknown structural folds, challenging the notion that nature utilizes only a limited, well-mapped area of fold space. The C proteins cluster in three groups, comprising measles, Nipah, and Sendai virus. We predicted that all C proteins have a similar organization: a variable, disordered N-terminus and a conserved, α-helical C-terminus. We confirmed this predicted organization by biophysically characterizing recombinant C proteins from Tupaia paramyxovirus (measles group) and human parainfluenza virus 1 (Sendai group). We also found that the C of the measles and Nipah groups have statistically significant sequence similarity, indicating a common origin. Although the C of the Sendai group lack sequence similarity with them, we speculate that they also have a common origin, given their similar genomic location and structural organization. Since C is dispensable for viral replication, unlike PNT, we hypothesize that C may have originated de novo by overprinting PNT in the ancestor of Paramyxovirinae. Intriguingly, in measles virus and Nipah virus, PNT encodes STAT1-binding sites that overlap different regions of the C-terminus of C, indicating they have probably originated independently. This arrangement, in which the same genetic region encodes simultaneously a crucial functional motif (a STAT1-binding site) and a highly constrained region (the C-terminus of C), seems paradoxical, since it should severely reduce the ability of the virus to adapt. The fact that it originated twice suggests that it must be balanced by an evolutionary advantage, perhaps from reducing the size of the genetic region vulnerable to mutations.
Collapse
Affiliation(s)
- Michael K. Lo
- Centers for Disease Control and Prevention, Viral Special Pathogens Branch, Atlanta, Georgia, United States of America
| | - Teit Max Søgaard
- Division of Structural Biology, Oxford University, Oxford, United Kingdom
| | - David G. Karlin
- Division of Structural Biology, Oxford University, Oxford, United Kingdom
- Department of Zoology, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
16
|
Abstract
The papillomavirus E2 proteins are pivotal to the viral life cycle and have well characterized functions in transcriptional regulation, initiation of DNA replication and partitioning the viral genome. The E2 proteins also function in vegetative DNA replication, post-transcriptional processes and possibly packaging. This review describes structural and functional aspects of the E2 proteins and their binding sites on the viral genome. It is intended to be a reference guide to this viral protein.
Collapse
Affiliation(s)
- Alison A McBride
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
17
|
Van Doorslaer K. Evolution of the papillomaviridae. Virology 2013; 445:11-20. [PMID: 23769415 DOI: 10.1016/j.virol.2013.05.012] [Citation(s) in RCA: 171] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 04/02/2013] [Accepted: 05/09/2013] [Indexed: 02/08/2023]
Abstract
Viruses belonging to the Papillomaviridae family have been isolated from a variety of mammals, birds and non-avian reptiles. It is likely that most, if not all, amniotes carry a broad array of viral types. To date, the complete genomic sequence of more than 240 distinct viral types has been characterized at the nucleotide level. The analysis of this sequence information has begun to shed light on the evolutionary history of this important virus family. The available data suggests that many different evolutionary mechanisms have influenced the papillomavirus phylogenetic tree. Increasing evidence supports that the ancestral papillomavirus initially specialized to infect different ecological niches on the host. This episode of niche sorting was followed by extensive episodes of co-speciation with the host. This review attempts to summarize our current understanding of the papillomavirus evolution.
Collapse
Affiliation(s)
- Koenraad Van Doorslaer
- DNA Tumor Virus Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 209892, USA.
| |
Collapse
|
18
|
Chen P, Gan Y, Han N, Fang W, Li J, Zhao F, Hu K, Rayner S. Computational evolutionary analysis of the overlapped surface (S) and polymerase (P) region in hepatitis B virus indicates the spacer domain in P is crucial for survival. PLoS One 2013; 8:e60098. [PMID: 23577084 PMCID: PMC3618453 DOI: 10.1371/journal.pone.0060098] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 02/23/2013] [Indexed: 12/21/2022] Open
Abstract
Introduction The Hepatitis B Virus (HBV) genome contains four ORFs, S (surface), P (polymerase), C (core) and X. S is completely overlapped by P and as a consequence the overlapping region is subject to distinctive evolutionary constraints compared to the remainder of the genome. Specifically, a non-synonymous substitution in one coding frame may produce a synonymous substitution in the alternative frame, suggesting a possible conflict between requirements for diversifying and purifying forces. To examine how these contrasting requirements are balanced within this region, we investigated the relationship amongst positive selection sites, conserved regions, epitopes and elements of protein structure to consider how HBV balances the contrasting evolutionary pressures. Methodology/Results 323 HBV genotype D genome sequences were collected and analyzed to identify sites under positive selection and highly conserved regions. Epitopes sequences were retrieved from previously published experimental studies stored in the Immune Epitope Database. Predicted secondary structures were used to investigate the association between structure and conservation. Entropy was used as a measure of conservation and bivariate logistic regression was used to investigate the relationship between positive selection/conserved sites and epitope/secondary structure regions. Our results indicate: (i) conservation in S is primarily dictated by α-helix elements in the protein structure, (ii) variable residues are mainly located in PreS, the major hydrophilic region (MHR) and the C-terminus, (iii) epitopes in S, which are directly targeted by the host immune system, are significantly associated with sites under positive selection. Conclusions The highly variable spacer domain in P, which corresponds to PreS in S, appears to act as a harbor for the accumulation of mutations that can provide flexibility for conformational changes and responding to immune pressure.
Collapse
Affiliation(s)
- Ping Chen
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Yun Gan
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Na Han
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Wei Fang
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Jiafu Li
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Fei Zhao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Kanghong Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- Biomedical Center, Hubei University of Technology, Wuhan, China
- * E-mail: (SR); (KH)
| | - Simon Rayner
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- * E-mail: (SR); (KH)
| |
Collapse
|
19
|
Torres C, Fernández MDB, Flichman DM, Campos RH, Mbayed VA. Influence of overlapping genes on the evolution of human hepatitis B virus. Virology 2013; 441:40-8. [PMID: 23541083 DOI: 10.1016/j.virol.2013.02.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 02/05/2013] [Accepted: 02/28/2013] [Indexed: 12/23/2022]
Abstract
The aim of this work was to analyse the influence of overlapping genes on the evolution of hepatitis B virus (HBV). A differential evolutionary behaviour among genetic regions and clinical status was found. Dissimilar levels of conservation of the different protein regions could derive from alternative mechanisms to maintain functionality. We propose that, in overlapping regions, selective constraints on one of the genes could drive the substitution process. This would allow protein conservation in one gene by synonymous substitutions while mechanisms of tolerance to the change operate in the overlapping gene (e.g. usage of amino acids with high-degeneracy codons, differential codon usage and replacement by physicochemically similar amino acids). In addition, differential selection pressure according to the HBeAg status was found in all genes, suggesting that the immune response could be one of the factors that would constrain viral replication by interacting with different HBV proteins during the HBeAg(-) stage.
Collapse
Affiliation(s)
- Carolina Torres
- Cátedra de Virología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina; CONICET, Argentina
| | | | | | | | | |
Collapse
|
20
|
Phylogenetic analysis of partial L1 gene of 10 human papillomavirus types isolated most commonly from women with normal and abnormal cervical cytology in Kuwait. Arch Virol 2013; 158:1687-99. [PMID: 23504106 DOI: 10.1007/s00705-013-1658-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 02/01/2013] [Indexed: 10/27/2022]
Abstract
This study was undertaken to evaluate the presence of human papillomavirus (HPV) variants in cervical samples. L1 genetic variable region was studied in 10 HPV types: HPV 11, 16, 18, 33, 53, 54, 56, 61, 66 and 81. A total of 116 isolates were examined, including 47 HPVs isolated from women with normal cytology and 69 with abnormal cytology of different grades. HPV sequences were detected using MY09/MY11 consensus primers. Fifty silent and 65 missense mutations were detected. Two missense mutations were detected in HPV18, 3 in HPV56 and 17 in HPV61. The number of missense mutations per isolate ranged from 1 to 3, except in HPV54 and HPV61, where 7 and 11 missense mutations were found, respectively. Most of the isolates (52.3 %) with missense mutations were isolated from women with abnormal cervical samples. Low-grade squamous intraepithelial lesion cytology diagnosis dominated all cervical abnormalities. This study is the first on the identification of molecular variants in the Middle East and suggests the circulation of new HPV subtypes and variants in Kuwait, which needs to be confirmed by further analysis of the complete HPV genome.
Collapse
|
21
|
Sabath N, Wagner A, Karlin D. Evolution of viral proteins originated de novo by overprinting. Mol Biol Evol 2012; 29:3767-80. [PMID: 22821011 PMCID: PMC3494269 DOI: 10.1093/molbev/mss179] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
New protein-coding genes can originate either through modification of existing genes or de novo. Recently, the importance of de novo origination has been recognized in eukaryotes, although eukaryotic genes originated de novo are relatively rare and difficult to identify. In contrast, viruses contain many de novo genes, namely those in which an existing gene has been “overprinted” by a new open reading frame, a process that generates a new protein-coding gene overlapping the ancestral gene. We analyzed the evolution of 12 experimentally validated viral genes that originated de novo and estimated their relative ages. We found that young de novo genes have a different codon usage from the rest of the genome. They evolve rapidly and are under positive or weak purifying selection. Thus, young de novo genes might have strain-specific functions, or no function, and would be difficult to detect using current genome annotation methods that rely on the sequence signature of purifying selection. In contrast to young de novo genes, older de novo genes have a codon usage that is similar to the rest of the genome. They evolve slowly and are under stronger purifying selection. Some of the oldest de novo genes evolve under stronger selection pressure than the ancestral gene they overlap, suggesting an evolutionary tug of war between the ancestral and the de novo gene.
Collapse
Affiliation(s)
- Niv Sabath
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland.
| | | | | |
Collapse
|
22
|
Habchi J, Longhi S. Structural disorder within paramyxovirus nucleoproteins and phosphoproteins. ACTA ACUST UNITED AC 2012; 8:69-81. [DOI: 10.1039/c1mb05204g] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
23
|
Rogers A, Waltke M, Angeletti PC. Evolutionary variation of papillomavirus E2 protein and E2 binding sites. Virol J 2011; 8:379. [PMID: 21806797 PMCID: PMC3161962 DOI: 10.1186/1743-422x-8-379] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 08/01/2011] [Indexed: 01/08/2023] Open
Abstract
Background In an effort to identify the evolutionary changes relevant to E2 function, within and between papillomavirus genera, we evaluated the E2 binding sites (E2BS)s inside the long-control-region (LCR), and throughout the genomes. We identified E2BSs in the six largest genera of papillomaviruses: Alpha, Beta, Gamma, Delta, Lambda, and Xi-papillomaviruses (128 genomes), by comparing the sequences with a model consensus we created from known functional E2BSs (HPV16, HPV18, BPV1). We analyzed the sequence conservation and nucleotide content of the 4-nucleotide spacer within E2BSs. We determined that there is a statistically significant difference in GC content of the four-nucleotide E2BS spacer, between Alpha and Delta-papillomaviruses, as compared to each of the other groups. Additionally, we performed multiple alignments of E2 protein sequences using members of each genus in order to identify evolutionary changes within the E2 protein. Results When a phylogenetic tree was generated from E2 amino acid sequences, it was discovered that the alpha-papillomavirus genera segregates into two distinct subgroups (α1 and α2). When these subgroups were individually analyzed, it was determined that the subgroup α1 consensus E2BS favored a spacer of AAAA, whereas subgroup α2 favored the opposite orientation of the same spacer; TTTT. This observation suggests that these conserved inverted linkers could have functional importance.
Collapse
Affiliation(s)
- Adam Rogers
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583-0900, USA
| | | | | |
Collapse
|
24
|
Immune-induced evolutionary selection focused on a single reading frame in overlapping hepatitis B virus proteins. J Virol 2011; 85:4558-66. [PMID: 21307195 DOI: 10.1128/jvi.02142-10] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Viruses employ various means to evade immune detection. Reduction of CD8(+) T cell epitopes is one of the common strategies used for this purpose. Hepatitis B virus (HBV), a member of the Hepadnaviridae family, has four open reading frames, with about 50% overlap between the genes they encode. We computed the CD8(+) T cell epitope density within HBV proteins and the mutations within the epitopes. Our results suggest that HBV accumulates escape mutations that reduce the number of epitopes. These mutations are not equally distributed among genes and reading frames. While the highly expressed core and X proteins are selected to have low epitope density, polymerase, which is expressed at low levels, does not undergo the same selection. In overlapping regions, mutations in one protein-coding sequence also affect the other protein-coding sequence. We show that mutations lead to the removal of epitopes in X and surface proteins even at the expense of the addition of epitopes in polymerase. The total escape mutation rate for overlapping regions is lower than that for nonoverlapping regions. The lower epitope replacement rate for overlapping regions slows the evolutionary escape rate of these regions but leads to the accumulation of mutations more robust in the transfer between hosts, such as mutations preventing proteasomal cleavage into epitopes.
Collapse
|
25
|
Habchi J, Mamelli L, Darbon H, Longhi S. Structural disorder within Henipavirus nucleoprotein and phosphoprotein: from predictions to experimental assessment. PLoS One 2010; 5:e11684. [PMID: 20657787 PMCID: PMC2908138 DOI: 10.1371/journal.pone.0011684] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2010] [Accepted: 06/21/2010] [Indexed: 12/30/2022] Open
Abstract
Henipaviruses are newly emerged viruses within the Paramyxoviridae family. Their negative-strand RNA genome is packaged by the nucleoprotein (N) within alpha-helical nucleocapsid that recruits the polymerase complex made of the L protein and the phosphoprotein (P). To date structural data on Henipaviruses are scarce, and their N and P proteins have never been characterized so far. Using both computational and experimental approaches we herein show that Henipaviruses N and P proteins possess large intrinsically disordered regions. By combining several disorder prediction methods, we show that the N-terminal domain of P (PNT) and the C-terminal domain of N (NTAIL) are both mostly disordered, although they contain short order-prone segments. We then report the cloning, the bacterial expression, purification and characterization of Henipavirus PNT and NTAIL domains. By combining gel filtration, dynamic light scattering, circular dichroism and nuclear magnetic resonance, we show that both NTAIL and PNT belong to the premolten globule sub-family within the class of intrinsically disordered proteins. This study is the first reported experimental characterization of Henipavirus P and N proteins. The evidence that their respective N-terminal and C-terminal domains are highly disordered under native conditions is expected to be invaluable for future structural studies by helping to delineate N and P protein domains amenable to crystallization. In addition, following previous hints establishing a relationship between structural disorder and protein interactivity, the present results suggest that Henipavirus PNT and NTAIL domains could be involved in manifold protein-protein interactions.
Collapse
Affiliation(s)
- Johnny Habchi
- Architecture et Fonction des Macromolécules Biologiques, UMR 6098 CNRS et Universités Aix-Marseille I et II, Campus de Luminy, Marseille, France
| | - Laurent Mamelli
- Architecture et Fonction des Macromolécules Biologiques, UMR 6098 CNRS et Universités Aix-Marseille I et II, Campus de Luminy, Marseille, France
| | - Hervé Darbon
- Architecture et Fonction des Macromolécules Biologiques, UMR 6098 CNRS et Universités Aix-Marseille I et II, Campus de Luminy, Marseille, France
| | - Sonia Longhi
- Architecture et Fonction des Macromolécules Biologiques, UMR 6098 CNRS et Universités Aix-Marseille I et II, Campus de Luminy, Marseille, France
| |
Collapse
|
26
|
Cladel NM, Bertotto A, Christensen ND. Human alpha and beta papillomaviruses use different synonymous codon profiles. Virus Genes 2010; 40:329-40. [PMID: 20157772 PMCID: PMC3752370 DOI: 10.1007/s11262-010-0451-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Accepted: 01/22/2010] [Indexed: 01/11/2023]
Abstract
Human papillomaviruses use rare codons relative to their hosts. It has been theorized that this is a mechanism to allow the virus to escape immune surveillance. In the present study, we examined the codings of four major genes of 21 human alpha (mucosatropic) viruses and 16 human beta (cutaneous-tropic) viruses. We compared the codon usage of different genes from a given papillomavirus and also the same genes from different papillomaviruses. Our data showed that codon usage was not always uniform between two genes of a given papillomavirus or between the same genes of papillomaviruses from different genera. We speculate as to why this might be and conclude that codon usage in the papillomaviruses may not only play a role in facilitating escape from immune surveillance but may also underlie some of the unanswered questions in the papillomavirus field.
Collapse
Affiliation(s)
- Nancy M Cladel
- Jake Gittlen Cancer Research Foundation, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| | | | | |
Collapse
|
27
|
Liang JW, Tian FL, Lan ZR, Huang B, Zhuang WZ. Selection characterization on overlapping reading frame of multiple-protein-encoding P gene in Newcastle disease virus. Vet Microbiol 2009; 144:257-63. [PMID: 20079581 DOI: 10.1016/j.vetmic.2009.12.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Accepted: 12/21/2009] [Indexed: 01/08/2023]
Abstract
The aim of this study was to characterize the molecular evolution of P and V protein genes of the Newcastle disease virus (NDV). The P gene sequences of 55 NDV isolates, representing different chronological and geographic origins, were obtained from GenBank. In this paper, the evolution of the specific regions of the NDV P gene, encoding the P and V proteins, was analyzed. The nucleotides from the shared P/V region encoded the co-amino terminus of the two proteins, while the P-V/V-P region was respectively encoded by the nucleotides within the P ORF or the V ORF in the common sequence (after the mRNA editing site). As well, the P-cut region exclusively encoded the P protein. Finally, the P-V and V-P regions were further broken down into P1 and P2 fragments with the corresponding V1 and V2 fragments. In the P gene, the P-cut portion corresponding to the C-terminal of the P protein was the most highly conserved, while the P-V region was the most variable. This was interpreted as a lower constraint for function in the common sequence than in the unique P sequence that is known to contain an important function. Interestingly, in the common P-V/V-P function, variability of V1 was compensated by a higher conservation of the corresponding P1, and conversely for the P2/V2, which suggested that the flexibility of one ORF with less function served the purpose of allowing positive selection in the other overlapping ORF that exhibited more function.
Collapse
Affiliation(s)
- Jun-Wen Liang
- College of Life Science, Shandong Normal University, Wenhua East Road, Shandong Province, Jinan 250014, China
| | | | | | | | | |
Collapse
|
28
|
Burk RD, Chen Z, Van Doorslaer K. Human papillomaviruses: genetic basis of carcinogenicity. Public Health Genomics 2009; 12:281-90. [PMID: 19684441 DOI: 10.1159/000214919] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Persistent infection by specific oncogenic human papillomaviruses (HPVs) is established as the necessary cause of cervix cancer. DNA sequence differences between HPV genomes determine whether an HPV has the potential to cause cancer. Of the more than 100 HPV genotypes characterized at the genetic level, at least 15 are associated, to varying degrees, with cervical cancer. Classification based on nucleotide similarity places nearly all HPVs that infect the cervicovaginal area within the alpha-PV genus. Within this genus, phylogenetic trees inferred from the entire viral genome cluster all cancer-causing types together, suggesting the existence of a common ancestor for the oncogenic HPVs. However, in separate trees built from the early open reading frames (ORFs; i.e. E1, E2, E6, E7) or the late ORFs (i.e. L1, L2), the carcinogenic potential sorts with the early region of the genome, but not the late region. Thus, genetic differences within the early region specify the pathogenic potential of alpha-HPV infections. Since the HPV genomes are monophyletic and sites are highly correlated across the genome, diagnosis of oncogenic types and non-oncogenic types can be accomplished using any region across the genome. Here we review our current understanding of the evolutionary history of the oncogenic HPVs, in particular, we focus on the importance of viral genome heterogeneity and discuss the genetic basis for the oncogenic phenotype in some but not all alpha-PVs.
Collapse
Affiliation(s)
- Robert D Burk
- Department of Pediatrics, Division of Genetics, Albert Einstein Cancer Center, New York, NY 10461, USA.
| | | | | |
Collapse
|
29
|
Overlapping genes produce proteins with unusual sequence properties and offer insight into de novo protein creation. J Virol 2009; 83:10719-36. [PMID: 19640978 DOI: 10.1128/jvi.00595-09] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It is widely assumed that new proteins are created by duplication, fusion, or fission of existing coding sequences. Another mechanism of protein birth is provided by overlapping genes. They are created de novo by mutations within a coding sequence that lead to the expression of a novel protein in another reading frame, a process called "overprinting." To investigate this mechanism, we have analyzed the sequences of the protein products of manually curated overlapping genes from 43 genera of unspliced RNA viruses infecting eukaryotes. Overlapping proteins have a sequence composition globally biased toward disorder-promoting amino acids and are predicted to contain significantly more structural disorder than nonoverlapping proteins. By analyzing the phylogenetic distribution of overlapping proteins, we were able to confirm that 17 of these had been created de novo and to study them individually. Most proteins created de novo are orphans (i.e., restricted to one species or genus). Almost all are accessory proteins that play a role in viral pathogenicity or spread, rather than proteins central to viral replication or structure. Most proteins created de novo are predicted to be fully disordered and have a highly unusual sequence composition. This suggests that some viral overlapping reading frames encoding hypothetical proteins with highly biased composition, often discarded as noncoding, might in fact encode proteins. Some proteins created de novo are predicted to be ordered, however, and whenever a three-dimensional structure of such a protein has been solved, it corresponds to a fold previously unobserved, suggesting that the study of these proteins could enhance our knowledge of protein space.
Collapse
|
30
|
Sabath N, Landan G, Graur D. A method for the simultaneous estimation of selection intensities in overlapping genes. PLoS One 2008; 3:e3996. [PMID: 19098983 PMCID: PMC2601044 DOI: 10.1371/journal.pone.0003996] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2008] [Accepted: 11/21/2008] [Indexed: 11/18/2022] Open
Abstract
Inferring the intensity of positive selection in protein-coding genes is important since it is used to shed light on the process of adaptation. Recently, it has been reported that overlapping genes, which are ubiquitous in all domains of life, seem to exhibit inordinate degrees of positive selection. Here, we present a new method for the simultaneous estimation of selection intensities in overlapping genes. We show that the appearance of positive selection is caused by assuming that selection operates independently on each gene in an overlapping pair, thereby ignoring the unique evolutionary constraints on overlapping coding regions. Our method uses an exact evolutionary model, thereby voiding the need for approximation or intensive computation. We test the method by simulating the evolution of overlapping genes of different types as well as under diverse evolutionary scenarios. Our results indicate that the independent estimation approach leads to the false appearance of positive selection even though the gene is in reality subject to negative selection. Finally, we use our method to estimate selection in two influenza A genes for which positive selection was previously inferred. We find no evidence for positive selection in both cases.
Collapse
Affiliation(s)
- Niv Sabath
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America.
| | | | | |
Collapse
|
31
|
Carvajal-Rodríguez A. Detecting recombination and diversifying selection in human alpha-papillomavirus. INFECTION GENETICS AND EVOLUTION 2008; 8:689-92. [PMID: 18675939 DOI: 10.1016/j.meegid.2008.07.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Revised: 07/04/2008] [Accepted: 07/08/2008] [Indexed: 11/26/2022]
Abstract
Intragenic recombination and selection analyses were performed in DNA sequences of human alpha-papillomavirus. Recombination was estimated and the corresponding breakpoints obtained by re-analyzing data grouped by phylogenetic and epidemiological criteria, using different alignment methods. Diversifying or positive selection has been scarcely studied in these viruses probably due to the high divergence rates. We have applied maximum likelihood, empirical Bayesian and maximum parsimony methods to detect the presence of positive selection. Within the HPV 16 type, significant positive selection was detected at the time of the separation of the African 1 and African 2 branches from the other populations. At the inter-type level, positive selection can be traced in some codons of the gene L2 of the high and low risk groups. These results indicate that positive selection could have been important in the evolution of HPV both at inter- and intra-type levels.
Collapse
Affiliation(s)
- A Carvajal-Rodríguez
- Dpto. de Bioquímica, Genética e Inmunología, Facultad de Biología, Universidad de Vigo, 36310 Vigo, Spain.
| |
Collapse
|
32
|
Leykauf K, Kabsch K, Gassler N, Gissmann L, Alonso A, Schenkel J. Expression of the HPV11 E2 gene in transgenic mice does not result in alterations of the phenotypic pattern. Transgenic Res 2008; 17:1-8. [PMID: 17701441 DOI: 10.1007/s11248-007-9130-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2007] [Accepted: 07/24/2007] [Indexed: 12/31/2022]
Abstract
The E2 early protein of human papillomaviruses (HPV) has been found associated with the mitotic spindle therefore being implicated in the partition of the replicated viral DNA to daughter cells. In addition, E2 proteins bind to the upstream regulatory region of the virus and to cellular promoters modulating thereby cellular transcription and differentiation. In many cervical cancers, the E2 reading frame is interrupted upon incorporation of the viral genome into the host DNA. This results in the loss of the E2 mediated transcriptional repression and uncontrolled expression of the viral oncogenes. All these results have been obtained in transfected cells but no information is available on the E2 effects in the context of the entire organism. Transgenic mice were generated expressing the E2 protein of HPV11 under the control of the Ubiquitin C promoter. E2 mRNA is present in all mice tissues analysed and the E2 protein expressed in the skin (the target tissue of HPV11) was shown by Western blotting, albeit at a very low level. Analysis of the transgenic mice shows no major histological changes in the skin or all other tissues investigated. These data indicate that in transgenic mice the human papillomavirus type 11 E2 does not grossly modulate cellular proliferation or differentiation events.
Collapse
Affiliation(s)
- Kerstin Leykauf
- German Cancer Research Centre, Heidelberg, F050, Im Neuenheimer Feld 280, Heidelberg, 69120, Germany
| | | | | | | | | | | |
Collapse
|
33
|
van Hemert FJ, Zaaijer HL, Berkhout B, Lukashov VV. Mosaic amino acid conservation in 3D-structures of surface protein and polymerase of hepatitis B virus. Virology 2007; 370:362-72. [PMID: 17935747 DOI: 10.1016/j.virol.2007.08.036] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2007] [Revised: 07/31/2007] [Accepted: 08/25/2007] [Indexed: 12/17/2022]
Abstract
Surface protein and polymerase of hepatitis B virus provide a striking example of gene overlap. Inclusion of more coding constraints in the phylogenetic analysis forces the tree toward accepted topology. Three-dimensional protein modeling demonstrates that participation in local protein function underlies the observed mosaic patterns of amino acid conservation and variability. Conserved amino acid residues of polymerase were typically clustered at the catalytic core marked by the YMDD motif. The proposed tertiary structure of surface protein displayed the expected transmembrane helices in a 2-domain constellation. Conserved amino acids like, for instance, cysteine residues are involved in the spatial orientation of the two domains, the exposed location of the a-determinant and the dimer formation of surface protein. By means of computational alanine replacement scanning, we demonstrated that the interfaces between domains in monomeric surface protein, between the monomers in dimeric surface protein and in a capsid-surface protein complex mainly consist of relatively well-conserved amino acid residues.
Collapse
Affiliation(s)
- Formijn J van Hemert
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
34
|
Pavesi A. Pattern of nucleotide substitution in the overlapping nonstructural genes of influenza A virus and implication for the genetic diversity of the H5N1 subtype. Gene 2007; 402:28-34. [PMID: 17825505 DOI: 10.1016/j.gene.2007.07.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2007] [Revised: 07/12/2007] [Accepted: 07/12/2007] [Indexed: 11/24/2022]
Abstract
In viruses under strong pressure to minimize genome size, overlapping genes represent a fine strategy to condense a maximum amount of information into short nucleotide sequences. Here, we investigated the evolution of the genes encoding the nonstructural proteins NS1 and NS2 of influenza A virus (IAV), which are one of the best characterized cases of gene overlap. By a detailed analysis of about four hundred sequences grouped into 11 IAV subtypes, we found that the overlapping coding region of the NS1 gene shows a significant increase of the rate of nonsynonymous change, with respect to its nonoverlapping counterpart. The same feature was observed in the overlapping coding region of the NS2 gene. Such a variation pattern, which implies the occurrence of several amino acid substitutions in the protein regions encoded by overlapping frames, is different from the pattern of constrained evolution typical of other viral overlapping-gene systems. Amino acid sequence analysis of the NS1 and NS2 proteins revealed that some nonsynonymous substitutions, located in the region of gene overlap, play a critical role in shaping the genetic diversity of the highly pathogenic subtype H5N1. Since both proteins contribute to disease pathogenesis by affecting many virus and host-cell processes, information provided by this study should be useful to highlight the impact of nonstructural gene variation on the pathogenicity of H5N1 viruses.
Collapse
Affiliation(s)
- Angelo Pavesi
- Department of Genetics, Biology of Microorganisms, Anthropology, Evolution, University of Parma, V. le G. P. Usberti 11/A, I-43100 Parma, Italy.
| |
Collapse
|
35
|
Hazard K, Andersson K, Dillner J, Forslund O. Human papillomavirus subtypes are not uncommon. Virology 2007; 362:6-9. [PMID: 17395235 DOI: 10.1016/j.virol.2007.03.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2006] [Revised: 02/12/2007] [Accepted: 03/05/2007] [Indexed: 12/21/2022]
Abstract
While both variants and types of human papillomavirus (HPV) are common, subtypes (2-10% sequence divergence in the L1 gene) have been considered to be rare. We searched GenBank and in-house databases using a 440 nt L1 fragment and identified 7, 30 and 10 subtypes/putative subtypes in the HPV genera Alpha, Beta and Gamma, respectively. The number of types/putative types in each genus was 54, 58 and 103. Thus, there appears to exist at least 47 different subtypes/putative subtypes of HPV and they seem to be particularly common in the genus Beta-papillomavirus.
Collapse
Affiliation(s)
- Kristina Hazard
- Department of Laboratory Medicine, Division of Medical Microbiology, Lund University, University Hospital, Malmö, S-205 02 Malmö, Sweden
| | | | | | | |
Collapse
|
36
|
Abstract
The possibility of creating novel genes from pre-existing sequences, known as overprinting, is a widespread phenomenon in small viruses. Here, the origin and evolution of gene overlap in the bacteriophages belonging to the family Microviridae have been investigated. The distinction between ancestral and derived frames was carried out by comparing the patterns of codon usage in overlapping and non-overlapping genes. By this approach, a gradual increase in complexity of the phage genome--from an ancestral state lacking gene overlap to a derived state with a high density of genetic information--was inferred. Genes encoding less-essential proteins, yet playing a role in phage growth and diffusion, were predicted to be novel genes that originated by overprinting. Evaluation of the rates of synonymous and non-synonymous substitution yielded evidence for overlapping genes under positive selection in one frame and purifying selection in the alternative frame.
Collapse
Affiliation(s)
- Angelo Pavesi
- Department of Genetics, Anthropology and Evolution, University of Parma, Parco Area delle Scienze 11/A, I-43100 Parma, Italy
| |
Collapse
|
37
|
Bernard HU, Calleja-Macias IE, Dunn ST. Genome variation of human papillomavirus types: phylogenetic and medical implications. Int J Cancer 2006; 118:1071-6. [PMID: 16331617 DOI: 10.1002/ijc.21655] [Citation(s) in RCA: 181] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Human papillomaviruses (HPVs) are described as "types" based on their genome sequences and identified by a number. For example, HPV-6 is associated with genital warts, and HPV-16 with anogenital cancers. The genomes of many HPV types have been reisolated, sequenced and compared to reference "prototypes" countless times by laboratories throughout the world. It was found that each HPV type occurs in the form of "variants", identified by about 2% nucleotide differences in most genes and 5% in less conserved regions. Less than 100 variants of any HPV type have been detected, a scenario that is very different from the quasi-species formed by many RNA viruses. The variants of each HPV type form phylogenetic trees, and variants from specific branches are often unique to specific ethnic groups. Immigrant populations contain, depending on their respective ethnic origins, mixtures of variants. The absence of HPV genomes intermediate to specific types show that all HPV types existed already when humans became a species. Consequently, humans had always suffered from lesions like anogenital cancer, genital warts and common warts. A growing number of epidemiological, etiological and molecular data suggest that variants of the same HPV type are biologically distinct and may confer differential pathogenic risks. Since the distribution of some variants of HPV-16 and 18 correlates with the distribution of human populations that have an increased risk to develop anogenital cancer, the study of HPV type variation may point to one of the reasons for the higher incidence rates of these lesions in specific cohorts.
Collapse
Affiliation(s)
- Hans-Ulrich Bernard
- Department of Molecular Biology and Biochemistry, University of California-Irvine, Irvine, CA 92697, USA.
| | | | | |
Collapse
|
38
|
Narechania A, Chen Z, DeSalle R, Burk RD. Phylogenetic incongruence among oncogenic genital alpha human papillomaviruses. J Virol 2006; 79:15503-10. [PMID: 16306621 PMCID: PMC1316001 DOI: 10.1128/jvi.79.24.15503-15510.2005] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human papillomaviruses (HPVs) have long been thought to follow a monophyletic pattern of evolution with little if any evidence for recombination between genomes. On the basis of this model, both oncogenicity and tissue tropism appear to have evolved once. Still, no systematic statistical analyses have shown whether monophyly is the rule across all HPV open reading frames (ORFs). We conducted a taxonomic analysis of 59 mucosal/genital HPVs using whole-genome and sliding-window similarity measures; maximum-parsimony, neighbor-joining, and Bayesian phylogenetic analyses; and localized incongruence length difference (LILD) analyses. The algorithm for the LILD analyses localized incongruence by calculating the tree length differences between constrained and unconstrained nodes in a total-evidence tree across all HPV ORFs. The process allows statistical evaluation of every ORF/node pair in the total-evidence tree. The most significant incongruence was observed at the putative high-risk (i.e., cancer-associated) node, the common oncogenic ancestor for alpha HPV species 9 (e.g., HPV type 16 [HPV16]), 11, 7 (e.g., HPV18), 5, and 6. Although these groups share early-gene homology, including high degrees of similarity among E6 and E7, groups 9 and 11 diverge from groups 7, 5, and 6 with respect to L2 and L1. The HPV species groups primarily associated with cervical and anogenital cancers appear to follow two distinct evolutionary paths, one conferred by the early genes and another by the late genes. The incongruence in the genital HPV phylogeny could have occurred from an early recombination event, an ecological niche change, and/or asymmetric genome convergence driven by intense selection. These data indicate that the phylogeny of the oncogenic HPVs is complex and that their evolution may not be monophyletic across all genes.
Collapse
Affiliation(s)
- Apurva Narechania
- Department of Microbiology, Albert Einstein College of Medicine, Ullman Building, Room 515, 1300 Morris Park Ave., Bronx, NY 10461, USA
| | | | | | | |
Collapse
|
39
|
García-Vallvé S, Alonso A, Bravo IG. Papillomaviruses: different genes have different histories. Trends Microbiol 2005; 13:514-21. [PMID: 16181783 DOI: 10.1016/j.tim.2005.09.003] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2005] [Revised: 08/25/2005] [Accepted: 09/13/2005] [Indexed: 11/17/2022]
Abstract
Papillomaviruses (PVs) infect stratified squamous epithelia in vertebrates. Some PVs are associated with different types of cancer and with certain benign lesions. It has been assumed that PVs coevolved with their hosts. However, recently it has been shown that different regions of the genome have different evolutionary histories. The PV genome has a modular nature and appeared after the addition of pre-existent blocks. This order of appearance in the PV genome is evident today in the different evolutionary rates of the different genes, with new genes--E5, E6 and E7--diverging faster than old genes--E1, E2, L2 and L1. Here, we propose an evolutionary framework aiming to integrate genome evolution, PV biology and epidemiology of PV infections.
Collapse
Affiliation(s)
- Santiago García-Vallvé
- Evolutionary Genomics Group, Biochemistry and Biotechnology Department, Rovira i Virgili University (URV), c/ Marcel-li Domingo, s/n. Campus Sescelades, 43007 Tarragona, Spain
| | | | | |
Collapse
|