1
|
Kang JW, Chan KWK, Vasudevan SG, Low JG. α-Glucosidase inhibitors as broad-spectrum antivirals: Current knowledge and future prospects. Antiviral Res 2025; 238:106147. [PMID: 40120858 DOI: 10.1016/j.antiviral.2025.106147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/17/2025] [Accepted: 03/19/2025] [Indexed: 03/25/2025]
Affiliation(s)
- James Wj Kang
- Department of Infectious Diseases, Singapore General Hospital, Singapore, 168753, Singapore
| | - Kitti Wing Ki Chan
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, 169857, Singapore
| | - Subhash G Vasudevan
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, 169857, Singapore; Institute of Biomedicine and Glycomics, Griffith University, Queensland, Australia
| | - Jenny G Low
- Department of Infectious Diseases, Singapore General Hospital, Singapore, 168753, Singapore; Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, 169857, Singapore; Viral Research and Experimental Medicine Centre, SingHealth Duke-NUS Academic Medical Centre, Singapore, 169857, Singapore.
| |
Collapse
|
2
|
Sayahi MH, Zareei S, Halimi M, Alikhani M, Moazzam A, Mohammadi-Khanaposhtani M, Mojtabavi S, Faramarzi MA, Rastegar H, Taslimi P, Ibrahim EH, Ghramh HA, Larijani B, Mahdavi M. Design, synthesis, in vitro, and in silico anti-α-glucosidase assays of N-phenylacetamide-1,2,3-triazole-indole-2-carboxamide derivatives as new anti-diabetic agents. Sci Rep 2024; 14:15791. [PMID: 38982268 PMCID: PMC11233587 DOI: 10.1038/s41598-024-66201-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 06/28/2024] [Indexed: 07/11/2024] Open
Abstract
In this work, a novel series of N-phenylacetamide-1,2,3-triazole-indole-2-carboxamide derivatives 5a-n were designed by consideration of the potent α-glucosidase inhibitors containing indole and carboxamide-1,2,3-triazole-N-phenylacetamide moieties. These compounds were synthesized by click reaction and evaluated against yeast α-glucosidase. All the newly title compounds demonstrated superior potency when compared with acarbose as a standard inhibitor. Particularly, compound 5k possessed the best inhibitory activity against α-glucosidase with around a 28-fold improvement in the inhibition effect in comparison standard inhibitor. This compound showed a competitive type of inhibition in the kinetics. The molecular docking and dynamics demonstrated that compound 5k with a favorable binding energy well occupied the active site of α-glucosidase.
Collapse
Affiliation(s)
| | - Samira Zareei
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Halimi
- Department of Biology, Babol Branch, Islamic Azad University, Babol, Iran
| | - Majid Alikhani
- Department of Internal Medicine, School of Medicine, Rheumatology Research Center Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Moazzam
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Mohammadi-Khanaposhtani
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Somayeh Mojtabavi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Faramarzi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Rastegar
- Cosmetic Products Research Center, Iranian Food and Drug Administration, MOHE, Tehran, Iran.
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Science, Bartin University, Bartin, Turkey
| | - Essam H Ibrahim
- Biology Department, Faculty of Science, King Khalid University, P.O. Box 9004, 61413, Abha, Saudi Arabia
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, Saudi Arabia
- Blood Products Quality Control and Research Department, National Organization for Research and Control of Biologicals, Cairo, Egypt
| | - Hamed A Ghramh
- Biology Department, Faculty of Science, King Khalid University, P.O. Box 9004, 61413, Abha, Saudi Arabia
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, Saudi Arabia
- Unit of Bee Research and Honey Production, Faculty of Science, King Khalid University, 61413, Abha, Saudi Arabia
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Esmaili S, Ebadi A, Khazaei A, Ghorbani H, Faramarzi MA, Mojtabavi S, Mahdavi M, Najafi Z. Novel Pyrano[3,2- c]quinoline-1,2,3-triazole Hybrids as Potential Anti-Diabetic Agents: In Vitro α-Glucosidase Inhibition, Kinetic, and Molecular Dynamics Simulation. ACS OMEGA 2023; 8:23412-23424. [PMID: 37426262 PMCID: PMC10324058 DOI: 10.1021/acsomega.3c00133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 05/30/2023] [Indexed: 07/11/2023]
Abstract
In this study, a novel series of pyrano[3,2-c]quinoline-1,2,3-triazole hybrids 8a-o were synthesized and evaluated against the α-glucosidase enzyme. All compounds showed significant in vitro inhibitory activity (IC50 values of 1.19 ± 0.05 to 20.01 ± 0.02 μM) compared to the standard drug acarbose (IC50 = 750.0 μM). Among them, 2-amino-4-(3-((1-benzyl-1H-1,2,3-triazol-4-yl)methoxy)phenyl)-5-oxo-5,6-dihydro-4H-pyrano[3,2-c]quinoline-3-carbonitrile (compound 8k) demonstrated the best inhibitory effect toward α-glucosidase (IC50 = 1.19 ± 0.05 μM) with a competitive pattern of inhibition. Since compound 8k was synthesized as a racemic mixture, molecular docking and dynamics simulations were performed on R- and S-enantiomers of compound 8k. Based on the molecular docking results, both R- and S-enantiomers of compound 8k displayed significant interactions with key residues including catalytic triad (Asp214, Glu276, and Asp349) in the enzyme active site. However, an in silico study indicated that S- and R-enantiomers were inversely located in the enzyme active site. The R-enantiomer formed a more stable complex with a higher binding affinity to the active site of α-glucosidase than that of the S- enantiomer. The benzyl ring in the most stable complex ((R)-compound 8k) was located in the bottom of the binding site and interacted with the enzyme active site, while the pyrano[3,2-c]quinoline moiety occupied the high solvent accessible entrance of the active site. Thus, the synthesized pyrano[3,2-c]quinoline-1,2,3-triazole hybrids seem to be promising scaffolds for the development of novel α-glucosidase inhibitors.
Collapse
Affiliation(s)
- Soheila Esmaili
- Department
of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6517838683, Iran
| | - Ahmad Ebadi
- Department
of Medicinal Chemistry, School of Pharmacy, Medicinal Plants and Natural
Products Research Center, Hamadan University
of Medical Sciences, Hamadan 6517838678, Iran
| | - Ardeshir Khazaei
- Department
of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6517838683, Iran
| | - Hamideh Ghorbani
- Department
of Medicinal Chemistry, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan 6517838678, Iran
| | - Mohammad Ali Faramarzi
- Department
of Pharmaceutical Biotechnology, Faculty of Pharmacy and Biotechnology
Research Center, Tehran University of Medical
Sciences, Tehran 1417614411, Iran
| | - Somayeh Mojtabavi
- Department
of Pharmaceutical Biotechnology, Faculty of Pharmacy and Biotechnology
Research Center, Tehran University of Medical
Sciences, Tehran 1417614411, Iran
| | - Mohammad Mahdavi
- Endocrinology
and Metabolism Research Center, Endocrinology and Metabolism Clinical
Sciences Institute, Tehran University of
Medical Sciences, Tehran 1416753955, Iran
| | - Zahra Najafi
- Department
of Medicinal Chemistry, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan 6517838678, Iran
| |
Collapse
|
4
|
Mohammadi‐Khanaposhtani M, Noori M, Valizadeh Y, Dastyafteh N, Ghomi MK, Mojtabavi S, Faramarzi MA, Hosseini S, Biglar M, Larijani B, Rastegar H, Hamedifar H, Mirzazadeh R, Mahdavi M. Synthesis, α‐glucosidase Inhibition,
in silico
Pharmacokinetic, and Docking Studies Of Thieno[2,3‐b]Quinoline‐Acetamide Derivatives as New Anti‐Diabetic Agents. ChemistrySelect 2022. [DOI: 10.1002/slct.202104482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Maryam Mohammadi‐Khanaposhtani
- Cellular and Molecular Biology Research Center Health Research Institute Babol University of Medical Sciences Babol Iran
| | - Milad Noori
- Endocrinology and Metabolism Research Center Endocrinology and Metabolism Clinical Sciences Institute Tehran University of Medical Sciences Tehran Iran
| | - Yousef Valizadeh
- Endocrinology and Metabolism Research Center Endocrinology and Metabolism Clinical Sciences Institute Tehran University of Medical Sciences Tehran Iran
| | - Navid Dastyafteh
- Endocrinology and Metabolism Research Center Endocrinology and Metabolism Clinical Sciences Institute Tehran University of Medical Sciences Tehran Iran
| | - Minoo Khalili Ghomi
- Endocrinology and Metabolism Research Center Endocrinology and Metabolism Clinical Sciences Institute Tehran University of Medical Sciences Tehran Iran
| | - Somayeh Mojtabavi
- Department of Pharmaceutical Biotechnology Faculty of Pharmacy Tehran University of Medical Sciences Tehran Iran
| | - Mohammad Ali Faramarzi
- Department of Pharmaceutical Biotechnology Faculty of Pharmacy Tehran University of Medical Sciences Tehran Iran
| | | | - Mahmood Biglar
- Endocrinology and Metabolism Research Center Endocrinology and Metabolism Clinical Sciences Institute Tehran University of Medical Sciences Tehran Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center Endocrinology and Metabolism Clinical Sciences Institute Tehran University of Medical Sciences Tehran Iran
| | - Hossein Rastegar
- Cosmetic products research center, Iranian food and drug administration, MOHE Tehran Iran
| | - Haleh Hamedifar
- CinnaGen Medical Biotechnology Research Center Alborz University of Medical Sciences Karaj Iran
| | | | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center Endocrinology and Metabolism Clinical Sciences Institute Tehran University of Medical Sciences Tehran Iran
| |
Collapse
|
5
|
Liang Y, Xu W, Zhou Y, Gao Y, Tian H, Wu X, Xu Y, Wang H. Midgut membrane protein BmSUH facilitates Bombyx mori nucleopolyhedrovirus oral infection. PLoS Pathog 2022; 18:e1010938. [PMID: 36383572 PMCID: PMC9668127 DOI: 10.1371/journal.ppat.1010938] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/19/2022] [Indexed: 11/17/2022] Open
Abstract
Baculoviruses are virulent pathogens that infect a wide range of insects. They initiate infections via specific interactions between the structural proteins on the envelopes of occlusion-derived virions (ODVs) and the midgut cell surface receptors in hosts. However, host factors that are hijacked by baculoviruses for efficient infection remain largely unknown. In this study, we identified a membrane-associated protein sucrose hydrolase (BmSUH) as an ODV binding factor during Bombyx mori nucleopolyhedrovirus (BmNPV) primary infection. BmSUH was specifically expressed in the midgut microvilli where the ODV-midgut fusion happened. Knockout of BmSUH by CRISPR/Cas9 resulted in a significantly higher survival rate after BmNPV orally infection. Liquid chromatography-tandem mass spectrometry analysis and co-immunoprecipitation analysis demonstrated that PIF protein complex required for ODV binding could interact with BmSUH. Furthermore, fluorescence dequenching assay showed that the amount of ODV binding and fusion to the midgut decreased in BmSUH mutants compared to wild-type silkworm, suggesting the role of BmSUH as an ODV binding factor that mediates the ODV entry process. Based on a multilevel survey, the data showed that BmSUH acted as a host factor that facilitates BmNPV oral infection. More generally, this study indicated that disrupting essential protein-protein interactions required for baculovirus efficient entry may be broadly applicable to against viral infection. Baculoviridae is a large family of pathogens that infect insects and frequently cause fatal diseases. Bombyx mori nucleopolyhedrovirus (BmNPV) is a major threat to the sericulture industry. Although we have learned a lot about baculoviruses over the past several decades, the detailed interaction patterns between host proteins and viral proteins that lead to infection remain underexplored. Here, we determined that BmSUH, a midgut microvilli protein, was required for the efficient oral infection of BmNPV. Our research suggests that BmSUH mediates the entry of occlusion-derived virions into the midgut epithelia by interacting with per os infectivity factors. According to the findings, inhibition of viral binding to host cells is an attractive strategy to prevent infection. This study provides an approach for preventing BmNPV infection through developing genetic resistance to viruses by using CRISPR/Cas9 system to abolish the host factors that are essential for viral entry.
Collapse
Affiliation(s)
- Yanting Liang
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Weifan Xu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yanyan Zhou
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yun Gao
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Huan Tian
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Xiaofeng Wu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yusong Xu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Huabing Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- * E-mail:
| |
Collapse
|
6
|
Hunt-Painter AA, Deeble BM, Stocker BL, Timmer MSM. An Amination-Cyclization Cascade Reaction for Iminosugar Synthesis Using Minimal Protecting Groups. ACS OMEGA 2022; 7:28756-28766. [PMID: 36033662 PMCID: PMC9404175 DOI: 10.1021/acsomega.1c01646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The development of a one-step amination-cyclization cascade reaction for the synthesis of N-substituted iminosugars from iodo-pentoses and hexoses is reported. This novel methodology allows for the stereoselective conversion of easily accessible iodo-aldoses and iodo-ketoses into iminosugars in a single step, in highly efficient yields (63-95%), and in aqueous media. Furthermore, the use of functionalized amines allows for the synthesis of N-functionalized iminosugars without additional steps. To illustrate this methodology, a number of biologically important iminosugars were prepared, including 1-deoxynojirimycin, (3S,4R,5S,6R)-azepane-3,4,5,6-tetraol, and N-functionalized 1-deoxymannojirimycins.
Collapse
|
7
|
Noori M, Rastak M, Halimi M, Ghomi MK, Mollazadeh M, Mohammadi-Khanaposhtani M, Sayahi MH, Rezaei Z, Mojtabavi S, Ali Faramarzi M, Larijani B, Biglar M, Amanlou M, Mahdavi M. Design, synthesis, in vitro, and in silico enzymatic evaluations of thieno[2,3-b]quinoline-hydrazones as novel inhibitors for α-glucosidase. Bioorg Chem 2022; 127:105996. [PMID: 35878449 DOI: 10.1016/j.bioorg.2022.105996] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/15/2022] [Accepted: 06/27/2022] [Indexed: 11/25/2022]
Abstract
In the development of novel anti-α-glucosidase agents, we synthesized novel thieno[2,3-b]quinoline-hydrazones 9a-n by facile and efficient conventional chemical reactions. These compounds were characterized by IR, 1H NMR, 13C NMR, and elemental analysis. Inhibitory activities of the title compounds were evaluated against yeast α-glucosidase. In particular, compounds 9c, 9d, and 9h exhibited high anti-α-glucosidase activity. Representatively, compound 9c with IC50 = 1.3 µM, was 576-times more potent than positive control acarbose. Molecular docking study of the most active compounds showed that these compounds formed important binding interactions at α-glucosidase active site. Molecular dynamics study of compound 9c was also performed and the obtained results were compared with acarbose. Compounds 9c, 9d, and 9h were also evaluated for in silico druglikeness properties and ADMET prediction. These studies showed that the title most potent compounds could be exploited as drug candidates.
Collapse
Affiliation(s)
- Milad Noori
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mryam Rastak
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Halimi
- Department of Biology, Babol Branch, Islamic Azad University, Babol, Iran
| | - Minoo Khalili Ghomi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mrjan Mollazadeh
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Mohammadi-Khanaposhtani
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Mohammad Hosein Sayahi
- Department of Chemistry, Payame Noor University (PNU), P.O. Box 19395-3697, Tehran, Iran
| | - Zahra Rezaei
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Mojtabavi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Faramarzi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmood Biglar
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Massoud Amanlou
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Shahid M, Shahzad-Ul-Hussan S. Structural insights of key enzymes into therapeutic intervention against SARS-CoV-2. J Struct Biol 2021; 213:107690. [PMID: 33383190 PMCID: PMC7769706 DOI: 10.1016/j.jsb.2020.107690] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/03/2020] [Accepted: 12/23/2020] [Indexed: 01/18/2023]
Abstract
COVID-19 pandemic, caused by SARS-CoV-2, has drastically affected human health all over the world. After the emergence of the pandemic the major focus of efforts to attenuate the infection has been on repurposing the already approved drugs to treat COVID-19 adopting a fast-track strategy. However, to date a specific regimen to treat COVID-19 is not available. Over the last few months a substantial amount of data about the structures of various key proteins and their recognition partners involved in the SARS-CoV-2 pathogenesis has emerged. These studies have not only provided the molecular level descriptions ofthe viral pathogenesis but also laid the foundation for rational drug design and discovery. In this review, we have recapitulated the structural details of four key viral enzymes, RNA-dependent RNA polymerase, 3-chymotrypsin like protease, papain-like protease and helicase, and two host factors including angiotensin-converting enzyme 2 and transmembrane serine protease involved in the SARS-CoV-2 pathogenesis, and described the potential hotspots present on these structures which could be explored for therapeutic intervention. We have also discussed the significance of endoplasmic reticulum α-glucosidases as potential targets for anti-SARS-CoV-2 drug discovery.
Collapse
Affiliation(s)
- Munazza Shahid
- Department of Biology, SBA School of Science and Engineering, Lahore University of Management Sciences, Lahore 54792, Pakistan
| | - Syed Shahzad-Ul-Hussan
- Department of Biology, SBA School of Science and Engineering, Lahore University of Management Sciences, Lahore 54792, Pakistan.
| |
Collapse
|
9
|
Abedinifar F, Mohammadi-Khanaposhtani M, Asemanipoor N, Mojtabavi S, Faramarzi MA, Mahdavi M, Biglar M, Larijani B, Hamedifar H, Hajimiri MH. Synthesis and biological evaluation of a new series of benzofuran-1,3,4-oxadiazole containing 1,2,3-triazole-acetamides as potential α-glucosidase inhibitors. J Biochem Mol Toxicol 2020; 35:e22688. [PMID: 33368871 DOI: 10.1002/jbt.22688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 09/30/2020] [Accepted: 11/26/2020] [Indexed: 11/07/2022]
Abstract
A series of new benzofuran-1,3,4-oxadiazole containing 1,2,3-triazole-acetamides 12a-n as potential anti-α-glucosidase agents were designed and synthesized. α-Glucosidase inhibition assay demonstrated that all the synthesized compounds 12a-n (half-maximal inhibitory concentration [IC50 ] values in the range of 40.7 ± 0.3-173.6 ± 1.9 μM) were more potent than standard inhibitor acarbose (IC50 = 750.0 ± 12.5 µM). Among them, the most potent compound was compound 12c, with inhibitory activity around 19-fold higher than acarbose. Since the most potent compound inhibited α-glucosidase in a competitive mode, a docking study of this compound was also performed into the active site of α-glucosidase. In vitro and in silico toxicity assays of the title compounds were also performed.
Collapse
Affiliation(s)
- Fahimeh Abedinifar
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Mohammadi-Khanaposhtani
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Nafise Asemanipoor
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Mojtabavi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad A Faramarzi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmood Biglar
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Haleh Hamedifar
- CinnaGen Medical Biotechnology Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Mir H Hajimiri
- Nano Alvand Company, Avicenna Tech Park, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Evans DeWald L, Starr C, Butters T, Treston A, Warfield KL. Iminosugars: A host-targeted approach to combat Flaviviridae infections. Antiviral Res 2020; 184:104881. [PMID: 32768411 PMCID: PMC7405907 DOI: 10.1016/j.antiviral.2020.104881] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/07/2020] [Accepted: 07/13/2020] [Indexed: 12/12/2022]
Abstract
N-linked glycosylation is the most common form of protein glycosylation and is required for the proper folding, trafficking, and/or receptor binding of some host and viral proteins. As viruses lack their own glycosylation machinery, they are dependent on the host's machinery for these processes. Certain iminosugars are known to interfere with the N-linked glycosylation pathway by targeting and inhibiting α-glucosidases I and II in the endoplasmic reticulum (ER). Perturbing ER α-glucosidase function can prevent these enzymes from removing terminal glucose residues on N-linked glycans, interrupting the interaction between viral glycoproteins and host chaperone proteins that is necessary for proper folding of the viral protein. Iminosugars have demonstrated broad-spectrum antiviral activity in vitro and in vivo against multiple viruses. This review discusses the broad activity of iminosugars against Flaviviridae. Iminosugars have shown favorable activity against multiple members of the Flaviviridae family in vitro and in murine models of disease, although the activity and mechanism of inhibition can be virus-specfic. While iminosugars are not currently approved for the treatment of viral infections, their potential use as future host-targeted antiviral (HTAV) therapies continues to be investigated.
Collapse
Affiliation(s)
| | - Chloe Starr
- Emergent BioSolutions, Gaithersburg, MD, 20879, USA
| | | | | | - Kelly L. Warfield
- Emergent BioSolutions, Gaithersburg, MD, 20879, USA,Corresponding author. 400 Professional Drive, Gaithersburg, MD, 20879, USA
| |
Collapse
|
11
|
Laine RA. The case for re-examining glycosylation inhibitors, mimetics, primers and glycosylation decoys as antivirals and anti-inflammatories in COVID19. Glycobiology 2020; 30:763-767. [PMID: 32829416 PMCID: PMC7499584 DOI: 10.1093/glycob/cwaa083] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2020] [Indexed: 12/17/2022] Open
Affiliation(s)
- Roger A Laine
- Departments of Biological Sciences and Chemistry, Louisiana State University and A&M College, Baton Rouge, LA 70803, USA
| |
Collapse
|
12
|
Maghembe R, Damian D, Makaranga A, Nyandoro SS, Lyantagaye SL, Kusari S, Hatti-Kaul R. Omics for Bioprospecting and Drug Discovery from Bacteria and Microalgae. Antibiotics (Basel) 2020; 9:antibiotics9050229. [PMID: 32375367 PMCID: PMC7277505 DOI: 10.3390/antibiotics9050229] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/10/2020] [Accepted: 04/29/2020] [Indexed: 12/20/2022] Open
Abstract
"Omics" represent a combinatorial approach to high-throughput analysis of biological entities for various purposes. It broadly encompasses genomics, transcriptomics, proteomics, lipidomics, and metabolomics. Bacteria and microalgae exhibit a wide range of genetic, biochemical and concomitantly, physiological variations owing to their exposure to biotic and abiotic dynamics in their ecosystem conditions. Consequently, optimal conditions for adequate growth and production of useful bacterial or microalgal metabolites are critically unpredictable. Traditional methods employ microbe isolation and 'blind'-culture optimization with numerous chemical analyses making the bioprospecting process laborious, strenuous, and costly. Advances in the next generation sequencing (NGS) technologies have offered a platform for the pan-genomic analysis of microbes from community and strain downstream to the gene level. Changing conditions in nature or laboratory accompany epigenetic modulation, variation in gene expression, and subsequent biochemical profiles defining an organism's inherent metabolic repertoire. Proteome and metabolome analysis could further our understanding of the molecular and biochemical attributes of the microbes under research. This review provides an overview of recent studies that have employed omics as a robust, broad-spectrum approach for screening bacteria and microalgae to exploit their potential as sources of drug leads by focusing on their genomes, secondary metabolite biosynthetic pathway genes, transcriptomes, and metabolomes. We also highlight how recent studies have combined molecular biology with analytical chemistry methods, which further underscore the need for advances in bioinformatics and chemoinformatics as vital instruments in the discovery of novel bacterial and microalgal strains as well as new drug leads.
Collapse
Affiliation(s)
- Reuben Maghembe
- Department of Molecular Biology and Biotechnology, College of Natural and Applied Sciences, University of Dar es Salaam, P.O. Box 25179, Dar es Salaam, Tanzania; (R.M.); (D.D.); (S.L.L.)
- Department of Biological and Marine Sciences, Marian University College, P.O. Box 47, Bagamoyo, Tanzania;
- Division of Biotechnology, Department of Chemistry, Center for Chemistry and Chemical Engineering, Lund University, Box 124, 22100 Lund, Sweden
| | - Donath Damian
- Department of Molecular Biology and Biotechnology, College of Natural and Applied Sciences, University of Dar es Salaam, P.O. Box 25179, Dar es Salaam, Tanzania; (R.M.); (D.D.); (S.L.L.)
| | - Abdalah Makaranga
- Department of Biological and Marine Sciences, Marian University College, P.O. Box 47, Bagamoyo, Tanzania;
- International Center for Genetic Engineering and Biotechnology (ICGEB), Omics of Algae Group, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Stephen Samwel Nyandoro
- Chemistry Department, College of Natural and Applied Sciences, University of Dar es Salaam, P.O. Box 35061, Dar es Salaam, Tanzania;
| | - Sylvester Leonard Lyantagaye
- Department of Molecular Biology and Biotechnology, College of Natural and Applied Sciences, University of Dar es Salaam, P.O. Box 25179, Dar es Salaam, Tanzania; (R.M.); (D.D.); (S.L.L.)
- Department of Biochemistry, Mbeya College of Health and Allied Sciences, University of Dar es Salaam, P.O. Box 608, Mbeya, Tanzania
| | - Souvik Kusari
- Institute of Environmental Research (INFU), Department of Chemistry and Chemical Biology, Technische Universität Dortmund, Otto-Hahn-Straße 6, 44221 Dortmund, Germany
- Correspondence: (S.K.); (R.H.-K.); Tel.: +49-2317554086 (S.K.); +46-462224840 (R.H.-K.)
| | - Rajni Hatti-Kaul
- Division of Biotechnology, Department of Chemistry, Center for Chemistry and Chemical Engineering, Lund University, Box 124, 22100 Lund, Sweden
- Correspondence: (S.K.); (R.H.-K.); Tel.: +49-2317554086 (S.K.); +46-462224840 (R.H.-K.)
| |
Collapse
|
13
|
Abd Ellah NH, Tawfeek HM, John J, Hetta HF. Nanomedicine as a future therapeutic approach for Hepatitis C virus. Nanomedicine (Lond) 2019; 14:1471-1491. [PMID: 31166139 DOI: 10.2217/nnm-2018-0348] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Hepatitis C virus (HCV) is not easily cleared from the human body and in most cases turned into chronic infection. This chronicity is a major cause of liver damage, cirrhosis and hepatocellular carcinoma. Therefore, immediate detection and treatment of HCV guarantees eradication of the virus and prevention of chronicity complications. Since discovery of HCV in 1989, several emerging treatments were developed such as polyethylene glycol(PEG)-ylated interferon/ribavirin, direct acting antivirals and host targeting antivirals. Despite the progress in anti-HCV therapy, there is still a pressing need of new approaches for affordable and effective drug delivery systems using nanomedicine. In this review, the contribution of nanoparticles as a promising delivery system for HCV immunizing, diagnostic and therapeutic agents are discussed.
Collapse
Affiliation(s)
- Noura H Abd Ellah
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, Medical Sciences Building, University of Cincinnati, Cincinnati, OH 45267, USA.,Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt
| | - Hesham M Tawfeek
- Department of Industrial Pharmacy, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt.,Department of Pharmaceutics & Pharmaceutical Technology, Faculty of Pharmacy, Mutah University, Karak, Jordan
| | - James John
- Central Research Facilities, Sri Ramachandra institute of higher education & research, Sri Ramachandra University, Chennai, India
| | - Helal F Hetta
- Department of Medical Microbiology & Immunology, Faculty of Medicine, Assiut University, Assiut, 71526, Egypt.,Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0595, USA
| |
Collapse
|
14
|
Tyrrell BE, Sayce AC, Warfield KL, Miller JL, Zitzmann N. Iminosugars: Promising therapeutics for influenza infection. Crit Rev Microbiol 2017; 43:521-545. [PMID: 27931136 PMCID: PMC5470110 DOI: 10.1080/1040841x.2016.1242868] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 09/02/2016] [Accepted: 09/27/2016] [Indexed: 01/11/2023]
Abstract
Influenza virus causes three to five million severe respiratory infections per year in seasonal epidemics, and sporadic pandemics, three of which occurred in the twentieth century and are a continuing global threat. Currently licensed antivirals exclusively target the viral neuraminidase or M2 ion channel, and emerging drug resistance necessitates the development of novel therapeutics. It is believed that a host-targeted strategy may combat the development of antiviral drug resistance. To this end, a class of molecules known as iminosugars, hydroxylated carbohydrate mimics with the endocyclic oxygen atom replaced by a nitrogen atom, are being investigated for their broad-spectrum antiviral potential. The influenza virus glycoproteins, hemagglutinin and neuraminidase, are susceptible to inhibition of endoplasmic reticulum α-glucosidases by certain iminosugars, leading to reduced virion production or infectivity, demonstrated by in vitro and in vivo studies. In some experiments, viral strain-specific effects are observed. Iminosugars may also inhibit other host and virus targets with antiviral consequences. While investigations of anti-influenza iminosugar activities have been conducted since the 1980s, recent successes of nojirimycin derivatives have re-invigorated investigation of the therapeutic potential of iminosugars as orally available, low cytotoxicity, effective anti-influenza drugs.
Collapse
Affiliation(s)
- Beatrice Ellen Tyrrell
- Department of Biochemistry, University of Oxford Medical Sciences DivisionOxfordUnited Kingdom of Great Britain and Northern Ireland
| | - Andrew Cameron Sayce
- Department of Biochemistry, University of Oxford Medical Sciences DivisionOxfordUnited Kingdom of Great Britain and Northern Ireland
| | - Kelly Lyn Warfield
- Antiviral Research and Development, Emergent BioSolutions IncGaithersburgMDUnited States
| | - Joanna Louise Miller
- Department of Biochemistry, University of Oxford Medical Sciences DivisionOxfordUnited Kingdom of Great Britain and Northern Ireland
| | - Nicole Zitzmann
- Department of Biochemistry, University of Oxford Medical Sciences DivisionOxfordUnited Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
15
|
Gu B, Mason P, Wang L, Norton P, Bourne N, Moriarty R, Mehta A, Despande M, Shah R, Block T. Antiviral Profiles of Novel Iminocyclitol Compounds against Bovine Viral Diarrhea Virus, West Nile Virus, Dengue Virus and Hepatitis B Virus. ACTA ACUST UNITED AC 2016; 18:49-59. [PMID: 17354651 DOI: 10.1177/095632020701800105] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The antiviral activity of iminocyclitol compounds with a deoxynojirimycin (DNJ) head group and either a straight chain alkyl or alkylcycloalkyl group attached to the nitrogen atom have been tested in vitro against multiple-enveloped viruses. Several of these analogues were superior to previously reported DNJ compounds. Iminocyclitols that inhibit the glycan-processing enzyme endoplasmic-reticular glucosidase have been shown to inhibit the morphogenesis of viruses that bud from the endoplasmic reticulum (ER) at non-cytotoxic concentrations. Bovine viral diarrhoea virus (BVDV) has been used as a surrogate system for study of the hepatitis C virus, which belong to the virus family ( Flaviviridae) as West Nile virus (WNV) and dengue virus (DV). N-Nonyl-DNJ (NNDNJ) was previously reported to have micromolar antiviral activity against BVDV, but a limiting toxicity profile. N-Butylcyclohexyl-DNJ (SP169) was shown to be as potent as NNDNJ in assays against BVDV and less toxic. However, it was inactive against hepatitis B virus (HBV). The present study reports efforts to improve the performance profiles of these compounds. Introduction of an oxygen atom into the N-alkyl side chain of DNJ, either as an ether or a hydroxyl functionality, reduced toxicity but sacrificed potency. Introduction of a hydroxyl group at the tertiary carbon junction of the cycloalkyl and linear alkyl group, as in N-pentyl-(1-hydroxycyclohexyl)-DNJ (OSL-95II), led to a structure that was as well tolerated as DNJ (CC50>500 µM), but retained micromolar antiviral activity against all ER morphogenesis budding viruses tested: BVDV, WNV, DV and HBV. The implication of this modification to the development of broad-spectrum antiviral agents is discussed.
Collapse
Affiliation(s)
- Baohua Gu
- Drexel Institute for Biotechnology and Virology Research, Drexel University, College of Medicine, Doylestown, PA, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Khachatoorian R, French SW. Chaperones in hepatitis C virus infection. World J Hepatol 2016; 8:9-35. [PMID: 26783419 PMCID: PMC4705456 DOI: 10.4254/wjh.v8.i1.9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 10/01/2015] [Accepted: 12/18/2015] [Indexed: 02/06/2023] Open
Abstract
The hepatitis C virus (HCV) infects approximately 3% of the world population or more than 185 million people worldwide. Each year, an estimated 350000-500000 deaths occur worldwide due to HCV-associated diseases including cirrhosis and hepatocellular carcinoma. HCV is the most common indication for liver transplantation in patients with cirrhosis worldwide. HCV is an enveloped RNA virus classified in the genus Hepacivirus in the Flaviviridae family. The HCV viral life cycle in a cell can be divided into six phases: (1) binding and internalization; (2) cytoplasmic release and uncoating; (3) viral polyprotein translation and processing; (4) RNA genome replication; (5) encapsidation (packaging) and assembly; and (6) virus morphogenesis (maturation) and secretion. Many host factors are involved in the HCV life cycle. Chaperones are an important group of host cytoprotective molecules that coordinate numerous cellular processes including protein folding, multimeric protein assembly, protein trafficking, and protein degradation. All phases of the viral life cycle require chaperone activity and the interaction of viral proteins with chaperones. This review will present our current knowledge and understanding of the role of chaperones in the HCV life cycle. Analysis of chaperones in HCV infection will provide further insights into viral/host interactions and potential therapeutic targets for both HCV and other viruses.
Collapse
|
17
|
Song YY, Kinami K, Kato A, Jia YM, Li YX, Fleet GWJ, Yu CY. First total synthesis of (+)-broussonetine W: glycosidase inhibition of natural product & analogs. Org Biomol Chem 2016; 14:5157-74. [DOI: 10.1039/c6ob00720a] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Broussonetine W and its 11 analogues have been first synthesized from cyclic nitrones and assayed as potential gycosidase inhibitors.
Collapse
Affiliation(s)
- Ying-Ying Song
- Beijing National Laboratory for Molecular Science (BNLMS)
- CAS Key Laboratory of Molecular Recognition and Function
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Kyoko Kinami
- Department of Hospital Pharmacy
- University of Toyama
- Toyama 930-0194
- Japan
| | - Atsushi Kato
- Department of Hospital Pharmacy
- University of Toyama
- Toyama 930-0194
- Japan
| | - Yue-Mei Jia
- Beijing National Laboratory for Molecular Science (BNLMS)
- CAS Key Laboratory of Molecular Recognition and Function
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Yi-Xian Li
- Beijing National Laboratory for Molecular Science (BNLMS)
- CAS Key Laboratory of Molecular Recognition and Function
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - George W. J. Fleet
- Chemistry Research Laboratory
- Department of Chemistry
- University of Oxford
- Oxford
- UK
| | - Chu-Yi Yu
- Beijing National Laboratory for Molecular Science (BNLMS)
- CAS Key Laboratory of Molecular Recognition and Function
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| |
Collapse
|
18
|
Li X, Lü ZR, Shen D, Zhan Y, Yang JM, Park YD, Zhou HM, Sheng Q, Lee J. The inhibitory role of Co2+ on α-glucosidase: Inhibition kinetics and molecular dynamics simulation integration study. Process Biochem 2014. [DOI: 10.1016/j.procbio.2014.08.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
19
|
Inhibition of endoplasmic reticulum-resident glucosidases impairs severe acute respiratory syndrome coronavirus and human coronavirus NL63 spike protein-mediated entry by altering the glycan processing of angiotensin I-converting enzyme 2. Antimicrob Agents Chemother 2014; 59:206-16. [PMID: 25348530 DOI: 10.1128/aac.03999-14] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Endoplasmic reticulum (ER)-resident glucosidases I and II sequentially trim the three terminal glucose moieties on the N-linked glycans attached to nascent glycoproteins. These reactions are the first steps of N-linked glycan processing and are essential for proper folding and function of many glycoproteins. Because most of the viral envelope glycoproteins contain N-linked glycans, inhibition of ER glucosidases with derivatives of 1-deoxynojirimycin, i.e., iminosugars, efficiently disrupts the morphogenesis of a broad spectrum of enveloped viruses. However, like viral envelope proteins, the cellular receptors of many viruses are also glycoproteins. It is therefore possible that inhibition of ER glucosidases not only compromises virion production but also disrupts expression and function of viral receptors and thus inhibits virus entry into host cells. Indeed, we demonstrate here that iminosugar treatment altered the N-linked glycan structure of angiotensin I-converting enzyme 2 (ACE2), which did not affect its expression on the cell surface or its binding of the severe acute respiratory syndrome coronavirus (SARS-CoV) spike glycoprotein. However, alteration of N-linked glycans of ACE2 impaired its ability to support the transduction of SARS-CoV and human coronavirus NL63 (HCoV-NL63) spike glycoprotein-pseudotyped lentiviral particles by disruption of the viral envelope protein-triggered membrane fusion. Hence, in addition to reducing the production of infectious virions, inhibition of ER glucosidases also impairs the entry of selected viruses via a post-receptor-binding mechanism.
Collapse
|
20
|
Hussain S, Miller JL, Harvey DJ, Gu Y, Rosenthal PB, Zitzmann N, McCauley JW. Strain-specific antiviral activity of iminosugars against human influenza A viruses. J Antimicrob Chemother 2014; 70:136-52. [PMID: 25223974 PMCID: PMC4267503 DOI: 10.1093/jac/dku349] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Objectives Drugs that target host cell processes can be employed to complement drugs that specifically target viruses, and iminosugar compounds that inhibit host α-glucosidases have been reported to show antiviral activity against multiple viruses. Here the effect and mechanism of two iminosugar α-glucosidase inhibitors, N-butyl-deoxynojirimycin (NB-DNJ) and N-nonyl-deoxynojirimycin (NN-DNJ), on human influenza A viruses was examined. Methods The viruses examined were a recently circulating seasonal influenza A(H3N2) virus strain A/Brisbane/10/2007, an older H3N2 strain A/Udorn/307/72, and A/Lviv/N6/2009, a strain representative of the currently circulating pandemic influenza A(H1N1)pdm09 virus. Results The inhibitors had the strongest effect on Brisbane/10 and NN-DNJ was more potent than NB-DNJ. Both compounds showed antiviral activity in cell culture against three human influenza A viruses in a strain-specific manner. Consistent with its action as an α-glucosidase inhibitor, NN-DNJ treatment resulted in an altered glycan processing of influenza haemagglutinin (HA) and neuraminidase (NA), confirmed by MS. NN-DNJ treatment was found to reduce the cell surface expression of the H3 subtype HA. The level of sialidase activity of NA was reduced in infected cells, but the addition of exogenous sialidase to the cells did not complement the NN-DNJ-mediated inhibition of virus replication. Using reassortant viruses, the drug susceptibility profile was determined to correlate with the origin of the HA. Conclusions NN-DNJ inhibits influenza A virus replication in a strain-specific manner that is dependent on the HA.
Collapse
Affiliation(s)
- S Hussain
- Division of Virology, Medical Research Council National Institute for Medical Research, Mill Hill, London NW7 1AA, UK Division of Physical Biochemistry, Medical Research Council National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| | - J L Miller
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - D J Harvey
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK Department of Biological Sciences, Gibbet Hill Campus, University of Warwick, Coventry CV4 7AL, UK
| | - Y Gu
- Confocal Imaging and Analysis Laboratory, Medical Research Council National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| | - P B Rosenthal
- Division of Physical Biochemistry, Medical Research Council National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| | - N Zitzmann
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - J W McCauley
- Division of Virology, Medical Research Council National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| |
Collapse
|
21
|
Gerold G, Pietschmann T. The HCV life cycle: in vitro tissue culture systems and therapeutic targets. Dig Dis 2014; 32:525-37. [PMID: 25034285 DOI: 10.1159/000360830] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Hepatitis C virus (HCV) is a highly variable plus-strand RNA virus of the family Flaviviridae. Viral strains are grouped into six epidemiologically relevant genotypes that differ from each other by more than 30% at the nucleotide level. The variability of HCV allows immune evasion and facilitates persistence. It is also a substantial challenge for the development of specific antiviral therapies effective across all HCV genotypes and for prevention of drug resistance. Novel HCV cell culture models were instrumental for identification and profiling of therapeutic strategies. Concurrently, these models revealed numerous host factors critical for HCV propagation, some of which have emerged as targets for antiviral therapy. It is generally assumed that the use of host factors is conserved among HCV isolates and genotypes. Additionally, the barrier to viral resistance is thought to be high when interfering with host factors. Therefore, current drug development includes both targeting of viral factors but also of host factors essential for virus replication. In fact, some of these host-targeting agents, for instance inhibitors of cyclophilin A, have advanced to late stage clinical trials. Here, we highlight currently available cell culture systems for HCV, review the most prominent host-targeting strategies against hepatitis C and critically discuss opportunities and risks associated with host-targeting antiviral strategies.
Collapse
Affiliation(s)
- Gisa Gerold
- TWINCORE - Institute of Experimental Virology, Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | | |
Collapse
|
22
|
Meredith LW, Zitzmann N, McKeating JA. Differential effect of p7 inhibitors on hepatitis C virus cell-to-cell transmission. Antiviral Res 2013; 100:636-9. [PMID: 24157306 PMCID: PMC3851685 DOI: 10.1016/j.antiviral.2013.10.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 09/19/2013] [Accepted: 10/14/2013] [Indexed: 12/13/2022]
Abstract
p7 Inhibitors were tested for their ability to block HCV cell-free and cell-to-cell transmission. p7 Inhibitor BIT225 reduced the infectivity of diverse HCV extracellular virus. p7 Inhibitors had minimal effect on HCV cell-to-cell transmission. Important to consider HCV transmission route when assessing assembly inhibitors.
Inhibitors targeting the hepatitis C virus (HCV) encoded viroporin, p7 prevent virus release in vitro. HCV can transmit by cell-free particle infection of new target cells and via cell-to-cell dependent contact with limited exposure to the extracellular environment. The role of assembly inhibitors in preventing HCV transmission via these pathways has not been studied. We compared the efficacy of three published p7 inhibitors to inhibit cell-free and cell-to-cell transmission of two chimeric HCV strains encoding genotype 2 (GT2) or 5 (GT5) p7 using a recently developed single cycle co-culture assay. The inhibitors reduced the infectivity of extracellular GT2 and GT5 virus by 80–90% and GT2 virus cell-to-cell transmission by 50%. However, all of the p7 inhibitors had minimal effect on GT5 cell contact dependent transmission. Screening a wider panel of diverse viral genotypes demonstrated that p7 viroporin inhibitors were significantly more effective at blocking cell-free virus than cell-to-cell transmission. These results suggest an altered assembly or trafficking of cell-to-cell transmitted compared to secreted virus. These observations have important implications for the validation, therapeutic design and testing of HCV assembly inhibitors.
Collapse
Affiliation(s)
- L W Meredith
- Centre for Human Virology, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom.
| | | | | |
Collapse
|
23
|
Gerold G, Pietschmann T. Opportunities and Risks of Host-targeting Antiviral Strategies for Hepatitis C. CURRENT HEPATITIS REPORTS 2013; 12:200-213. [PMID: 32214912 PMCID: PMC7089091 DOI: 10.1007/s11901-013-0187-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hepatitis C virus (HCV) infects more than 2 % of the world population with highest prevalence in parts of Africa and Asia. Past standard of care using interferon α and ribavirin had adverse effects and showed modest efficacy for some HCV genotypes spurring the development of direct acting antivirals (DAAs). Such DAAs target viral proteins and are thus better tolerated but they suffer from emergence of vial resistance. Furthermore, DAAs are often HCV genotype specific. Novel drug candidates targeting host factors required for HCV propagation, so called host-targeting antivirals (HTAs), promise to overcome both caveats. The genetic barrier to resistance is usually considered to be high for HTAs and all HCV genotypes presumably use the same host factors. Recent data, however, challenge these assumptions, at least for some HTAs. Here, we highlight the most important host-targeting strategies against hepatitis C and critically discuss their opportunities and risks.
Collapse
Affiliation(s)
- Gisa Gerold
- TWINCORE – Centre for Experimental and Clinical Infection Research, Institute of Experimental Virology, Feodor-Lynen-Str. 7, 30625 Hannover, Germany
| | - Thomas Pietschmann
- TWINCORE – Centre for Experimental and Clinical Infection Research, Institute of Experimental Virology, Feodor-Lynen-Str. 7, 30625 Hannover, Germany
| |
Collapse
|
24
|
Chang J, Block TM, Guo JT. Antiviral therapies targeting host ER alpha-glucosidases: current status and future directions. Antiviral Res 2013; 99:251-60. [PMID: 23816430 PMCID: PMC7114303 DOI: 10.1016/j.antiviral.2013.06.011] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 06/15/2013] [Accepted: 06/19/2013] [Indexed: 12/18/2022]
Abstract
ER α-glucosidases are essential host factors for the morphogenesis of many enveloped viruses. Imino sugars are competitive inhibitors of the ER α-glucosidases I and II. Broad-spectrum antiviral efficacies of imino sugars have been demonstrated in vitro, and in vivo. Strategies for development of potent and specific ER α-glucosidase inhibitors have been proposed. Targeting glucosidase is promising for viral hemorrhagic fever and respiratory infections.
Endoplasmic reticulum (ER)-resident α-glucosidases I and II sequentially trim the three terminal glucose moieties on N-linked glycans attached to nascent glycoproteins. These reactions are the first steps of N-linked glycan processing and are essential for proper folding and function of many glycoproteins. Because most viral envelope glycoproteins contain N-linked glycans, inhibition of ER α-glucosidases with derivatives of 1-deoxynojirimycin (DNJ) or castanospermine (CAST), two well-studied pharmacophores of α-glucosidase inhibitors, efficiently disrupts the morphogenesis of a broad spectrum of enveloped viruses. Moreover, both DNJ and CAST derivatives have been demonstrated to prevent the death of mice infected with several distinct flaviviruses and filoviruses and suppress the multiplication of several other species of viruses in infected animals. N-Butyl derivative of DNJ (NB-DNJ) and 6 O-bytanoyl prodrug of CAST (Bu-CAST) have been evaluated in human clinical trials for their antiviral activities against human immunodeficiency virus and hepatitis C virus, and there is an ongoing trial of treating dengue patients with Bu-CAST. This article summarizes the current status of ER α-glucosidase-targeted antiviral therapy and proposes strategies for development of more efficacious and specific ER α-glucosidase inhibitors as broad-spectrum, drug resistance-refractory antiviral therapeutics. These host function-targeted, broad-spectrum antiviral agents do not rely on time-consuming etiologic diagnosis, and should therefore be particularly promising in the management of viral hemorrhagic fever and respiratory tract viral infections, medical conditions that can be caused by many different enveloped RNA viruses, with a short window for medical intervention.
Collapse
Affiliation(s)
- Jinhong Chang
- Department of Microbiology and Immunology, Drexel University College of Medicine, 3805 Old Easton Road, Doylestown, PA 18902, USA.
| | | | | |
Collapse
|
25
|
Host-targeting agents for prevention and treatment of chronic hepatitis C - perspectives and challenges. J Hepatol 2013; 58:375-84. [PMID: 23041307 DOI: 10.1016/j.jhep.2012.09.022] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 09/26/2012] [Accepted: 09/27/2012] [Indexed: 12/12/2022]
Abstract
Hepatitis C virus (HCV) infection is a major cause of chronic liver disease and hepatocellular carcinoma worldwide. Furthermore, HCV-induced liver disease is a major indication of liver transplantation. In the past years, direct-acting antivirals (DAAs) targeting HCV enzymes have been developed. DAAs increase the virologic response to anti-HCV therapy but may lead to selection of drug-resistant variants and treatment failure. To date, strategies to prevent HCV infection are still lacking and antiviral therapy in immunocompromised patients, patients with advanced liver disease and HIV/HCV-co-infection remains limited. Alternative or complementary approaches addressing the limitations of current antiviral therapies are to boost the host's innate immunity or interfere with host factors required for pathogenesis. Host-targeting agents (HTAs) provide an interesting perspective for novel antiviral strategies against viral hepatitis since they have (i) a high genetic barrier to resistance, (ii) a pan-genotypic antiviral activity, and (iii) complementary mechanisms of action to DAAs and might therefore act in a synergistic manner with current standard of care or DAAs in clinical development. This review highlights HTAs against HCV infection that have potential as novel antivirals and are in preclinical or clinical development.
Collapse
|
26
|
Kim SD. α-Glucosidase inhibitor from Buthus martensi Karsch. Food Chem 2013; 136:297-300. [DOI: 10.1016/j.foodchem.2012.08.063] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 07/23/2012] [Accepted: 08/29/2012] [Indexed: 11/25/2022]
|
27
|
Orlova OV, Drutsa VL, Spirin PV, Popenko VI, Prasolov VS, Rubtsov PM, Kochetkov SN, Belzhelarskaya SN. Role of N-linked glycans of HCV glycoprotein E1 in folding of structural proteins and formation of viral particles. Mol Biol 2013. [DOI: 10.1134/s0026893313010123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Chen Q, Lai H. Plant-derived virus-like particles as vaccines. Hum Vaccin Immunother 2013; 9:26-49. [PMID: 22995837 PMCID: PMC3667944 DOI: 10.4161/hv.22218] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 09/06/2012] [Accepted: 09/13/2012] [Indexed: 02/07/2023] Open
Abstract
Virus-like particles (VLPs) are self-assembled structures derived from viral antigens that mimic the native architecture of viruses but lack the viral genome. VLPs have emerged as a premier vaccine platform due to their advantages in safety, immunogenicity, and manufacturing. The particulate nature and high-density presentation of viral structure proteins on their surface also render VLPs as attractive carriers for displaying foreign epitopes. Consequently, several VLP-based vaccines have been licensed for human use and achieved significant clinical and economical success. The major challenge, however, is to develop novel production platforms that can deliver VLP-based vaccines while significantly reducing production times and costs. Therefore, this review focuses on the essential role of plants as a novel, speedy and economical production platform for VLP-based vaccines. The advantages of plant expression systems are discussed in light of their distinctive posttranslational modifications, cost-effectiveness, production speed, and scalability. Recent achievements in the expression and assembly of VLPs and their chimeric derivatives in plant systems as well as their immunogenicity in animal models are presented. Results of human clinical trials demonstrating the safety and efficacy of plant-derived VLPs are also detailed. Moreover, the promising implications of the recent creation of "humanized" glycosylation plant lines as well as the very recent approval of the first plant-made biologics by the U. S. Food and Drug Administration (FDA) for plant production and commercialization of VLP-based vaccines are discussed. It is speculated that the combined potential of plant expression systems and VLP technology will lead to the emergence of successful vaccines and novel applications of VLPs in the near future.
Collapse
Affiliation(s)
- Qiang Chen
- Center for Infectious Diseases and Vaccinology, Biodesign Institute at Arizona State University, Tempe, AZ USA.
| | | |
Collapse
|
29
|
Monitoring of S protein maturation in the endoplasmic reticulum by calnexin is important for the infectivity of severe acute respiratory syndrome coronavirus. J Virol 2012; 86:11745-53. [PMID: 22915798 DOI: 10.1128/jvi.01250-12] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus (SARS-CoV) is the etiological agent of SARS, a fatal pulmonary disorder with no effective treatment. We found that SARS-CoV spike glycoprotein (S protein), a key molecule for viral entry, binds to calnexin, a molecular chaperone in the endoplasmic reticulum (ER), but not to calreticulin, a homolog of calnexin. Calnexin bound to most truncated mutants of S protein, and S protein bound to all mutants of calnexin. Pseudotyped virus carrying S protein (S-pseudovirus) produced by human cells that were treated with small interfering RNA (siRNA) for calnexin expression (calnexin siRNA-treated cells) showed significantly lower infectivity than S-pseudoviruses produced by untreated and control siRNA-treated cells. S-pseudovirus produced by calnexin siRNA-treated cells contained S protein modified with N-glycan side chains differently from other two S proteins and consisted of two kinds of viral particles: those of normal density with little S protein and those of high density with abundant S protein. Treatment with peptide-N-glycosidase F (PNGase F), which removes all types of N-glycan side chains from glycoproteins, eliminated the infectivity of S-pseudovirus. S-pseudovirus and SARS-CoV produced in the presence of α-glucosidase inhibitors, which disrupt the interaction between calnexin and its substrates, showed significantly lower infectivity than each virus produced in the absence of those compounds. In S-pseudovirus, the incorporation of S protein into viral particles was obviously inhibited. In SARS-CoV, viral production was obviously inhibited. These findings demonstrated that calnexin strictly monitors the maturation of S protein by its direct binding, resulting in conferring infectivity on SARS-CoV.
Collapse
|
30
|
Timokhova AV, Bakinovskii LV, Zinin AI, Popenko VI, Ivanov AV, Rubtsov PM, Kochetkov SN, Belzhelarskaya SN. Effect of deoxynojirimycin derivatives on morphogenesis of hepatitis C virus. Mol Biol 2012; 46:579-587. [DOI: 10.1134/s0026893312040115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
|
31
|
Cystic fibrosis: insight into CFTR pathophysiology and pharmacotherapy. Clin Biochem 2012; 45:1132-44. [PMID: 22698459 DOI: 10.1016/j.clinbiochem.2012.05.034] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2012] [Revised: 05/15/2012] [Accepted: 05/28/2012] [Indexed: 12/14/2022]
Abstract
Cystic fibrosis is the most common life-threatening recessively inherited disease in Caucasians. Due to early provision of care in specialized reference centers and more comprehensive care, survival has improved over time. Despite great advances in supportive care and in our understanding of its pathophysiology, there is still no cure for the disease. Therapeutic strategies aimed at rescuing the abnormal protein are either being sought after or under investigation. This review highlights salient insights into pathophysiology and candidate molecules suitable for CFTR pharmacotherapy. Clinical trials using Ataluren, VX-809 and ivacaftor have provided encouraging data. Preclinical data with inhibitors of phosphodiesterase type 5, such as sildenafil and analogs, have highlighted their potential for CFTR pharmacotherapy. Because sildenafil and analogs are in clinical use for other clinical applications, research on this class of drugs might speed up the development of new therapies for CF.
Collapse
|
32
|
McLaughlin M, Vandenbroeck K. The endoplasmic reticulum protein folding factory and its chaperones: new targets for drug discovery? Br J Pharmacol 2011; 162:328-45. [PMID: 20942857 DOI: 10.1111/j.1476-5381.2010.01064.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Cytosolic heat shock proteins have received significant attention as emerging therapeutic targets. Much of this excitement has been triggered by the discovery that HSP90 plays a central role in the maintenance and stability of multifarious oncogenic membrane receptors and their resultant tyrosine kinase activity. Numerous studies have dealt with the effects of small molecules on chaperone- and stress-related pathways of the endoplasmic reticulum (ER). However, unlike cytosolic chaperones, relatively little emphasis has been placed upon translational avenues towards targeting of the ER for inhibition of folding/secretion of disease-promoting proteins. Here, we summarise existing small molecule inhibitors and potential future targets of ER chaperone-mediated inhibition. Client proteins of translational relevance in disease treatment are outlined, alongside putative future disease treatment modalities based on ER-centric targeted therapies. Particular attention is paid to cancer and autoimmune disorders via the effects of the GRP94 inhibitor geldanamycin and its population of client proteins, overloading of the unfolded protein response, and inhibition of members of the IL-12 family of cytokines by celecoxib and non-coxib analogues.
Collapse
|
33
|
Frade-Pérez MD, Hernández-Cervantes A, Flores-Carreón A, Mora-Montes HM. Biochemical characterization of Candida albicans α-glucosidase I heterologously expressed in Escherichia coli. Antonie Van Leeuwenhoek 2010; 98:291-8. [DOI: 10.1007/s10482-010-9437-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Accepted: 03/23/2010] [Indexed: 11/30/2022]
|
34
|
Gene expression profiling indicates the roles of host oxidative stress, apoptosis, lipid metabolism, and intracellular transport genes in the replication of hepatitis C virus. J Virol 2010; 84:5404-14. [PMID: 20200238 DOI: 10.1128/jvi.02529-09] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Hepatitis C virus (HCV) is a leading cause of chronic liver disease. The identification and characterization of key host cellular factors that play a role in the HCV replication cycle are important for the understanding of disease pathogenesis and the identification of novel antiviral therapeutic targets. Gene expression profiling of JFH-1-infected Huh7 cells by microarray analysis was performed to identify host cellular genes that are transcriptionally regulated by infection. The expression of host genes involved in cellular defense mechanisms (apoptosis, proliferation, and antioxidant responses), cellular metabolism (lipid and protein metabolism), and intracellular transport (vesicle trafficking and cytoskeleton regulation) was significantly altered by HCV infection. The gene expression patterns identified provide insight into the potential mechanisms that contribute to HCV-associated pathogenesis. These include an increase in proinflammatory and proapoptotic signaling and a decrease in the antioxidant response pathways of the infected cell. To investigate whether any of the host genes regulated by infection were required by HCV during replication, small interfering RNA (siRNA) silencing of host gene expression in HCV-infected cells was performed. Decreasing the expression of host genes involved in lipid metabolism (TXNIP and CYP1A1 genes) and intracellular transport (RAB33b and ABLIM3 genes) reduced the replication and secretion of HCV, indicating that they may be important factors for the virus replication cycle. These results show that major changes in the expression of many different genes in target cells may be crucial in determining the outcome of HCV infection.
Collapse
|
35
|
Gholamhose A, Shahouzehi B, Sharifi-fa F. Inhibitory Effect of Some Plant Extracts on Pancreatic Lipase. INT J PHARMACOL 2009. [DOI: 10.3923/ijp.2010.18.24] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
36
|
Sessions OM, Barrows NJ, Souza-Neto JA, Robinson TJ, Hershey CL, Rodgers MA, Ramirez JL, Dimopoulos G, Yang PL, Pearson JL, Garcia-Blanco MA. Discovery of insect and human dengue virus host factors. Nature 2009; 458:1047-50. [PMID: 19396146 PMCID: PMC3462662 DOI: 10.1038/nature07967] [Citation(s) in RCA: 305] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Accepted: 02/26/2009] [Indexed: 12/31/2022]
Abstract
Dengue fever is the most frequent arthropod-borne viral disease of humans, with almost half of the world's population at risk of infection. The high prevalence, lack of an effective vaccine, and absence of specific treatment conspire to make dengue fever a global public health threat. Given their compact genomes, dengue viruses (DENV-1-4) and other flaviviruses probably require an extensive number of host factors; however, only a limited number of human, and an even smaller number of insect host factors, have been identified. Here we identify insect host factors required for DENV-2 propagation, by carrying out a genome-wide RNA interference screen in Drosophila melanogaster cells using a well-established 22,632 double-stranded RNA library. This screen identified 116 candidate dengue virus host factors (DVHFs). Although some were previously associated with flaviviruses (for example, V-ATPases and alpha-glucosidases), most of the DVHFs were newly implicated in dengue virus propagation. The dipteran DVHFs had 82 readily recognizable human homologues and, using a targeted short-interfering-RNA screen, we showed that 42 of these are human DVHFs. This indicates notable conservation of required factors between dipteran and human hosts. This work suggests new approaches to control infection in the insect vector and the mammalian host.
Collapse
Affiliation(s)
- October M Sessions
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Lubamba B, Lebacq J, Lebecque P, Vanbever R, Leonard A, Wallemacq P, Leal T. Airway delivery of low-dose miglustat normalizes nasal potential difference in F508del cystic fibrosis mice. Am J Respir Crit Care Med 2009; 179:1022-8. [PMID: 19299496 DOI: 10.1164/rccm.200901-0049oc] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE N-butyldeoxynojyrimicin (NB-DNJ, miglustat [Zavesca]) an approved drug for treating Gaucher disease, was reported to be able to correct the defective trafficking of the F508del-CFTR protein. OBJECTIVES To evaluate the efficacy of in vivo airway delivery of miglustat for restoring ion transport in cystic fibrosis (CF). METHODS We used nasal transepithelial potential difference (PD) as a measure of sodium and chloride transport. The effect of nasal instillation of a single dose of miglustat was investigated in F508del, cftr knockout and normal homozygous mice. The galactose iminosugar analog N-butyldeoxygalactonojirimycin (NB-DGJ) was used as a placebo. MEASUREMENTS AND MAIN RESULTS In F508del mice, sodium conductance (evaluated by basal hyperpolarization) and chloride conductance (evaluated by perfusing the nasal mucosa with chloride-free solution in the presence of amiloride and forskolin) were normalized 1 hour after an intranasal dose of 50 picomoles of miglustat. Chloride conductance in the presence of 200 microM 4-4'-diisothiocyanostilbene-2,2'-disulphonic acid (DIDS), an inhibitor of alternative chloride channels, was much higher after miglustat than after placebo. In cftr knockout mice, a normalizing effect was observed on sodium but not on chloride conductance. CONCLUSIONS Our results provide clear evidence that nasal delivery of miglustat, at picomolar doses, normalizes sodium and Cftr-dependent chloride transport in F508del transgenic mice; they highlight the potential of topical miglustat as a therapy for CF.
Collapse
Affiliation(s)
- Bob Lubamba
- Department of Clinical Chemistry, Université Catholique de Louvain, Brussels, Belgium
| | | | | | | | | | | | | |
Collapse
|
38
|
|
39
|
Ikeda M, Kato N. Modulation of host metabolism as a target of new antivirals. Adv Drug Deliv Rev 2007; 59:1277-89. [PMID: 17897752 PMCID: PMC7103349 DOI: 10.1016/j.addr.2007.03.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2007] [Accepted: 03/30/2007] [Indexed: 02/06/2023]
Abstract
The therapy for chronic hepatitis C (CH-C) started with interferon (IFN) monotherapy in the early 1990s and this therapy was considered effective in about 10% of cases. The present standard therapy of pegylated IFN with ribavirin achieves a sustained virologic response in about 50% of patients. However, about half of the CH-C patients are still at risk of fatal liver cirrhosis and hepatocellular carcinoma. The other significant event in hepatitis C virus (HCV) research has been the development of a cell culture system. The subgenomic replicon system enables robust HCV RNA replication in hepatoma cells. And recently, the complete life cycle of HCV has been achieved using a genotype 2a strain, JFH1. These hallmarks have provided much information about the mechanisms of HCV replication, including information on the host molecules required for the replication. Anti-HCV reagents targeting HCV proteins have been developed, and some of them are now in clinical trials. However, the RNA-dependent RNA polymerase frequently causes mutations in the HCV genome, which lead to the emergence of drug-resistant HCV mutants. Some of the cellular proteins essential for HCV RNA replication have already been discovered using the HCV cell culture system. These host molecules are also candidate targets for antivirals. Here, we describe the recent progress regarding the anti-HCV reagents targeting host metabolism.
Collapse
Affiliation(s)
- Masanori Ikeda
- Department of Molecular Biology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Okayama 700-8558, Japan.
| | | |
Collapse
|
40
|
Tani H, Komoda Y, Matsuo E, Suzuki K, Hamamoto I, Yamashita T, Moriishi K, Fujiyama K, Kanto T, Hayashi N, Owsianka A, Patel AH, Whitt MA, Matsuura Y. Replication-competent recombinant vesicular stomatitis virus encoding hepatitis C virus envelope proteins. J Virol 2007; 81:8601-12. [PMID: 17553880 PMCID: PMC1951354 DOI: 10.1128/jvi.00608-07] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2007] [Accepted: 05/21/2007] [Indexed: 01/20/2023] Open
Abstract
Although in vitro replication of the hepatitis C virus (HCV) JFH1 clone of genotype 2a (HCVcc) has been developed, a robust cell culture system for the 1a and 1b genotypes, which are the most prevalent viruses in the world and resistant to interferon therapy, has not yet been established. As a surrogate virus system, pseudotype viruses transiently bearing HCV envelope proteins based on the vesicular stomatitis virus (VSV) and retrovirus have been developed. Here, we have developed a replication-competent recombinant VSV with a genome encoding unmodified HCV E1 and E2 proteins in place of the VSV envelope protein (HCVrv) in human cell lines. HCVrv and a pseudotype VSV bearing the unmodified HCV envelope proteins (HCVpv) generated in 293T or Huh7 cells exhibited high infectivity in Huh7 cells. Generation of infectious HCVrv was limited in some cell lines examined. Furthermore, HCVrv but not HCVpv was able to propagate and form foci in Huh7 cells. The infection of Huh7 cells with HCVpv and HCVrv was neutralized by anti-hCD81 and anti-E2 antibodies and by sera from chronic HCV patients. The infectivity of HCVrv was inhibited by an endoplasmic reticulum alpha-glucosidase inhibitor, N-(n-nonyl) deoxynojirimycin (Nn-DNJ), but not by a Golgi mannosidase inhibitor, deoxymannojirimycin. Focus formation of HCVrv in Huh7 cells was impaired by Nn-DNJ treatment. These results indicate that the HCVrv developed in this study can be used to study HCV envelope proteins with respect to not only the biological functions in the entry process but also their maturation step.
Collapse
Affiliation(s)
- Hideki Tani
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
De Clercq E. Status presens of antiviral drugs and strategies: Part II: RNA VIRUSES (EXCEPT RETROVIRUSES). ADVANCES IN ANTIVIRAL DRUG DESIGN 2007; 5:59-112. [PMID: 32288473 PMCID: PMC7146830 DOI: 10.1016/s1075-8593(06)05002-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
More than 40 compounds have been formally licensed for clinical use as antiviral drugs, and half of these are used for the treatment of HIV infections. The others have been approved for the therapy of herpesvirus (HSV, VZV, CMV), hepadnavirus (HBV), hepacivirus (HCV) and myxovirus (influenza, RSV) infections. New compounds are in clinical development or under preclinical evaluation, and, again, half of these are targeting HIV infections. Yet, quite a number of important viral pathogens (i.e. HPV, HCV, hemorrhagic fever viruses) remain in need of effective and/or improved antiviral therapies.
Collapse
|