1
|
Hochman J, Braitbard O. Life after Cleavage: The Story of a β-Retroviral (MMTV) Signal Peptide-From Murine Lymphoma to Human Breast Cancer. Viruses 2022; 14:v14112435. [PMID: 36366533 PMCID: PMC9694287 DOI: 10.3390/v14112435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/31/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
An increasing body of evidence in recent years supports an association of the betaretrovirus mouse mammary tumor virus (MMTV) with human breast cancer. This is an issue that still raises heated controversy. We have come to address this association using the signal peptide p14 of the MMTV envelope precursor protein as a key element of our strategy. In addition to its signal peptide function, p14 has some significant post endoplasmic reticulum (ER)-targeting characteristics: (1) it localizes to nucleoli where it binds key proteins (RPL5 and B23) involved (among other activities) in the regulation of nucleolar stress response, ribosome biogenesis and p53 stabilization; (2) p14 is a nuclear export factor; (3) it is expressed on the cell surface of infected cells, and as such, is amenable to, and successfully used, in preventive vaccination against experimental tumors that harbor MMTV; (4) the growth of such tumors is impaired in vivo using a combination of monoclonal anti-p14 antibodies or adoptive T-cell transfer treatments; (5) p14 is a phospho-protein endogenously phosphorylated by two different serine kinases. The phosphorylation status of the two sites determines whether p14 will function in an oncogenic or tumor-suppressing capacity; (6) transcriptional activation of genes (RPL5, ErbB4) correlates with the oncogenic potential of MMTV; (7) finally, polyclonal anti-p14 antibodies have been applied in immune histochemistry analyses of breast cancer cases using formalin fixed paraffin-embedded sections, supporting the associations of MMTV with the disease. Taken together, the above findings constitute a road map towards the diagnosis and possible prevention and treatment of MMTV-associated breast cancer.
Collapse
Affiliation(s)
- Jacob Hochman
- Department of Cell and Developmental Biology, Alexander Silberman Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- Correspondence: ; Tel.: +972-54-441-4370
| | - Ori Braitbard
- Department of Cell and Developmental Biology, Alexander Silberman Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- Department of Bioinformatics, The Faculty of Life and Health Sciences, Jerusalem College of Technology, Jerusalem 9372115, Israel
| |
Collapse
|
2
|
Alzahrani N, Wu MJ, Shanmugam S, Yi M. Delayed by Design: Role of Suboptimal Signal Peptidase Processing of Viral Structural Protein Precursors in Flaviviridae Virus Assembly. Viruses 2020; 12:v12101090. [PMID: 32993149 PMCID: PMC7601889 DOI: 10.3390/v12101090] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/04/2020] [Accepted: 09/24/2020] [Indexed: 02/06/2023] Open
Abstract
The Flaviviridae virus family is classified into four different genera, including flavivirus, hepacivirus, pegivirus, and pestivirus, which cause significant morbidity and mortality in humans and other mammals, including ruminants and pigs. These are enveloped, single-stranded RNA viruses sharing a similar genome organization and replication scheme with certain unique features that differentiate them. All viruses in this family express a single polyprotein that encodes structural and nonstructural proteins at the N- and C-terminal regions, respectively. In general, the host signal peptidase cleaves the structural protein junction sites, while virus-encoded proteases process the nonstructural polyprotein region. It is known that signal peptidase processing is a rapid, co-translational event. Interestingly, certain signal peptidase processing site(s) in different Flaviviridae viral structural protein precursors display suboptimal cleavage kinetics. This review focuses on the recent progress regarding the Flaviviridae virus genus-specific mechanisms to downregulate signal peptidase-mediated processing at particular viral polyprotein junction sites and the role of delayed processing at these sites in infectious virus particle assembly.
Collapse
|
3
|
Mentrup T, Cabrera-Cabrera F, Fluhrer R, Schröder B. Physiological functions of SPP/SPPL intramembrane proteases. Cell Mol Life Sci 2020; 77:2959-2979. [PMID: 32052089 PMCID: PMC7366577 DOI: 10.1007/s00018-020-03470-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/09/2020] [Accepted: 01/22/2020] [Indexed: 01/07/2023]
Abstract
Intramembrane proteolysis describes the cleavage of substrate proteins within their hydrophobic transmembrane segments. Several families of intramembrane proteases have been identified including the aspartyl proteases Signal peptide peptidase (SPP) and its homologues, the SPP-like (SPPL) proteases SPPL2a, SPPL2b, SPPL2c and SPPL3. As presenilin homologues, they employ a similar catalytic mechanism as the well-studied γ-secretase. However, SPP/SPPL proteases cleave transmembrane proteins with a type II topology. The characterisation of SPP/SPPL-deficient mouse models has highlighted a still growing spectrum of biological functions and also promoted the substrate discovery of these proteases. In this review, we will summarise the current hypotheses how phenotypes of these mouse models are linked to the molecular function of the enzymes. At the cellular level, SPP/SPPL-mediated cleavage events rather provide specific regulatory switches than unspecific bulk proteolysis. By this means, a plethora of different cell biological pathways is influenced including signal transduction, membrane trafficking and protein glycosylation.
Collapse
Affiliation(s)
- Torben Mentrup
- Institute for Physiological Chemistry, Medizinisch-Theoretisches Zentrum MTZ, Technische Universität Dresden, Fiedlerstraße 42, 01307, Dresden, Germany
| | - Florencia Cabrera-Cabrera
- Institute for Physiological Chemistry, Medizinisch-Theoretisches Zentrum MTZ, Technische Universität Dresden, Fiedlerstraße 42, 01307, Dresden, Germany
| | - Regina Fluhrer
- Biochemistry and Molecular Biology, Faculty of Medicine, University of Augsburg, Universitätsstraße 2, 86135, Augsburg, Germany
- Biomedizinisches Centrum (BMC), Ludwig Maximilians University of Munich, Feodor-Lynen-Strasse 17, 81377, Munich, Germany
- DZNE-German Center for Neurodegenerative Diseases, Munich, Feodor-Lynen-Strasse 17, 81377, Munich, Germany
| | - Bernd Schröder
- Institute for Physiological Chemistry, Medizinisch-Theoretisches Zentrum MTZ, Technische Universität Dresden, Fiedlerstraße 42, 01307, Dresden, Germany.
| |
Collapse
|
4
|
Morozov VA, Lagaye S. Hepatitis C virus: Morphogenesis, infection and therapy. World J Hepatol 2018; 10:186-212. [PMID: 29527256 PMCID: PMC5838439 DOI: 10.4254/wjh.v10.i2.186] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/11/2018] [Accepted: 02/07/2018] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) is a major cause of liver diseases including liver cirrhosis and hepatocellular carcinoma. Approximately 3% of the world population is infected with HCV. Thus, HCV infection is considered a public healthy challenge. It is worth mentioning, that the HCV prevalence is dependent on the countries with infection rates around 20% in high endemic countries. The review summarizes recent data on HCV molecular biology, the physiopathology of infection (immune-mediated liver damage, liver fibrosis and lipid metabolism), virus diagnostic and treatment. In addition, currently available in vitro, ex vivo and animal models to study the virus life cycle, virus pathogenesis and therapy are described. Understanding of both host and viral factors may in the future lead to creation of new approaches in generation of an efficient therapeutic vaccine.
Collapse
Affiliation(s)
- Vladimir Alexei Morozov
- Center for HIV and Retrovirology, Department of Infectious Diseases, Robert Koch Institute, Berlin 13353, Germany
| | - Sylvie Lagaye
- Department of Immunology, Institut Pasteur, INSERM U1223, Paris 75015, France
| |
Collapse
|
5
|
Jardim ACG, Shimizu JF, Rahal P, Harris M. Plant-derived antivirals against hepatitis c virus infection. Virol J 2018; 15:34. [PMID: 29439720 PMCID: PMC5812025 DOI: 10.1186/s12985-018-0945-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 02/02/2018] [Indexed: 12/15/2022] Open
Abstract
Hepatitis C virus (HCV) infection is a worldwide public health burden and it is estimated that 185 million people are or have previously been infected worldwide. There is no effective vaccine for prevention of HCV infection; however, a number of drugs are available for the treatment of infection. The availability of direct-acting antivirals (DAAs) has dramatically improved therapeutic options for HCV genotype 1. However, the high costs and potential for development of resistance presented by existing treatment demonstrate the need for the development of more efficient new antivirals, or combination of therapies that target different stages of the viral lifecycle. Over the past decades, there has been substantial study of compounds extracted from plants that have activity against a range of microorganisms that cause human diseases. An extensive variety of natural compounds has demonstrated antiviral action worldwide, including anti-HCV activity. In this context, plant-derived compounds can provide an alternative approach to new antivirals. In this review, we aim to summarize the most promising plant-derived compounds described to have antiviral activity against HCV.
Collapse
Affiliation(s)
- Ana Carolina Gomes Jardim
- Laboratory of Virology, Institute of Biomedical Science, ICBIM, Federal University of Uberlândia, Avenida Amazonas, Bloco 4C – sala 216. Umuarama, Uberlândia, MG CEP: 38405-302 Brazil
- Genomics Study Laboratory, São Paulo State University, São José do Rio Preto, SP Brazil
| | - Jacqueline Farinha Shimizu
- Laboratory of Virology, Institute of Biomedical Science, ICBIM, Federal University of Uberlândia, Avenida Amazonas, Bloco 4C – sala 216. Umuarama, Uberlândia, MG CEP: 38405-302 Brazil
- Genomics Study Laboratory, São Paulo State University, São José do Rio Preto, SP Brazil
| | - Paula Rahal
- Genomics Study Laboratory, São Paulo State University, São José do Rio Preto, SP Brazil
| | - Mark Harris
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT UK
| |
Collapse
|
6
|
Braitbard O, Roniger M, Bar-Sinai A, Rajchman D, Gross T, Abramovitch H, La Ferla M, Franceschi S, Lessi F, Naccarato AG, Mazzanti CM, Bevilacqua G, Hochman J. A new immunization and treatment strategy for mouse mammary tumor virus (MMTV) associated cancers. Oncotarget 2018; 7:21168-80. [PMID: 26934560 PMCID: PMC5008276 DOI: 10.18632/oncotarget.7762] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 01/24/2016] [Indexed: 12/20/2022] Open
Abstract
Mouse Mammary Tumor Virus (MMTV) causes mammary carcinoma or lymphoma in mice. An increasing body of evidence in recent years supports its involvement also in human sporadic breast cancer. It is thus of importance to develop new strategies to impair the development, growth and metastasis of MMTV-associated cancers. The signal peptide of the envelope precursor protein of this virus: MMTV-p14 (p14) is an excellent target for such strategies, due to unique characteristics distinct from its regular endoplasmic reticulum targeting function. These include cell surface expression in: murine cancer cells that harbor the virus, human breast cancer (MCF-7) cells that ectopically express p14, as well as cultured human cells derived from an invasive ductal breast carcinoma positive for MMTV sequences. These findings support its use in signal peptide-based immune targeting. Indeed, priming and boosting mice with p14 elicits a specific anti-signal peptide immune response sufficient for protective vaccination against MMTV-associated tumors. Furthermore, passive immunization using a combination of anti-p14 monoclonal antibodies or the transfer of T-cells from immunized mice (Adoptive Cell Transfer) is also therapeutically effective. With reports demonstrating involvement of MMTV in human breast cancer, we propose the immune-mediated targeting of p14 as a strategy for prevention, treatment and diagnosis of MMTV-associated cancers.
Collapse
Affiliation(s)
- Ori Braitbard
- Department of Cell and Developmental Biology, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Maayan Roniger
- Department of Cell and Developmental Biology, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Allan Bar-Sinai
- Department of Cell and Developmental Biology, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Dana Rajchman
- Department of Cell and Developmental Biology, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tamar Gross
- Department of Cell and Developmental Biology, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hillel Abramovitch
- Department of Cell and Developmental Biology, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | | | | | | | | | - Generoso Bevilacqua
- FPS - Pisa Science Foundation, Pisa, Italy.,Department of Pathology, University of Pisa, Pisa, Italy
| | - Jacob Hochman
- Department of Cell and Developmental Biology, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
7
|
Signal peptide peptidase and SPP-like proteases - Possible therapeutic targets? BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017. [PMID: 28624439 DOI: 10.1016/j.bbamcr.2017.06.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Signal peptide peptidase (SPP) and the four homologous SPP-like proteases SPPL2a, SPPL2b, SPPL2c and SPPL3 are GxGD-type intramembrane-cleaving proteases (I-CLIPs). In addition to divergent subcellular localisations, distinct differences in the mechanistic properties and substrate requirements of individual family members have been unravelled. SPP/SPPL proteases employ a catalytic mechanism related to that of the γ-secretase complex. Nevertheless, differential targeting of SPP/SPPL proteases and γ-secretase by inhibitors has been demonstrated. Furthermore, also within the SPP/SPPL family significant differences in the sensitivity to currently available inhibitory compounds have been reported. Though far from complete, our knowledge on pathophysiological functions of SPP/SPPL proteases, in particular based on studies in mice, has been significantly increased over the last years. Based on this, inhibition of distinct SPP/SPPL proteases has been proposed as a novel therapeutic concept e.g. for the treatment of autoimmunity and viral or protozoal infections, as we will discuss in this review. This article is part of a Special Issue entitled: Proteolysis as a Regulatory Event in Pathophysiology edited by Stefan Rose-John.
Collapse
|
8
|
Otoguro T, Tanaka T, Kasai H, Yamashita A, Moriishi K. Inhibitory effect of presenilin inhibitor LY411575 on maturation of hepatitis C virus core protein, production of the viral particle and expression of host proteins involved in pathogenicity. Microbiol Immunol 2017; 60:740-753. [PMID: 27797115 DOI: 10.1111/1348-0421.12448] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 10/20/2016] [Accepted: 10/26/2016] [Indexed: 12/12/2022]
Abstract
Hepatitis C virus (HCV) core protein is responsible for the formation of infectious viral particles and induction of pathogenicity. The C-terminal transmembrane region of the immature core protein is cleaved by signal peptide peptidase (SPP) for maturation of the core protein. SPP belongs to the family of presenilin-like aspartic proteases. Some presenilin inhibitors are expected to suppress HCV infection and production; however, this anti-HCV effect has not been investigated in detail. In this study, presenilin inhibitors were screened to identify anti-HCV compounds. Of the 13 presenilin inhibitors tested, LY411575 was the most potent inhibitor of SPP-dependent cleavage of HCV core protein. Production of intracellular core protein and supernatant infectious viral particles from HCV-infected cells was significantly impaired by LY411575 in a dose-dependent manner (half maximum inhibitory concentration = 0.27 μM, cytotoxic concentration of the extracts to cause death to 50% of viable cells > 10 μM). No effect of LY411575 on intracellular HCV RNA in the subgenomic replicon cells was detected. LY411575 synergistically promoted daclatasvir-dependent inhibition of viral production, but not that of viral replication. Furthermore, LY411575 inhibited HCV-related production of reactive oxygen species and expression of NADPH oxidases and vascular endothelial growth factor. Taken together, our data suggest that LY411575 suppresses HCV propagation through SPP inhibition and impairs host gene expressions related to HCV pathogenicity.
Collapse
Affiliation(s)
- Teruhime Otoguro
- Department of Microbiology, Graduate School of Medical Science, University of Yamanashi, 1110 Shimokato, Chuo-shi, Yamanashi 409-3898, Japan
| | - Tomohisa Tanaka
- Department of Microbiology, Graduate School of Medical Science, University of Yamanashi, 1110 Shimokato, Chuo-shi, Yamanashi 409-3898, Japan
| | - Hirotake Kasai
- Department of Microbiology, Graduate School of Medical Science, University of Yamanashi, 1110 Shimokato, Chuo-shi, Yamanashi 409-3898, Japan
| | - Atsuya Yamashita
- Department of Microbiology, Graduate School of Medical Science, University of Yamanashi, 1110 Shimokato, Chuo-shi, Yamanashi 409-3898, Japan
| | - Kohji Moriishi
- Department of Microbiology, Graduate School of Medical Science, University of Yamanashi, 1110 Shimokato, Chuo-shi, Yamanashi 409-3898, Japan
| |
Collapse
|
9
|
Verhelst SHL. Intramembrane proteases as drug targets. FEBS J 2017; 284:1489-1502. [PMID: 27889944 DOI: 10.1111/febs.13979] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 11/14/2016] [Accepted: 11/24/2016] [Indexed: 01/04/2023]
Abstract
Proteases are considered attractive drug targets. Various drugs targeting classical, soluble proteases have been approved for treatment of human disease. Intramembrane proteases (IMPs) are a more recently discovered group of proteolytic enzymes. They are embedded in lipid bilayers and their active sites are located in the plane of a membrane. All four mechanistic families of IMPs have been linked to disease, but currently, no drugs against IMPs have entered the market. In this review, I will outline the function of IMPs with a focus on the ones involved in human disease, which includes Alzheimer's disease, cancer, and infectious diseases by microorganisms. Inhibitors of IMPs are known for all mechanistic classes, but are not yet very potent or selective - aside from those targeting γ-secretase. I will here describe the different features of IMP inhibitors and discuss a list of issues that need attention in the near future in order to improve the drug development for IMPs.
Collapse
Affiliation(s)
- Steven H L Verhelst
- Department of Cellular and Molecular Medicine, KU Leuven - University of Leuven, Belgium.,AG Chemical Proteomics, Leibniz Institute for Analytical Sciences ISAS, Dortmund, Germany
| |
Collapse
|
10
|
Bayer K, Banning C, Bruss V, Wiltzer-Bach L, Schindler M. Hepatitis C Virus Is Released via a Noncanonical Secretory Route. J Virol 2016; 90:10558-10573. [PMID: 27630244 PMCID: PMC5110177 DOI: 10.1128/jvi.01615-16] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 09/11/2016] [Indexed: 12/12/2022] Open
Abstract
We analyzed hepatitis C virus (HCV) morphogenesis using viral genomes encoding a mCherry-tagged E1 glycoprotein. HCV-E1-mCherry polyprotein expression, intracellular localization, and replication kinetics were comparable to those of untagged HCV, and E1-mCherry-tagged viral particles were assembled and released into cell culture supernatants. Expression and localization of structural E1 and nonstructural NS5A followed a temporospatial pattern with a succinct decrease in the number of replication complexes and the appearance of E1-mCherry punctae. Interaction of the structural proteins E1, Core, and E2 increased at E1-mCherry punctae in a time-dependent manner, indicating that E1-mCherry punctae represent assembled or assembling virions. E1-mCherry did not colocalize with Golgi markers. Furthermore, the bulk of viral glycoproteins within released particles revealed an EndoH-sensitive glycosylation pattern, indicating an absence of viral glycoprotein processing by the Golgi apparatus. In contrast, HCV-E1-mCherry trafficked with Rab9-positive compartments and inhibition of endosomes specifically suppressed HCV release. Our data suggest that assembled HCV particles are released via a noncanonical secretory route involving the endosomal compartment. IMPORTANCE The goal of this study was to shed light on the poorly understood trafficking and release routes of hepatitis C virus (HCV). For this, we generated novel HCV genomes which resulted in the production of fluorescently labeled viral particles. We used live-cell microscopy and other imaging techniques to follow up on the temporal dynamics of virus particle formation and trafficking in HCV-expressing liver cells. While viral particles and viral structural protein were found in endosomal compartments, no overlap of Golgi structures could be observed. Furthermore, biochemical and inhibitor-based experiments support a HCV release route which is distinguishable from canonical Golgi-mediated secretion. Since viruses hijack cellular pathways to generate viral progeny, our results point toward the possible existence of a not-yet-described cellular secretion route.
Collapse
Affiliation(s)
- Karen Bayer
- Institute of Virology, Helmholtz Zentrum München-German Research Center for Environmental Health, Munich, Germany
| | - Carina Banning
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Volker Bruss
- Institute of Virology, Helmholtz Zentrum München-German Research Center for Environmental Health, Munich, Germany
| | - Linda Wiltzer-Bach
- University Hospital Tübingen, Institute for Medical Virology and Epidemiology of Viral Diseases, Tübingen, Germany
| | - Michael Schindler
- Institute of Virology, Helmholtz Zentrum München-German Research Center for Environmental Health, Munich, Germany
- University Hospital Tübingen, Institute for Medical Virology and Epidemiology of Viral Diseases, Tübingen, Germany
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| |
Collapse
|
11
|
The Replacement of 10 Non-Conserved Residues in the Core Protein of JFH-1 Hepatitis C Virus Improves Its Assembly and Secretion. PLoS One 2015; 10:e0137182. [PMID: 26339783 PMCID: PMC4560444 DOI: 10.1371/journal.pone.0137182] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Accepted: 08/13/2015] [Indexed: 12/13/2022] Open
Abstract
Hepatitis C virus (HCV) assembly is still poorly understood. It is thought that trafficking of the HCV core protein to the lipid droplet (LD) surface is essential for its multimerization and association with newly synthesized HCV RNA to form the viral nucleocapsid. We carried out a mapping analysis of several complete HCV genomes of all genotypes, and found that the genotype 2 JFH-1 core protein contained 10 residues different from those of other genotypes. The replacement of these 10 residues of the JFH-1 strain sequence with the most conserved residues deduced from sequence alignments greatly increased virus production. Confocal microscopy of the modified JFH-1 strain in cell culture showed that the mutated JFH-1 core protein, C10M, was present mostly at the endoplasmic reticulum (ER) membrane, but not at the surface of the LDs, even though its trafficking to these organelles was possible. The non-structural 5A protein of HCV was also redirected to ER membranes and colocalized with the C10M core protein. Using a Semliki forest virus vector to overproduce core protein, we demonstrated that the C10M core protein was able to form HCV-like particles, unlike the native JFH-1 core protein. Thus, the substitution of a few selected residues in the JFH-1 core protein modified the subcellular distribution and assembly properties of the protein. These findings suggest that the early steps of HCV assembly occur at the ER membrane rather than at the LD surface. The C10M-JFH-1 strain will be a valuable tool for further studies of HCV morphogenesis.
Collapse
|
12
|
Lyn RK, Hope G, Sherratt AR, McLauchlan J, Pezacki JP. Bidirectional lipid droplet velocities are controlled by differential binding strengths of HCV core DII protein. PLoS One 2013; 8:e78065. [PMID: 24223760 PMCID: PMC3815211 DOI: 10.1371/journal.pone.0078065] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 09/09/2013] [Indexed: 12/16/2022] Open
Abstract
Host cell lipid droplets (LD) are essential in the hepatitis C virus (HCV) life cycle and are targeted by the viral capsid core protein. Core-coated LDs accumulate in the perinuclear region and facilitate viral particle assembly, but it is unclear how mobility of these LDs is directed by core. Herein we used two-photon fluorescence, differential interference contrast imaging, and coherent anti-Stokes Raman scattering microscopies, to reveal novel core-mediated changes to LD dynamics. Expression of core protein’s lipid binding domain II (DII-core) induced slower LD speeds, but did not affect directionality of movement on microtubules. Modulating the LD binding strength of DII-core further impacted LD mobility, revealing the temporal effects of LD-bound DII-core. These results for DII-core coated LDs support a model for core-mediated LD localization that involves core slowing down the rate of movement of LDs until localization at the perinuclear region is accomplished where LD movement ceases. The guided localization of LDs by HCV core protein not only is essential to the viral life cycle but also poses an interesting target for the development of antiviral strategies against HCV.
Collapse
Affiliation(s)
- Rodney K. Lyn
- National Research Council of Canada, Ottawa, Ontario, Canada
- Department of Chemistry, University of Ottawa, Ottawa, Ontario, Canada
| | - Graham Hope
- Medical Research Council-University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom
| | | | - John McLauchlan
- Medical Research Council-University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom
- * E-mail: (JPP); (JM)
| | - John Paul Pezacki
- National Research Council of Canada, Ottawa, Ontario, Canada
- Department of Chemistry, University of Ottawa, Ottawa, Ontario, Canada
- * E-mail: (JPP); (JM)
| |
Collapse
|
13
|
Khaliq S, Latief N, Jahan S. Role of different regions of the hepatitis C virus genome in the therapeutic response to interferon-based treatment. Arch Virol 2013; 159:1-15. [PMID: 23851652 DOI: 10.1007/s00705-013-1780-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2013] [Accepted: 05/28/2013] [Indexed: 12/21/2022]
Abstract
Hepatitis C virus (HCV) is considered a significant risk factor in HCV-induced liver diseases and development of hepatocellular carcinoma (HCC). Nucleotide substitutions in the viral genome result in its diversification into quasispecies, subtypes and distinct genotypes. Different genotypes vary in their infectivity and immune response due to these nucleotide/amino acid variations. The current combination treatment for HCV infection is pegylated interferon α (PEG-IFN-α) with ribavirin, with a highly variable response rate mainly depending upon the HCV genotype. Genotypes 2 and 3 are found to respond better than genotypes 1 and 4, which are more resistant to IFN-based therapies. Different studies have been conducted worldwide to explore the basis of this difference in therapy response, which identified some putative regions in the HCV genome, especially in Core and NS5a, and to some extent in the E2 region, containing specific sequences in different genotypes that act differently with respect to the IFN response. In the review, we try to summarize the role of HCV proteins and their nucleotide sequences in association with treatment outcome in IFN-based therapy.
Collapse
Affiliation(s)
- Saba Khaliq
- Department of Immunology, University of Health Sciences, Lahore, Pakistan,
| | | | | |
Collapse
|
14
|
Ghosh S, Kaplan KJ, Schrum LW, Bonkovsky HL. Cytoskeletal proteins: shaping progression of hepatitis C virus-induced liver disease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 302:279-319. [PMID: 23351713 DOI: 10.1016/b978-0-12-407699-0.00005-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hepatitis C virus (HCV) infection, which results in chronic hepatitis C (CHC) in most patients (70-85%), is a major cause of liver disease and remains a major therapeutic challenge. The mechanisms determining liver damage and the key factors that lead to a high rate of CHC remain imperfectly understood. The precise role of cytoskeletal (CS) proteins in HCV infection remains to be determined. Some studies including our recent study have demonstrated that changes occur in the expression of CS proteins in HCV-infected hepatocytes. A variety of host proteins interact with HCV proteins. Association between CS and HCV proteins may have implications in future design of CS protein-targeted therapy for the treatment for HCV infection. This chapter will focus on the interaction between host CS and viral proteins to signify the importance of this event in HCV entry, replication and transportation.
Collapse
Affiliation(s)
- Sriparna Ghosh
- Liver-Biliary-Pancreatic Center, Carolinas Medical Center, and School of Medicine, University of North Carolina, Carolinas Medical Center, Charlotte, NC, USA.
| | | | | | | |
Collapse
|
15
|
Keyvani H, Fazlalipour M, Monavari SHR, Mollaie HR. Hepatitis C Virus - Proteins, Diagnosis, Treatment and New Approaches for Vaccine Development. Asian Pac J Cancer Prev 2012. [DOI: 10.7314/apjcp.2012.13.12.5917] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
16
|
Wichroski MJ, Fang J, Eggers BJ, Rose RE, Mazzucco CE, Pokornowski KA, Baldick CJ, Anthony MN, Dowling CJ, Barber LE, Leet JE, Beno BR, Gerritz SW, Agler ML, Cockett MI, Tenney DJ. High-throughput screening and rapid inhibitor triage using an infectious chimeric Hepatitis C virus. PLoS One 2012; 7:e42609. [PMID: 22880053 PMCID: PMC3412796 DOI: 10.1371/journal.pone.0042609] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 07/09/2012] [Indexed: 12/14/2022] Open
Abstract
The recent development of a Hepatitis C virus (HCV) infectious virus cell culture model system has facilitated the development of whole-virus screening assays which can be used to interrogate the entire virus life cycle. Here, we describe the development of an HCV growth assay capable of identifying inhibitors against all stages of the virus life cycle with assay throughput suitable for rapid screening of large-scale chemical libraries. Novel features include, 1) the use of an efficiently-spreading, full-length, intergenotypic chimeric reporter virus with genotype 1 structural proteins, 2) a homogenous assay format compatible with miniaturization and automated liquid-handling, and 3) flexible assay end-points using either chemiluminescence (high-throughput screening) or Cellomics ArrayScan™ technology (high-content screening). The assay was validated using known HCV antivirals and through a large-scale, high-throughput screening campaign that identified novel and selective entry, replication and late-stage inhibitors. Selection and characterization of resistant viruses provided information regarding inhibitor target and mechanism. Leveraging results from this robust whole-virus assay represents a critical first step towards identifying inhibitors of novel targets to broaden the spectrum of antivirals for the treatment of HCV.
Collapse
Affiliation(s)
- Michael J. Wichroski
- Bristol-Myers Squibb Research and Development, Wallingford, Connecticut, United States of America
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Oehler V, Filipe A, Montserret R, da Costa D, Brown G, Penin F, McLauchlan J. Structural analysis of hepatitis C virus core-E1 signal peptide and requirements for cleavage of the genotype 3a signal sequence by signal peptide peptidase. J Virol 2012; 86:7818-28. [PMID: 22593157 PMCID: PMC3421639 DOI: 10.1128/jvi.00457-12] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 05/07/2012] [Indexed: 12/19/2022] Open
Abstract
The maturation of the hepatitis C virus (HCV) core protein requires proteolytic processing by two host proteases: signal peptidase (SP) and the intramembrane-cleaving protease signal peptide peptidase (SPP). Previous work on HCV genotype 1a (GT1a) and GT2a has identified crucial residues required for efficient signal peptide processing by SPP, which in turn has an effect on the production of infectious virus particles. Here we demonstrate that the JFH1 GT2a core-E1 signal peptide can be adapted to the GT3a sequence without affecting the production of infectious HCV. Through mutagenesis studies, we identified crucial residues required for core-E1 signal peptide processing, including a GT3a sequence-specific histidine (His) at position 187. In addition, the stable knockdown of intracellular SPP levels in HuH-7 cells significantly affects HCV virus titers, further demonstrating the requirement for SPP for the maturation of core and the production of infectious HCV particles. Finally, our nuclear magnetic resonance (NMR) structural analysis of a synthetic HCV JFH1 GT2a core-E1 signal peptide provides an essential structural template for a further understanding of core processing as well as the first model for an SPP substrate within its membrane environment. Our findings give deeper insights into the mechanisms of intramembrane-cleaving proteases and the impact on viral infections.
Collapse
Affiliation(s)
- Verena Oehler
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Ana Filipe
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Roland Montserret
- Bases Moléculaires et Structurales des Systèmes Infectieux, IBCP, UMR 5086, CNRS, Université de Lyon, Lyon, France
| | - Daniel da Costa
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Gaie Brown
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - François Penin
- Bases Moléculaires et Structurales des Systèmes Infectieux, IBCP, UMR 5086, CNRS, Université de Lyon, Lyon, France
| | - John McLauchlan
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| |
Collapse
|
18
|
Khaliq S, Jahan S, Hassan S. Hepatitis C virus p7: molecular function and importance in hepatitis C virus life cycle and potential antiviral target. Liver Int 2011; 31:606-17. [PMID: 21457434 DOI: 10.1111/j.1478-3231.2010.02442.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
p7, a 63-residue peptide encoded by hepatitis C virus (HCV), a major pathogen associated with a risk of developing severe liver disease, is involved in ion channel activity in lipid bilayer membranes both in in vitro and cell-based assays. p7 protein consists of two transmembrane α-helices, TM1 and TM2 connected by a loop oriented towards the cytoplasm. HCV relies on p7 function in addition to ion channel formation for efficient assembly, release and production of infectious progeny virions from liver cells. p7 activity is strictly sequence specific as mutation analysis showed the loss of ion channel function. Moreover, p7 ion channel activity can be specifically inhibited by different drugs suggesting the protein as a new target for future antiviral chemotherapy. In the present review, we focused to bring together the recent development to explore the potential role of p7 protein in HCV infection and its inhibition as a therapy.
Collapse
Affiliation(s)
- Saba Khaliq
- Functional and Applied Genomics Laboratory, National Center of Excellence in Molecular Biology, University of Punjab, Lahore, Pakistan.
| | | | | |
Collapse
|
19
|
Membrane interaction of segment H1 (NS4BH1) from hepatitis C virus non-structural protein 4B. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:1219-29. [DOI: 10.1016/j.bbamem.2010.12.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 12/15/2010] [Accepted: 12/23/2010] [Indexed: 12/30/2022]
|
20
|
Sequence variability of HCV Core region: Important predictors of HCV induced pathogenesis and viral production. INFECTION GENETICS AND EVOLUTION 2011; 11:543-56. [PMID: 21292033 DOI: 10.1016/j.meegid.2011.01.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2010] [Revised: 01/17/2011] [Accepted: 01/21/2011] [Indexed: 02/07/2023]
|
21
|
Depla M, Uzbekov R, Hourioux C, Blanchard E, Le Gouge A, Gillet L, Roingeard P. Ultrastructural and quantitative analysis of the lipid droplet clustering induced by hepatitis C virus core protein. Cell Mol Life Sci 2010; 67:3151-61. [PMID: 20422251 PMCID: PMC11115826 DOI: 10.1007/s00018-010-0373-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Revised: 04/01/2010] [Accepted: 04/08/2010] [Indexed: 12/16/2022]
Abstract
Hepatitis C virus (HCV) release is linked to the formation of lipid droplet (LD) clusters in the perinuclear area of infected cells, induced by the core protein. We used electron microscopy (EM) to monitor and compare the number and size of LD in cells producing the mature and immature forms of the HCV core protein, and 3D EM to reconstruct whole cells producing the mature core protein. Only the mature protein coated the LD and induced their clustering and emergence from endoplasmic reticulum membranes enriched in this protein. We found no particular association between LD clusters and the centrosome in reconstructed cells. The LD clustering induced by the mature core protein was associated with an increase in LD synthesis potentially due, at least in part, to the ability of this protein to coat the LD. These observations provide useful information for further studies of the mechanisms involved in HCV-induced steatosis.
Collapse
Affiliation(s)
- Marion Depla
- INSERM U966, Faculté de Médecine, Université François Rabelais, CHRU de Tours, 10 boulevard Tonnellé, 37032 Tours Cedex, France
| | - Rustem Uzbekov
- INSERM U966, Faculté de Médecine, Université François Rabelais, CHRU de Tours, 10 boulevard Tonnellé, 37032 Tours Cedex, France
| | - Christophe Hourioux
- INSERM U966, Faculté de Médecine, Université François Rabelais, CHRU de Tours, 10 boulevard Tonnellé, 37032 Tours Cedex, France
| | - Emmanuelle Blanchard
- INSERM U966, Faculté de Médecine, Université François Rabelais, CHRU de Tours, 10 boulevard Tonnellé, 37032 Tours Cedex, France
| | - Amélie Le Gouge
- INSERM CIC 0202, Université François Rabelais, CHRU de Tours, Tours Cedex, France
| | - Ludovic Gillet
- INSERM U921, Université François Rabelais, CHRU de Tours, Tours Cedex, France
| | - Philippe Roingeard
- INSERM U966, Faculté de Médecine, Université François Rabelais, CHRU de Tours, 10 boulevard Tonnellé, 37032 Tours Cedex, France
| |
Collapse
|
22
|
Guillén J, González-Alvarez A, Villalaín J. A membranotropic region in the C-terminal domain of hepatitis C virus protein NS4B interaction with membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1798:327-37. [PMID: 19631190 DOI: 10.1016/j.bbamem.2009.07.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Revised: 07/05/2009] [Accepted: 07/08/2009] [Indexed: 01/06/2023]
Abstract
We have identified a membrane-active region in the HCV NS4B protein by studying membrane rupture induced by a NS4B-derived peptide library on model membranes. This segment corresponds to one of two previously predicted amphipathic helix and define it as a new membrane association domain. We report the binding and interaction with model membranes of a peptide patterned after this segment, peptide NS4B(H2), and show that NS4B(H2) strongly partitions into phospholipid membranes, interacts with them, and is located in a shallow position in the membrane. Furthermore, changes in the primary sequence cause the disruption of the hydrophobicity along the structure and prevent the resulting peptide from interacting with the membrane. Our results suggest that the region where the NS4B(H2) is located might have an essential role in the membrane replication and/or assembly of the viral particle through the modulation of the replication complex. Our findings therefore identify an important region in the HCV NS4B protein which might be implicated in the HCV life cycle and possibly in the formation of the membranous web.
Collapse
Affiliation(s)
- Jaime Guillén
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, E-03202, Elche-Alicante, Spain
| | | | | |
Collapse
|
23
|
Cellular models for the screening and development of anti-hepatitis C virus agents. Pharmacol Ther 2009; 124:1-22. [PMID: 19555718 DOI: 10.1016/j.pharmthera.2009.05.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Accepted: 05/19/2009] [Indexed: 12/24/2022]
Abstract
Investigations on the biology of hepatitis C virus (HCV) have been hampered by the lack of small animal models. Efforts have therefore been directed to designing practical and robust cellular models of human origin able to support HCV replication and production in a reproducible, reliable and consistent manner. Many different models based on different forms of virions and hepatoma or other cell types have been described including virus-like particles, pseudotyped particles, subgenomic and full length replicons, virion productive replicons, immortalised hepatocytes, fetal and adult primary human hepatocytes. This review focuses on these different cellular models, their advantages and disadvantages at the biological and experimental levels, and their respective use for evaluating the effect of antiviral molecules on different steps of HCV biology including virus entry, replication, particles generation and excretion, as well as on the modulation by the virus of the host cell response to infection.
Collapse
|
24
|
Abstract
HCV (hepatitis C virus) infects nearly 3% of the population worldwide and has emerged as a major causative agent of liver disease, resulting in acute and chronic infections that can lead to fibrosis, cirrhosis and hepatocellular carcinoma. Hepatitis C represents the leading cause of liver transplantation in the United States and Europe. A positive-strand RNA virus of the Flaviviridae family, HCV contains a single-stranded RNA genome of approx. 9600 nucleotides. The genome RNA serves as both mRNA for translation of viral proteins and the template for RNA replication. Cis-acting RNA elements within the genome regulate RNA replication by forming secondary structures that interact with each other and trans-acting factors. Although structural proteins are clearly dispensable for RNA replication, recent evidence points to an important role of several non-structural proteins in particle assembly and release, turning their designation on its head. HCV enters host cells through receptor-mediated endocytosis, and the process requires the co-ordination of multiple cellular receptors and co-receptors. RNA replication takes place at specialized intracellular membrane structures called 'membranous webs' or 'membrane-associated foci', whereas viral assembly probably occurs on lipid droplets and endoplasmic reticulum. Liver inflammation plays a central role in the liver damage seen in hepatitis C, but many HCV proteins also directly contribute to HCV pathogenesis. In the present review, the molecular and cellular aspects of the HCV life cycle and the role of viral proteins in pathological liver conditions caused by HCV infection are described.
Collapse
|
25
|
McLauchlan J. Lipid droplets and hepatitis C virus infection. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1791:552-9. [PMID: 19167518 DOI: 10.1016/j.bbalip.2008.12.012] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Revised: 11/25/2008] [Accepted: 12/23/2008] [Indexed: 02/06/2023]
Abstract
Lipid droplets play an important part in the life cycle of hepatitis C virus and also are markers for steatosis, which is a common condition that arises during infection. These storage organelles are targeted by the viral core protein, which forms the capsid shell. Attachment of core to lipid droplets requires a C-terminal domain within the protein that is highly conserved between different virus isolates. In infected cells, the presence of core on lipid droplets creates loci that contain viral RNA and non-structural proteins involved in genome replication. Such locations may represent sites for initiating assembly and production of nascent virions. In addition to utilising lipid droplets as part the virus life cycle, hepatitis C virus induces their accumulation in infected hepatocytes. The mechanisms involved in this process are not understood but evidence from patient-based studies and model systems suggests the involvement of both viral and host factors.
Collapse
|
26
|
Identification of cellular genes affecting the infectivity of foot-and-mouth disease virus. J Virol 2009; 83:6681-8. [PMID: 19369337 DOI: 10.1128/jvi.01729-08] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Foot-and-mouth disease virus (FMDV) produces one of the most infectious of all livestock diseases, causing extensive economic loss in areas of breakout. Like other viral pathogens, FMDV recruits proteins encoded by host cell genes to accomplish the entry, replication, and release of infectious viral particles. To identify such host-encoded proteins, we employed an antisense RNA strategy and a lentivirus-based library containing approximately 40,000 human expressed sequence tags (ESTs) to randomly inactivate chromosomal genes in a bovine kidney cell line (LF-BK) that is highly susceptible to FMDV infection and then isolated clones that survived multiple rounds of exposure to the virus. Here, we report the identification of ESTs whose expression in antisense orientation limited host cell killing by FMDV and restricted viral propagation. The role of one such EST, that of ectonucleoside triphosphate diphosphohydrolase 6 (NTPDase6; also known as CD39L2), a membrane-associated ectonucleoside triphosphate diphosphohydrolase that previously was not suspected of involvement in the propagation of viral pathogens and which we now show is required for normal synthesis of FMDV RNA and proteins, is described in this report.
Collapse
|
27
|
Golde TE, Wolfe MS, Greenbaum DC. Signal peptide peptidases: a family of intramembrane-cleaving proteases that cleave type 2 transmembrane proteins. Semin Cell Dev Biol 2009; 20:225-30. [PMID: 19429495 DOI: 10.1016/j.semcdb.2009.02.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Revised: 02/05/2009] [Accepted: 02/05/2009] [Indexed: 01/09/2023]
Abstract
Five genes encode the five human signal peptide peptidases (SPPs), which are intramembrane-cleaving aspartyl proteases (aspartyl I-CLiPs). SPPs have been conserved through evolution with family members found in higher eukaryotes, fungi, protozoa, arachea, and plants. SPPs are related to the presenilin family of aspartyl I-CLiPs but differ in several key aspects. Presenilins (PSENs) and SPPs both cleave the transmembrane region of membrane proteins; however, PSENs cleave type 1 membrane proteins whereas SPPs cleave type 2 membrane proteins. Though the overall homology between SPPs and PSENs is minimal, they are multipass membrane proteins that contain two conserved active site motifs YD and GxGD in adjacent membrane-spanning domains and a conserved PAL motif of unknown function near their COOH-termini. They differ in that the active site YD and GxGD containing transmembrane domains of SPPs are inverted relative to PSENs, thus, orienting the active site in a consistent topology relative to the substrate. At least two of the human SPPs (SPP and SPPL3) appear to function without additional cofactors, but PSENs function as a protease, called gamma-secretase, only when complexed with Nicastrin, APH-1 and Pen-2. The biological roles of SPP are largely unknown, and only a few endogenous substrates for SPPs have been identified. Nevertheless there is emerging evidence that SPP family members are highly druggable and may regulate both essential physiologic and pathophysiologic processes. Further study of the SPP family is needed in order to understand their biological roles and their potential as therapeutic targets.
Collapse
Affiliation(s)
- Todd E Golde
- Department of Neuroscience, Mayo Clinic, College of Medicine, 4500 San Pablo Road, Jacksonville, FL 32224, United States.
| | | | | |
Collapse
|
28
|
Abstract
Viruses are very small and most of them can be seen only by TEM (transmission electron microscopy). TEM has therefore made a major contribution to virology, including the discovery of many viruses, the diagnosis of various viral infections and fundamental investigations of virus-host cell interactions. However, TEM has gradually been replaced by more sensitive methods, such as the PCR. In research, new imaging techniques for fluorescence light microscopy have supplanted TEM, making it possible to study live cells and dynamic interactions between viruses and the cellular machinery. Nevertheless, TEM remains essential for certain aspects of virology. It is very useful for the initial identification of unknown viral agents in particular outbreaks, and is recommended by regulatory agencies for investigation of the viral safety of biological products and/or the cells used to produce them. In research, only TEM has a resolution sufficiently high for discrimination between aggregated viral proteins and structured viral particles. Recent examples of different viral assembly models illustrate the value of TEM for improving our understanding of virus-cell interactions.
Collapse
|
29
|
Intramembrane processing by signal peptide peptidase regulates the membrane localization of hepatitis C virus core protein and viral propagation. J Virol 2008; 82:8349-61. [PMID: 18562515 DOI: 10.1128/jvi.00306-08] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Hepatitis C virus (HCV) core protein has shown to be localized in the detergent-resistant membrane (DRM), which is distinct from the classical raft fraction including caveolin, although the biological significance of the DRM localization of the core protein has not been determined. The HCV core protein is cleaved off from a precursor polyprotein at the lumen side of Ala(191) by signal peptidase and is then further processed by signal peptide peptidase (SPP) within the transmembrane region. In this study, we examined the role of SPP in the localization of the HCV core protein in the DRM and in viral propagation. The C terminus of the HCV core protein cleaved by SPP in 293T cells was identified as Phe(177) by mass spectrometry. Mutations introduced into two residues (Ile(176) and Phe(177)) upstream of the cleavage site of the core protein abrogated processing by SPP and localization in the DRM fraction. Expression of a dominant-negative SPP or treatment with an SPP inhibitor, L685,458, resulted in reductions in the levels of processed core protein localized in the DRM fraction. The production of HCV RNA in cells persistently infected with strain JFH-1 was impaired by treatment with the SPP inhibitor. Furthermore, mutant JFH-1 viruses bearing SPP-resistant mutations in the core protein failed to propagate in a permissive cell line. These results suggest that intramembrane processing of HCV core protein by SPP is required for the localization of the HCV core protein in the DRM and for viral propagation.
Collapse
|
30
|
Targett-Adams P, Hope G, Boulant S, McLauchlan J. Maturation of hepatitis C virus core protein by signal peptide peptidase is required for virus production. J Biol Chem 2008; 283:16850-9. [PMID: 18424431 DOI: 10.1074/jbc.m802273200] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Complete maturation of hepatitis C virus (HCV) core protein requires coordinate cleavage by signal peptidase and an intramembrane protease, signal peptide peptidase. We show that reducing the intracellular levels of signal peptide peptidase lowers the titer of infectious virus released from cells, indicating that it plays an important role in virus production. Proteolysis by the enzyme at a signal peptide between core and the E1 glycoprotein is needed to permit targeting of core to lipid droplets. From mutagenesis studies, introducing mutations into the core-E1 signal peptide delayed the appearance of signal peptide peptidase-processed core until between 48 and 72 h after the beginning of the infectious cycle. Accumulation of mature core at these times coincided with its localization to lipid droplets and a rise in titer of infectious HCV. Therefore, processing of core by signal peptide peptidase is a critical event in the virus life cycle. To study the stage in virus production that may be blocked by interfering with intramembrane cleavage of core, we examined the distribution of viral RNA in cells harboring the core-E1 signal peptide mutant. Results revealed that colocalization of core with HCV RNA required processing of the protein by signal peptide peptidase. Our findings provide new insights into the sequence requirements for proteolysis by signal peptide peptidase. Moreover, they offer compelling evidence for a function for an intramembrane protease to facilitate the association of core with viral genomes, thereby creating putative sites for assembly of nascent virus particles.
Collapse
Affiliation(s)
- Paul Targett-Adams
- MRC Virology Unit, Institute of Virology, Glasgow G11 5JR, United Kingdom
| | | | | | | |
Collapse
|
31
|
Roingeard P, Hourioux C, Blanchard E, Prensier G. Hepatitis C virus budding at lipid droplet-associated ER membrane visualized by 3D electron microscopy. Histochem Cell Biol 2008; 130:561-6. [PMID: 18512067 DOI: 10.1007/s00418-008-0447-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2008] [Indexed: 10/22/2022]
Abstract
The mechanisms underlying hepatitis C virus (HCV) morphogenesis remain elusive, but lipid droplets have recently been shown to be important organelles for virus production. We investigated the interaction between HCV-like particles and lipid droplets by three-dimensional reconstructions of serial ultrathin electron microscopy sections of cells producing the HCV core protein. The budding of HCV-like particles was mostly initiated at membranes close to the lipid droplets rather than at membranes directly apposed to the lipid droplets. This may have important implications for our understanding of the complex relationship between HCV and lipids and may make easier to dissect out the HCV life cycle.
Collapse
Affiliation(s)
- Philippe Roingeard
- Laboratoire de Biologie Cellulaire, Faculté de Médecine de Tours, INSERM ERI 19, Université François Rabelais and CHRU de Tours, 10 boulevard Tonnellé, 37032 Tours Cedex, France.
| | | | | | | |
Collapse
|
32
|
Pérez‐Berná AJ, Veiga AS, Castanho MARB, Villalaín J. Hepatitis C virus core protein binding to lipid membranes: the role of domains 1 and 2. J Viral Hepat 2008; 15:346-56. [PMID: 18179451 PMCID: PMC7166730 DOI: 10.1111/j.1365-2893.2007.00948.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We have analysed and identified different membrane-active regions of the Hepatitis C virus (HCV) core protein by observing the effect of 18-mer core-derived peptide libraries from two HCV strains on the integrity of different membrane model systems. In addition, we have studied the secondary structure of specific membrane-interacting peptides from the HCV core protein, both in aqueous solution and in the presence of model membrane systems. Our results show that the HCV core protein region comprising the C-terminus of domain 1 and the N-terminus of domain 2 seems to be the most active in membrane interaction, although a role in protein-protein interaction cannot be excluded. Significantly, the secondary structure of nearly all the assayed peptides changes in the presence of model membranes. These sequences most probably play a relevant part in the biological action of HCV in lipid interaction. Furthermore, these membranotropic regions could be envisaged as new possible targets, as inhibition of its interaction with the membrane could potentially lead to new vaccine strategies.
Collapse
Affiliation(s)
- A. J. Pérez‐Berná
- Instituto de Biología Molecular y Celular, Universidad “Miguel Hernández”, Elche‐Alicante, Spain
| | - A. S. Veiga
- Centro de Química e Bioquímica, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, Lisboa, Portugal
| | - M. A. R. B. Castanho
- Centro de Química e Bioquímica, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, Lisboa, Portugal
| | - J. Villalaín
- Instituto de Biología Molecular y Celular, Universidad “Miguel Hernández”, Elche‐Alicante, Spain
| |
Collapse
|
33
|
Abstract
Gamma-Secretase is a promiscuous protease that cleaves bitopic membrane proteins within the lipid bilayer. Elucidating both the mechanistic basis of gamma-secretase proteolysis and the precise factors regulating substrate identification is important because modulation of this biochemical degradative process can have important consequences in a physiological and pathophysiological context. Here, we briefly review such information for all major classes of intramembranously cleaving proteases (I-CLiPs), with an emphasis on gamma-secretase, an I-CLiP closely linked to the etiology of Alzheimer's disease. A large body of emerging data allows us to survey the substrates of gamma-secretase to ascertain the conformational features that predispose a peptide to cleavage by this enigmatic protease. Because substrate specificity in vivo is closely linked to the relative subcellular compartmentalization of gamma-secretase and its substrates, we also survey the voluminous body of literature concerning the traffic of gamma-secretase and its most prominent substrate, the amyloid precursor protein.
Collapse
Affiliation(s)
- A. J. Beel
- Department of Biochemistry and Center for Structural Biology, Vanderbilt University School of Medicine, Rm. 5142 MRBIII, 21st Ave. S., Nashville, Tennessee 37232-8725 USA
| | - C. R. Sanders
- Department of Biochemistry and Center for Structural Biology, Vanderbilt University School of Medicine, Rm. 5142 MRBIII, 21st Ave. S., Nashville, Tennessee 37232-8725 USA
| |
Collapse
|
34
|
Abstract
Lipid droplets are intracellular organelles involved not only in lipid storage but also in cell signalling and the regulation of intracellular vesicular trafficking. Recent basic studies have suggested that interactions between hepatitis C virus (HCV) core protein and lipid droplets are required for the HCV infection cycle. In infected cells, the HCV core protein is associated with the surface of lipid droplets and the endoplasmic reticulum membranes closely surrounding these droplets, and its self-assembly drives virion budding. This interaction also seems to be directly linked to a virus-induced steatosis, which involves the deposition of triglycerides in the liver and contributes to the progression of fibrosis in patients with chronic hepatitis C. Many clinical studies have reported that virus-induced steatosis is significantly more severe with HCV genotype 3 than with other genotypes, and this phenomenon has been modelled in recent basic studies based on the production of HCV core proteins of various genotypes in vitro. The association of HCV core protein with lipid droplets seems to play a central role in HCV pathogenesis and morphogenesis, suggesting that virus-induced steatosis may be essential for the viral life cycle.
Collapse
Affiliation(s)
- P Roingeard
- INSERM ERI 19, Université François Rabelais & CHRU de Tours, Tours, France.
| | | |
Collapse
|
35
|
Dultz E, Hildenbeutel M, Martoglio B, Hochman J, Dobberstein B, Kapp K. The signal peptide of the mouse mammary tumor virus Rem protein is released from the endoplasmic reticulum membrane and accumulates in nucleoli. J Biol Chem 2008; 283:9966-76. [PMID: 18270201 DOI: 10.1074/jbc.m705712200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
N-terminal signal sequences mediate endoplasmic reticulum (ER) targeting and insertion of nascent secretory and membrane proteins and are, in most cases, cleaved off by signal peptidase. The mouse mammary tumor virus envelope protein and its alternative splice variant Rem have an unusually long signal sequence, which contains a nuclear localization signal. Although the envelope protein is targeted to the ER, inserted, and glycosylated, Rem has been described as a nuclear protein. Rem as well as a truncated version identical to the cleaved signal sequence have been shown to function as nuclear export factors for intron-containing transcripts. Using transiently transfected cells, we found that Rem is targeted to the ER, where the C-terminal portion is translocated and glycosylated. The signal sequence is cleaved off and accumulates in nucleoli. In a cell-free in vitro system, the generation of the Rem signal peptide depends on the presence of microsomal membranes. In vitro and in cells, the signal peptide initially accumulates in the membrane and is subsequently released into the cytosol. This release does not depend on processing by signal peptide peptidase, an intramembrane cleaving protease that can mediate the liberation of signal peptide fragments from the ER membrane. Our study suggests a novel pathway by which a signal peptide can be released from the ER membrane to fulfill a post-targeting function in a different compartment.
Collapse
Affiliation(s)
- Elisa Dultz
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Mayerhofstrasse 1, Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
36
|
Pérez-Berná AJ, Guillén J, Moreno MR, Bernabeu A, Pabst G, Laggner P, Villalaín J. Identification of the membrane-active regions of hepatitis C virus p7 protein: biophysical characterization of the loop region. J Biol Chem 2008; 283:8089-101. [PMID: 18198177 DOI: 10.1074/jbc.m709413200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
We have identified the membrane-active regions of the hepatitis C virus p7 protein by performing an exhaustive study of membrane rupture, hemifusion, and fusion induced by a p7-derived peptide library on model membranes having different phospholipid compositions. We report the identification in p7 of a highly membranotropic region located at the loop domain of the protein. Here, we have investigated the interaction of a peptide patterned after the p7 loop (peptide p7(L)), studying its binding and interaction with the lipid bilayer, and evaluated the binding-induced structural changes of the peptide and the phospholipids. We show that positively rich p7(L) strongly binds to negatively charged phospholipids and it is localized in a shallow position in the bilayer. Furthermore, peptide p7(L) exhibits a high tendency to oligomerize in the presence of phospholipids, which could be the driving force for the formation of the active ion channel. Therefore, our findings suggest that the p7 loop could be an attractive candidate for antiviral drug development, because it could be a target for antiviral compounds that may lead to new vaccine strategies.
Collapse
Affiliation(s)
- Ana J Pérez-Berná
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Alicante, Spain
| | | | | | | | | | | | | |
Collapse
|
37
|
Hourioux C, Patient R, Morin A, Blanchard E, Moreau A, Trassard S, Giraudeau B, Roingeard P. The genotype 3-specific hepatitis C virus core protein residue phenylalanine 164 increases steatosis in an in vitro cellular model. Gut 2007; 56:1302-8. [PMID: 17213339 PMCID: PMC2267372 DOI: 10.1136/gut.2006.108647] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS The prevalence and severity of liver steatosis are higher in patients infected with genotype 3 hepatitis C virus (HCV) than in patients infected with other genotypes. HCV core protein is known to affect lipid metabolism, inducing lipid droplet accumulation both in vitro and in vivo. An in vitro cellular model was used to investigate whether an HCV core protein with residues specific to genotype 3 increased this phenomenon. METHODS Sequence comparisons for HCV core protein domain II, which is known to interact with lipid droplets, identified the phenylalanine (F) residue at position 164 as the only residue specific to genotype 3. The area covered by lipid droplets in sections of cells producing a wild-type genotype 1a HCV core protein was compared with that in cells producing a Y164F mutant protein. RESULTS Cumulative lipid droplet area was significantly greater in sections of cells producing the Y164F mutant HCV core protein than in cells producing the wild-type protein (p<0.001). The frequency of cell sections containing more than 3 mum(2) of lipid droplets, in particular, was higher for the mutant than for the wild-type protein. CONCLUSION The data provide a molecular explanation for HCV genotype 3-specific lipid accumulation. This difference between genotypes may be due to phenylalanine having a higher affinity for lipids than tyrosine (Y). These observations provide useful information for further studies of the mechanisms involved in HCV-induced steatosis.
Collapse
Affiliation(s)
- C Hourioux
- Université François Rabelais, INSERM ERI 19 & CHRU de Tours, 10 boulevard Tonnellé, F-37032 Tours Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Régeard M, Lepère C, Trotard M, Gripon P, Le Seyec J. Recent contributions of in vitro models to our understanding of hepatitis C virus life cycle. FEBS J 2007; 274:4705-18. [PMID: 17824957 DOI: 10.1111/j.1742-4658.2007.06017.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hepatitis C virus is a human pathogen responsible for liver diseases including acute and chronic hepatitis, cirrhosis and hepatocellular carcinoma. Its high prevalence, the absence of a prophylactic vaccine and the poor efficiency of current therapies are huge medical problems. Since the discovery of the hepatitis C virus, our knowledge of its biology has been largely punctuated by the development of original models of research. At the end of the 1980s, the chimpanzee model led to cloning of the viral genome and the definition of infectious molecular clones. In 1999, a breakthrough was achieved with the development of a robust in vitro replication model named 'replicon'. This system allowed intensive research into replication mechanisms and drug discovery. Later, in 2003, pseudotyped retroviruses harbouring surface proteins of hepatitis C virus were produced to specifically investigate the viral entry process. It was only in 2005 that infectious viruses were produced in vitro, enabling intensive investigations into the entire life cycle of the hepatitis C virus. This review describes the different in vitro models developed to study hepatitis C virus, their contribution to current knowledge of the virus biology and their future research applications.
Collapse
Affiliation(s)
- Morgane Régeard
- INSERM, U522, IFR 140, Hôpital de Pontchaillou, Rennes, France
| | | | | | | | | |
Collapse
|
39
|
Murray CL, Jones CT, Tassello J, Rice CM. Alanine scanning of the hepatitis C virus core protein reveals numerous residues essential for production of infectious virus. J Virol 2007; 81:10220-31. [PMID: 17634240 PMCID: PMC2045476 DOI: 10.1128/jvi.00793-07] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Hepatitis C virus (HCV) is an important human pathogen affecting an estimated 3% of the world's population. Recent advances have enabled in vitro propagation of the virus and allow assembly and egress to be investigated for the first time. As a component of the virion, the HCV core protein likely functions primarily in infectious virus production, although little is known about the determinants of this activity. To investigate the roles of core in the viral life cycle, we performed a comprehensive deletion and alanine scanning mutagenesis study of this protein in the context of a genotype 2a reporter virus. We have confirmed that core protein is essential for infectious virion production and have identified numerous residues required for this role. The infectivity of several assembly-defective core mutants could be rescued by compensatory mutations identified in p7 and NS2, suggesting genetic interactions with core and highlighting the importance of these nonstructural proteins in infectious virion morphogenesis.
Collapse
Affiliation(s)
- Catherine L Murray
- Laboratory of Virology and Infectious Disease, Center for the Study of Hepatitis C, The Rockefeller University, 1230 York Ave., New York, NY 10021, USA
| | | | | | | |
Collapse
|
40
|
|
41
|
Ma HC, Ku YY, Hsieh YC, Lo SY. Characterization of the cleavage of signal peptide at the C-terminus of hepatitis C virus core protein by signal peptide peptidase. J Biomed Sci 2007; 14:31-41. [PMID: 17237979 PMCID: PMC7088784 DOI: 10.1007/s11373-006-9127-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2006] [Accepted: 10/08/2006] [Indexed: 12/22/2022] Open
Abstract
Production of hepatitis C virus (HCV) core protein requires the cleavages of polyprotein by signal peptidase and signal peptide peptidase (SPP). Cleavage of signal peptide at the C-terminus of HCV core protein by SPP was characterized in this study. The spko mutant (mutate a.a. 189-193 from ASAYQ to PPFPF) is more efficient than the A/F mutant (mutate a.a 189 and 191 from A to F) in blocking the cleavage of signal peptide by signal peptidase. The cleavage efficiency of SPP is inversely proportional to the length of C-terminal extension of the signal peptide: the longer the extension, the less efficiency the cleavage is. Thus, reducing the length of C-terminal extension of signal peptide by signal peptidase cleavage could facilitate further cleavage by SPP. The recombinant core protein fused with signal peptide from the C-terminus of p7 protein, but not those from the C-termini of E1 and E2, could be cleaved by SPP. Therefore, the sequence of the signal peptide is important but not the sole determinant for its cleavage by SPP. Replacement of the HCV core protein E.R.-associated domain (a.a. 120-150) with the E.R.-associated domain (a.a.1-50) of SARS-CoV membrane protein results in the failure of cleavage of this recombinant protein by SPP, though this protein still is E.R.-associated. This result suggests that not only E.R.-association but also specific protein sequence is important for the HCV core protein signal peptide cleavage by SPP. Thus, our results suggest that both sequences of the signal peptide and the E.R.-associated domain are important for the signal peptide cleavage of HCV core protein by SPP.
Collapse
Affiliation(s)
- Hsin-Chieh Ma
- Graduate Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan, ROC
| | - Yi-Yung Ku
- Graduate Institute of Molecular and Cellular Biology, Tzu Chi University, Hualien, Taiwan, ROC
| | - Yi-Ching Hsieh
- Graduate Institute of Molecular and Cellular Biology, Tzu Chi University, Hualien, Taiwan, ROC
| | - Shih-Yen Lo
- Graduate Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan, ROC
- Graduate Institute of Molecular and Cellular Biology, Tzu Chi University, Hualien, Taiwan, ROC
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, 701, Section 3, Chung Yang Road, Hualien, Taiwan, ROC
| |
Collapse
|
42
|
Hourioux C, Ait-Goughoulte M, Patient R, Fouquenet D, Arcanger-Doudet F, Brand D, Martin A, Roingeard P. Core protein domains involved in hepatitis C virus-like particle assembly and budding at the endoplasmic reticulum membrane. Cell Microbiol 2006; 9:1014-27. [PMID: 17257269 PMCID: PMC2216084 DOI: 10.1111/j.1462-5822.2006.00848.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Hepatitis C virus (HCV) core protein, expressed with a Semliki forest virus (SFV) replicon, self-assembles into HCV-like particles (HCV-LPs) at the endoplasmic reticulum (ER) membrane, providing an opportunity to study HCV particle morphogenesis by electron microscopy. Various mutated HCV core proteins with engineered internal deletions were expressed with this system, to identify core domains required or dispensable for HCV-LP assembly. The HCV core protein sequence was compared with its counterpart in GB virus B (GBV-B), the virus most closely related to HCV, to identify conserved domains. GBV-B and HCV display similar tropism for liver hepatocytes and their core proteins are organized similarly into three main domains (I, II and III), although GBV-B core is smaller and lacks approximately 35 amino acids (aa) in domain I. The deletion of short hydrophobic domains (aa 133-152 and 153-167 in HCV core) that appear highly conserved in domain II of both GBV-B and HCV core proteins resulted in loss of HCV core ER anchoring and self-assembly into HCV-LPs. The deletion of short domains found within domain I of HCV core protein but not in the corresponding domain of GBV-B core according to sequence alignment had contrasting effects. Amino acids 15-28 and 60-66 were shown to be dispensable for HCV-LP assembly and morphogenesis, whereas aa 88-106 were required for this process. The production of GBV-B core protein from a recombinant SFV vector was associated with specific ER ultrastructural changes, but did not lead to the morphogenesis of GBV-B-LPs, suggesting that different budding mechanisms occur in members of the Flaviviridae family.
Collapse
Affiliation(s)
- Christophe Hourioux
- Virus, pseudovirus : morphogenèse et antigénicité
INSERM : ERI19CHU ToursUniversité François Rabelais - ToursEA3856Faculte de Médecine
2bis, Boulevard Tonnelle
37032 Tours,FR
| | - Malika Ait-Goughoulte
- Virus, pseudovirus : morphogenèse et antigénicité
INSERM : ERI19CHU ToursUniversité François Rabelais - ToursEA3856Faculte de Médecine
2bis, Boulevard Tonnelle
37032 Tours,FR
| | - Romuald Patient
- Virus, pseudovirus : morphogenèse et antigénicité
INSERM : ERI19CHU ToursUniversité François Rabelais - ToursEA3856Faculte de Médecine
2bis, Boulevard Tonnelle
37032 Tours,FR
| | - Delphine Fouquenet
- Virus, pseudovirus : morphogenèse et antigénicité
INSERM : ERI19CHU ToursUniversité François Rabelais - ToursEA3856Faculte de Médecine
2bis, Boulevard Tonnelle
37032 Tours,FR
| | - Fabienne Arcanger-Doudet
- Virus, pseudovirus : morphogenèse et antigénicité
INSERM : ERI19CHU ToursUniversité François Rabelais - ToursEA3856Faculte de Médecine
2bis, Boulevard Tonnelle
37032 Tours,FR
| | - Denys Brand
- Virus, pseudovirus : morphogenèse et antigénicité
INSERM : ERI19CHU ToursUniversité François Rabelais - ToursEA3856Faculte de Médecine
2bis, Boulevard Tonnelle
37032 Tours,FR
| | - Annette Martin
- Génétique Moléculaire des Virus Respiratoires
CNRS : URA1966Institut Pasteur de ParisUniversité Denis Diderot - Paris VII25-28 rue du Docteur Roux,
F-75724 Paris Cedex 15,FR
| | - Philippe Roingeard
- Virus, pseudovirus : morphogenèse et antigénicité
INSERM : ERI19CHU ToursUniversité François Rabelais - ToursEA3856Faculte de Médecine
2bis, Boulevard Tonnelle
37032 Tours,FR
- * Correspondence should be adressed to: Philippe Roingeard
| |
Collapse
|
43
|
Targett-Adams P, Schaller T, Hope G, Lanford RE, Lemon SM, Martin A, McLauchlan J. Signal peptide peptidase cleavage of GB virus B core protein is required for productive infection in vivo. J Biol Chem 2006; 281:29221-7. [PMID: 16882659 DOI: 10.1074/jbc.m605373200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chronic infection by hepatitis C virus (HCV) is a leading cause of liver disease for which better therapies are urgently needed. Because a clearer understanding of the viral life cycle may suggest novel anti-viral approaches, we studied the role of host signal peptide peptidase (SPP) in viral infection. This intramembrane protease cleaves within a C-terminal signal sequence in the viral core protein, but the molecular determinants of cleavage and whether it is required for infection in vivo are unknown. To answer these questions, we studied SPP processing in GB virus B (GBV-B) infection. GBV-B is the closest phylogenetic relative of HCV and offers an accurate surrogate model for HCV infection. We demonstrate that SPP also processes GBV-B core protein and that a serine residue in the hydrophobic region of the signal sequence (present also in HCV) is critical for efficient SPP cleavage. The small size of the serine side chain combined with its ability to form intra- and interhelical hydrogen bonds likely contributes to recognition of the signal sequence as a substrate for SPP. By introducing mutations with differing effects on SPP processing into an infectious GBV-B molecular clone, we demonstrate that SPP processing of the core protein is required for productive infection in primates. These results broaden our understanding of the mechanism and requirements for SPP cleavage and reveal a functional role in vivo for intramembrane proteolysis in host-pathogen interactions. Moreover, they identify SPP as a potential therapeutic target for reducing the impact of HCV infection.
Collapse
Affiliation(s)
- Paul Targett-Adams
- Medical Research Council Virology Unit, Church Street, Glasgow, G11 5JR, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Relatively small genomes and high replication rates allow viruses and bacteria to accumulate mutations. This continuously presents the host immune system with new challenges. On the other side of the trenches, an increasingly well-adjusted host immune response, shaped by coevolutionary history, makes a pathogen's life a rather complicated endeavor. It is, therefore, no surprise that pathogens either escape detection or modulate the host immune response, often by redirecting normal cellular pathways to their advantage. For the purpose of this chapter, we focus mainly on the manipulation of the class I and class II major histocompatibility complex (MHC) antigen presentation pathways and the ubiquitin (Ub)-proteasome system by both viral and bacterial pathogens. First, we describe the general features of antigen presentation pathways and the Ub-proteasome system and then address how they are manipulated by pathogens. We discuss the many human cytomegalovirus (HCMV)-encoded immunomodulatory genes that interfere with antigen presentation (immunoevasins) and focus on the HCMV immunoevasins US2 and US11, which induce the degradation of class I MHC heavy chains by the proteasome by catalyzing their export from the endoplasmic reticulum (ER)-membrane into the cytosol, a process termed ER dislocation. US2- and US11-mediated subversion of ER dislocation ensures proteasomal degradation of class I MHC molecules and presumably allows HCMV to avoid recognition by cytotoxic T cells, whilst providing insight into general aspects of ER-associated degradation (ERAD) which is used by eukaryotic cells to purge their ER of defective proteins. We discuss the similarities and differences between the distinct pathways co-opted by US2 and US11 for dislocation and degradation of human class I MHC molecules and also a putatively distinct pathway utilized by the murine herpes virus (MHV)-68 mK3 immunoevasin for ER dislocation of murine class I MHC. We speculate on the implications of the three pathogen-exploited dislocation pathways to cellular ER quality control. Moreover, we discuss the ubiquitin (Ub)-proteasome system and its position at the core of antigen presentation as proteolysis and intracellular trafficking rely heavily on Ub-dependent processes. We add a few examples of manipulation of the Ub-proteasome system by pathogens in the context of the immune system and such diverse aspects of the host-pathogen relationship as virus budding, bacterial chromosome integration, and programmed cell death, to name a few. Finally, we speculate on newly found pathogen-encoded deubiquitinating enzymes (DUBs) and their putative roles in modulation of host-pathogen interactions.
Collapse
Affiliation(s)
- Joana Loureiro
- Whitehead Institute, 9 Cambridge Center, Cambridge, Massachusetts, USA
| | | |
Collapse
|