1
|
Kondo H, Fujita M, Telengech P, Maruyam K, Hyodo K, Tassi AD, Ochoa R, Andika IB, Suzuki N. Evidence for the replication of a plant rhabdovirus in its arthropod mite vector. Virus Res 2025; 351:199522. [PMID: 39732175 PMCID: PMC11757783 DOI: 10.1016/j.virusres.2024.199522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/23/2024] [Accepted: 12/25/2024] [Indexed: 12/30/2024]
Abstract
Transmission of plant viruses that replicate in the insect vector is known as persistent-propagative manner. However, it remains unclear whether such virus-vector relationships also occur between plant viruses and other biological vectors such as arthropod mites. In this study, we investigated the possible replication of orchid fleck virus (OFV), a segmented plant rhabdovirus, within its mite vector (Brevipalpus californicus s.l.) using quantitative RT-qPCR, western blotting and next-generation sequencing. Time-course RT-qPCR and western blot analyses showed an increasing OFV accumulation pattern in mites after virus acquisition. Since OFV genome expression requires the transcription of polyadenylated mRNAs, polyadenylated RNA fractions extracted from the viruliferous mite samples and OFV-infected plant leaves were used for RNA-seq analysis. In the mite and plant datasets, a large number of sequence reads were aligned to genomic regions of OFV RNA1 and RNA2 corresponding to transcribed viral gene mRNAs. This includes the short polyadenylated transcripts originating from the leader and trailer regions at the ends of the viral genome, which are believed to play a crucial role in viral transcription/replication. In contrast, a low number of reads were mapped to the non-transcribed regions (gene junctions). These results strongly suggested that OFV gene expression occurs both in mites and plants. Additionally, deep sequencing revealed the accumulation of OFV-derived small RNAs in mites, although their size profiles differ from those found in plants. Taken together, our results indicated that OFV replicates within a mite vector and is targeted by the RNA-silencing mechanism.
Collapse
Affiliation(s)
- Hideki Kondo
- Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki 710-0046, Japan.
| | - Miki Fujita
- Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki 710-0046, Japan
| | - Paul Telengech
- Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki 710-0046, Japan
| | - Kazuyuki Maruyam
- Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki 710-0046, Japan
| | - Kiwamu Hyodo
- Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki 710-0046, Japan
| | - Aline Daniele Tassi
- Tropical Research and Education Center, University of Florida, Homestead, FL 33031, USA
| | - Ronald Ochoa
- Systematic Entomology Laboratory, USDA, MD 20705, USA
| | - Ida Bagus Andika
- College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Nobuhiro Suzuki
- Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki 710-0046, Japan
| |
Collapse
|
2
|
Dudas G, Batson J. Accumulated metagenomic studies reveal recent migration, whole genome evolution, and undiscovered diversity of orthomyxoviruses. J Virol 2023; 97:e0105623. [PMID: 37830816 PMCID: PMC10653993 DOI: 10.1128/jvi.01056-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/29/2023] [Indexed: 10/14/2023] Open
Abstract
IMPORTANCE The number of known virus species has increased dramatically through metagenomic studies, which search genetic material sampled from a host for non-host genes. Here, we focus on an important viral family that includes influenza viruses, the Orthomyxoviridae, with over 100 recently discovered viruses infecting hosts from humans to fish. We find that one virus called Wǔhàn mosquito virus 6, discovered in mosquitoes in China, has spread across the globe very recently. Surface proteins used to enter cells show signs of rapid evolution in Wǔhàn mosquito virus 6 and its relatives which suggests an ability to infect vertebrate animals. We compute the rate at which new orthomyxovirus species discovered add evolutionary history to the tree of life, predict that many viruses remain to be discovered, and discuss what appropriately designed future studies can teach us about how diseases cross between continents and species.
Collapse
Affiliation(s)
- Gytis Dudas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Joshua Batson
- Chan Zuckerberg Biohub, San Francisco, California, USA
| |
Collapse
|
3
|
Pagnoni S, Oufensou S, Balmas V, Bulgari D, Gobbi E, Forgia M, Migheli Q, Turina M. A collection of Trichoderma isolates from natural environments in Sardinia reveals a complex virome that includes negative-sense fungal viruses with unprecedented genome organizations. Virus Evol 2023; 9:vead042. [PMID: 37692893 PMCID: PMC10491862 DOI: 10.1093/ve/vead042] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/20/2023] [Accepted: 06/30/2023] [Indexed: 09/12/2023] Open
Abstract
Trichoderma genus includes soil-inhabiting fungi that provide important ecosystem services in their interaction with plants and other fungi, as well as biocontrol of fungal plant diseases. A collection of Trichoderma isolates from Sardinia has been previously characterized, but here we selected 113 isolates, representatives of the collection, and characterized their viral components. We carried out high-throughput sequencing of ribosome-depleted total RNA following a bioinformatics pipeline that detects virus-derived RNA-directed RNA polymerases (RdRps) and other conserved viral protein sequences. This pipeline detected seventeen viral RdRps with two of them corresponding to viruses already detected in other regions of the world and the remaining fifteen representing isolates of new putative virus species. Surprisingly, eight of them are from new negative-sense RNA viruses, a first in the genus Trichoderma. Among them is a cogu-like virus, closely related to plant-infecting viruses. Regarding the positive-sense viruses, we report the presence of an 'ormycovirus' belonging to a recently characterized group of bisegmented single-stranded RNA viruses with uncertain phylogenetic assignment. Finally, for the first time, we report a bisegmented member of Mononegavirales which infects fungi. The proteins encoded by the second genomic RNA of this virus were used to re-evaluate several viruses in the Penicillimonavirus and Plasmopamonavirus genera, here shown to be bisegmented and encoding a conserved polypeptide that has structural conservation with the nucleocapsid domain of rhabdoviruses.
Collapse
Affiliation(s)
- Saul Pagnoni
- Department of Agricultural and Environmental Sciences—Production, Landscape, Agroenergy, University of Milan, via Celoria 2, Milan 20133, Italy
| | - Safa Oufensou
- Department of Agricultural Sciences and NRD—Desertification Research Center, University of Sassari, Viale Italia 39a, Sassari, Sardegna 07100, Italy
| | - Virgilio Balmas
- Department of Agricultural Sciences and NRD—Desertification Research Center, University of Sassari, Viale Italia 39a, Sassari, Sardegna 07100, Italy
| | - Daniela Bulgari
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia 25123, Italy
| | - Emanuela Gobbi
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia 25123, Italy
| | - Marco Forgia
- Institute for Sustainable Plant Protection, National Research Council of Italy, Strada delle Cacce, 73, Torino 10135, Italy
| | - Quirico Migheli
- Department of Agricultural Sciences and NRD—Desertification Research Center, University of Sassari, Viale Italia 39a, Sassari, Sardegna 07100, Italy
| | - Massimo Turina
- Institute for Sustainable Plant Protection, National Research Council of Italy, Strada delle Cacce, 73, Torino 10135, Italy
| |
Collapse
|
4
|
Padmanabhan C, Nunziata S, Leon M. G, Rivera Y, Mavrodieva VA, Nakhla MK, Roy A. High-throughput sequencing application in the detection and discovery of viruses associated with the regulated citrus leprosis disease complex. FRONTIERS IN PLANT SCIENCE 2023; 13:1058847. [PMID: 36762187 PMCID: PMC9907091 DOI: 10.3389/fpls.2022.1058847] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/24/2022] [Indexed: 06/18/2023]
Abstract
Citrus leprosis (CiL) is one of the destructive emerging viral diseases of citrus in the Americas. Leprosis syndrome is associated with two taxonomically distinct groups of Brevipalpus-transmitted viruses (BTVs), that consist of positive-sense Cilevirus, Higrevirus, and negative-sense Dichorhavirus. The localized CiL symptoms observed in multiple citrus species and other alternate hosts indicates that these viruses might have originated from the mites and eventually adopted citrus as a secondary host. Genetic diversity in the genomes of viruses associated with the CiL disease complex have complicated current detection and diagnostic measures that prompted the application of High-Throughput Sequencing (HTS) protocols for improved detection and diagnosis. Two cileviruses are known to infect citrus, and among them only citrus leprosis virus C2 (CiLV-C2) hibiscus strain (CiLV-C2H) has been reported in hibiscus and passion fruit in the US. Based on our current CiL disease complex hypothesis, there is a high probability that CiL disease is associated with more viruses/strains that have not yet been identified but exist in nature. To protect the citrus industry, a Ribo-Zero HTS protocol was utilized for detection of cileviruses infecting three different hosts: Citrus spp., Swinglea glutinosa, and Hibiscus rosa-sinensis. Real-time RT-PCR assays were used to identify plants infected with CiLV-C2 or CiLV-C2H or both in mixed infection in all the above-mentioned plant genera. These results were further confirmed by bioinformatic analysis using HTS generated data. In this study, we utilized HTS assay in confirmatory diagnostics to screen BTVs infecting Dieffenbachia sp. (family: Araceae), Passiflora edulis (Passifloraceae), and Smilax auriculata (Smilacaceae). Through the implementation of HTS and downstream data analysis, we detected not only the known cileviruses in the studied hosts but also discovered a new strain of CiLV-C2 in hibiscus from Colombia. Phylogenetically, the new hibiscus strain is more closely related to CiLV-C2 than the known hibiscus strain, CiLV-C2H. We propose this strain to be named as CiLV-C2 hibiscus strain 2 (CiLV-C2H2). The findings from the study are critical for citrus growers, industry, regulators, and researchers. The possible movement of CiLV-C2H2 from hibiscus to citrus by the Brevipalpus spp. warrants further investigation.
Collapse
Affiliation(s)
- Chellappan Padmanabhan
- United States Department of Agriculture (USDA), Animal Plant Health Inspection Service, Plant Protection and Quarantine, Science and Technology, Plant Pathogen Confirmatory Diagnostics Laboratory, Laurel, MD, United States
| | - Schyler Nunziata
- United States Department of Agriculture (USDA), Animal Plant Health Inspection Service, Plant Protection and Quarantine, Science and Technology, Plant Pathogen Confirmatory Diagnostics Laboratory, Laurel, MD, United States
| | | | - Yazmín Rivera
- United States Department of Agriculture (USDA), Animal Plant Health Inspection Service, Plant Protection and Quarantine, Science and Technology, Plant Pathogen Confirmatory Diagnostics Laboratory, Laurel, MD, United States
| | - Vessela A. Mavrodieva
- United States Department of Agriculture (USDA), Animal Plant Health Inspection Service, Plant Protection and Quarantine, Science and Technology, Plant Pathogen Confirmatory Diagnostics Laboratory, Laurel, MD, United States
| | - Mark K. Nakhla
- United States Department of Agriculture (USDA), Animal Plant Health Inspection Service, Plant Protection and Quarantine, Science and Technology, Plant Pathogen Confirmatory Diagnostics Laboratory, Laurel, MD, United States
| | - Avijit Roy
- United States Department of Agriculture (USDA), Animal Plant Health Inspection Service, Plant Protection and Quarantine, Science and Technology, Plant Pathogen Confirmatory Diagnostics Laboratory, Laurel, MD, United States
- United States Department of Agriculture (USDA), Agricultural Research Service, Molecular Plant Pathology Laboratory, Beltsville Agricultural Research Center, Beltsville, MD, United States
| |
Collapse
|
5
|
Yang J, Xiong C, Li S, Zhou C, Li L, Xue Q, Liu W, Niu Z, Ding X. Evolution patterns of NBS genes in the genus Dendrobium and NBS-LRR gene expression in D. officinale by salicylic acid treatment. BMC PLANT BIOLOGY 2022; 22:529. [PMID: 36376794 PMCID: PMC9661794 DOI: 10.1186/s12870-022-03904-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Dendrobium officinale Kimura et Migo, which contains rich polysaccharides, flavonoids and alkaloids, is a Traditional Chinese Medicine (TCM) with important economic benefits, while various pathogens have brought huge losses to its industrialization. NBS gene family is the largest class of plant disease resistance (R) genes, proteins of which are widely distributed in the upstream and downstream of the plant immune systems and are responsible for receiving infection signals and regulating gene expression respectively. It is of great significance for the subsequent disease resistance breeding of D. officinale to identify NBS genes by using the newly published high-quality chromosome-level D. officinale genome. RESULTS In this study, a total of 655 NBS genes were uncovered from the genomes of D. officinale, D. nobile, D. chrysotoxum, V. planifolia, A. shenzhenica, P. equestris and A. thaliana. The phylogenetic results of CNL-type protein sequences showed that orchid NBS-LRR genes have significantly degenerated on branches a and b. The Dendrobium NBS gene homology analysis showed that the Dendrobium NBS genes have two obvious characteristics: type changing and NB-ARC domain degeneration. Because the NBS-LRR genes have both NB-ARC and LRR domains, 22 D. officinale NBS-LRR genes were used for subsequent analyses, such as gene structures, conserved motifs, cis-elements and functional annotation analyses. All these results suggested that D. officinale NBS-LRR genes take part in the ETI system, plant hormone signal transduction pathway and Ras signaling pathway. Finally, there were 1,677 DEGs identified from the salicylic acid (SA) treatment transcriptome data of D. officinale. Among them, six NBS-LRR genes (Dof013264, Dof020566, Dof019188, Dof019191, Dof020138 and Dof020707) were significantly up-regulated. However, only Dof020138 was closely related to other pathways from the results of WGCNA, such as pathogen identification pathways, MAPK signaling pathways, plant hormone signal transduction pathways, biosynthetic pathways and energy metabolism pathways. CONCLUSION Our results revealed that the NBS gene degenerations are common in the genus Dendrobium, which is the main reason for the diversity of NBS genes, and the NBS-LRR genes generally take part in D. officinale ETI system and signal transduction pathways. In addition, the D. officinale NBS-LRR gene Dof020138, which may have an important breeding value, is indirectly activated by SA in the ETI system.
Collapse
Affiliation(s)
- Jiapeng Yang
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
- Jiangsu Provincial Engineering Research Center for Technical Industrialization for Dendrobiums, Nanjing, 210023, China
| | - Caijun Xiong
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Siyuan Li
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Cheng Zhou
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Lingli Li
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
- Jiangsu Provincial Engineering Research Center for Technical Industrialization for Dendrobiums, Nanjing, 210023, China
| | - Qingyun Xue
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
- Jiangsu Provincial Engineering Research Center for Technical Industrialization for Dendrobiums, Nanjing, 210023, China
| | - Wei Liu
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
- Jiangsu Provincial Engineering Research Center for Technical Industrialization for Dendrobiums, Nanjing, 210023, China
| | - Zhitao Niu
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
- Jiangsu Provincial Engineering Research Center for Technical Industrialization for Dendrobiums, Nanjing, 210023, China.
| | - Xiaoyu Ding
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
- Jiangsu Provincial Engineering Research Center for Technical Industrialization for Dendrobiums, Nanjing, 210023, China.
| |
Collapse
|
6
|
Mu F, Li B, Cheng S, Jia J, Jiang D, Fu Y, Cheng J, Lin Y, Chen T, Xie J. Nine viruses from eight lineages exhibiting new evolutionary modes that co-infect a hypovirulent phytopathogenic fungus. PLoS Pathog 2021; 17:e1009823. [PMID: 34428260 PMCID: PMC8415603 DOI: 10.1371/journal.ppat.1009823] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 09/03/2021] [Accepted: 07/22/2021] [Indexed: 12/15/2022] Open
Abstract
Mycoviruses are an important component of the virosphere, but our current knowledge of their genome organization diversity and evolution remains rudimentary. In this study, the mycovirus composition in a hypovirulent strain of Sclerotinia sclerotiorum was molecularly characterized. Nine mycoviruses were identified and assigned into eight potential families. Of them, six were close relatives of known mycoviruses, while the other three had unique genome organizations and evolutionary positions. A deltaflexivirus with a tripartite genome has evolved via arrangement and horizontal gene transfer events, which could be an evolutionary connection from unsegmented to segmented RNA viruses. Two mycoviruses had acquired a second helicase gene by two different evolutionary mechanisms. A rhabdovirus representing an independent viral evolutionary branch was the first to be confirmed to occur naturally in fungi. The major hypovirulence-associated factor, an endornavirus, was finally corroborated. Our study expands the diversity of mycoviruses and potential virocontrol agents, and also provides new insights into virus evolutionary modes including virus genome segmentation. Identification of mycoviruses in phytopathogenic fungi is necessary for understanding the origin of viruses and developing virocontrol strategies to protect plants. Nine mycoviruses with RNA genomes were identified in a hypovirulent strain of Sclerotinia sclerotiorum and were classified into eight potential viral families, suggesting that the composition of mycoviral communities was complex in this single fungal strain. They included four previously characterized mycoviruses and three distant relatives of known mycoviruses, as well as the first reports of a deltaflexivirus with a tripartite genome, and a fungal rhabdovirus. In addition, we found an endornavirus associated with hypovirulence in a phytopathogenic fungus. Our study makes a significant contribution because it not only expands the diversity-related knowledge of mycoviruses and potential virocontrol agents, but also provides new insights into mycovirus evolution.
Collapse
Affiliation(s)
- Fan Mu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Bo Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shufen Cheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jichun Jia
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yanping Fu
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jiasen Cheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yang Lin
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Tao Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jiatao Xie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- * E-mail:
| |
Collapse
|
7
|
Kondo H, Yoshida N, Fujita M, Maruyama K, Hyodo K, Hisano H, Tamada T, Andika IB, Suzuki N. Identification of a Novel Quinvirus in the Family Betaflexiviridae That Infects Winter Wheat. Front Microbiol 2021; 12:715545. [PMID: 34489904 PMCID: PMC8417474 DOI: 10.3389/fmicb.2021.715545] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/14/2021] [Indexed: 11/13/2022] Open
Abstract
Yellow mosaic disease in winter wheat is usually attributed to the infection by bymoviruses or furoviruses; however, there is still limited information on whether other viral agents are also associated with this disease. To investigate the wheat viromes associated with yellow mosaic disease, we carried out de novo RNA sequencing (RNA-seq) analyses of symptomatic and asymptomatic wheat-leaf samples obtained from a field in Hokkaido, Japan, in 2018 and 2019. The analyses revealed the infection by a novel betaflexivirus, which tentatively named wheat virus Q (WVQ), together with wheat yellow mosaic virus (WYMV, a bymovirus) and northern cereal mosaic virus (a cytorhabdovirus). Basic local alignment search tool (BLAST) analyses showed that the WVQ strains (of which there are at least three) were related to the members of the genus Foveavirus in the subfamily Quinvirinae (family Betaflexiviridae). In the phylogenetic tree, they form a clade distant from that of the foveaviruses, suggesting that WVQ is a member of a novel genus in the Quinvirinae. Laboratory tests confirmed that WVQ, like WYMV, is potentially transmitted through the soil to wheat plants. WVQ was also found to infect rye plants grown in the same field. Moreover, WVQ-derived small interfering RNAs accumulated in the infected wheat plants, indicating that WVQ infection induces antiviral RNA silencing responses. Given its common coexistence with WYMV, the impact of WVQ infection on yellow mosaic disease in the field warrants detailed investigation.
Collapse
Affiliation(s)
- Hideki Kondo
- Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki, Japan
| | - Naoto Yoshida
- Agricultural Research Institute, HOKUREN Federation of Agricultural Cooperatives, Naganuma, Japan
| | - Miki Fujita
- Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki, Japan
| | - Kazuyuki Maruyama
- Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki, Japan
| | - Kiwamu Hyodo
- Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki, Japan
| | - Hiroshi Hisano
- Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki, Japan
| | - Tetsuo Tamada
- Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki, Japan
- Agricultural Research Institute, HOKUREN Federation of Agricultural Cooperatives, Naganuma, Japan
| | - Ida Bagus Andika
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Nobuhiro Suzuki
- Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki, Japan
| |
Collapse
|
8
|
Dietzgen RG, Bejerman NE, Goodin MM, Higgins CM, Huot OB, Kondo H, Martin KM, Whitfield AE. Diversity and epidemiology of plant rhabdoviruses. Virus Res 2020; 281:197942. [PMID: 32201209 DOI: 10.1016/j.virusres.2020.197942] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 02/03/2020] [Accepted: 03/18/2020] [Indexed: 01/07/2023]
Abstract
Plant rhabdoviruses are recognized by their large bacilliform particles and for being able to replicate in both their plant hosts and arthropod vectors. This review highlights selected, better studied examples of plant rhabdoviruses, their genetic diversity, epidemiology and interactions with plant hosts and arthropod vectors: Alfalfa dwarf virus is classified as a cytorhabdovirus, but its multifunctional phosphoprotein is localized to the plant cell nucleus. Lettuce necrotic yellows virus subtypes may differentially interact with their aphid vectors leading to changes in virus population diversity. Interactions of rhabdoviruses that infect rice, maize and other grains are tightly associated with their specific leafhopper and planthopper vectors. Future outbreaks of vector-borne nucleorhabdoviruses may be predicted based on a world distribution map of the insect vectors. The epidemiology of coffee ringspot virus and its Brevipalpus mite vector is illustrated highlighting the symptomatology and biology of a dichorhavirus and potential impacts of climate change on its epidemiology.
Collapse
Affiliation(s)
- Ralf G Dietzgen
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, Queensland, 4072, Australia.
| | - Nicolas E Bejerman
- Instituto de Patología Vegetal, Centro de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria (IPAVE-CIAP-INTA), X5020ICA, Córdoba, Argentina
| | - Michael M Goodin
- Department of Plant Pathology, University of Kentucky, Lexington, KY, 40546, USA
| | - Colleen M Higgins
- School of Science, Auckland University of Technology, Auckland, 1142, New Zealand
| | - Ordom B Huot
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27606, USA
| | - Hideki Kondo
- Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046, Japan
| | - Kathleen M Martin
- Department of Entomology and Plant Pathology, Auburn University, AL, 36849, USA
| | - Anna E Whitfield
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27606, USA
| |
Collapse
|
9
|
Roy A, Stone AL, Otero-Colina G, Wei G, Brlansky RH, Ochoa R, Bauchan G, Schneider WL, Nakhla MK, Hartung JS. Reassortment of Genome Segments Creates Stable Lineages Among Strains of Orchid Fleck Virus Infecting Citrus in Mexico. PHYTOPATHOLOGY 2020; 110:106-120. [PMID: 31600117 DOI: 10.1094/phyto-07-19-0253-fi] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The genus Dichorhavirus contains viruses with bipartite, negative-sense, single-stranded RNA genomes that are transmitted by flat mites to hosts that include orchids, coffee, the genus Clerodendrum, and citrus. A dichorhavirus infecting citrus in Mexico is classified as a citrus strain of orchid fleck virus (OFV-Cit). We previously used RNA sequencing technologies on OFV-Cit samples from Mexico to develop an OFV-Cit-specific reverse transcription PCR (RT-PCR) assay. During assay validation, OFV-Cit-specific RT-PCR failed to produce an amplicon from some samples with clear symptoms of OFV-Cit. Characterization of this virus revealed that dichorhavirus-like particles were found in the nucleus. High-throughput sequencing of small RNAs from these citrus plants revealed a novel citrus strain of OFV, OFV-Cit2. Sequence comparisons with known orchid and citrus strains of OFV showed variation in the protein products encoded by genome segment 1 (RNA1). Strains of OFV clustered together based on host of origin, whether orchid or citrus, and were clearly separated from other dichorhaviruses described from infected citrus in Brazil. The variation in RNA1 between the original (now OFV-Cit1) and the new (OFV-Cit2) strain was not observed with genome segment 2 (RNA2), but instead, a common RNA2 molecule was shared among strains of OFV-Cit1 and -Cit2, a situation strikingly similar to OFV infecting orchids. We also collected mites at the affected groves, identified them as Brevipalpus californicus sensu stricto, and confirmed that they were infected by OFV-Cit1 or with both OFV-Cit1 and -Cit2. OFV-Cit1 and -Cit2 have coexisted at the same site in Toliman, Queretaro, Mexico since 2012. OFV strain-specific diagnostic tests were developed.
Collapse
Affiliation(s)
- Avijit Roy
- U.S. Department of Agriculture-APHIS PPQ S&T, Beltsville, MD 20705, U.S.A
| | - Andrew L Stone
- Foreign Disease Weed Science Research Unit, U.S. Department of Agriculture-Agriculture Research Service, Ft. Detrick, MD 21702, U.S.A
| | - Gabriel Otero-Colina
- Colegio de Postgraduados, Campus Montecillo, Texcoco, Edo. de Mex. CP56230, Mexico
| | - Gang Wei
- U.S. Department of Agriculture-APHIS PPQ S&T, Beltsville, MD 20705, U.S.A
| | | | - Ronald Ochoa
- U.S. Department of Agriculture-Agriculture Research Service, Beltsville, MD 20705, U.S.A
| | - Gary Bauchan
- U.S. Department of Agriculture-Agriculture Research Service, Beltsville, MD 20705, U.S.A
| | | | - Mark K Nakhla
- U.S. Department of Agriculture-APHIS PPQ S&T, Beltsville, MD 20705, U.S.A
| | - John S Hartung
- U.S. Department of Agriculture-Agriculture Research Service, Beltsville, MD 20705, U.S.A
| |
Collapse
|
10
|
Affiliation(s)
- Michael Goodin
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
- * E-mail:
| | - Antonia Dos Reis Figueira
- Universidade Federal de Lavras, Departamento de Fitopatologia, Caixa, CEP, Lavras, Minas Gerais, Brasil
| |
Collapse
|
11
|
Ortega V, Stone JA, Contreras EM, Iorio RM, Aguilar HC. Addicted to sugar: roles of glycans in the order Mononegavirales. Glycobiology 2019; 29:2-21. [PMID: 29878112 PMCID: PMC6291800 DOI: 10.1093/glycob/cwy053] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/29/2018] [Accepted: 06/05/2018] [Indexed: 12/25/2022] Open
Abstract
Glycosylation is a biologically important protein modification process by which a carbohydrate chain is enzymatically added to a protein at a specific amino acid residue. This process plays roles in many cellular functions, including intracellular trafficking, cell-cell signaling, protein folding and receptor binding. While glycosylation is a common host cell process, it is utilized by many pathogens as well. Protein glycosylation is widely employed by viruses for both host invasion and evasion of host immune responses. Thus better understanding of viral glycosylation functions has potential applications for improved antiviral therapeutic and vaccine development. Here, we summarize our current knowledge on the broad biological functions of glycans for the Mononegavirales, an order of enveloped negative-sense single-stranded RNA viruses of high medical importance that includes Ebola, rabies, measles and Nipah viruses. We discuss glycobiological findings by genera in alphabetical order within each of eight Mononegavirales families, namely, the bornaviruses, filoviruses, mymonaviruses, nyamiviruses, paramyxoviruses, pneumoviruses, rhabdoviruses and sunviruses.
Collapse
Affiliation(s)
- Victoria Ortega
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Jacquelyn A Stone
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA, USA
| | - Erik M Contreras
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Ronald M Iorio
- Department of Microbiology and Physiological Systems and Program in Immunology and Microbiology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Hector C Aguilar
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| |
Collapse
|
12
|
Freitas-Astúa J, Ramos-González PL, Arena GD, Tassi AD, Kitajima EW. Brevipalpus-transmitted viruses: parallelism beyond a common vector or convergent evolution of distantly related pathogens? Curr Opin Virol 2018; 33:66-73. [PMID: 30081359 DOI: 10.1016/j.coviro.2018.07.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 07/12/2018] [Accepted: 07/16/2018] [Indexed: 12/20/2022]
Abstract
Although diseases caused by Brevipalpus-transmitted viruses (BTV) became relevant for agriculture a century ago, their causal agents have been only recently characterized and classified in two new genera of plant-infecting viruses: Cilevirus and Dichorhavirus. In this review, we highlight both similarities and differences between these viruses emphasizing their current taxonomy and historical classification, phylogeny, genomic organization, gene expression, and the latest research developments on BTVs. Additionally, we stress particular features of interactions with their mite vectors and plant hosts that support, from an evolutionary perspective, the potential convergence of both viral groups.
Collapse
Affiliation(s)
- Juliana Freitas-Astúa
- Embrapa Cassava and Fruits, 44380-000 Cruz das Almas, BA, Brazil; Instituto Biológico, 04014-900 São Paulo, SP, Brazil.
| | | | - Gabriella Dias Arena
- Centro Apta Citros Sylvio Moreira, IAC, 13490-000 Cordeirópolis, SP, Brazil; Instituto de Biologia, Unicamp, 13083-862 Campinas, SP, Brazil
| | - Aline Daniele Tassi
- Departmento de Fitopatologia e Nematologia, ESALQ/USP, 13418-900 Piracicaba, SP, Brazil
| | | |
Collapse
|
13
|
Unveiling the complete genome sequence of clerodendrum chlorotic spot virus, a putative dichorhavirus infecting ornamental plants. Arch Virol 2018; 163:2519-2524. [PMID: 29869032 DOI: 10.1007/s00705-018-3857-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/16/2018] [Indexed: 01/10/2023]
Abstract
The genus Dichorhavirus includes plant-infecting rhabdoviruses with bisegmented genomes that are horizontally transmitted by false spider mites of the genus Brevipalpus. The complete genome sequences of three isolates of the putative dichorhavirus clerodendrum chlorotic spot virus were determined using next-generation sequencing (Illumina) and traditional RT-PCR. Their genome organization, sequence similarity and phylogenetic relationship to other viruses, and transmissibility by Brevipalpus yothersi mites support the assignment of these viruses to a new species of dichorhavirus, as suggested previously. New data are discussed stressing the reliability of the current rules for species demarcation and taxonomic status criteria within the genus Dichorhavirus.
Collapse
|
14
|
Segmentation of the rabies virus genome. Virus Res 2018; 252:68-75. [PMID: 29787783 DOI: 10.1016/j.virusres.2018.05.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 05/17/2018] [Accepted: 05/18/2018] [Indexed: 11/24/2022]
Abstract
We established a system for the recovery of a segmented recombinant rabies virus, the virus genome RNA of which was divided into two parts: segment 1 encoding the nucleoprotein, phosphoprotein, matrix protein, and glycoprotein genes, and segment 2 encoding the large RNA-dependent RNA polymerase gene. The morphology of the segmented recombinant rabies virus was bullet-like in shape with a length of approximately 130 nm, which is shorter than the 200-nm long non-segmented recombinant rabies virus. The segmented recombinant rabies virus was maintained for at least 18 passages. The virus multiplication rate of the segmented recombinant rabies virus was lower than that of the non-segmented recombinant rabies virus during the passages, and the relative amounts of virus genome RNAs for segment 1 and segment 2 differed in the supernatant of the segmented recombinant rabies virus infected cells. These results suggest that the segmented recombinant rabies virus packages either segment 1 or segment 2 into each virus particle. Thus, co-infection with segmented recombinant rabies virus particles packaging segment 1 or segment 2 may be necessary for the production of progeny virus.
Collapse
|
15
|
Abstract
A group of related bacilliform, nuclear viruses with a bisegmented negative-sense RNA genome that are transmitted by Brevipalpus mites likely in a circulative-propagative manner were recently classified in the new genus Dichorhavirus, family Rhabdoviridae. These viruses cause localized lesions on leaves, stems, and fruits of economically significant horticultural and ornamental plant species. Among its members, orchid fleck virus, citrus leprosis virus N, and coffee ringspot virus are most prominent. This chapter summarizes the current knowledge about these viruses, available detection techniques, and their interactions with their plant hosts and mite vectors.
Collapse
|
16
|
Complete genome sequence of maize yellow striate virus, a new cytorhabdovirus infecting maize and wheat crops in Argentina. Arch Virol 2017; 163:291-295. [PMID: 29052058 DOI: 10.1007/s00705-017-3579-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 09/14/2017] [Indexed: 01/02/2023]
Abstract
A rhabdovirus infecting maize and wheat crops in Argentina was molecularly characterized. Through next-generation sequencing (NGS) of symptomatic leaf samples, the complete genome was obtained of two isolates of maize yellow striate virus (MYSV), a putative new rhabdovirus, differing by only 0.4% at the nucleotide level. The MYSV genome consists of 12,654 nucleotides for maize and wheat virus isolates, and shares 71% nucleotide sequence identity with the complete genome of barley yellow striate mosaic virus (BYSMV, NC028244). Ten open reading frames (ORFs) were predicted in the MYSV genome from the antigenomic strand and were compared with their BYSMV counterparts. The highest amino acid sequence identity of the MYSV and BYSMV proteins was 80% between the L proteins, and the lowest was 37% between the proteins 4. Phylogenetic analysis suggested that the MYSV isolates are new members of the genus Cytorhabdovirus, family Rhabdoviridae. Yellow striate, affecting maize and wheat crops in Argentina, is an emergent disease that presents a potential economic risk for these widely distributed crops.
Collapse
|
17
|
Ramos-González PL, Chabi-Jesus C, Guerra-Peraza O, Tassi AD, Kitajima EW, Harakava R, Salaroli RB, Freitas-Astúa J. Citrus leprosis virus N: A New Dichorhavirus Causing Citrus Leprosis Disease. PHYTOPATHOLOGY 2017; 107:963-976. [PMID: 28398876 DOI: 10.1094/phyto-02-17-0042-r] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Citrus leprosis (CL) is a viral disease endemic to the Western Hemisphere that produces local necrotic and chlorotic lesions on leaves, branches, and fruit and causes serious yield reduction in citrus orchards. Samples of sweet orange (Citrus × sinensis) trees showing CL symptoms were collected during a survey in noncommercial citrus areas in the southeast region of Brazil in 2013 to 2016. Transmission electron microscopy analyses of foliar lesions confirmed the presence of rod-like viral particles commonly associated with CL in the nucleus and cytoplasm of infected cells. However, every attempt to identify these particles by reverse-transcription polymerase chain reaction tests failed, even though all described primers for the detection of known CL-causing cileviruses and dichorhaviruses were used. Next-generation sequencing of total RNA extracts from three symptomatic samples revealed the genome of distinct, although highly related (>92% nucleotide sequence identity), viruses whose genetic organization is similar to that of dichorhaviruses. The genome sequence of these viruses showed <62% nucleotide sequence identity with those of orchid fleck virus and coffee ringspot virus. Globally, the deduced amino acid sequences of the open reading frames they encode share 32.7 to 63.8% identity with the proteins of the dichorhavirids. Mites collected from both the naturally infected citrus trees and those used for the transmission of one of the characterized isolates to Arabidopsis plants were anatomically recognized as Brevipalpus phoenicis sensu stricto. Molecular and biological features indicate that the identified viruses belong to a new species of CL-associated dichorhavirus, which we propose to call Citrus leprosis N dichorhavirus. Our results, while emphasizing the increasing diversity of viruses causing CL disease, lead to a reevaluation of the nomenclature of those viruses assigned to the genus Dichorhavirus. In this regard, a comprehensive discussion is presented.
Collapse
Affiliation(s)
- Pedro Luis Ramos-González
- First, second, third, sixth, and eighth authors: Lab. Bioquímica Fitopatológica, Instituto Biológico, São Paulo 04014-002, Brazil; second, fourth, fifth, and seventh authors: Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, São Paulo 13418-900, Brazil; third author: Citrus Research & Education Center, University of Florida, Lake Alfred 33850; and eighth author: Embrapa Mandioca e Fruticultura, Cruz das Almas, Bahia 44380-000, Brazil
| | - Camila Chabi-Jesus
- First, second, third, sixth, and eighth authors: Lab. Bioquímica Fitopatológica, Instituto Biológico, São Paulo 04014-002, Brazil; second, fourth, fifth, and seventh authors: Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, São Paulo 13418-900, Brazil; third author: Citrus Research & Education Center, University of Florida, Lake Alfred 33850; and eighth author: Embrapa Mandioca e Fruticultura, Cruz das Almas, Bahia 44380-000, Brazil
| | - Orlene Guerra-Peraza
- First, second, third, sixth, and eighth authors: Lab. Bioquímica Fitopatológica, Instituto Biológico, São Paulo 04014-002, Brazil; second, fourth, fifth, and seventh authors: Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, São Paulo 13418-900, Brazil; third author: Citrus Research & Education Center, University of Florida, Lake Alfred 33850; and eighth author: Embrapa Mandioca e Fruticultura, Cruz das Almas, Bahia 44380-000, Brazil
| | - Aline Daniele Tassi
- First, second, third, sixth, and eighth authors: Lab. Bioquímica Fitopatológica, Instituto Biológico, São Paulo 04014-002, Brazil; second, fourth, fifth, and seventh authors: Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, São Paulo 13418-900, Brazil; third author: Citrus Research & Education Center, University of Florida, Lake Alfred 33850; and eighth author: Embrapa Mandioca e Fruticultura, Cruz das Almas, Bahia 44380-000, Brazil
| | - Elliot Watanabe Kitajima
- First, second, third, sixth, and eighth authors: Lab. Bioquímica Fitopatológica, Instituto Biológico, São Paulo 04014-002, Brazil; second, fourth, fifth, and seventh authors: Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, São Paulo 13418-900, Brazil; third author: Citrus Research & Education Center, University of Florida, Lake Alfred 33850; and eighth author: Embrapa Mandioca e Fruticultura, Cruz das Almas, Bahia 44380-000, Brazil
| | - Ricardo Harakava
- First, second, third, sixth, and eighth authors: Lab. Bioquímica Fitopatológica, Instituto Biológico, São Paulo 04014-002, Brazil; second, fourth, fifth, and seventh authors: Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, São Paulo 13418-900, Brazil; third author: Citrus Research & Education Center, University of Florida, Lake Alfred 33850; and eighth author: Embrapa Mandioca e Fruticultura, Cruz das Almas, Bahia 44380-000, Brazil
| | - Renato Barbosa Salaroli
- First, second, third, sixth, and eighth authors: Lab. Bioquímica Fitopatológica, Instituto Biológico, São Paulo 04014-002, Brazil; second, fourth, fifth, and seventh authors: Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, São Paulo 13418-900, Brazil; third author: Citrus Research & Education Center, University of Florida, Lake Alfred 33850; and eighth author: Embrapa Mandioca e Fruticultura, Cruz das Almas, Bahia 44380-000, Brazil
| | - Juliana Freitas-Astúa
- First, second, third, sixth, and eighth authors: Lab. Bioquímica Fitopatológica, Instituto Biológico, São Paulo 04014-002, Brazil; second, fourth, fifth, and seventh authors: Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, São Paulo 13418-900, Brazil; third author: Citrus Research & Education Center, University of Florida, Lake Alfred 33850; and eighth author: Embrapa Mandioca e Fruticultura, Cruz das Almas, Bahia 44380-000, Brazil
| |
Collapse
|
18
|
Jang C, Wang R, Wells J, Leon F, Farman M, Hammond J, Goodin MM. Genome sequence variation in the constricta strain dramatically alters the protein interaction and localization map of Potato yellow dwarf virus. J Gen Virol 2017; 98:1526-1536. [PMID: 28635588 PMCID: PMC5656794 DOI: 10.1099/jgv.0.000771] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 03/10/2017] [Indexed: 12/19/2022] Open
Abstract
The genome sequence of the constricta strain of Potato yellow dwarf virus (CYDV) was determined to be 12 792 nt long and organized into seven ORFs with the gene order 3'-N-X-P-Y-M-G-L-5', which encodes the nucleocapsid, phospho, movement, matrix, glyco, and RNA-dependent RNA polymerase proteins, respectively, except for X, which is of unknown function. Cloned ORFs for each gene, except L, were used to construct a protein interaction and localization map (PILM) for this virus, which shares greater than 80 % amino acid similarity in all ORFs except X and P with the sanguinolenta strain of this species (SYDV). Protein localization patterns and interactions unique to each viral strain were identified, resulting in strain-specific PILMs. Localization of CYDV and SYDV proteins in virus-infected cells mapped subcellular loci likely to be sites of replication, morphogenesis and movement.
Collapse
Affiliation(s)
- Chanyong Jang
- Department of Plant Pathology, University of Kentucky, Lexington, KY, USA
| | - Renyuan Wang
- Department of Plant Pathology, University of Kentucky, Lexington, KY, USA
| | - Joseph Wells
- Department of Plant Pathology, University of Kentucky, Lexington, KY, USA
| | - Fabian Leon
- Department of Plant Pathology, University of Kentucky, Lexington, KY, USA
| | - Mark Farman
- Department of Plant Pathology, University of Kentucky, Lexington, KY, USA
| | - John Hammond
- USDA-ARS, United States National Arboretum, Beltsville, MD, USA
| | - Michael M. Goodin
- Department of Plant Pathology, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
19
|
Kondo H, Hirota K, Maruyama K, Andika IB, Suzuki N. A possible occurrence of genome reassortment among bipartite rhabdoviruses. Virology 2017; 508:18-25. [PMID: 28478311 DOI: 10.1016/j.virol.2017.04.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 04/23/2017] [Accepted: 04/25/2017] [Indexed: 12/18/2022]
Abstract
Orchid fleck virus (OFV) represents a rhabdovirus with a unique bipartite genome. OFV genetic diversity at the whole genome level has not been described. Using the partial genome sequence of RNA1, we have determined that several OFV isolates derived from orchids in Japan belong to two genetically distant subgroups: subgroup I, the members of which are distributed worldwide but previously not known in Asia, and subgroup II, which is commonly distributed in Japan. However, complete genome sequence analysis of a novel Japanese subgroup I isolate revealed that although its RNA1 sequence differs considerably from those of subgroup II isolates, its RNA2 sequence is almost identical to them. Based on phylogenetic and recombination analyses, the genome reassortment events were predicted to occur between OFV subgroups including other unseen strains. Our data show that genome reassortment contributes to the genetic diversities of the bipartite rhabdoviruses and its occurrence may be geographically constrained.
Collapse
Affiliation(s)
- Hideki Kondo
- Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki 710-0046, Japan.
| | - Keisuke Hirota
- Tokushima Agriculture, Forestry and Fisheries Technology Support Center, Tokushima, Tokushima Prefecture 779-3233, Japan
| | - Kazuyuki Maruyama
- Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki 710-0046, Japan
| | - Ida Bagus Andika
- Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki 710-0046, Japan
| | - Nobuhiro Suzuki
- Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki 710-0046, Japan
| |
Collapse
|
20
|
Yang X, Huang J, Liu C, Chen B, Zhang T, Zhou G. Rice Stripe Mosaic Virus, a Novel Cytorhabdovirus Infecting Rice via Leafhopper Transmission. Front Microbiol 2017; 7:2140. [PMID: 28101087 PMCID: PMC5210121 DOI: 10.3389/fmicb.2016.02140] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 12/19/2016] [Indexed: 01/08/2023] Open
Abstract
A new rice viral disease exhibiting distinct symptoms-yellow stripes, mosaic and twisted tips on leaves-was found in China. Electron microscopy of infected leaf cells revealed the presence of bacilliform virions and electron-translucent granular-fibrillar viroplasm in the cytoplasm. The enveloped viral particles were 300 to 375 nm long and 45 to 55 nm wide. The leafhopper Recilia dorsalis was able to transmit the virus to rice seedlings, which subsequently exhibited symptoms similar to those observed in fields. The complete genome of the virus was obtained by small-RNA deep sequencing and reverse transcription-PCR product sequencing. The anti-genome contains seven open reading frames (ORFs). The deduced amino acids of ORF1, ORF5, and ORF7 are, respectively, homologous to the nucleocapsid protein (N), glycoprotein (G), and large polymerase protein (L) of known rhabdoviruses. The predicted product of ORF2 is identified as a phosphoprotein (P) based on its multiple potential phosphorylation sites and 12.6 to 21.0% amino acid (aa) identities with the P proteins of plant rhabdoviruses. The product of ORF4 is presumed to be the viral matrix (M) protein for it shares 10.3 to 14.3% aa identities with those of other rhabdoviruses. The above five products were confirmed as the viral structural proteins by SDS-PAGE and aa sequencing analyses of purified virus preparation. ORF3 and ORF6 are considered to encode two nonstructural proteins with unknown functions. Phylogenetic analysis based on protein N, G, and L amino acid sequences indicated that the isolated virus, which we have tentatively named Rice stripe mosaic virus (RSMV), is a new species in the genus Cytorhabdovirus. To our knowledge, RSMV is the only cytorhabdovirus naturally infecting rice and the first reported leafhopper-transmitted cytorhabdovirus. Our surveys of rice fields indicate that RSMV occurs frequently in Guangdong Province, China. Although the disease incidence is low at present, it might become serious with the vector insect population increasing.
Collapse
Affiliation(s)
- Xin Yang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural UniversityGuangdong, China
| | - Jilei Huang
- Instrumental Analysis and Research Center, South China Agricultural UniversityGuangdong, China
| | - Chuanhe Liu
- Instrumental Analysis and Research Center, South China Agricultural UniversityGuangdong, China
| | - Biao Chen
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural UniversityGuangdong, China
| | - Tong Zhang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural UniversityGuangdong, China
| | - Guohui Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural UniversityGuangdong, China
| |
Collapse
|
21
|
Dietzgen RG, Kondo H, Goodin MM, Kurath G, Vasilakis N. The family Rhabdoviridae: mono- and bipartite negative-sense RNA viruses with diverse genome organization and common evolutionary origins. Virus Res 2017; 227:158-170. [PMID: 27773769 PMCID: PMC5124403 DOI: 10.1016/j.virusres.2016.10.010] [Citation(s) in RCA: 170] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 10/18/2016] [Accepted: 10/18/2016] [Indexed: 12/24/2022]
Abstract
The family Rhabdoviridae consists of mostly enveloped, bullet-shaped or bacilliform viruses with a negative-sense, single-stranded RNA genome that infect vertebrates, invertebrates or plants. This ecological diversity is reflected by the diversity and complexity of their genomes. Five canonical structural protein genes are conserved in all rhabdoviruses, but may be overprinted, overlapped or interspersed with several novel and diverse accessory genes. This review gives an overview of the characteristics and diversity of rhabdoviruses, their taxonomic classification, replication mechanism, properties of classical rhabdoviruses such as rabies virus and rhabdoviruses with complex genomes, rhabdoviruses infecting aquatic species, and plant rhabdoviruses with both mono- and bipartite genomes.
Collapse
Affiliation(s)
- Ralf G Dietzgen
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, Queensland 4072, Australia.
| | - Hideki Kondo
- Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046, Japan
| | - Michael M Goodin
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, USA
| | - Gael Kurath
- U.S. Geological Survey, Western Fisheries Research Centre, Seattle, WA, USA
| | - Nikos Vasilakis
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX, 77555, USA
| |
Collapse
|
22
|
Hartung JS, Roy A, Fu S, Shao J, Schneider WL, Brlansky RH. History and Diversity of Citrus leprosis virus Recorded in Herbarium Specimens. PHYTOPATHOLOGY 2015; 105:1277-84. [PMID: 25961338 DOI: 10.1094/phyto-03-15-0064-r] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Leprosis refers to two diseases of citrus that present similar necrotic local lesions, often surrounded by chlorotic haloes on citrus. Two distinct viruses are associated with this disease, one that produces particles primarily in the nucleus of infected plant cells (Citrus leprosis virus nuclear type [CiLV-N]; Dichorhavirus) and another type that produces particles in the cytoplasm of infected plant cells (Citrus leprosis virus cytoplasmic type [CiLV-C]; Cilevirus). Both forms are transmitted by Brevipalpid mites and have bipartite, single-stranded, RNA genomes. CiLV-C and CiLV-N are present in South and Central America and as far north as parts of Mexico. Although leprosis disease was originally described from Florida, it disappeared from there in the 1960s. The United States Department of Agriculture-Agricultural Research Service maintains preserved citrus specimens identified at inspection stations 50 or more years ago with symptoms of citrus leprosis. We isolated RNA from these samples and performed degradome sequencing. We obtained nearly full-length genome sequences of both a typical CiLV-C isolate intercepted from Argentina in 1967 and a distinct CiLV-N isolate obtained in Florida in 1948. The latter is a novel form of CiLV-N, not known to exist anywhere in the world today. We have also documented the previously unreported presence of CiLV-N in Mexico in the mid-20th century.
Collapse
Affiliation(s)
- John S Hartung
- First and fourth authors: United States Department of Agriculture-Agricultural Research Service (USDA-ARS) Molecular Plant Pathology Laboratory, Beltsville, MD 20705; second and fifth authors: USDA-ARS Foreign Diseases and Weed Sciences Research Unit, Fort Detrick, MD; third author: USDA-ARS Molecular Plant Pathology Laboratory and Southwest University, Citrus Research Institute, Chongqing, China 400715; and sixth author: University of Florida, Citrus Research and Education Center, Lake Alfred 33850
| | - Avijit Roy
- First and fourth authors: United States Department of Agriculture-Agricultural Research Service (USDA-ARS) Molecular Plant Pathology Laboratory, Beltsville, MD 20705; second and fifth authors: USDA-ARS Foreign Diseases and Weed Sciences Research Unit, Fort Detrick, MD; third author: USDA-ARS Molecular Plant Pathology Laboratory and Southwest University, Citrus Research Institute, Chongqing, China 400715; and sixth author: University of Florida, Citrus Research and Education Center, Lake Alfred 33850
| | - Shimin Fu
- First and fourth authors: United States Department of Agriculture-Agricultural Research Service (USDA-ARS) Molecular Plant Pathology Laboratory, Beltsville, MD 20705; second and fifth authors: USDA-ARS Foreign Diseases and Weed Sciences Research Unit, Fort Detrick, MD; third author: USDA-ARS Molecular Plant Pathology Laboratory and Southwest University, Citrus Research Institute, Chongqing, China 400715; and sixth author: University of Florida, Citrus Research and Education Center, Lake Alfred 33850
| | - Jonathan Shao
- First and fourth authors: United States Department of Agriculture-Agricultural Research Service (USDA-ARS) Molecular Plant Pathology Laboratory, Beltsville, MD 20705; second and fifth authors: USDA-ARS Foreign Diseases and Weed Sciences Research Unit, Fort Detrick, MD; third author: USDA-ARS Molecular Plant Pathology Laboratory and Southwest University, Citrus Research Institute, Chongqing, China 400715; and sixth author: University of Florida, Citrus Research and Education Center, Lake Alfred 33850
| | - William L Schneider
- First and fourth authors: United States Department of Agriculture-Agricultural Research Service (USDA-ARS) Molecular Plant Pathology Laboratory, Beltsville, MD 20705; second and fifth authors: USDA-ARS Foreign Diseases and Weed Sciences Research Unit, Fort Detrick, MD; third author: USDA-ARS Molecular Plant Pathology Laboratory and Southwest University, Citrus Research Institute, Chongqing, China 400715; and sixth author: University of Florida, Citrus Research and Education Center, Lake Alfred 33850
| | - Ronald H Brlansky
- First and fourth authors: United States Department of Agriculture-Agricultural Research Service (USDA-ARS) Molecular Plant Pathology Laboratory, Beltsville, MD 20705; second and fifth authors: USDA-ARS Foreign Diseases and Weed Sciences Research Unit, Fort Detrick, MD; third author: USDA-ARS Molecular Plant Pathology Laboratory and Southwest University, Citrus Research Institute, Chongqing, China 400715; and sixth author: University of Florida, Citrus Research and Education Center, Lake Alfred 33850
| |
Collapse
|
23
|
Roy A, Stone AL, Shao J, Otero-Colina G, Wei G, Choudhary N, Achor D, Levy L, Nakhla MK, Hartung JS, Schneider WL, Brlansky RH. Identification and Molecular Characterization of Nuclear Citrus leprosis virus, a Member of the Proposed Dichorhavirus Genus Infecting Multiple Citrus Species in Mexico. PHYTOPATHOLOGY 2015; 105:564-75. [PMID: 25423071 DOI: 10.1094/phyto-09-14-0245-r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Citrus leprosis is one of the most destructive diseases of Citrus spp. and is associated with two unrelated virus groups that produce particles primarily in either the cytoplasm or nucleus of infected plant cells. Symptoms of leprosis, including chlorotic spots surrounded by yellow haloes on leaves and necrotic spots on twigs and fruit, were observed on leprosis-affected mandarin and navel sweet orange trees in the state of Querétaro, Mexico. Serological and molecular assays showed that the cytoplasmic types of Citrus leprosis virus (CiLV-C) often associated with leprosis symptomatic tissues were absent. However, using transmission electron microscopy, bullet-shaped rhabdovirus-like virions were observed in the nuclei and cytoplasm of the citrus leprosis-infected leaf tissues. An analysis of small RNA populations from symptomatic tissue was carried out to determine the genome sequence of the rhabdovirus-like particles observed in the citrus leprosis samples. The complete genome sequence showed that the nuclear type of CiLV (CiLV-N) present in the samples consisted of two negative-sense RNAs: 6,268-nucleotide (nt)-long RNA1 and 5,847-nt-long RNA2, excluding the poly(A) tails. CiLV-N had a genome organization identical to that of Orchid fleck virus (OFV), with the exception of shorter 5' untranslated regions in RNA1 (53 versus 205 nt) and RNA2 (34 versus 182 nt). Phylogenetic trees constructed with the amino acid sequences of the nucleocapsid (N) and glycoproteins (G) and the RNA polymerase (L protein) showed that CiLV-N clusters with OFV. Furthermore, phylogenetic analyses of N protein established CiLV-N as a member of the proposed genus Dichorhavirus. Reverse-transcription polymerase chain reaction primers for the detection of CiLV-N were designed based on the sequence of the N gene and the assay was optimized and tested to detect the presence of CiLV-N in both diseased and symptom-free plants.
Collapse
Affiliation(s)
- Avijit Roy
- First, sixth, seventh, and twelfth authors: University of Florida, IFAS, Plant Pathology Department, Citrus Research and Education Center, 700 Experiment Station Road, Lake Alfred, FL; second and eleventh authors: United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Foreign Disease-Weed Science Research Unit (FDWSRU), Fort Detrick, MD; third and tenth authors: USDA-ARS, Molecular Plant Pathology Laboratory (MPPL), Beltsville, MD; fourth author: Colegio de Postgraduados, Campus Montecillo, Texcoco, Edo. De Mex., CP 56230, México; fifth and ninth authors: USDA-Animal and Plant Health Inspection Service (APHIS)-Plant Protection and Quarantine (PPQ)-Center for Plant Health Science and Technology (CSIRO), Beltsville, MD; and eighth author: USDA-APHIS-PPQ-CPHST, Riverdale, MD
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Koh KW, Lu HC, Chan MT. Virus resistance in orchids. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 228:26-38. [PMID: 25438783 DOI: 10.1016/j.plantsci.2014.04.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Revised: 04/07/2014] [Accepted: 04/17/2014] [Indexed: 06/04/2023]
Abstract
Orchid plants, Phalaenopsis and Dendrobium in particular, are commercially valuable ornamental plants sold worldwide. Unfortunately, orchid plants are highly susceptible to viral infection by Cymbidium mosaic virus (CymMV) and Odotoglossum ringspot virus (ORSV), posing a major threat and serious economic loss to the orchid industry worldwide. A major challenge is to generate an effective method to overcome plant viral infection. With the development of optimized orchid transformation biotechnological techniques and the establishment of concepts of pathogen-derived resistance (PDR), the generation of plants resistant to viral infection has been achieved. The PDR concept involves introducing genes that is(are) derived from the virus into the host plant to induce RNA- or protein-mediated resistance. We here review the fundamental mechanism of the PDR concept, and illustrate its application in protecting against viral infection of orchid plants.
Collapse
Affiliation(s)
- Kah Wee Koh
- Academia Sinica Biotechnology Center in Southern Taiwan, Tainan, Taiwan
| | - Hsiang-Chia Lu
- Academia Sinica Biotechnology Center in Southern Taiwan, Tainan, Taiwan
| | - Ming-Tsair Chan
- Academia Sinica Biotechnology Center in Southern Taiwan, Tainan, Taiwan; Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
25
|
Ramalho T, Figueira A, Sotero A, Wang R, Geraldino Duarte P, Farman M, Goodin M. Characterization of Coffee ringspot virus-Lavras: A model for an emerging threat to coffee production and quality. Virology 2014; 464-465:385-396. [DOI: 10.1016/j.virol.2014.07.031] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 06/24/2014] [Accepted: 07/19/2014] [Indexed: 10/24/2022]
|
26
|
Liu L, Xie J, Cheng J, Fu Y, Li G, Yi X, Jiang D. Fungal negative-stranded RNA virus that is related to bornaviruses and nyaviruses. Proc Natl Acad Sci U S A 2014; 111:12205-12210. [PMID: 25092337 PMCID: PMC4143027 DOI: 10.1073/pnas.1401786111] [Citation(s) in RCA: 167] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Mycoviruses are widespread in nature and often occur with dsRNA and positive-stranded RNA genomes. Recently, strong evidence from RNA sequencing analysis suggested that negative-stranded (-)ssRNA viruses could infect fungi. Here we describe a (-)ssRNA virus, Sclerotinia sclerotiorum negative-stranded RNA virus 1 (SsNSRV-1), isolated from a hypovirulent strain of Sclerotinia sclerotiorum. The complete genome of SsNSRV-1 is 10,002 nt with six ORFs that are nonoverlapping and linearly arranged. Conserved gene-junction sequences that occur widely in mononegaviruses, (A/U)(U/A/C)UAUU(U/A)AA(U/G)AAAACUUAGG(A/U)(G/U), were identified between these ORFs. The analyses 5' and 3' rapid amplification of cDNA ends showed that all genes can be transcribed independently. ORF V encodes the largest protein that contains a conserved mononegaviral RNA-dependent RNA polymerase (RdRp) domain. Putative enveloped virion-like structures with filamentous morphology similar to members of Filoviridae were observed both in virion preparation samples and in ultrathin hyphal sections. The nucleocapsids are long, flexible, and helical; and are 22 nm in diameter and 200-2,000 nm in length. SDS/PAGE showed that the nucleocapsid possibly contains two nucleoproteins with different molecular masses, ∼43 kDa (p43) and ∼41 kDa (p41), and both are translated from ORF II. Purified SsNSRV-1 virions successfully transfected a virus-free strain of S. sclerotiorum and conferred hypovirulence. Phylogenetic analysis based on RdRp showed that SsNSRV-1 is clustered with viruses of Nyamiviridae and Bornaviridae. Moreover, SsNSRV-1 is widely distributed, as it has been detected in different regions of China. Our findings demonstrate that a (-)ssRNA virus can occur naturally in fungi and enhance our understanding of the ecology and evolution of (-)ssRNA viruses.
Collapse
Affiliation(s)
- Lijiang Liu
- State Key Laboratory of Agricultural Microbiology andThe Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Jiatao Xie
- The Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Jiasen Cheng
- The Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Yanping Fu
- The Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Guoqing Li
- State Key Laboratory of Agricultural Microbiology andThe Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Xianhong Yi
- The Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology andThe Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| |
Collapse
|
27
|
Cruz-Jaramillo JL, Ruiz-Medrano R, Rojas-Morales L, López-Buenfil JA, Morales-Galván O, Chavarín-Palacio C, Ramírez-Pool JA, Xoconostle-Cázares B. Characterization of a proposed dichorhavirus associated with the citrus leprosis disease and analysis of the host response. Viruses 2014; 6:2602-22. [PMID: 25004279 PMCID: PMC4113785 DOI: 10.3390/v6072602] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 05/22/2014] [Accepted: 05/28/2014] [Indexed: 12/23/2022] Open
Abstract
The causal agents of Citrus leprosis are viruses; however, extant diagnostic methods to identify them have failed to detect known viruses in orange, mandarin, lime and bitter orange trees with severe leprosis symptoms in Mexico, an important citrus producer. Using high throughput sequencing, a virus associated with citrus leprosis was identified, belonging to the proposed Dichorhavirus genus. The virus was termed Citrus Necrotic Spot Virus (CNSV) and contains two negative-strand RNA components; virions accumulate in the cytoplasm and are associated with plasmodesmata-channels interconnecting neighboring cells-suggesting a mode of spread within the plant. The present study provides insights into the nature of this pathogen and the corresponding plant response, which is likely similar to other pathogens that do not spread systemically in plants.
Collapse
Affiliation(s)
- José Luis Cruz-Jaramillo
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional Av. IPN 2508, Zacatenco 07360, México D.F., Mexico.
| | - Roberto Ruiz-Medrano
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional Av. IPN 2508, Zacatenco 07360, México D.F., Mexico.
| | - Lourdes Rojas-Morales
- LaNSE, Centro de Investigación y de Estudios Avanzados del IPN Av. IPN 2508, Zacatenco 07360, México D.F., Mexico.
| | - José Abel López-Buenfil
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional Av. IPN 2508, Zacatenco 07360, México D.F., Mexico.
| | - Oscar Morales-Galván
- Servicio Nacional de Sanidad Inocuidad y Calidad Agroalimentaria, Guillermo Pérez Valenzuela 127, Coyoacán 04100, México D.F., Mexico.
| | - Claudio Chavarín-Palacio
- Servicio Nacional de Sanidad Inocuidad y Calidad Agroalimentaria, Guillermo Pérez Valenzuela 127, Coyoacán 04100, México D.F., Mexico.
| | - José Abrahán Ramírez-Pool
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional Av. IPN 2508, Zacatenco 07360, México D.F., Mexico.
| | - Beatriz Xoconostle-Cázares
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional Av. IPN 2508, Zacatenco 07360, México D.F., Mexico.
| |
Collapse
|
28
|
Kondo H, Maruyama K, Chiba S, Andika IB, Suzuki N. Transcriptional mapping of the messenger and leader RNAs of orchid fleck virus, a bisegmented negative-strand RNA virus. Virology 2014; 452-453:166-74. [PMID: 24606694 DOI: 10.1016/j.virol.2014.01.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 12/25/2013] [Accepted: 01/11/2014] [Indexed: 11/24/2022]
Abstract
The transcriptional strategy of orchid fleck virus (OFV), which has a two-segmented negative-strand RNA genome and resembles plant nucleorhabdoviruses, remains unexplored. In this study, the transcripts of six genes encoded by OFV RNA1 and RNA2 in the poly(A)-enriched RNA fraction from infected plants were molecularly characterized. All of the OFV mRNAs were initiated at a start sequence 3'-UU-5' with one to three non-viral adenine nucleotides which were added at the 5' end of each mRNA, whereas their 3' termini ended with a 5'-AUUUAAA(U/G)AAAA(A)n-3' sequence. We also identified the presence of polyadenylated short transcripts derived from the 3'-terminal leader regions of both genomic and antigenomic strands, providing the first example of plus- and minus-strand leader RNAs in a segmented minus-strand RNA virus. The similarity in the transcriptional strategy between this bipartite OFV and monopartite rhabdoviruses, especially nucleorhabdoviruses (family Rhabdoviridae) is additional support for their close relationship.
Collapse
Affiliation(s)
- Hideki Kondo
- Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki 710-0046, Japan.
| | - Kazuyuki Maruyama
- Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki 710-0046, Japan
| | - Sotaro Chiba
- Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki 710-0046, Japan
| | - Ida Bagus Andika
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Nobuhiro Suzuki
- Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki 710-0046, Japan
| |
Collapse
|
29
|
Dietzgen RG, Kuhn JH, Clawson AN, Freitas-Astúa J, Goodin MM, Kitajima EW, Kondo H, Wetzel T, Whitfield AE. Dichorhavirus: a proposed new genus for Brevipalpus mite-transmitted, nuclear, bacilliform, bipartite, negative-strand RNA plant viruses. Arch Virol 2013; 159:607-19. [PMID: 24081823 DOI: 10.1007/s00705-013-1834-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 07/16/2013] [Indexed: 12/18/2022]
Abstract
Orchid fleck virus (OFV) is an unassigned negative-sense, single-stranded (-)ssRNA plant virus that was previously suggested to be included in the family Rhabdoviridae, order Mononegavirales. Although OFV shares some biological characteristics, including nuclear cytopathological effects, gene order, and sequence similarities, with nucleorhabdoviruses, its taxonomic status is unclear because unlike all mononegaviruses, OFV has a segmented genome and its particles are not enveloped. This article analyses the available biological, physico-chemical, and nucleotide sequence evidence that seems to indicate that OFV and several other Brevipalpus mite-transmitted short bacilliform (-)ssRNA viruses are likely related and may be classified taxonomically in novel species in a new free-floating genus Dichorhavirus.
Collapse
Affiliation(s)
- Ralf G Dietzgen
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, 4072, Australia,
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Garita LC, Tassi AD, Calegario RF, Kitajima EW, Carbonell SAM, Freitas-Astúa J. Common Bean: Experimental Indicator Plant for Citrus leprosis virus C and Some Other Cytoplasmic-Type Brevipalpus-Transmitted Viruses. PLANT DISEASE 2013; 97:1346-1351. [PMID: 30722150 DOI: 10.1094/pdis-12-12-1143-re] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Citrus leprosis (CL) caused by Citrus leprosis virus C (CiLV-C) is present in Latin America from Mexico to Argentina, where citrus plants are grown. CiLV-C is transmitted by the tenuipalpid mite, Brevipalpus phoenicis, causing localized lesions on citrus leaves, fruit, and stems. One limitation to study of the virus-vector-host relationship in this pathosystem is the lack of a suitable assay plant. On Citrus spp. used as susceptible hosts, symptoms may take weeks or months to appear after experimental inoculation by viruliferous mites. Common bean (Phaseolus vulgaris) was found to respond with localized necrotic lesions after inoculation with viruliferous B. phoenicis in 5 days. Thus far, 113 tested common bean varieties and lines and some recent accessions of varied genetic background behaved in a similar way. Black bean 'IAC Una' was adopted as a standard test variety. When inoculated leaves were left at 28 to 30°C, the period for the lesion appearance was reduced to only 2 days. Confirmation that the lesions on common bean leaves are caused by CiLV-C were made by transmission electron microscopy, immunofluorescence, enzyme-linked immunosorbent assay, and reverse-transcription polymerase chain reaction specific for CiLV-C. Common bean plants mite-inoculated with some other cytoplasmic-type Brevipalpus-transmitted viruses (BrTVs) (Passion fruit green spot virus, Solanum violaefolium ringspot virus, Ligustrum ringspot virus, and Hibiscus green spot virus) also responded with necrotic local lesions and may serve as test plants for these viruses. Two nuclear types of BrTV (Coffee ringspot virus and Clerodendrum chlorotic spot virus) were unable to produce symptoms on common bean.
Collapse
Affiliation(s)
- L C Garita
- Departamento de Fitopatologia e Nematologia, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Caixa Postal 9, 13418-900 Piracicaba, SP, Brazil
| | - A D Tassi
- Departamento de Fitopatologia e Nematologia, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Caixa Postal 9, 13418-900 Piracicaba, SP, Brazil
| | - R F Calegario
- Departamento de Fitopatologia e Nematologia, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Caixa Postal 9, 13418-900 Piracicaba, SP, Brazil
| | - E W Kitajima
- Departamento de Fitopatologia e Nematologia, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Caixa Postal 9, 13418-900 Piracicaba, SP, Brazil
| | - S A M Carbonell
- Centro de Grãos e Fibras, Instituto Agronômico de Campinas, Caixa Postal 28, 12020-902, Campinas, SP, Brazil
| | - J Freitas-Astúa
- Embrapa Mandioca e Fruticultura, Caixa Postal 7, 44380-000 Cruz das Almas, BA, Brazil, and Centro APTA Citros Sylvio Moreira, Instituto Agronômico de Campinas, Caixa Postal 4, 13490-970 Cordeirópolis, SP, Brazil
| |
Collapse
|
31
|
Ghedin E, Rogers MB, Widen SG, Guzman H, Travassos da Rosa APA, Wood TG, Fitch A, Popov V, Holmes EC, Walker PJ, Vasilakis N, Tesh RB. Kolente virus, a rhabdovirus species isolated from ticks and bats in the Republic of Guinea. J Gen Virol 2013; 94:2609-2615. [PMID: 24062532 DOI: 10.1099/vir.0.055939-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Kolente virus (KOLEV) is a rhabdovirus originally isolated from ticks and a bat in Guinea, West Africa, in 1985. Although tests at the time of isolation suggested that KOLEV is a novel rhabdovirus, it has remained largely uncharacterized. We assembled the complete genome sequence of the prototype strain DakAr K7292, which was found to encode the five canonical rhabdovirus structural proteins (N, P, M, G and L) with alternative ORFs (>180 nt) in the P and L genes. Serologically, KOLEV exhibited a weak antigenic relationship with Barur and Fukuoka viruses in the Kern Canyon group. Phylogenetic analysis revealed that KOLEV represents a distinct and divergent lineage that shows no clear relationship to any rhabdovirus except Oita virus, although with limited phylogenetic resolution. In summary, KOLEV represents a novel species in the family Rhabdoviridae.
Collapse
Affiliation(s)
- Elodie Ghedin
- Center for Vaccine Research, Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Matthew B Rogers
- Center for Vaccine Research, Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Steven G Widen
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Hilda Guzman
- Center for Biodefense and Emerging Infectious Diseases and Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Amelia P A Travassos da Rosa
- Center for Biodefense and Emerging Infectious Diseases and Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Thomas G Wood
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Adam Fitch
- Center for Vaccine Research, Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Vsevolod Popov
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA.,Center for Tropical Diseases, University of Texas Medical Branch, Galveston, TX, USA.,Center for Biodefense and Emerging Infectious Diseases and Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Edward C Holmes
- Fogarty International Center, National Institutes of Health, Bethesda, MD, USA.,Sydney Emerging Infections & Biosecurity Institute, School of Biological Sciences and Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia
| | - Peter J Walker
- CSIRO Animal, Food and Health Sciences, Australian Animal Health Laboratory, Geelong, VIC 3220, Australia
| | - Nikos Vasilakis
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA.,Center for Tropical Diseases, University of Texas Medical Branch, Galveston, TX, USA.,Center for Biodefense and Emerging Infectious Diseases and Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Robert B Tesh
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA.,Center for Tropical Diseases, University of Texas Medical Branch, Galveston, TX, USA.,Center for Biodefense and Emerging Infectious Diseases and Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
32
|
Kondo H, Hirano S, Chiba S, Andika IB, Hirai M, Maeda T, Tamada T. Characterization of burdock mottle virus, a novel member of the genus Benyvirus, and the identification of benyvirus-related sequences in the plant and insect genomes. Virus Res 2013; 177:75-86. [PMID: 23911632 DOI: 10.1016/j.virusres.2013.07.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 07/17/2013] [Accepted: 07/18/2013] [Indexed: 11/30/2022]
Abstract
The complete nucleotide sequence of the burdock mottle virus (BdMoV) isolated from an edible burdock plant (Arctium lappa) in Japan has been determined. BdMoV has a bipartite genome, whose organization is similar to RNA1 and RNA2 of benyviruses, beet necrotic yellow vein virus (BNYVV), beet soil-borne mosaic virus (BSBMV), and rice stripe necrosis virus (RSNV). BdMoV RNA1 (7038 nt) contains a single open reading frame (ORF) encoding a 249-kDa polypeptide that consists of methyl-transferase, helicase, papain-like protease, AlkB-like, and RNA-dependent RNA polymerase domains. The AlkB-like domain sequence is not present in the proteins encoded by other known benyviruses, but is found in replication-associated proteins of viruses mainly belonging to the families Alfaflexiviridae and Betaflexiviridae. BdMoV RNA2 (4315 nt) contains six ORFs that are similar to those of benyviruses: these are coat protein (CP), CP readthrough, triple gene block movement and cysteine-rich proteins. Phylogenetic analyses showed that BdMoV is more closely related to BNYVV and BSBMV than to RSNV. Database searches showed that benyvirus replicase-related sequences are present in the chromosomes of a chickpea plant (Cicer arietinum) and a blood-sucking insect (Rhodnius prolixus). Some other benyvirus-related sequences are found in the transcriptome shotgun libraries of a few species of plants and a bark beetle. Our results show that BdMoV is a distinct species of the genus Benyvirus and that ancestral and extant benyviruses may have infected or currently infect a wide range of hosts, including plants and insects.
Collapse
Affiliation(s)
- Hideki Kondo
- Institute of Plant Science and Resources (IPSR), Okayama University, 2-20-1, Chuo, Kurashiki 710-0046, Japan.
| | | | | | | | | | | | | |
Collapse
|
33
|
Roy A, Stone A, Otero-Colina G, Wei G, Choudhary N, Achor D, Shao J, Levy L, Nakhla MK, Hollingsworth CR, Hartung JS, Schneider WL, Brlansky RH. Genome assembly of citrus leprosis virus nuclear type reveals a close association with orchid fleck virus. GENOME ANNOUNCEMENTS 2013; 1:e00519-13. [PMID: 23887919 PMCID: PMC3735072 DOI: 10.1128/genomea.00519-13] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 06/24/2013] [Indexed: 01/01/2023]
Abstract
The complete genome of citrus leprosis virus nuclear type (CiLV-N) was identified by small RNA sequencing utilizing leprosis-affected citrus samples collected from the state of Querétaro, Mexico. The nucleotide identity and phylogenetic analysis indicate that CiLV-N is very closely related to orchid fleck virus, which typically infects Cymbidium species.
Collapse
Affiliation(s)
- Avijit Roy
- University of Florida, IFAS, Plant Pathology Department, Citrus Research and Education Center, Lake Alfred, Florida, USA
- USDA-ARS, FDWSRU, Ft. Detrick, Maryland, USA
| | | | | | - Gang Wei
- USDA-APHIS-PPQ-CPHST, Beltsville, Maryland, USA
| | - Nandlal Choudhary
- University of Florida, IFAS, Plant Pathology Department, Citrus Research and Education Center, Lake Alfred, Florida, USA
| | - Diann Achor
- University of Florida, IFAS, Plant Pathology Department, Citrus Research and Education Center, Lake Alfred, Florida, USA
| | | | | | | | | | | | | | - Ronald H. Brlansky
- University of Florida, IFAS, Plant Pathology Department, Citrus Research and Education Center, Lake Alfred, Florida, USA
| |
Collapse
|
34
|
Kondo H, Chiba S, Andika IB, Maruyama K, Tamada T, Suzuki N. Orchid fleck virus structural proteins N and P form intranuclear viroplasm-like structures in the absence of viral infection. J Virol 2013; 87:7423-34. [PMID: 23616651 PMCID: PMC3700308 DOI: 10.1128/jvi.00270-13] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 04/15/2013] [Indexed: 01/25/2023] Open
Abstract
Orchid fleck virus (OFV) has a unique two-segmented negative-sense RNA genome that resembles that of plant nucleorhabdoviruses. In infected plant cells, OFV and nucleorhabdoviruses induce an intranuclear electron-lucent viroplasm that is believed to be the site for virus replication. In this study, we investigated the molecular mechanism by which OFV viroplasms are produced in vivo. Among OFV-encoded proteins, the nucleocapsid protein (N) and the putative phosphoprotein (P) were present in nuclear fractions of OFV-infected Nicotiana benthamiana plants. Transient coexpression of N and P, in the absence of virus infection, was shown to be sufficient for formation of an intranuclear viroplasm-like structure in plant cells. When expressed independently as a fluorescent protein fusion product in uninfected plant cells, N protein accumulated throughout the cell, while P protein accumulated in the nucleus. However, the N protein, when coexpressed with P, was recruited to a subnuclear region to induce a large viroplasm-like focus. Deletion and substitution mutagenesis demonstrated that the P protein contains a nuclear localization signal (NLS). Artificial nuclear targeting of the N-protein mutant was insufficient for formation of viroplasm-like structures in the absence of P. A bimolecular fluorescence complementation assay confirmed interactions between the N and P proteins within subnuclear viroplasm-like foci and interactions of two of the N. benthamiana importin-α homologues with the P protein but not with the N protein. Taken together, our results suggest that viroplasm formation by OFV requires nuclear accumulation of both the N and P proteins, which is mediated by P-NLS, unlike nucleorhabdovirus viroplasm utilizing the NLS on protein N.
Collapse
Affiliation(s)
- Hideki Kondo
- Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki, Japan.
| | | | | | | | | | | |
Collapse
|
35
|
[Plant rhabdoviruses with bipartite genomes]. Uirusu 2013; 63:143-54. [PMID: 25366049 DOI: 10.2222/jsv.63.143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Members of the family Rhabdoviridae (order Mononegavirales) have a broad range of hosts, including humans, livestock, fish, plants, and invertebrates. They have a nonsegmented negative-sense RNA as the genome. Orchid fleck virus (OFV) is distributed world-wide on several orchid plants and transmitted by the false spider mite, Brevipalpus californicus. Based on its virions morphology and cytopathic effects in the infected cells, OFV was tentatively placed as unassigned plant rhabdoviruses in the sixth ICTV Report. However, the molecular studies reveled that OFV has a unique two-segmented negative-sense RNA genome that resembles monopartite genomes of plant nucleorhabdoviruses. In this review, we describe the current knowledge on the genome structure and gene expression strategy of OFV, the possible mechanism of nuclear viroplasm formation, and the taxonomical consideration of the virus as well.
Collapse
|
36
|
Evidence for negative-strand RNA virus infection in fungi. Virology 2013; 435:201-9. [DOI: 10.1016/j.virol.2012.10.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2012] [Revised: 09/27/2012] [Accepted: 10/02/2012] [Indexed: 11/22/2022]
|
37
|
Peng DW, Zheng GH, Zheng ZZ, Tong QX, Ming YL. Orchid fleck virus: an unclassified bipartite, negative-sense RNA plant virus. Arch Virol 2012; 158:313-23. [DOI: 10.1007/s00705-012-1506-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2012] [Accepted: 09/02/2012] [Indexed: 12/27/2022]
|
38
|
Nunes MA, de Oliveira CAL, de Oliveira ML, Kitajima EW, Hilf ME, Gottwald TR, Freitas-Astúa J. Transmission of Citrus leprosis virus C by Brevipalpus phoenicis (Geijskes) to Alternative Host Plants Found in Citrus Orchards. PLANT DISEASE 2012; 96:968-972. [PMID: 30727203 DOI: 10.1094/pdis-06-11-0538] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The equivalent of US$75 million is spent each year in Brazil to control Brevipalpus phoenicis, a mite vector of Citrus leprosis virus C (CiLV-C). In this study, we investigated the possibility that hedgerows and windbreaks normally found in citrus orchards could host CiLV-C. Mites confined by an adhesive barrier were reared on sweet orange fruit with leprosis symptoms then were transferred to leaves of Hibiscus rosa-sinensis, Malvaviscus arboreus, Grevilea robusta, Bixa orellana, and Citrus sinensis. Ninety days post infestation, the descendant mites were transferred to Pera sweet orange plants to verify the transmissibility of the virus back to citrus. Nonviruliferous mites which had no feeding access to diseased tissue were used as controls. Local chlorotic or necrotic spots and ringspots, symptoms of leprosis disease, appeared in most plants tested. Results generated by reversetranscription polymerase chain reaction with primers specific for CiLV-C and by electron microscope analyses confirmed the susceptibility of these plants to CiLV-C.
Collapse
Affiliation(s)
- M A Nunes
- Centro APTA Citros Sylvio Moreira-IAC, CP 4, 13490-970, Cordeirópolis, SP, Brazil
| | - C A L de Oliveira
- Depto. Fitossanidade, FCAV/UNESP, Via de acesso Paulo Castellane, s/n, 14884-900, Jaboticabal-SP, Brazil
| | - M L de Oliveira
- Depto. Fitossanidade, FCAV/UNESP, Via de acesso Paulo Castellane, s/n, 14884-900, Jaboticabal-SP, Brazil
| | - E W Kitajima
- Depto. Fitopatologia e Nematologia, ESALQ, CP 9, 13418-900, Piracicaba-SP, Brazil
| | - M E Hilf
- United States Department of Agriculture-Agricultural Research Service USHRL, Ft. Pierce FL
| | - T R Gottwald
- United States Department of Agriculture-Agricultural Research Service USHRL, Ft. Pierce FL
| | - J Freitas-Astúa
- Embrapa Cassava and Fruits/Centro APTA Citros Sylvio Moreira-IAC, CP 4, 13490-970, Cordeirópolis, SP, Brazil
| |
Collapse
|
39
|
Mochizuki T, Prangishvili D. A simple and sensitive method for determining the strand orientation of single-stranded viral genomes. J Virol Methods 2012; 185:149-51. [PMID: 22659067 DOI: 10.1016/j.jviromet.2012.05.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 05/07/2012] [Accepted: 05/21/2012] [Indexed: 10/28/2022]
Abstract
Determining the nature of the viral genome is one of the first steps in characterization of any new virus. However, in the case of viruses with a single-stranded genome, it is not always simple to identify its orientation. In this study, a rapid, sensitive and simple PCR-based method is described to identify the strand orientation of single-stranded viral genomes. This method has been tested on the single-stranded DNA viruses, M13 and phiX174.
Collapse
Affiliation(s)
- Tomohiro Mochizuki
- Institut Pasteur, Department of Microbiology, Unité Biologie Moléculaire du Gène chez les Extrêmophiles, 75015 Paris, France.
| | | |
Collapse
|
40
|
Lin YH, Chiba S, Tani A, Kondo H, Sasaki A, Kanematsu S, Suzuki N. A novel quadripartite dsRNA virus isolated from a phytopathogenic filamentous fungus, Rosellinia necatrix. Virology 2012; 426:42-50. [DOI: 10.1016/j.virol.2012.01.013] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 12/05/2011] [Accepted: 01/14/2012] [Indexed: 01/26/2023]
|
41
|
Abstract
The family Rhabdoviridae has a non-segmented single stranded negative-sense RNA and its genome ranges in size from approximately 11 kb to almost 16 kb. It is one of the most ecologically diverse families of RNA viruses with members infecting a wide range of organisms. The five structural protein genes are arranged in the same linear order (3'-N-P-M-G-L-5') and may be interspersed with one more additional accessory gene. For many years, a full of knowledge of the rhabdoviridae has been established on extensive studies of two kinds of prototype viruses; vesicular stomatitis virus (VSV) and rabies virus (RABV). Among them, the genus Lyssavirus includes RABV and rabies-related viruses naturally infect mammals and chiropterans via bite-exposure by rabid animals and finally cause fatal encephalitis. In this review, we describe the sketch of the various virological features of the Rhabdoviridae, especially focusing on VSV and RABV.
Collapse
|
42
|
Negative-strand RNA viruses: the plant-infecting counterparts. Virus Res 2011; 162:184-202. [PMID: 21963660 DOI: 10.1016/j.virusres.2011.09.028] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 09/15/2011] [Accepted: 09/16/2011] [Indexed: 11/21/2022]
Abstract
While a large number of negative-strand (-)RNA viruses infect animals and humans, a relative small number have plants as their primary host. Some of these have been classified within families together with animal/human infecting viruses due to similarities in particle morphology and genome organization, while others have just recently been/or are still classified in floating genera. In most cases, at least two striking differences can still be discerned between the animal/human-infecting viruses and their plant-infecting counterparts which for the latter relate to their adaptation to plants as hosts. The first one is the capacity to modify plasmodesmata to facilitate systemic spread of infectious viral entities throughout the plant host. The second one is the capacity to counteract RNA interference (RNAi, also referred to as RNA silencing), the innate antiviral defence system of plants and insects. In this review an overview will be presented on the negative-strand RNA plant viruses classified within the families Bunyaviridae, Rhabdoviridae, Ophioviridae and floating genera Tenuivirus and Varicosavirus. Genetic differences with the animal-infecting counterparts and their evolutionary descendants will be described in light of the above processes.
Collapse
|
43
|
Fort P, Albertini A, Van-Hua A, Berthomieu A, Roche S, Delsuc F, Pasteur N, Capy P, Gaudin Y, Weill M. Fossil rhabdoviral sequences integrated into arthropod genomes: ontogeny, evolution, and potential functionality. Mol Biol Evol 2011; 29:381-90. [PMID: 21917725 DOI: 10.1093/molbev/msr226] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Retroelements represent a considerable fraction of many eukaryotic genomes and are considered major drives for adaptive genetic innovations. Recent discoveries showed that despite not normally using DNA intermediates like retroviruses do, Mononegaviruses (i.e., viruses with nonsegmented, negative-sense RNA genomes) can integrate gene fragments into the genomes of their hosts. This was shown for Bornaviridae and Filoviridae, the sequences of which have been found integrated into the germ line cells of many vertebrate hosts. Here, we show that Rhabdoviridae sequences, the major Mononegavirales family, have integrated only into the genomes of arthropod species. We identified 185 integrated rhabdoviral elements (IREs) coding for nucleoproteins, glycoproteins, or RNA-dependent RNA polymerases; they were mostly found in the genomes of the mosquito Aedes aegypti and the blacklegged tick Ixodes scapularis. Phylogenetic analyses showed that most IREs in A. aegypti derived from multiple independent integration events. Since RNA viruses are submitted to much higher substitution rates as compared with their hosts, IREs thus represent fossil traces of the diversity of extinct Rhabdoviruses. Furthermore, analyses of orthologous IREs in A. aegypti field mosquitoes sampled worldwide identified an integrated polymerase IRE fragment that appeared under purifying selection within several million years, which supports a functional role in the host's biology. These results show that A. aegypti was subjected to repeated Rhabdovirus infectious episodes during its evolution history, which led to the accumulation of many integrated sequences. They also suggest that like retroviruses, integrated rhabdoviral sequences may participate actively in the evolution of their hosts.
Collapse
Affiliation(s)
- Philippe Fort
- Centre de Recherche de Biochimie Macromoléculaire, UMR 5237, CNRS, Universités Montpellier 2 et 1, Montpellier, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Chiba S, Kondo H, Tani A, Saisho D, Sakamoto W, Kanematsu S, Suzuki N. Widespread endogenization of genome sequences of non-retroviral RNA viruses into plant genomes. PLoS Pathog 2011; 7:e1002146. [PMID: 21779172 PMCID: PMC3136472 DOI: 10.1371/journal.ppat.1002146] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2011] [Accepted: 05/17/2011] [Indexed: 02/06/2023] Open
Abstract
Non-retroviral RNA virus sequences (NRVSs) have been found in the chromosomes of vertebrates and fungi, but not plants. Here we report similarly endogenized NRVSs derived from plus-, negative-, and double-stranded RNA viruses in plant chromosomes. These sequences were found by searching public genomic sequence databases, and, importantly, most NRVSs were subsequently detected by direct molecular analyses of plant DNAs. The most widespread NRVSs were related to the coat protein (CP) genes of the family Partitiviridae which have bisegmented dsRNA genomes, and included plant- and fungus-infecting members. The CP of a novel fungal virus (Rosellinia necatrix partitivirus 2, RnPV2) had the greatest sequence similarity to Arabidopsis thaliana ILR2, which is thought to regulate the activities of the phytohormone auxin, indole-3-acetic acid (IAA). Furthermore, partitivirus CP-like sequences much more closely related to plant partitiviruses than to RnPV2 were identified in a wide range of plant species. In addition, the nucleocapsid protein genes of cytorhabdoviruses and varicosaviruses were found in species of over 9 plant families, including Brassicaceae and Solanaceae. A replicase-like sequence of a betaflexivirus was identified in the cucumber genome. The pattern of occurrence of NRVSs and the phylogenetic analyses of NRVSs and related viruses indicate that multiple independent integrations into many plant lineages may have occurred. For example, one of the NRVSs was retained in Ar. thaliana but not in Ar. lyrata or other related Camelina species, whereas another NRVS displayed the reverse pattern. Our study has shown that single- and double-stranded RNA viral sequences are widespread in plant genomes, and shows the potential of genome integrated NRVSs to contribute to resolve unclear phylogenetic relationships of plant species.
Collapse
Affiliation(s)
- Sotaro Chiba
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Hideki Kondo
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Akio Tani
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Daisuke Saisho
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Wataru Sakamoto
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Satoko Kanematsu
- National Institute of Fruit Tree Science, National Agricultural Research Organization (NARO), Morioka, Japan
| | - Nobuhiro Suzuki
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| |
Collapse
|
45
|
Kubo KS, Novelli VM, Bastianel M, Locali-Fabris EC, Antonioli-Luizon R, Machado MA, Freitas-Astúa J. Detection of Brevipalpus-transmitted viruses in their mite vectors by RT-PCR. EXPERIMENTAL & APPLIED ACAROLOGY 2011; 54:33-39. [PMID: 21279538 DOI: 10.1007/s10493-011-9425-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 01/17/2011] [Indexed: 05/30/2023]
Abstract
The diagnosis of plant diseases caused by Brevipalpus-transmitted viruses (BrTVs) has been done through the analyses of symptoms, transmission electron microscopy, and RT-PCR of infected plant tissues. Here, we report the detection of Citrus leprosis virus C, Orchid fleck virus, Clerodendrum chlorotic spot virus and Solanum violaefolium ringspot virus in their viruliferous vectors Brevipalpus spp. using specific primer pairs for each of the viruses. The efficiency of virus transmission by Brevipalpus mites is low, so the detection of these pathogens in their vectors could constitute an important tool for studies involving virus-vector relationships, transmission, and monitoring the pathogen prior to the appearance of symptoms in the field.
Collapse
Affiliation(s)
- K S Kubo
- Centro de Citricultura Sylvio Moreira/IAC, Rod. Anhanguera Km 158, Cordeirópolis, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
46
|
Allison AB, Palacios G, Travassos da Rosa A, Popov VL, Lu L, Xiao SY, DeToy K, Briese T, Lipkin WI, Keel MK, Stallknecht DE, Bishop GR, Tesh RB. Characterization of Durham virus, a novel rhabdovirus that encodes both a C and SH protein. Virus Res 2011; 155:112-22. [PMID: 20863863 PMCID: PMC3010432 DOI: 10.1016/j.virusres.2010.09.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Revised: 09/10/2010] [Accepted: 09/14/2010] [Indexed: 11/18/2022]
Abstract
The family Rhabdoviridae is a diverse group of non-segmented, negative-sense RNA viruses that are distributed worldwide and infect a wide range of hosts including vertebrates, invertebrates, and plants. Of the 114 currently recognized vertebrate rhabdoviruses, relatively few have been well characterized at both the antigenic and genetic level; hence, the phylogenetic relationships between many of the vertebrate rhabdoviruses remain unknown. The present report describes a novel rhabdovirus isolated from the brain of a moribund American coot (Fulica americana) that exhibited neurological signs when found in Durham County, North Carolina, in 2005. Antigenic characterization of the virus revealed that it was serologically unrelated to 68 other known vertebrate rhabdoviruses. Genomic sequencing of the virus indicated that it shared the highest identity to Tupaia rhabdovirus (TUPV), and as only previously observed in TUPV, the genome encoded a putative C protein in an overlapping open reading frame (ORF) of the phosphoprotein gene and a small hydrophobic (SH) protein located in a novel ORF between the matrix and glycoprotein genes. Phylogenetic analysis of partial amino acid sequences of the nucleoprotein and polymerase protein indicated that, in addition to TUPV, the virus was most closely related to avian and small mammal rhabdoviruses from Africa and North America. In this report, we present the morphological, pathological, antigenic, and genetic characterization of the new virus, tentatively named Durham virus (DURV), and discuss its potential evolutionary relationship to other vertebrate rhabdoviruses.
Collapse
Affiliation(s)
- A B Allison
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, United States.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Lamprecht RL, Kasdorf GGF, Stiller M, Staples SM, Nel LH, Pietersen G. Soybean blotchy mosaic virus, a New Cytorhabdovirus Found in South Africa. PLANT DISEASE 2010; 94:1348-1354. [PMID: 30743624 DOI: 10.1094/pdis-09-09-0598] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A previously unidentified plant Rhabdovirus sp. associated with a blotchy mosaic symptom of soybean (Glycine max), prevalent in the lower-lying, warmer soybean production areas of South Africa, was isolated and partially characterized. The virus was shown to be transmitted by mechanical inoculation and at least one species of leafhopper (Peragallia caboverdensis Lindberg (Cicadellidae, Agalliinae)). To determine the morphology and virion size, as well as intercellular accumulation, negative-stained preparations or embedded ultrathin sections of infected plant samples were observed under a transmission electron microscope. The distribution of the virions within the cytoplasm and its bullet-shaped morphology and size (338 to 371 nm by 93 nm) suggested that it is a putative member of the genus Cytorhabdovirus. Degenerate primers designed to a conserved region of the polymerase gene of a number of Rhabdovirus spp. were used in reverse-transcriptase polymerase chain reaction with total RNA from symptomatic plants as template. Amplicons were sequenced and compared with related sequences available on GenBank. The analysis confirmed that the virus was related to Cytorhabdovirus spp., with the highest nucleotide similarity being 60.7% with Northern cereal mosaic virus. The particle morphology, typical virion accumulation in the cytoplasm of infected cells, nucleotide sequence similarity with that of other plant Rhabdovirus spp., and unique symptoms on soybean suggest that the virus is a previously unknown Cytorhabdovirus sp., for which we propose the name Soybean blotchy mosaic virus (SbBMV).
Collapse
Affiliation(s)
- R L Lamprecht
- Department of Microbiology and Plant Pathology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, 0002, South Africa
| | - G G F Kasdorf
- Agricultural Research Council-Plant Protection Research Institute, Queenswood, 0121, Pretoria, South Africa
| | - M Stiller
- Agricultural Research Council-Plant Protection Research Institute, Queenswood, 0121, Pretoria, South Africa
| | - S M Staples
- Agricultural Research Council-Plant Protection Research Institute, Queenswood, 0121, Pretoria, South Africa
| | - L H Nel
- Department of Microbiology and Plant Pathology, Faculty of Natural and Agricultural Sciences, University of Pretoria
| | - G Pietersen
- Agricultural Research Council-Plant Protection Research Institute, Queenswood
| |
Collapse
|
48
|
Assenberg R, Delmas O, Morin B, Graham SC, De Lamballerie X, Laubert C, Coutard B, Grimes JM, Neyts J, Owens RJ, Brandt BW, Gorbalenya A, Tucker P, Stuart DI, Canard B, Bourhy H. Genomics and structure/function studies of Rhabdoviridae proteins involved in replication and transcription. Antiviral Res 2010; 87:149-61. [PMID: 20188763 DOI: 10.1016/j.antiviral.2010.02.322] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Accepted: 02/20/2010] [Indexed: 01/19/2023]
Abstract
Some mammalian rhabdoviruses may infect humans, and also infect invertebrates, dogs, and bats, which may act as vectors transmitting viruses among different host species. The VIZIER programme, an EU-funded FP6 program, has characterized viruses that belong to the Vesiculovirus, Ephemerovirus and Lyssavirus genera of the Rhabdoviridae family to perform ground-breaking research on the identification of potential new drug targets against these RNA viruses through comprehensive structural characterization of the replicative machinery. The contribution of VIZIER programme was of several orders. First, it contributed substantially to research aimed at understanding the origin, evolution and diversity of rhabdoviruses. This diversity was then used to obtain further structural information on the proteins involved in replication. Two strategies were used to produce recombinant proteins by expression of both full length or domain constructs in either E. coli or insect cells, using the baculovirus system. In both cases, parallel cloning and expression screening at small-scale of multiple constructs based on different viruses including the addition of fusion tags, was key to the rapid generation of expression data. As a result, some progress has been made in the VIZIER programme towards dissecting the multi-functional L protein into components suitable for structural and functional studies. However, the phosphoprotein polymerase co-factor and the structural matrix protein, which play a number of roles during viral replication and drives viral assembly, have both proved much more amenable to structural biology. Applying the multi-construct/multi-virus approach central to protein production processes in VIZIER has yielded new structural information which may ultimately be exploitable in the derivation of novel ways of intervening in viral replication.
Collapse
Affiliation(s)
- R Assenberg
- Division of Structural Biology and Oxford Protein Production Facility, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Application of broad-spectrum resequencing microarray for genotyping rhabdoviruses. J Virol 2010; 84:9557-74. [PMID: 20610710 DOI: 10.1128/jvi.00771-10] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The rapid and accurate identification of pathogens is critical in the control of infectious disease. To this end, we analyzed the capacity for viral detection and identification of a newly described high-density resequencing microarray (RMA), termed PathogenID, which was designed for multiple pathogen detection using database similarity searching. We focused on one of the largest and most diverse viral families described to date, the family Rhabdoviridae. We demonstrate that this approach has the potential to identify both known and related viruses for which precise sequence information is unavailable. In particular, we demonstrate that a strategy based on consensus sequence determination for analysis of RMA output data enabled successful detection of viruses exhibiting up to 26% nucleotide divergence with the closest sequence tiled on the array. Using clinical specimens obtained from rabid patients and animals, this method also shows a high species level concordance with standard reference assays, indicating that it is amenable for the development of diagnostic assays. Finally, 12 animal rhabdoviruses which were currently unclassified, unassigned, or assigned as tentative species within the family Rhabdoviridae were successfully detected. These new data allowed an unprecedented phylogenetic analysis of 106 rhabdoviruses and further suggest that the principles and methodology developed here may be used for the broad-spectrum surveillance and the broader-scale investigation of biodiversity in the viral world.
Collapse
|
50
|
Marques JP, Kitajima EW, Freitas-Astúa J, Appezzato-da-Glória B. Comparative morpho-anatomical studies of the lesions caused by citrus leprosis virus on sweet orange. AN ACAD BRAS CIENC 2010; 82:501-11. [DOI: 10.1590/s0001-37652010000200025] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Accepted: 08/27/2009] [Indexed: 11/22/2022] Open
Abstract
The leprosis disease shows a viral etiology and the citrus leprosis virus is considered its etiologic agent. The disease may show two types of cytopatologic symptom caused by two virus: nuclear (CiLV-N) and cytoplasmic (CiLV-C) types. The aim of this study was to compare the morpho-anatomical differences in the lesions caused by leprosis virus-cytoplasmic and nuclear types in Citrus sinensis (L.) Osbeck 'Pêra'. Leaf and fruit lesions were collected in Piracicaba/São Paulo (cytoplasmic type) and Monte Alegre do Sul/São Paulo and Amparo/São Paulo (nuclear type). The lesions were photographed and then fixed in Karnovsky solution, dehydrated in a graded ethylic series, embedded in hydroxy-ethyl methacrylate resin (Leica Historesin), sectioned (5 μm thick), stained and mounted in synthetic resin. The digital images were acquired in a microscope with digital video camera. Leaf and fruit lesions caused by the two viruses were morphologically distinct. Only the lesion caused by CiLV-N virus presented three well-defined regions. In both lesions there was the accumulation of lipidic substances in necrotic areas that were surrounded by cells with amorphous or droplets protein. Only leaf and fruit lesions caused by CiLV-N virus exhibited traumatic gum ducts in the vascular bundles.
Collapse
|