1
|
Louzada-Flores VN, Latrofa MS, Mendoza-Roldan JA, Lucente MS, Epis S, Varotto-Boccazzi I, Bandi C, Otranto D. Expression of key cytokines in dog macrophages infected by Leishmania tarentolae opening new avenues for the protection against Leishmania infantum. Sci Rep 2024; 14:27565. [PMID: 39528528 PMCID: PMC11554803 DOI: 10.1038/s41598-024-78451-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
The detection of Leishmania tarentolae in sympatric areas where Leishmania infantum is endemic raised questions regarding the protective effect exerted in dogs by L. tarentolae when in coinfection. This study aimed monitoring the in vitro gene expression of pro- (IFN- γ; TNF-α; IL-12) and anti-inflammatory (IL-4; IL-6; IL-10) cytokines in primary canine macrophages infected by L. tarentolae and L. infantum in single and in co-infections. Macrophages differentiated from dog blood mononuclear cells were infected with the L. tarentolae field-isolated (RI-325) and laboratory (LEM-124) strains, with L. infantum laboratory strain (IPT1), or both. Infection and the number of amastigotes per infected cell were evaluated microscopically by counting a total of 200 cells between 4 and 96 h. Cytokine gene expression was analyzed by real-time PCR from infected macrophages mRNA. Single infections presented higher expression of the cytokines IL-4 and IL-6, and lower of IL-12. Co-infections induced a lower gene expression of IL-4 and IL-6, and a higher gene expression of IL-12, correlating with the low amastigote burden despite the slight increase of infected cells. Data highlight the potential protective effect of L. tarentolae against L. infantum in co-infection by the reduced anti-inflammatory and increased pro-inflammatory cytokines gene expression, opening new perspectives for a canine vaccine development exploiting the non-pathogenic L. tarentolae.
Collapse
Affiliation(s)
| | | | | | | | - Sara Epis
- Department of Biosciences and Pediatric Clinical Research Center "Romeo and Enrica Invernizzi", University of Milan, Milan, Italy
| | - Ilaria Varotto-Boccazzi
- Department of Biosciences and Pediatric Clinical Research Center "Romeo and Enrica Invernizzi", University of Milan, Milan, Italy
| | - Claudio Bandi
- Department of Biosciences and Pediatric Clinical Research Center "Romeo and Enrica Invernizzi", University of Milan, Milan, Italy
| | - Domenico Otranto
- Department of Veterinary Medicine, University of Bari, Bari, Italy.
- Department of Veterinary Clinical Sciences, City University of Hong Kong, Kowloon, Hong Kong.
| |
Collapse
|
2
|
Zimna M, Krol E. Leishmania tarentolae as a platform for the production of vaccines against viral pathogens. NPJ Vaccines 2024; 9:212. [PMID: 39505865 PMCID: PMC11541885 DOI: 10.1038/s41541-024-01005-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 10/23/2024] [Indexed: 11/08/2024] Open
Abstract
Infectious diseases remain a persistent public health problem and a leading cause of morbidity and mortality in both humans and animals. The most effective method of combating viral infections is the widespread use of prophylactic vaccinations, which are administered to both people at risk of disease and animals that may serve as significant sources of infection. Therefore, it is crucial to develop technologies for the production of vaccines that are highly effective, easy to transport and store, and cost-effective. The protein expression system based on the protozoan Leishmania tarentolae offers several advantages, validated by numerous studies, making it a good platform for producing vaccine antigens. This review provides a comprehensive overview into the potential applications of L. tarentolae for the safe production of effective viral antigens.
Collapse
Affiliation(s)
- Marta Zimna
- Department of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307, Gdansk, Poland
| | - Ewelina Krol
- Department of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307, Gdansk, Poland.
| |
Collapse
|
3
|
Zheng X, He J, Guo X, Xiao Y, Liao X, Zhu Z, Chen D. Unraveling molecular mechanistic disparities in pathogenic visceral Leishmania resistance between reptiles and mammals through comparative transcriptomic analyses. Acta Trop 2024; 258:107349. [PMID: 39098753 DOI: 10.1016/j.actatropica.2024.107349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/29/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
Leishmaniasis is one of the most important neglected tropical parasitic diseases, manifesting various clinical forms depending on the parasite species and the genetic background of the host. In order to elucidate the underlying mechanisms of reptilian defense against pathogenic Leishmania species and to delineate the global gene expression profile alterations during host-pathogen interaction, we established experimental animal and cell models using both heterothermic lizards (Phrynocephalus przewalskii) and homothermic mammals (BALB/c mice) infected with pathogenic Leishmania infantum (high virulence HCZ strain) and Leishmania donovani (low virulence 801 strain). Overall, the lizards didn't show any obvious clinical symptoms or immune responses in vivo. Using RNA-seq methodology, differentially expressed genes identified in the HCZ and 801-comparison groups of P. przewalskii were primarily associated with arginine biosynthesis, the MAPK signaling pathway and the PI3K-Akt signaling pathway. In contrast, higher parasite loads, exacerbated hepatic inflammatory lesions and enhanced immune responses were observed in BALB/c mice, with DEGs predominantly associated with immunological diseases, innate and adaptive immune responses. By integrating transcriptional data from reptile and mammalian hosts, we elucidated the pivotal role of amino acid metabolism and lipid metabolism in parasite control. In contrast to findings from animal experiments, Leishmania parasites effectively infected peritoneal macrophages of lizards in vitro, demonstrating a high infection rate. Furthermore, we used RT-qPCR to detect changes in cytokine expression in macrophages and found that Th1-type cytokines were significantly upregulated in lizards, facilitating the clearance of the HCZ strain 24 hours post-infection. Conversely, cytokine expression was generally suppressed in BALB/c mice, allowing immune evasion by the parasites.
Collapse
Affiliation(s)
- Xiaoting Zheng
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Jinlei He
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Xianguang Guo
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610213, China
| | - Yuying Xiao
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Xuechun Liao
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Zheying Zhu
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Dali Chen
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
4
|
Louzada-Flores VN, Latrofa MS, Lucente MS, Dambrós BP, Mendoza-Roldan JA, Varotto-Boccazzi I, Cattaneo GM, Späth GF, Buonavoglia A, Otranto D. Intracellular persistence of Leishmania tarentolae in primary canine macrophage cells. Acta Trop 2023; 243:106935. [PMID: 37127215 DOI: 10.1016/j.actatropica.2023.106935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/03/2023]
Abstract
Leishmania tarentolae is a non-pathogenic species first isolated from geckoes in the Mediterranean basin. The finding that dogs test positive against both Leishmania infantum and L. tarentolae raises questions regarding the ability of the latter species to persist and adapt to new hosts. This study aimed to evaluate in vitro the capability of L. tarentolae to colonize, survive and persist in canine primary monocyte-derived mononuclear cells. Monocytes were isolated from dog whole blood samples and placed in 24-well plates for differentiation into macrophages and for incubation with L. tarentolae field-isolated strains (RI-325 and SF-178) and laboratory (LEM-124) strain; the parasite burden was assessed at different time points post-infection. The L. infantum laboratory strain (MON-1) was used as control. Infection parameters were evaluated by microscopy, counting the number of amastigotes/200 infected cells, and by duplex real-time PCR from supernatants and detached cells. Similar to L. infantum, L. tarentolae strains developed into round-shaped amastigote-like forms, with higher infection rates detected at 4 h followed by an overall decrease until 48 h. RI-325 presented also a higher infection rate at 72 h. Data showed that L. tarentolae strains infect and persist inside in vitro primary canine mononuclear cells, opening new perspectives for further laboratory studies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Gerald F Späth
- Institut Pasteur, Université Paris Cité, INSERM U1201, Unité de Parasitologie moléculaire et Signalisation, Paris, France
| | - Alessio Buonavoglia
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Domenico Otranto
- Department of Veterinary Medicine, University of Bari, Italy; Faculty of Veterinary Sciences, Bu-Ali Sina University, Hamedan, Iran.
| |
Collapse
|
5
|
Bandi C, Mendoza-Roldan JA, Otranto D, Alvaro A, Louzada-Flores VN, Pajoro M, Varotto-Boccazzi I, Brilli M, Manenti A, Montomoli E, Zuccotti G, Epis S. Leishmania tarentolae: a vaccine platform to target dendritic cells and a surrogate pathogen for next generation vaccine research in leishmaniases and viral infections. Parasit Vectors 2023; 16:35. [PMID: 36703216 PMCID: PMC9879565 DOI: 10.1186/s13071-023-05651-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/03/2023] [Indexed: 01/27/2023] Open
Abstract
Parasites of the genus Leishmania are unusual unicellular microorganisms in that they are characterized by the capability to subvert in their favor the immune response of mammalian phagocytes, including dendritic cells. Thus, in overt leishmaniasis, dendritic cells and macrophages are converted into a niche for Leishmania spp. in which the parasite, rather than being inactivated and disassembled, survives and replicates. In addition, Leishmania parasites hitchhike onto phagocytic cells, exploiting them as a mode of transport to lymphoid tissues where other phagocytic cells are potentially amenable to parasite colonization. This propensity of Leishmania spp. to target dendritic cells has led some researchers to consider the possibility that the non-pathogenic, reptile-associated Leishmania tarentolae could be exploited as a vaccine platform and vehicle for the production of antigens from different viruses and for the delivery of the antigens to dendritic cells and lymph nodes. In addition, as L. tarentolae can also be regarded as a surrogate of pathogenic Leishmania parasites, this parasite of reptiles could possibly be developed into a vaccine against human and canine leishmaniases, exploiting its immunological cross-reactivity with other Leishmania species, or, after its engineering, for the expression of antigens from pathogenic species. In this article we review published studies on the use of L. tarentolae as a vaccine platform and vehicle, mainly in the areas of leishmaniases and viral infections. In addition, a short summary of available knowledge on the biology of L. tarentolae is presented, together with information on the use of this microorganism as a micro-factory to produce antigens suitable for the serodiagnosis of viral and parasitic infections.
Collapse
Affiliation(s)
- Claudio Bandi
- grid.4708.b0000 0004 1757 2822Department of Biosciences, Pediatric CRC “Romeo ed Enrica Invernizzi”–University of Milan, Milan, Italy
| | | | - Domenico Otranto
- grid.7644.10000 0001 0120 3326Department of Veterinary Medicine, University of Bari, Valenzano, Italy
| | - Alessandro Alvaro
- grid.4708.b0000 0004 1757 2822Department of Biosciences, Pediatric CRC “Romeo ed Enrica Invernizzi”–University of Milan, Milan, Italy
| | | | - Massimo Pajoro
- grid.4708.b0000 0004 1757 2822Department of Biosciences, Pediatric CRC “Romeo ed Enrica Invernizzi”–University of Milan, Milan, Italy
| | - Ilaria Varotto-Boccazzi
- grid.4708.b0000 0004 1757 2822Department of Biosciences, Pediatric CRC “Romeo ed Enrica Invernizzi”–University of Milan, Milan, Italy
| | - Matteo Brilli
- grid.4708.b0000 0004 1757 2822Department of Biosciences, Pediatric CRC “Romeo ed Enrica Invernizzi”–University of Milan, Milan, Italy
| | | | - Emanuele Montomoli
- grid.511037.1VisMederi, Siena, Italy ,grid.9024.f0000 0004 1757 4641Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Gianvincenzo Zuccotti
- grid.4708.b0000 0004 1757 2822Department of Biomedical and Clinical Sciences, Pediatric CRC “Romeo ed Enrica Invernizzi”–University of Milan, Milan, Italy ,Department of Pediatrics, Ospedale dei Bambini-Buzzi, Milan, Italy
| | - Sara Epis
- grid.4708.b0000 0004 1757 2822Department of Biosciences, Pediatric CRC “Romeo ed Enrica Invernizzi”–University of Milan, Milan, Italy
| |
Collapse
|
6
|
Zimna M, Brzuska G, Salát J, Svoboda P, Baranska K, Szewczyk B, Růžek D, Krol E. Functional characterization and immunogenicity of a novel vaccine candidate against tick-borne encephalitis virus based on Leishmania-derived virus-like particles. Antiviral Res 2023; 209:105511. [PMID: 36581050 DOI: 10.1016/j.antiviral.2022.105511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/09/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022]
Abstract
Tick-borne encephalitis virus (TBEV) is a major cause of neurological infections in many regions of central, eastern and northern Europe and northern Asia. In approximately 15% of cases, TBEV infections lead to the development of severe encephalitis or meningitis. The main route of TBEV transmission is tick bites; however, ingestion of dairy products from infected animals (goats, cattle and sheep) is also a frequent cause of the disease. Therefore, vaccination of livestock in virus endemic regions could also contribute to the decrease in TBEV infection among humans. Although few vaccines against TBEV based on inactivated viruses are available for humans, due to high costs, vaccination is not mandatory in most of the affected countries. Moreover, there is still no vaccine for veterinary use. Here, we present a characterization and immunogenicity study of a new potential TBEV vaccine based on virus-like particles (VLPs) produced in Leishmania tarentolae cells. VLPs, which mimic native viral particles but do not contain genetic material, show good immunogenic potential. For the first time, we showed that the protozoan L. tarentolae expression system can be successfully used for the production of TBEV virus-like particles with highly efficient production. We confirmed that TBEV recombinant structural proteins (prM/M and E) from VLPs are highly recognized by neutralizing antibodies in in vitro analyses. Therefore, VLPs in combination with AddaVax adjuvant were used in immunization studies in a mouse model. VLPs proved to be highly immunogenic and induced the production of high levels of neutralizing antibodies. In a challenge experiment, immunization with VLPs provided full protection from lethal TBE in mice. Thus, we suggest that Leishmania-derived VLPs may be a good candidate for a safe alternative human vaccine with high efficiency of production. Moreover, this potential vaccine candidate may constitute a low-cost candidate for veterinary use.
Collapse
Affiliation(s)
- Marta Zimna
- Department of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307, Gdansk, Poland.
| | - Gabriela Brzuska
- Department of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307, Gdansk, Poland.
| | - Jiří Salát
- Laboratory of Emerging Viral Infections, Veterinary Research Institute, Hudcova 70, CZ, 62100, Brno, Czech Republic; Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branisovska 31, CZ, 37005, Ceske Budejovice, Czech Republic.
| | - Pavel Svoboda
- Laboratory of Emerging Viral Infections, Veterinary Research Institute, Hudcova 70, CZ, 62100, Brno, Czech Republic; Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branisovska 31, CZ, 37005, Ceske Budejovice, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 735/5, CZ, 62500, Brno, Czech Republic; Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Palackeho Tr. 1946/1, 61242, Brno, Czech Republic.
| | - Klaudia Baranska
- Department of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307, Gdansk, Poland.
| | - Boguslaw Szewczyk
- Department of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307, Gdansk, Poland.
| | - Daniel Růžek
- Laboratory of Emerging Viral Infections, Veterinary Research Institute, Hudcova 70, CZ, 62100, Brno, Czech Republic; Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branisovska 31, CZ, 37005, Ceske Budejovice, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 735/5, CZ, 62500, Brno, Czech Republic.
| | - Ewelina Krol
- Department of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307, Gdansk, Poland.
| |
Collapse
|
7
|
Efficacy of mucosal vaccination using a protozoan parasite as a vehicle for antigen delivery: IgG and neutralizing response after rectal administration of LeCoVax-2, a candidate vaccine against COVID-19. Pharmacol Res 2022; 186:106546. [PMCID: PMC9633108 DOI: 10.1016/j.phrs.2022.106546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/02/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022]
|
8
|
Leishmania tarentolae as an Antigen Delivery Platform: Dendritic Cell Maturation after Infection with a Clone Engineered to Express the SARS-CoV-2 Spike Protein. Vaccines (Basel) 2022; 10:vaccines10050803. [PMID: 35632559 PMCID: PMC9144667 DOI: 10.3390/vaccines10050803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/05/2022] [Accepted: 05/18/2022] [Indexed: 01/18/2023] Open
Abstract
Background: Protozoa of the genus Leishmania are characterized by their capacity to target macrophages and Dendritic Cells (DCs). These microorganisms could thus be exploited for the delivery of antigens to immune cells. Leishmania tarentolae is regarded as a non-pathogenic species; it was previously used as a biofactory for protein production and has been considered as a candidate vaccine or as an antigen delivery platform. However, results on the type of immune polarization determined by L. tarentolae are still inconclusive. Methods: DCs were derived from human monocytes and exposed to live L. tarentolae, using both the non-engineered P10 strain, and the same strain engineered for expression of the spike protein from SARS-CoV-2. We then determined: (i) parasite internalization in the DCs; and (ii) the capacity of the assayed strains to activate DCs and the type of immune polarization. Results: Protozoan parasites from both strains were effectively engulfed by DCs, which displayed a full pattern of maturation, in terms of MHC class II and costimulatory molecule expression. In addition, after parasite infection, a limited release of Th1 cytokines was observed. Conclusions: Our results indicate that L. tarentolae could be used as a vehicle for antigen delivery to DCs and to induce the maturation of these cells. The limited cytokine release suggests L. tarentolae as a neutral vaccine vehicle that could be administered in association with appropriate immune-modulating molecules.
Collapse
|
9
|
Panasiuk M, Zimmer K, Czarnota A, Grzyb K, Narajczyk M, Peszyńska-Sularz G, Żołędowska S, Nidzworski D, Hovhannisyan L, Gromadzka B. Immunization with Leishmania tarentolae-derived norovirus virus-like particles elicits high humoral response and stimulates the production of neutralizing antibodies. Microb Cell Fact 2021; 20:186. [PMID: 34560881 PMCID: PMC8464126 DOI: 10.1186/s12934-021-01677-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/12/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Noroviruses are a major cause of epidemic and sporadic acute non-bacterial gastroenteritis worldwide. Unfortunately, the development of an effective norovirus vaccine has proven difficult and no prophylactic vaccine is currently available. Further research on norovirus vaccine development should be considered an absolute priority and novel vaccine candidates are needed. One of the recent approaches in safe vaccine development is the use of virus-like particles (VLPs). VLP-based vaccines show great immunogenic potential as they mimic the morphology and structure of viral particles without the presence of the virus genome. RESULTS This study is the first report showing successful production of norovirus VLPs in the protozoan Leishmania tarentolae (L. tarentolae) expression system. Protozoan derived vaccine candidate is highly immunogenic and able to not only induce a strong immune response (antibody titer reached 104) but also stimulate the production of neutralizing antibodies confirmed by receptor blocking assay. Antibody titers able to reduce VLP binding to the receptor by > 50% (BT50) were observed for 1:5-1:320 serum dilutions. CONCLUSIONS Norovirus VLPs produced in L. tarentolae could be relevant for the development of the norovirus vaccine.
Collapse
Affiliation(s)
- Mirosława Panasiuk
- Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Abrahama 58, 80-307, Gdańsk, Poland.,Nano Expo Sp. z o. o., Kładki 24, 80-822, Gdańsk, Poland.,Department of in Vitro Studies, Institute of Biotechnology and Molecular Medicine, Kampinoska 25, 80-180, Gdańsk, Poland
| | - Karolina Zimmer
- Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Abrahama 58, 80-307, Gdańsk, Poland
| | - Anna Czarnota
- Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Abrahama 58, 80-307, Gdańsk, Poland
| | - Katarzyna Grzyb
- Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Abrahama 58, 80-307, Gdańsk, Poland
| | - Magdalena Narajczyk
- Laboratory of Electron Microscopy, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Grażyna Peszyńska-Sularz
- Tri-City Central Animal Laboratory Research and Service Center, Medical University of Gdańsk, Dębinki 1, 80-211, Gdańsk, Poland
| | - Sabina Żołędowska
- Department of in Vitro Studies, Institute of Biotechnology and Molecular Medicine, Kampinoska 25, 80-180, Gdańsk, Poland.,Institute of Biotechnology and Molecular Medicine, Gdańsk, Poland
| | - Dawid Nidzworski
- Department of in Vitro Studies, Institute of Biotechnology and Molecular Medicine, Kampinoska 25, 80-180, Gdańsk, Poland.,Institute of Biotechnology and Molecular Medicine, Gdańsk, Poland
| | - Lilit Hovhannisyan
- Department of in Vitro Studies, Institute of Biotechnology and Molecular Medicine, Kampinoska 25, 80-180, Gdańsk, Poland
| | - Beata Gromadzka
- Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Abrahama 58, 80-307, Gdańsk, Poland. .,Nano Expo Sp. z o. o., Kładki 24, 80-822, Gdańsk, Poland. .,Department of in Vitro Studies, Institute of Biotechnology and Molecular Medicine, Kampinoska 25, 80-180, Gdańsk, Poland.
| |
Collapse
|
10
|
Feiz Haddad MH, Lomei J, Shokri A, Habibpour H, Rezvan H, Nourian A, Mahmoudi MR. Review of Development of Live Vaccines against Leishmaniasis. JOURNAL OF CHILD SCIENCE 2021. [DOI: 10.1055/s-0041-1731336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractLeishmaniasis is a serious public health problem in both tropical and temperate regions, caused by protozoan parasites of the genus Leishmania. Cutaneous leishmaniasis is the most common form of leishmaniasis worldwide. After recovery from the initial infection in most of the patients, a long-lasting natural immunity will be established. In individuals with HIV infection or in immune deficient patients, the more dangerous forms can occur. Despite many attempts, there is no efficient vaccine for leishmaniasis. The main concern for live-attenuated vaccines is the possibility of returning to the virulent form. Therefore, the safety is an important point in designing a successful vaccine. Nonvirulent parasites as vaccine candidates are achievable through gamma-irradiation, long-term culture, random mutations induced by chemical agents, and temperature-sensitive mutations. The type of change(s) in such parasites is not known well and drawbacks such as reversion to virulent forms was soon realized. Leishmania tarentolae with capacity of adaptation to mammalian system has a potential to be used as nonpathogenic vector in vaccine programs. Due to its nonpathogenic intrinsic property, it does not have the ability to replace with the pathogen form. Moreover, the main problems are associated with the production of live vaccines, including lyophilization, storage, standards, and quality control that must be considered. In this review, we focused on the importance of different approaches concerning the development of a live vaccine against leishmaniasis.
Collapse
Affiliation(s)
- Mohammad Hossein Feiz Haddad
- Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Parasitology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Jalal Lomei
- Division of Integrative Physiology, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Azar Shokri
- Vector-borne Disease Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Habib Habibpour
- Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Parasitology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hossein Rezvan
- Department of Pathobiology, Faculty of Veterinary Science, Bu-Ali Sina University, Hamedan, Iran
| | - Alireza Nourian
- Department of Pathobiology, Faculty of Veterinary Science, Bu-Ali Sina University, Hamedan, Iran
| | - Mohammad Reza Mahmoudi
- Cellular and Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
11
|
Lin Y, Wang XF, Wang Y, Du C, Ren H, Liu C, Zhu D, Chen J, Na L, Liu D, Yang Z, Wang X. Env diversity-dependent protection of the attenuated equine infectious anaemia virus vaccine. Emerg Microbes Infect 2021; 9:1309-1320. [PMID: 32525460 PMCID: PMC7473056 DOI: 10.1080/22221751.2020.1773323] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Lentiviruses harbour high genetic variability for efficient evasion from host immunity.
An attenuated equine infectious anaemia (EIA) vaccine was developed decades ago in China
and presented remarkably robust protection against EIA. The vaccine was recently proven to
have high genomic diversity, particular in env. However, how
and to what extent the high env diversity relates to immune
protection remains unclear. In this study, we compared immune protections and responses of
three groups of horses stimulated by the high-diversity vaccine EIAV_HD, a single
molecular clone of the vaccine EIAV_LD with low env
diversity, as well as a constructed vaccine strain EIAV_MD with moderate env diversity. The disparity of virus-host interactions between
three env diversity-varied groups (5 horses in each group)
was evaluated using clinical manifestation, pathological scores, and env-specific antibody. We found the highest titres of env antibodies (Abs) or neutralizing Abs (nAbs) in the EIAV_HD group, followed
by the EIAV_MD group, and the lowest titres in the EIAV_LD group (P<0.05). The occurrence of disease/death was different between EIAV_HD
group (1/0), EIAV_MD (2/2), and EIAV_LD group (4/2). A similar env diversity-related linear relationship was observed in the clinical
manifestations and pathological changes. This diversity-dependent disparity in changes
between the three groups was more distinct after immunosuppression, suggesting that
env diversity plays an important role in protection under
low host immunocompetence. In summary, inoculation with vaccines with higher genetic
diversity could present broader and more efficient protection. Our findings strongly
suggest that an abundance of Env antigens are required for efficient protection against
lentiviruses.
Collapse
Affiliation(s)
- Yuezhi Lin
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Xue-Feng Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China.,Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, People's Republic of China
| | - Yuhong Wang
- Department of Geriatrics and Gerontology, First Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Cheng Du
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Huiling Ren
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Cong Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Dantong Zhu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Jie Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Lei Na
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Diqiu Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Zhibiao Yang
- Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, People's Republic of China
| | - Xiaojun Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| |
Collapse
|
12
|
Klatt S, Simpson L, Maslov DA, Konthur Z. Leishmania tarentolae: Taxonomic classification and its application as a promising biotechnological expression host. PLoS Negl Trop Dis 2019; 13:e0007424. [PMID: 31344033 PMCID: PMC6657821 DOI: 10.1371/journal.pntd.0007424] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In this review, we summarize the current knowledge concerning the eukaryotic protozoan parasite Leishmania tarentolae, with a main focus on its potential for biotechnological applications. We will also discuss the genus, subgenus, and species-level classification of this parasite, its life cycle and geographical distribution, and similarities and differences to human-pathogenic species, as these aspects are relevant for the evaluation of biosafety aspects of L. tarentolae as host for recombinant DNA/protein applications. Studies indicate that strain LEM-125 but not strain TARII/UC of L. tarentolae might also be capable of infecting mammals, at least transiently. This could raise the question of whether the current biosafety level of this strain should be reevaluated. In addition, we will summarize the current state of biotechnological research involving L. tarentolae and explain why this eukaryotic parasite is an advantageous and promising human recombinant protein expression host. This summary includes overall biotechnological applications, insights into its protein expression machinery (especially on glycoprotein and antibody fragment expression), available expression vectors, cell culture conditions, and its potential as an immunotherapy agent for human leishmaniasis treatment. Furthermore, we will highlight useful online tools and, finally, discuss possible future applications such as the humanization of the glycosylation profile of L. tarentolae or the expression of mammalian recombinant proteins in amastigote-like cells of this species or in amastigotes of avirulent human-pathogenic Leishmania species.
Collapse
Affiliation(s)
- Stephan Klatt
- Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
- * E-mail: (SK); (ZK)
| | - Larry Simpson
- Department of Microbiology, Immunology and Molecular Genetics, Geffen School of Medicine at UCLA, University of California, Los Angeles, California, United States of America
| | - Dmitri A. Maslov
- Department of Molecular, Cell, and Systems Biology, University of California, Riverside, California, United States of America
| | - Zoltán Konthur
- Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
- * E-mail: (SK); (ZK)
| |
Collapse
|
13
|
Ansari N, Rafati S, Taheri T, Roohvand F, Farahmand M, Hajikhezri Z, Keshavarz A, Samimi-Rad K. A non-pathogenic Leishmania tarentolae vector based- HCV polytope DNA vaccine elicits potent and long lasting Th1 and CTL responses in BALB/c mice model. Mol Immunol 2019; 111:152-161. [PMID: 31054409 DOI: 10.1016/j.molimm.2019.04.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 04/11/2019] [Accepted: 04/23/2019] [Indexed: 02/06/2023]
Abstract
Despite successful anti-viral (DAAs) treatment of Hepatitis C virus (HCV) infection, recent data indicated the need for an effective vaccine. Preexisting anti-vector immunity is an obstacle for application of live vectors for antigen delivery and development of effective T-cell based HCV vaccines. Herein, we report construction of recombinant Leishmania tarentolae, a lizard (non-human) parasite, expressing an HCV polytope DNA, PT-NT(gp96), encoding for several immunogenic HCV epitopes and evaluation of its immunogenicity in three different prime/boost immunization groups (G) of BALB/c mice. Homologous prime/boost immunization by L.tarentolae-PT-NT(gp96) either with or without CpG (G1 and G2 respectively) and heterologous immunization with a PT-NT(gp96) encoding-pCDNA plasmid followed by L.tarentolae-PT-NT (G3) was undertaken. Immune responses were measured three and nine weeks (W) post immunization. Splenocytes (cultured with antigen-stimulant) of mice in G1 showed the highest percentage of specific CTL-cytolytic activity compared to G2 and G3 at both short (W3:70.98% versus 41.29% and 13.12%) and long (W9: 50% versus 24.5% and 20%) term periods, accompanied with high levels of secreted IFN-γ. Comparison of IFN-γ, IL-4, IL-17 and TNF-α cytokines levels obtained from the supernatant of antigen-stimulated splenocytes as well as antibodies level (as IgG1/IgG2a ratio; obtained from sera of immunized mice) indicated higher Th1 oriented responses for G1, G2 groups and balanced Th1-Th17 for G3. Results indicated the potential of L.tarentolae (+CpG), as a non-pathogenic live vaccine vector, for delivery and enhancement of immune responses against HCV-polytope antigens.
Collapse
Affiliation(s)
- Nastaran Ansari
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sima Rafati
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Tahereh Taheri
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Farzin Roohvand
- Department of Virology, Pasteur Institute of Iran, Tehran, Iran
| | - Mohammad Farahmand
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Zamaneh Hajikhezri
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Abolfazl Keshavarz
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Katayoun Samimi-Rad
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
Montakhab-Yeganeh H, Abdossamadi Z, Zahedifard F, Taslimi Y, Badirzadeh A, Saljoughian N, Taheri T, Taghikhani M, Rafati S. Leishmania tarentolaeexpressing CXCL-10 as an efficient immunotherapy approach againstLeishmania major-infected BALB/c mice. Parasite Immunol 2017; 39. [DOI: 10.1111/pim.12461] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 08/14/2017] [Indexed: 02/06/2023]
Affiliation(s)
- H. Montakhab-Yeganeh
- Department of Clinical Biochemistry; Faculty of Medical Sciences; Tarbiat Modares University; Tehran Iran
| | - Z. Abdossamadi
- Department of Immunotherapy and Leishmania Vaccine Research; Pasteur Institute of Iran; Tehran Iran
| | - F. Zahedifard
- Department of Immunotherapy and Leishmania Vaccine Research; Pasteur Institute of Iran; Tehran Iran
| | - Y. Taslimi
- Department of Immunotherapy and Leishmania Vaccine Research; Pasteur Institute of Iran; Tehran Iran
| | - A. Badirzadeh
- Department of Immunotherapy and Leishmania Vaccine Research; Pasteur Institute of Iran; Tehran Iran
| | - N. Saljoughian
- Department of Immunotherapy and Leishmania Vaccine Research; Pasteur Institute of Iran; Tehran Iran
| | - T. Taheri
- Department of Immunotherapy and Leishmania Vaccine Research; Pasteur Institute of Iran; Tehran Iran
| | - M. Taghikhani
- Department of Clinical Biochemistry; Faculty of Medical Sciences; Tarbiat Modares University; Tehran Iran
| | - S. Rafati
- Department of Immunotherapy and Leishmania Vaccine Research; Pasteur Institute of Iran; Tehran Iran
| |
Collapse
|
15
|
Badirzadeh A, Taheri T, Taslimi Y, Abdossamadi Z, Heidari-Kharaji M, Gholami E, Sedaghat B, Niyyati M, Rafati S. Arginase activity in pathogenic and non-pathogenic species of Leishmania parasites. PLoS Negl Trop Dis 2017; 11:e0005774. [PMID: 28708893 PMCID: PMC5529023 DOI: 10.1371/journal.pntd.0005774] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/26/2017] [Accepted: 07/05/2017] [Indexed: 12/25/2022] Open
Abstract
Proliferation of Leishmania (L.) parasites depends on polyamine availability, which can be generated by the L-arginine catabolism and the enzymatic activity of arginase (ARG) of the parasites and of the mammalian hosts. In the present study, we characterized and compared the arginase (arg) genes from pathogenic L. major and L. tropica and from non-pathogenic L. tarentolae. We quantified the level of the ARG activity in promastigotes and macrophages infected with pathogenic L. major and L. tropica and non-pathogenic L. tarentolae amastigotes. The ARG's amino acid sequences of the pathogenic and non-pathogenic Leishmania demonstrated virtually 98.6% and 88% identities with the reference L. major Friedlin ARG. Higher ARG activity was observed in all pathogenic promastigotes as compared to non-pathogenic L. tarentolae. In vitro infection of human macrophage cell line (THP1) with pathogenic and non-pathogenic Leishmania spp. resulted in increased ARG activities in the infected macrophages. The ARG activities present in vivo were assessed in susceptible BALB/c and resistant C57BL/6 mice infected with L. major, L. tropica and L. tarentolae. We demonstrated that during the development of the infection, ARG is induced in both strains of mice infected with pathogenic Leishmania. However, in L. major infected BALB/c mice, the induction of ARG and parasite load increased simultaneously according to the time course of infection, whereas in C57BL/6 mice, the enzyme is upregulated solely during the period of footpad swelling. In L. tropica infected mice, the footpads' swellings were slow to develop and demonstrated minimal cutaneous pathology and ARG activity. In contrast, ARG activity was undetectable in mice inoculated with the non-pathogenic L. tarentolae. Our data suggest that infection by Leishmania parasites can increase ARG activity of the host and provides essential polyamines for parasite salvage and its replication. Moreover, the ARG of Leishmania is vital for parasite proliferation and required for infection in mice. ARG activity can be used as one of the main marker of the disease severity.
Collapse
Affiliation(s)
- Alireza Badirzadeh
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
- Department of Medical Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tahereh Taheri
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Yasaman Taslimi
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Zahra Abdossamadi
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Maryam Heidari-Kharaji
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Elham Gholami
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Baharehsadat Sedaghat
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Maryam Niyyati
- Department of Medical Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sima Rafati
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
16
|
Pirdel L, Farajnia S. A Non-pathogenic RecombinantLeishmaniaExpressing Lipophosphoglycan 3 Against Experimental Infection withLeishmania infantum. Scand J Immunol 2017; 86:15-22. [DOI: 10.1111/sji.12557] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 04/14/2017] [Indexed: 01/08/2023]
Affiliation(s)
- L. Pirdel
- Department of Medical Sciences; Ardabil Branch; Islamic Azad University; Ardabil Iran
| | - S. Farajnia
- Drug Applied Research Center; Tabriz University of Medical Sciences; Tabriz Iran
| |
Collapse
|
17
|
Immunogenicity and functional characterization of Leishmania-derived hepatitis C virus envelope glycoprotein complex. Sci Rep 2016; 6:30627. [PMID: 27481352 PMCID: PMC4969751 DOI: 10.1038/srep30627] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 07/06/2016] [Indexed: 02/07/2023] Open
Abstract
Hepatitis C virus (HCV) envelope glycoproteins E1 and E2 are the main inducers of a cross-neutralizing antibody response which plays an important role in the early phase of viral infection. Correctly folded and immunologically active E1E2 complex can be expressed in mammalian cells, though the production process might still prove restrictive, even if the immunological response of a vaccine candidate is positive. Here, we report a characterization and immunogenicity study of a full-length (fE1E2) and soluble version of the E1E2 complex (tE1E2) from genotype 1a, successfully expressed in the cells of Leishmania tarentolae. In a functional study, we confirmed the binding of both Leishmania-derived E1E2 complexes to the CD-81 receptor and the presence of the major epitopes participating in a neutralizing antibody response. Both complexes were proved to be highly immunogenic in mice and elicited neutralizing antibody response. Moreover, cross-reactivity of the mouse sera was detected for all tested HCV genotypes with the highest signal intensity observed for genotypes 1a, 1b, 5 and 6. Since the development of a prophylactic vaccine against HCV is still needed to control the global infection, our Leishmania-derived E1E2 glycoproteins could be considered a potential cost-effective vaccine candidate.
Collapse
|
18
|
Taslimi Y, Zahedifard F, Habibzadeh S, Taheri T, Abbaspour H, Sadeghipour A, Mohit E, Rafati S. Antitumor Effect of IP-10 by Using Two Different Approaches: Live Delivery System and Gene Therapy. J Breast Cancer 2016; 19:34-44. [PMID: 27066094 PMCID: PMC4822105 DOI: 10.4048/jbc.2016.19.1.34] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 01/26/2016] [Indexed: 12/11/2022] Open
Abstract
Purpose Immunotherapy is one of the treatment strategies for breast cancer, the most common cancer in women worldwide. In this approach, the patient's immune system is stimulated to attack microscopic tumors and control metastasis. Here, we used interferon γ-induced protein 10 (IP-10), which induces and strengthens antitumor immunity, as an immunotherapeutic agent. We employed Leishmania tarentolae, a nonpathogenic lizard parasite that lacks the ability to persist in mammalian macrophages, was used as a live delivery system for carrying the immunotherapeutic agent. It has been already shown that arginase activity, and consequently, polyamine production, are associated with tumor progression. Methods A live delivery system was constructed by stable transfection of pLEXSY plasmid containing the IP-10-enhanced green fluorescent protein (IP-10-egfp) fusion gene into L. tarentolae. Then, the presence of the IP-10-egfp gene and the accurate integration location into the parasite genome were confirmed. The therapeutic efficacy of IP-10 delivered via L. tarentolae and recombinant pcDNA-(IP-10-egfp) plasmid was compared by determining the arginase activity in a mouse 4T1 breast cancer model. Results The pcDNA-(IP-10-egfp) group showed a significant reduction in tumor weight and growth. Histological evaluation also revealed that only this group demonstrated inhibition of metastasis to the lung tissue. The arginase activity in the tissue of the pcDNA-(IP-10-egfp) mice significantly decreased in comparison with that in normal mice. No significant difference was observed in arginase activity in the sera of mice receiving other therapeutic strategies. Conclusion Our data indicates that IP-10 immunotherapy is a promising strategy for breast cancer treatment, as shown in the 4T1-implanted BALB/c mouse model. However, the L. tarentolae-(IP-10-EGFP) live delivery system requires dose modifications to achieve efficacy in the applied regimen (six injections in 3 weeks). Our results indicate that the arginase assay could be a good biomarker to differentiate tumoral tissues from the normal ones.
Collapse
Affiliation(s)
- Yasaman Taslimi
- Department of Biology, College of Basic Sciences, Damghan Branch, Islamic Azad University, Damghan, Iran.; Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Farnaz Zahedifard
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Sima Habibzadeh
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Tahereh Taheri
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Hossain Abbaspour
- Department of Biology, College of Basic Sciences, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Alireza Sadeghipour
- Department of Pathology, Hazrat-e-Rasoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Elham Mohit
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sima Rafati
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
19
|
Shirbaghaee Z, Bolhassani A, Mirshafiey A, Motevalli F, Zohrei N. A Live Vector Expressing HPV16 L1 Generates an Adjuvant-Induced Antibody Response In-vivo. IRANIAN JOURNAL OF CANCER PREVENTION 2015; 8:e3991. [PMID: 26855722 PMCID: PMC4736072 DOI: 10.17795/ijcp-3991] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 10/07/2015] [Indexed: 12/05/2022]
Abstract
Background: The association between human papillomavirus (HPV) infections and cervical cancer has suggested the design of prophylactic and therapeutic vaccines against genital warts. The HPV capsid has made of two L1 and L2 coat proteins that have produced late in viral infections. Regarding to the recent studies, two commercial prophylactic vaccines have based on L1 viral like particles (VLPs) could strongly induce antibody responses, and protect human body from HPV infections. However, the use of these HPV vaccines has hindered due to their high cost and some limitations. Currently, among various vaccination strategies, live vector-based vaccines have attracted a great attention. Objectives: Herein, a non-pathogenic strain of the protozoan organism known as Leishmania tarentolae has utilized to induce potent humoral immunity in mice model. Materials and Methods: At first, cloning of HPV16 L1 gene into Leishmania expression vector has performed and confirmed by PCR and digestion with restriction enzymes. The promastigotes of Leishmania tarentolae (L.tar) have transfected with linearized DNA construct by electroporation. Protein expression has analyzed by SDS-PAGE and western blotting. Then, the immunogenicity of leishmania expressing L1 protein (L.tar-L1) has assessed in mice model. Results: Our data has indicated that subcutaneous immunization of mice with the recombinant L.tar-L1 has led to enhance the levels of IgG1 and lgG2a in comparison with control groups. Furthermore, there was no significant increase in antibody levels between two and three times of immunizations. Conclusions: The recombinant live vector was able to induce humoral immunity in mice without need of any adjuvant. However, further studies have required to increase its efficiency.
Collapse
Affiliation(s)
- Zeinab Shirbaghaee
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, IR Iran; Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, IR Iran
| | - Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, IR Iran
| | - Abbas Mirshafiey
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, IR Iran
| | - Fatemeh Motevalli
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, IR Iran
| | - Negar Zohrei
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, IR Iran
| |
Collapse
|
20
|
Deng S, Martin C, Patil R, Zhu F, Zhao B, Xiang Z, He Y. Vaxvec: The first web-based recombinant vaccine vector database and its data analysis. Vaccine 2015; 33:6938-46. [PMID: 26403370 DOI: 10.1016/j.vaccine.2015.07.113] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 07/23/2015] [Indexed: 01/12/2023]
Abstract
A recombinant vector vaccine uses an attenuated virus, bacterium, or parasite as the carrier to express a heterologous antigen(s). Many recombinant vaccine vectors and related vaccines have been developed and extensively investigated. To compare and better understand recombinant vectors and vaccines, we have generated Vaxvec (http://www.violinet.org/vaxvec), the first web-based database that stores various recombinant vaccine vectors and those experimentally verified vaccines that use these vectors. Vaxvec has now included 59 vaccine vectors that have been used in 196 recombinant vector vaccines against 66 pathogens and cancers. These vectors are classified to 41 viral vectors, 15 bacterial vectors, 1 parasitic vector, and 1 fungal vector. The most commonly used viral vaccine vectors are double-stranded DNA viruses, including herpesviruses, adenoviruses, and poxviruses. For example, Vaxvec includes 63 poxvirus-based recombinant vaccines for over 20 pathogens and cancers. Vaxvec collects 30 recombinant vector influenza vaccines that use 17 recombinant vectors and were experimentally tested in 7 animal models. In addition, over 60 protective antigens used in recombinant vector vaccines are annotated and analyzed. User-friendly web-interfaces are available for querying various data in Vaxvec. To support data exchange, the information of vaccine vectors, vaccines, and related information is stored in the Vaccine Ontology (VO). Vaxvec is a timely and vital source of vaccine vector database and facilitates efficient vaccine vector research and development.
Collapse
Affiliation(s)
- Shunzhou Deng
- Department of Veterinary Medicine, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China; Unit for Laboratory Animal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Carly Martin
- College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, MI 48109, USA
| | - Rasika Patil
- College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, MI 48109, USA
| | - Felix Zhu
- College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, MI 48109, USA
| | - Bin Zhao
- Unit for Laboratory Animal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA; School of Information, University of Michigan, Ann Arbor, MI 48109, USA
| | - Zuoshuang Xiang
- Unit for Laboratory Animal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Yongqun He
- Unit for Laboratory Animal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Center for Computational Medicine and Biology, University of Michigan, Ann Arbor, MI 48109, USA; Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
21
|
Katebi A, Gholami E, Taheri T, Zahedifard F, Habibzadeh S, Taslimi Y, Shokri F, Papadopoulou B, Kamhawi S, Valenzuela JG, Rafati S. Leishmania tarentolae secreting the sand fly salivary antigen PpSP15 confers protection against Leishmania major infection in a susceptible BALB/c mice model. Mol Immunol 2015; 67:501-11. [PMID: 26298575 DOI: 10.1016/j.molimm.2015.08.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 06/18/2015] [Accepted: 08/02/2015] [Indexed: 12/01/2022]
Abstract
Cutaneous leishmaniasis is a zoonotic, vector-borne disease causing a major health problem in several countries. No vaccine is available and there are limitations associated with the current therapeutic regimens. Immune responses to sand fly saliva have been shown to protect against Leishmania infection. A cellular immune response to PpSP15, a protein from the sand fly Phlebotomus papatasi, was sufficient to control Leishmania major infection in mice. This work presents data supporting the vaccine potency of recombinant live non-pathogenic Leishmania (L.) tarentolae secreting PpSP15 in mice and its potential as a new vaccine strategy against L. major. We generated a recombinant L. tarentolae-PpSP15 strain delivered in the presence of CpG ODN and evaluated its immunogenicity and protective immunity against L. major infection in BALB/c mice. In parallel, different vaccination modalities using PpSP15 as the target antigen were compared. Humoral and cellular immune responses were evaluated before and at three and eight weeks after challenge. Footpad swelling and parasite load were assessed at eight and eleven weeks post-challenge. Our results show that vaccination with L. tarentolae-PpSP15 in combination with CpG as a prime-boost modality confers strong protection against L. major infection that was superior to other vaccination modalities used in this study. This approach represents a novel and promising vaccination strategy against Old World cutaneous leishmaniasis.
Collapse
Affiliation(s)
- A Katebi
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran; Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - E Gholami
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - T Taheri
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - F Zahedifard
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - S Habibzadeh
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Y Taslimi
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - F Shokri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - B Papadopoulou
- Research Center in Infectious Diseases, CHU de Québec Research Center and Department of Microbiology, Infectious Disease and Immunology, Laval University, Quebec (QC), Canada University, Quebec (QC), Canada
| | - S Kamhawi
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA
| | - J G Valenzuela
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA
| | - S Rafati
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
22
|
Leishmania tarentolae: an alternative approach to the production of monoclonal antibodies to treat emerging viral infections. Infect Dis Poverty 2015; 4:8. [PMID: 26191408 PMCID: PMC4506428 DOI: 10.1186/2049-9957-4-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 01/13/2015] [Indexed: 11/10/2022] Open
Abstract
Background Monoclonal antibody therapy has an important role to play as a post-exposure prophylactic and therapeutic for the treatment of viral infections, including emerging infections. For example, several patients of the present Ebola virus outbreak in West Africa were treated with ZMapp, a cocktail of three monoclonal antibodies which are expressed in Nicotiana benthamiana. Discussion The majority of monoclonal antibodies in clinical use are expressed in mammalian cell lines which offer native folding and glycosylation of the expressed antibody. Monoclonal antibody expression in vegetal systems offers advantages over expression in mammalian cell lines, including improved potential for scale up and reduced costs. In this paper, I highlight the advantages of an upcoming protozoal system for the expression of recombinant antibody formats. Leishmania tarentolae offers a robust, economical expression of proteins with mammalian glycosylation patterns expressed in stable cell lines and grown in suspension culture. Several advantages of this system make it particularly suited for use in developing contexts. Summary Given the potential importance of monoclonal antibody therapy in the containment of emerging viral infections, novel and alternative strategies to improve production must be explored. Electronic supplementary material The online version of this article (doi:10.1186/2049-9957-4-8) contains supplementary material, which is available to authorized users.
Collapse
|
23
|
Bhide M, Natarajan S, Hresko S, Aguilar C, Bencurova E. Rapid in vitro protein synthesis pipeline: a promising tool for cost-effective protein array design. MOLECULAR BIOSYSTEMS 2014; 10:1236-45. [PMID: 24686536 DOI: 10.1039/c4mb00003j] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Several protein expression systems for construction of protein arrays have been established in recent years. However, current protocols for protein synthesis are still time consuming, laborious and expensive. This study has established an alternative workflow that covers rapid construction of expression cassettes, in-tube and on-membrane synthesis of recombinant proteins, and straightforward screening of synthesized proteins. Eighteen membrane associated eukaryotic proteins and two secretory complement regulators (C1 inhibitor and vitronectin) were included in the study. To generate hybrid genes, double-overlap extension PCR was employed to fuse the 5' fragment (consisting of a T7 promoter and a species independent translation sequence), ORFs of the target proteins, and the 3' fragment (encompassing GFP fusion, Myc-tag and stop codon). OE-PCR generated fragments were directly mixed with the Leishmania torentolae lysate (translation mix) for protein synthesis. In order to establish a cheap and user-friendly alternative to existing cell-free protein array techniques, PCR products were spotted on the hydrophobic substrate (PVDF membrane), air-dried and covered with only 2 μL of translation mix. All synthesized proteins were spontaneously immobilized on the membrane due to the hydrophobic interaction between C-terminally fused GFP and PVDF. Synthesis and immobilization of proteins were confirmed simply by assessing the GFP chromophore under a laser scanner or a fluorescent microscope.
Collapse
Affiliation(s)
- Mangesh Bhide
- Laboratory of Biomedical Microbiology and Immunology, Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Komenskeho 73, 04181, Kosice, Slovakia.
| | | | | | | | | |
Collapse
|
24
|
Saljoughian N, Taheri T, Rafati S. Live vaccination tactics: possible approaches for controlling visceral leishmaniasis. Front Immunol 2014; 5:134. [PMID: 24744757 PMCID: PMC3978289 DOI: 10.3389/fimmu.2014.00134] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Accepted: 03/17/2014] [Indexed: 01/15/2023] Open
Abstract
Vaccination with durable immunity is the main goal and fundamental to control leishmaniasis. To stimulate the immune response, small numbers of parasites are necessary to be presented in the mammalian host. Similar to natural course of infection, strategy using live vaccine is more attractive when compared to other approaches. Live vaccines present the whole spectrum of antigens to the host immune system in the absence of any adjuvant. Leishmanization was the first effort for live vaccination and currently used in a few countries against cutaneous leishmaniasis, in spite of their obstacle and safety. Then, live attenuated vaccines developed with similar promotion of creating long-term immunity in the host with lower side effect. Different examples of attenuated strains are generated through long-term in vitro culturing, culturing under drug pressure, temperature sensitivity, and chemical mutagenesis, but none is safe enough and their revision to virulent form is possible. Attenuation through genetic manipulation and disruption of virulence factors or essential enzymes for intracellular survival are among other approaches that are intensively under study. Other designs to develop live vaccines for visceral form of leishmaniasis are utilization of live avirulent microorganisms such as Lactococcus lactis, Salmonella enterica, and Leishmania tarentolae called as vectored vaccine. Apparently, these vaccines are intrinsically safer and can harbor the candidate antigens in their genome through different genetic manipulation and create more potential to control Leishmania parasite as an intracellular pathogen.
Collapse
Affiliation(s)
- Noushin Saljoughian
- Molecular Immunology and Vaccine Research Laboratory, Pasteur Institute of Iran, Tehran, Iran
| | - Tahareh Taheri
- Molecular Immunology and Vaccine Research Laboratory, Pasteur Institute of Iran, Tehran, Iran
| | - Sima Rafati
- Molecular Immunology and Vaccine Research Laboratory, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
25
|
Zahedifard F, Gholami E, Taheri T, Taslimi Y, Doustdari F, Seyed N, Torkashvand F, Meneses C, Papadopoulou B, Kamhawi S, Valenzuela JG, Rafati S. Enhanced protective efficacy of nonpathogenic recombinant leishmania tarentolae expressing cysteine proteinases combined with a sand fly salivary antigen. PLoS Negl Trop Dis 2014; 8:e2751. [PMID: 24675711 PMCID: PMC3967951 DOI: 10.1371/journal.pntd.0002751] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 02/06/2014] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Novel vaccination approaches are needed to prevent leishmaniasis. Live attenuated vaccines are the gold standard for protection against intracellular pathogens such as Leishmania and there have been new developments in this field. The nonpathogenic to humans lizard protozoan parasite, Leishmania (L) tarentolae, has been used effectively as a vaccine platform against visceral leishmaniasis in experimental animal models. Correspondingly, pre-exposure to sand fly saliva or immunization with a salivary protein has been shown to protect mice against cutaneous leishmaniasis. METHODOLOGY/PRINCIPAL FINDINGS Here, we tested the efficacy of a novel combination of established protective parasite antigens expressed by L. tarentolae together with a sand fly salivary antigen as a vaccine strategy against L. major infection. The immunogenicity and protective efficacy of different DNA/Live and Live/Live prime-boost vaccination modalities with live recombinant L. tarentolae stably expressing cysteine proteinases (type I and II, CPA/CPB) and PpSP15, an immunogenic salivary protein from Phlebotomus papatasi, a natural vector of L. major, were tested both in susceptible BALB/c and resistant C57BL/6 mice. Both humoral and cellular immune responses were assessed before challenge and at 3 and 10 weeks after Leishmania infection. In both strains of mice, the strongest protective effect was observed when priming with PpSP15 DNA and boosting with PpSP15 DNA and live recombinant L. tarentolae stably expressing cysteine proteinase genes. CONCLUSION/SIGNIFICANCE The present study is the first to use a combination of recombinant L. tarentolae with a sand fly salivary antigen (PpSP15) and represents a novel promising vaccination approach against leishmaniasis.
Collapse
MESH Headings
- Animals
- Antibodies, Protozoan/blood
- Cysteine Proteases/biosynthesis
- Cysteine Proteases/genetics
- Cysteine Proteases/immunology
- Disease Models, Animal
- Female
- Leishmania/immunology
- Leishmaniasis/prevention & control
- Leishmaniasis Vaccines/administration & dosage
- Leishmaniasis Vaccines/genetics
- Leishmaniasis Vaccines/immunology
- Leukocytes, Mononuclear/immunology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Psychodidae
- Salivary Proteins and Peptides/biosynthesis
- Salivary Proteins and Peptides/genetics
- Salivary Proteins and Peptides/immunology
- Vaccination/methods
- Vaccines, Attenuated/administration & dosage
- Vaccines, Attenuated/genetics
- Vaccines, Attenuated/immunology
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
Collapse
Affiliation(s)
- Farnaz Zahedifard
- Molecular Immunology and Vaccine Research Laboratory, Pasteur Institute of Iran, Tehran, Iran
| | - Elham Gholami
- Molecular Immunology and Vaccine Research Laboratory, Pasteur Institute of Iran, Tehran, Iran
| | - Tahereh Taheri
- Molecular Immunology and Vaccine Research Laboratory, Pasteur Institute of Iran, Tehran, Iran
| | - Yasaman Taslimi
- Molecular Immunology and Vaccine Research Laboratory, Pasteur Institute of Iran, Tehran, Iran
| | - Fatemeh Doustdari
- Molecular Immunology and Vaccine Research Laboratory, Pasteur Institute of Iran, Tehran, Iran
| | - Negar Seyed
- Molecular Immunology and Vaccine Research Laboratory, Pasteur Institute of Iran, Tehran, Iran
| | | | - Claudio Meneses
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institute of Health, Rockville, Maryland, United States of America
| | - Barbara Papadopoulou
- Research Centre in Infectious Disease, CHUL Research Centre (CHU de Québec Research Centre) and Department of Microbiology, Infectious Disease and Immunology, Laval University, Quebec, Canada
| | - Shaden Kamhawi
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institute of Health, Rockville, Maryland, United States of America
| | - Jesus G. Valenzuela
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institute of Health, Rockville, Maryland, United States of America
| | - Sima Rafati
- Molecular Immunology and Vaccine Research Laboratory, Pasteur Institute of Iran, Tehran, Iran
- * E-mail: ,
| |
Collapse
|
26
|
Bolhassani A, Muller M, Roohvand F, Motevalli F, Agi E, Shokri M, Rad MM, Hosseinzadeh S. Whole recombinant Pichia pastoris expressing HPV16 L1 antigen is superior in inducing protection against tumor growth as compared to killed transgenic Leishmania. Hum Vaccin Immunother 2014; 10:3499-3508. [PMID: 25668661 PMCID: PMC4514133 DOI: 10.4161/21645515.2014.979606] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 08/08/2014] [Accepted: 08/24/2014] [Indexed: 11/19/2022] Open
Abstract
The development of an efficient vaccine against high-risk HPV types can reduce the incidence rates of cervical cancer by generating anti-tumor protective responses. Traditionally, the majority of prophylactic viral vaccines are composed of live, attenuated or inactivated viruses. Among them, the design of an effective and low-cost vaccine is critical. Inactivated vaccines especially heat-killed yeast cells have emerged as a promising approach for generating antigen-specific immunotherapy. Recent studies have indicated that yeast cell wall components possess adjuvant activities. Moreover, a non-pathogenic protozoan, Leishmania tarentolae (L.tar) has attracted a great attention as a live candidate vaccine. In current study, immunological and protective efficacy of whole recombinant killed Pichia pastoris and Leishmania tarentolae expressing HPV16 L1 capsid protein was evaluated in tumor mice model. We found that Pichia-L1, L.tar-L1 and Gardasil groups increase the IgG2a/IgG1 ratio, indicating a relative preference for the induction of Th1 immune responses. Furthermore, subcutaneous injection of killed Pichia-L1 generated the significant L1-specific IFN-γ immune response as well as the best protective effects in vaccinated mice as compared to killed L.tar-L1, killed Pichia pastoris, killed L.tar and PBS groups. Indeed, whole recombinant Leishmania tarentolae could not protect mice against C3 tumor mice model. These data suggest that Pichia-L1 may be a candidate for the control of HPV infections.
Collapse
Key Words
- 2-ME, mercaptoethanol
- AOX1, alcohol oxidase I gene
- ConA, concanavalin A
- DAB, 3,3′-diaminobenzidine
- FACS, fluorescence-activated cell sorting
- GFP, green fluorescent protein
- HPV, human papillomaviruses
- KBMA, killed but metabolicallyactive
- L.tar, Leishmania tarentolae
- L1 capsid protein
- Leishmania tarentolae expression system
- Pichia pastoris expression system
- SD, standard deviation
- Yeast-HBsAg, yeast expressing hepatitis B surface antigen
- cervical cancer
- human papillomavirus
- killed vaccine
- rL1, recombinant L1
Collapse
Affiliation(s)
- Azam Bolhassani
- Department of Hepatitis and AIDs; Pasteur Institute of Iran; Tehran, Iran
| | - Martin Muller
- German Cancer Research Center (DKFZ); Heidelberg, Germany
| | - Farzin Roohvand
- Virology Department; Pasteur Institute of Iran; Tehran, Iran
| | - Fatemeh Motevalli
- Department of Hepatitis and AIDs; Pasteur Institute of Iran; Tehran, Iran
| | - Elnaz Agi
- Department of Hepatitis and AIDs; Pasteur Institute of Iran; Tehran, Iran
| | - Mehdi Shokri
- Department of Hepatitis and AIDs; Pasteur Institute of Iran; Tehran, Iran
| | | | - Sahar Hosseinzadeh
- Department of Hepatitis and AIDs; Pasteur Institute of Iran; Tehran, Iran
| |
Collapse
|
27
|
Klatt S, Hartl D, Fauler B, Gagoski D, Castro-Obregón S, Konthur Z. Generation and characterization of a Leishmania tarentolae strain for site-directed in vivo biotinylation of recombinant proteins. J Proteome Res 2013; 12:5512-9. [PMID: 24093329 DOI: 10.1021/pr400406c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Leishmania tarentolae is a non-human-pathogenic Leishmania species of growing interest in biotechnology, as it is well-suited for the expression of human recombinant proteins. For many applications it is desirable to express recombinant proteins with a tag allowing easy purification and detection. Hence, we adopted a scheme to express recombinant proteins with a His6-tag and, additionally, to site-specifically in vivo biotinylate them for detection. Biotinylation is a relatively rare modification of endogenous proteins that allows easy detection with negligible cross-reactivity. Here, we established a genetically engineered L. tarentolae strain constitutively expressing the codon-optimized biotin-protein ligase from Escherichia coli (BirA). We thoroughly analyzed the strain for functionality using 2-D polyacrylamide-gel electrophoresis (PAGE), mass spectrometry, and transmission electron microscopy (TEM). We could demonstrate that neither metabolic changes (growth rate) nor structural abnormalities (TEM) occurred. To our knowledge, we show the first 2-D PAGE analyses of L. tarentolae. Our results demonstrate the great benefit of the established L. tarentolae in vivo biotinylation strain for production of dual-tagged recombinant proteins. Additionally, 2-D PAGE and TEM results give insights into the biology of L. tarentolae, helping to better understand Leishmania species. Finally, we envisage that the system is transferable to human-pathogenic species.
Collapse
Affiliation(s)
- Stephan Klatt
- Max Planck Institute for Molecular Genetics , Ihnestr. 63-73, 14195 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
28
|
Mohit E, Rafati S. Biological delivery approaches for gene therapy: strategies to potentiate efficacy and enhance specificity. Mol Immunol 2013; 56:599-611. [PMID: 23911418 DOI: 10.1016/j.molimm.2013.06.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 06/08/2013] [Accepted: 06/09/2013] [Indexed: 12/20/2022]
Abstract
Nowadays many therapeutic agents such as suicide genes, anti-angiogenesis agents, cytokines, chemokines and other therapeutic genes were delivered to cancer cells. Various biological delivery systems have been applied for directing therapeutic gene to target cells. Some of these successful preclinical studies, steps forward to clinical trials and a few are examined in phase III clinical trials. In this review, the biological gene delivery systems were categorized into microorganism and cell based delivery systems. Viral, bacterial, yeast and parasite are among microorganism based delivery systems which are expanded in this review. In cell based approach, different strategies such as tumor cells, stem cells, dendritic cells and sertoli cells will be discussed. Different drawbacks are associated with each delivery system; therefore, many strategies have been improved and potentiated their direction toward specific target cells. Herein, further to the principle of each delivery system, the progresses of these approaches for development of newer generation are discussed.
Collapse
Affiliation(s)
- Elham Mohit
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
29
|
Hosseinzadeh S, Bolhassani A, Rafati S, Taheri T, Zahedifard F, Daemi A, Taslimi Y, Hashemi M, Memarnejadian A. A non-pathogenic live vector as an efficient delivery system in vaccine design for the prevention of HPV16 E7-overexpressing cancers. Drug Deliv 2013; 20:190-8. [DOI: 10.3109/10717544.2013.801534] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
30
|
Mohit E, Rafati S. Chemokine-based immunotherapy: delivery systems and combination therapies. Immunotherapy 2013; 4:807-40. [PMID: 22947009 DOI: 10.2217/imt.12.72] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
A major role of chemokines is to mediate leukocyte migration through interaction with G-protein-coupled receptors. Various delivery systems have been developed to utilize the chemokine properties for combating disease. Viral and mutant viral vectors expressing chemokines, genetically modified dendritic cells with chemokine or chemokine receptors, engineered chemokine-expressing tumor cells and pDNA encoding chemokines are among these methods. Another approach for inducing a targeted immune response is fusion of a targeting antibody or antibody fragment to a chemokine. In addition, chemokines induce more effective antitumor immunity when used as adjuvants. In this regard, chemokines are codelivered along with antigens or fused as a targeting unit with antigenic moieties. In this review, several chemokines with their role in inducing immune response against different diseases are discussed, with a major emphasis on cancer.
Collapse
Affiliation(s)
- Elham Mohit
- Molecular Immunology & Vaccine Research Lab, Pasteur Institute of Iran, Tehran 13164, Iran
| | | |
Collapse
|
31
|
Salehi M, Taheri T, Mohit E, Zahedifard F, Seyed N, Taslimi Y, Sattari M, Bolhassani A, Rafati S. Recombinant Leishmania tarentolae encoding the HPV type 16 E7 gene in tumor mice model. Immunotherapy 2012. [DOI: 10.2217/imt.12.110] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background: Cervical cancer, the third most prevalent cause of cancer in women worldwide, is associated with HPVs. The critical role of E7 protein in HPV-related malignancies has designated it as a strong contender for generating vaccines against HPV. Materials & methods: In this study, we developed a novel live vaccine using recombinant Leishmania tarentolae expressing E7-green fluorescent protein (GFP) fusion protein for the protection of mice against HPV-associated tumors. In order to transfect L. tarentolae with E7-GFP fusion construct, pLEXSY-neo2 system was applied. Followed by PCR, fluorescence imaging and fluorescence-activated cell sorting analysis, integration of E7-GFP gene into parasites genome was confirmed. A comparative study of six groups of C57BL/6 mice was performed to analyze antigen-specific humoral and cellular immune responses against E7 encoding live and DNA vaccines. Furthermore, the anti-tumor protective effect of L. tarentolae-E7-GFP was compared to other vaccination strategies, namely pcDNA-E7 as the DNA vaccine and pcDNA-E7/L. tarentolae-E7-GFP as the prime-boost regimen. Results: We found that E7-GFP expressing recombinant L. tarentolae induces significant levels of IgG2a and IFN-γ, while there is no significant IL-5 production compared with that of other strategies and control groups before and after challenge with TC-1 tumor cells. It is noteworthy that the designed live vaccine showed the best protection and minimum tumor size among all groups against TC-1-induced tumors. Conclusion: Overall, the results obtained revealed that the E7-GFP recombinant L. tarentolae could be a potential live vaccine for induction of immune responses in vivo.
Collapse
Affiliation(s)
- Maryam Salehi
- Molecular Immunology & Vaccine Research Laboratory, Pasteur Institute of Iran, Tehran, Iran
- Department of Immunology, Medical School, Shahid Beheshti University of Medical Sciences & Health Services, Tehran, Iran
| | - Tahereh Taheri
- Molecular Immunology & Vaccine Research Laboratory, Pasteur Institute of Iran, Tehran, Iran
| | - Elham Mohit
- Molecular Immunology & Vaccine Research Laboratory, Pasteur Institute of Iran, Tehran, Iran
| | - Farnaz Zahedifard
- Molecular Immunology & Vaccine Research Laboratory, Pasteur Institute of Iran, Tehran, Iran
| | - Negar Seyed
- Molecular Immunology & Vaccine Research Laboratory, Pasteur Institute of Iran, Tehran, Iran
| | - Yasaman Taslimi
- Molecular Immunology & Vaccine Research Laboratory, Pasteur Institute of Iran, Tehran, Iran
| | - Mandana Sattari
- Department of Immunology, Medical School, Shahid Beheshti University of Medical Sciences & Health Services, Tehran, Iran
| | - Azam Bolhassani
- Molecular Immunology & Vaccine Research Laboratory, Pasteur Institute of Iran, Tehran, Iran
| | - Sima Rafati
- Molecular Immunology & Vaccine Research Laboratory, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
32
|
Secretory signal peptide modification for optimized antibody-fragment expression-secretion in Leishmania tarentolae. Microb Cell Fact 2012; 11:97. [PMID: 22830363 PMCID: PMC3416730 DOI: 10.1186/1475-2859-11-97] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 07/01/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Secretory signal peptides (SPs) are well-known sequence motifs targeting proteins for translocation across the endoplasmic reticulum membrane. After passing through the secretory pathway, most proteins are secreted to the environment. Here, we describe the modification of an expression vector containing the SP from secreted acid phosphatase 1 (SAP1) of Leishmania mexicana for optimized protein expression-secretion in the eukaryotic parasite Leishmania tarentolae with regard to recombinant antibody fragments. For experimental design the online tool SignalP was used, which predicts the presence and location of SPs and their cleavage sites in polypeptides. To evaluate the signal peptide cleavage site as well as changes of expression, SPs were N-terminally linked to single-chain Fragment variables (scFv's). The ability of L. tarentolae to express complex eukaryotic proteins with highly diverse post-translational modifications and its easy bacteria-like handling, makes the parasite a promising expression system for secretory proteins. RESULTS We generated four vectors with different SP-sequence modifications based on in-silico analyses with SignalP in respect to cleavage probability and location, named pLTEX-2 to pLTEX-5. To evaluate their functionality, we cloned four individual scFv-fragments into the vectors and transfected all 16 constructs into L. tarentolae. Independently from the expressed scFv, pLTEX-5 derived constructs showed the highest expression rate, followed by pLTEX-4 and pLTEX-2, whereas only low amounts of protein could be obtained from pLTEX-3 clones, indicating dysfunction of the SP. Next, we analysed the SP cleavage sites by Edman degradation. For pLTEX-2, -4, and -5 derived scFv's, the results corresponded to in-silico predictions, whereas pLTEX-3 derived scFv's contained one additional amino-acid (AA). CONCLUSIONS The obtained results demonstrate the importance of SP-sequence optimization for efficient expression-secretion of scFv's. We could successfully demonstrate that minor modifications in the AA-sequence in the c-region of the natural SP from SAP1, based on in-silico predictions following the (-3, -1) rule, resulted in different expression-secretion rates of the protein of interest. The yield of scFv production could be improved close to one order of magnitude. Therefore, SP-sequence optimization is a viable option to increase the overall yield of recombinant protein production.
Collapse
|
33
|
Bolhassani A, Zahedifard F. Therapeutic live vaccines as a potential anticancer strategy. Int J Cancer 2012; 131:1733-43. [PMID: 22610886 DOI: 10.1002/ijc.27640] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 05/10/2012] [Indexed: 01/13/2023]
Abstract
The design of efficient cancer treatments is one of the major challenges of medical science. Therapeutic vaccines of cancer have been emerged as an attractive approach for their capacity of breaking the immune tolerance and invoking long-term immune response targeting cancer cells without autoimmunity. An efficient antigen delivery system is the key issue of developing an effective cancer vaccine. In this regard, live vaccination strategies including various live bacterial and viral vectors have attracted a great attention. Several bacterial strains such as Salmonella, Listeria monocytogenes and Lactococcus lactis effectively colonize solid tumors and act as antitumor therapeutics. On the other hand, the use of viruses as vaccine vectors such as Vaccinia, Adenovirus, Herpes simplex virus, Paramyxovirus and Retroviruses utilizes mechanisms that evolved in these microbes for entering cells and capturing the cellular machinery to express viral proteins. Viral/bacterial-vectored vaccines induce systemic T-cell responses including polyfunctional cytokine-secreting CD4+ and CD8+ T-cells. However, there is an urgent need for the development of new safe live vaccine vectors that are capable of enhancing antigen presentation and eliciting potent immune responses without the risk of development of disease in humans. Recently, nonpathogenic parasites including Leishmania tarentolae, Toxoplasma gondii and Trypanosoma cruzi have emerged to be a novel candidate for gene delivery and heterologous genes expression. In this review, recent researches on cancer therapy using genetically modified bacteria and virus are summarized. In addition, live parasite-based vectors will be discussed as a novel anticancer therapeutic approach.
Collapse
Affiliation(s)
- Azam Bolhassani
- Molecular Immunology and Vaccine Research Laboratory, Pasteur Institute of Iran, Tehran, Iran.
| | | |
Collapse
|
34
|
Raymond F, Boisvert S, Roy G, Ritt JF, Légaré D, Isnard A, Stanke M, Olivier M, Tremblay MJ, Papadopoulou B, Ouellette M, Corbeil J. Genome sequencing of the lizard parasite Leishmania tarentolae reveals loss of genes associated to the intracellular stage of human pathogenic species. Nucleic Acids Res 2011; 40:1131-47. [PMID: 21998295 PMCID: PMC3273817 DOI: 10.1093/nar/gkr834] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The Leishmania tarentolae Parrot-TarII strain genome sequence was resolved to an average 16-fold mean coverage by next-generation DNA sequencing technologies. This is the first non-pathogenic to humans kinetoplastid protozoan genome to be described thus providing an opportunity for comparison with the completed genomes of pathogenic Leishmania species. A high synteny was observed between all sequenced Leishmania species. A limited number of chromosomal regions diverged between L. tarentolae and L. infantum, while remaining syntenic to L. major. Globally, >90% of the L. tarentolae gene content was shared with the other Leishmania species. We identified 95 predicted coding sequences unique to L. tarentolae and 250 genes that were absent from L. tarentolae. Interestingly, many of the latter genes were expressed in the intracellular amastigote stage of pathogenic species. In addition, genes coding for products involved in antioxidant defence or participating in vesicular-mediated protein transport were underrepresented in L. tarentolae. In contrast to other Leishmania genomes, two gene families were expanded in L. tarentolae, namely the zinc metallo-peptidase surface glycoprotein GP63 and the promastigote surface antigen PSA31C. Overall, L. tarentolae's gene content appears better adapted to the promastigote insect stage rather than the amastigote mammalian stage.
Collapse
Affiliation(s)
- Frédéric Raymond
- Infectious Disease Research Centre, CHUL Research Centre (CHUQ), Quebec City,Quebec, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Bolhassani A, Taheri T, Taslimi Y, Zamanilui S, Zahedifard F, Seyed N, Torkashvand F, Vaziri B, Rafati S. Fluorescent Leishmania species: development of stable GFP expression and its application for in vitro and in vivo studies. Exp Parasitol 2010; 127:637-45. [PMID: 21187086 DOI: 10.1016/j.exppara.2010.12.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2010] [Revised: 12/16/2010] [Accepted: 12/16/2010] [Indexed: 02/06/2023]
Abstract
Reporter genes have proved to be an excellent tool for studying disease progression. Recently, the green fluorescent protein (GFP) ability to quantitatively monitor gene expression has been demonstrated in different organisms. This report describes the use of Leishmania tarentolae (L. tarentolae) expression system (LEXSY) for high and stable levels of GFP production in different Leishmania species including L. tarentolae, L. major and L. infantum. The DNA expression cassette (pLEXSY-EGFP) was integrated into the chromosomal ssu locus of Leishmania strains through homologous recombination. Fluorescent microscopic image showed that GFP transgenes can be abundantly and stably expressed in promastigote and amastigote stages of parasites. Furthermore, flow cytometry analysis indicated a clear quantitative distinction between wild type and transgenic Leishmania strains at both promastigote and amastigote forms. Our data showed that the footpad lesions with GFP-transfected L. major are progressive over time by using fluorescence small-animal imaging system. Consequently, the utilization of stable GFP-transfected Leishmania species will be appropriate for in vitro and in vivo screening of anti-leishmanial drugs and vaccine development as well as understanding the biology of the host-parasite interactions at the cellular level.
Collapse
Affiliation(s)
- Azam Bolhassani
- Molecular Immunology and Vaccine Research Laboratory, Pasteur Institute of Iran, Tehran, Iran
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Leishmania tarentolae: Utility as an in vitro model for screening of antileishmanial agents. Exp Parasitol 2010; 126:471-5. [DOI: 10.1016/j.exppara.2010.05.016] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Revised: 05/19/2010] [Accepted: 05/21/2010] [Indexed: 11/19/2022]
|
37
|
Jiang B, Qin L, Du Y, Peng N, Chen L, Chen Z, Chen X. Transgenic Plasmodium that expresses HIV-1 Gag elicits immunity and protects mice against vaccinia virus-gag and malarial parasites. Vaccine 2010; 28:7915-22. [PMID: 20933565 DOI: 10.1016/j.vaccine.2010.09.075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Revised: 08/17/2010] [Accepted: 09/23/2010] [Indexed: 10/19/2022]
Abstract
Malaria and human immunodeficiency virus type 1 (HIV-1) infection overlap in many regions of the world. Our goal was to determine the feasibility of developing transgenic Plasmodium berghei that expresses HIV-1 Gag, PbGAG, as a conceptual bivalent vaccine against both HIV-1 infection and malaria. Immunization of mice with PbGAG induced specific responses to the HIV-1 Gag. Importantly, mice vaccinated with PbGAG were significantly protected from challenge with vaccinia virus-gag (VV-gag) with an average 30-fold reduction in titer (P<0.05). In addition, mice immunized with PbGAG developed Plasmodium-specific immune responses and the immunized animals were protected from challenges with blood-stage P. berghei NK65 and Plasmodium yoelii 17XL. We demonstrated a novel vaccination strategy that uses a live transgenic protozoan parasite-based bivalent vaccine to immunize mice and confer significant levels of protection against VV-gag and malarial parasite challenges. These observations have important implications for the development of a new form of bivalent vaccine against both HIV-1 and malaria.
Collapse
Affiliation(s)
- Bo Jiang
- Center for Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou Science Park, Guangzhou 510530, Guangdong, PR China
| | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
A variety of recombinant protein expression systems have been developed for heterologous genes in both prokaryotic and eukaryotic systems such as bacteria, yeast, mammals, insects, transgenic animals, and plants. Recently Leishmania tarentolae, a trypanosomatid protozoan parasite of the white-spotted wall gecko (Tarentola annularis), has been suggested as candidate for heterologous genes expression. Trypanosomatidae are rich in glycoproteins, which can account for more than 10% of total protein; the oligosaccharide structures are similar to those of mammals with N-linked galactose, and fucose residues. To date several heterologous proteins have been expressed in L. tarentolae including both cytoplasmic enzymes and membrane receptors. Significant advances in the development of new strains and vectors, improved techniques, and the commercial availability of those tools coupled with a better understanding of the biology of Leishmania species will lead to value and power in commercial and research labs alike.
Collapse
|
39
|
Brown SA, Surman SL, Sealy R, Jones BG, Slobod KS, Branum K, Lockey TD, Howlett N, Freiden P, Flynn P, Hurwitz JL. Heterologous Prime-Boost HIV-1 Vaccination Regimens in Pre-Clinical and Clinical Trials. Viruses 2010; 2:435-467. [PMID: 20407589 PMCID: PMC2855973 DOI: 10.3390/v2020435] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 01/12/2010] [Accepted: 01/22/2010] [Indexed: 12/21/2022] Open
Abstract
Currently, there are more than 30 million people infected with HIV-1 and thousands more are infected each day. Vaccination is the single most effective mechanism for prevention of viral disease, and after more than 25 years of research, one vaccine has shown somewhat encouraging results in an advanced clinical efficacy trial. A modified intent-to-treat analysis of trial results showed that infection was approximately 30% lower in the vaccine group compared to the placebo group. The vaccine was administered using a heterologous prime-boost regimen in which both target antigens and delivery vehicles were changed during the course of inoculations. Here we examine the complexity of heterologous prime-boost immunizations. We show that the use of different delivery vehicles in prime and boost inoculations can help to avert the inhibitory effects caused by vector-specific immune responses. We also show that the introduction of new antigens into boost inoculations can be advantageous, demonstrating that the effect of `original antigenic sin' is not absolute. Pre-clinical and clinical studies are reviewed, including our own work with a three-vector vaccination regimen using recombinant DNA, virus (Sendai virus or vaccinia virus) and protein. Promising preliminary results suggest that the heterologous prime-boost strategy may possibly provide a foundation for the future prevention of HIV-1 infections in humans.
Collapse
Affiliation(s)
- Scott A. Brown
- Department of Immunology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, USA; E-Mail: (S.A.B.)
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, USA; E-Mails: (S.L.S.); (R.S.); (B.G.J.); (K.B.); (N.H.); (P.F.); (P.F.)
| | - Sherri L. Surman
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, USA; E-Mails: (S.L.S.); (R.S.); (B.G.J.); (K.B.); (N.H.); (P.F.); (P.F.)
| | - Robert Sealy
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, USA; E-Mails: (S.L.S.); (R.S.); (B.G.J.); (K.B.); (N.H.); (P.F.); (P.F.)
| | - Bart G. Jones
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, USA; E-Mails: (S.L.S.); (R.S.); (B.G.J.); (K.B.); (N.H.); (P.F.); (P.F.)
| | - Karen S. Slobod
- Early Development, Novartis Vaccines and Diagnostics, 350 Mass Ave. Cambridge, MA 02139, USA; E-Mail: (K.S.S.)
| | - Kristen Branum
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, USA; E-Mails: (S.L.S.); (R.S.); (B.G.J.); (K.B.); (N.H.); (P.F.); (P.F.)
| | - Timothy D. Lockey
- Department of Therapeutics, Production and Quality, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, USA; E-Mail: (T.D.L.)
| | - Nanna Howlett
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, USA; E-Mails: (S.L.S.); (R.S.); (B.G.J.); (K.B.); (N.H.); (P.F.); (P.F.)
| | - Pamela Freiden
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, USA; E-Mails: (S.L.S.); (R.S.); (B.G.J.); (K.B.); (N.H.); (P.F.); (P.F.)
| | - Patricia Flynn
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, USA; E-Mails: (S.L.S.); (R.S.); (B.G.J.); (K.B.); (N.H.); (P.F.); (P.F.)
- Department of Pediatrics, University of Tennessee, Memphis, TN 38163, USA
| | - Julia L. Hurwitz
- Department of Immunology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, USA; E-Mail: (S.A.B.)
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, USA; E-Mails: (S.L.S.); (R.S.); (B.G.J.); (K.B.); (N.H.); (P.F.); (P.F.)
- Department of Pathology, University of Tennessee, Memphis, TN 38163, USA
| |
Collapse
|
40
|
Mizbani A, Taheri T, Zahedifard F, Taslimi Y, Azizi H, Azadmanesh K, Papadopoulou B, Rafati S. Recombinant Leishmania tarentolae expressing the A2 virulence gene as a novel candidate vaccine against visceral leishmaniasis. Vaccine 2009; 28:53-62. [PMID: 19818721 DOI: 10.1016/j.vaccine.2009.09.114] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2009] [Revised: 09/21/2009] [Accepted: 09/25/2009] [Indexed: 11/29/2022]
Abstract
Visceral leishmaniasis is the most severe form of leishmaniasis. To date, there is no effective vaccine against this disease. Many antigens have been examined so far as protein- or DNA-based vaccines, but none of them conferred complete long-term protection. The use of live attenuated vaccines has recently emerged as a promising vaccination strategy. In this study, we stably expressed the Leishmania donovani A2 antigen in Leishmania tarentolae, a non-pathogenic member of the genus Leishmania, and evaluated its protective efficacy as a live vaccine against L. infantum challenge. Our results show that a single intraperitoneal administration of the A2-recombinant L. tarentolae strain protects BALB/c mice against L. infantum challenge and that protective immunity is associated with high levels of IFN-gamma production prior and after challenge. This is accompanied by reduced levels of IL-5 production after challenge, leading to a potent Th1 immune response. In contrast, intravenous injection elicited a Th2 type response, characterized by higher levels of IL-5 and high humoral immune response, resulting in a less efficient protection. All together, these results indicate the promise of A2-expressing L. tarentolae as a safe live vaccine against visceral leishmaniasis.
Collapse
Affiliation(s)
- Amir Mizbani
- Molecular Immunology and Vaccine Research Laboratory, Pasteur Institute of Iran, Tehran, Iran
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Demberg T, Robert-Guroff M. Mucosal immunity and protection against HIV/SIV infection: strategies and challenges for vaccine design. Int Rev Immunol 2009; 28:20-48. [PMID: 19241252 PMCID: PMC3466469 DOI: 10.1080/08830180802684331] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
To date, most HIV vaccine strategies have focused on parenteral immunization and systemic immunity. These approaches have not yielded the efficacious HIV vaccine urgently needed to control the AIDS pandemic. As HIV is primarily mucosally transmitted, efforts are being re-focused on mucosal vaccine strategies, in spite of complexities of immune response induction and evaluation. Here, we outline issues in mucosal vaccine design and illustrate strategies with examples from the recent literature. Development of a successful HIV vaccine will require in-depth understanding of the mucosal immune system, knowledge that ultimately will benefit vaccine design for all mucosally transmitted infectious agents.
Collapse
Affiliation(s)
- Thorsten Demberg
- Vaccine Branch, National Cancer Institute, NIH, Bethesda, MD 20892
| | | |
Collapse
|
42
|
Feng Y, Wang S, Luo F, Ruan Y, Kang L, Xiang X, Chao T, Peng G, Zhu C, Mu Y, Zhu Y, Zhang X, Wu J. A novel recombinant bacterial vaccine strain expressing dual viral antigens induces multiple immune responses to the Gag and gp120 proteins of HIV-1 in immunized mice. Antiviral Res 2008; 80:272-9. [PMID: 18639586 PMCID: PMC7114238 DOI: 10.1016/j.antiviral.2008.06.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2008] [Revised: 06/15/2008] [Accepted: 06/16/2008] [Indexed: 11/27/2022]
Abstract
Recombinant Salmonella enterica serovar Typhi can function as a live vector to deliver foreign antigens to the mammalian immune system and induce both mucosal and systemic immunity. In this study, we generated a recombinant Salmonella Typhi strain pilS−pilT−Gag+(pVAX1-gp120) harboring the human immunodeficiency virus (HIV) gag gene integrated into the bacterial chromosome and gp120 gene carried by a plasmid. Mice inoculated with this recombinant bacterium through intranasal route produced high titers of IgG to gp120 in sera and IgA to gp120 in fecal washes. In addition, Gag-specific and gp120-specific cytotoxic T lymphocyte (CTL) responses were observed in sorted spleen lymphocytes of immunized mice. These results demonstrated that this recombinant Salmonella Typhi strain elicits multiple immune responses against both Gag and gp120 antigens of HIV, and thus would be a potential vaccine candidate to the prevention of HIV/AIDS.
Collapse
Affiliation(s)
- Yong Feng
- State Key Laboratory of Virology and College of Life Sciences, Wuhan University, Wychang, Wuhan 430072, Hubei, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|