1
|
Li HC, Yang CH, Lo SY. Cellular factors involved in the hepatitis C virus life cycle. World J Gastroenterol 2021; 27:4555-4581. [PMID: 34366623 PMCID: PMC8326260 DOI: 10.3748/wjg.v27.i28.4555] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/04/2021] [Accepted: 07/09/2021] [Indexed: 02/06/2023] Open
Abstract
The hepatitis C virus (HCV), an obligatory intracellular pathogen, highly depends on its host cells to propagate successfully. The HCV life cycle can be simply divided into several stages including viral entry, protein translation, RNA replication, viral assembly and release. Hundreds of cellular factors involved in the HCV life cycle have been identified over more than thirty years of research. Characterization of these cellular factors has provided extensive insight into HCV replication strategies. Some of these cellular factors are targets for anti-HCV therapies. In this review, we summarize the well-characterized and recently identified cellular factors functioning at each stage of the HCV life cycle.
Collapse
Affiliation(s)
- Hui-Chun Li
- Department of Biochemistry, Tzu Chi University, Hualien 970, Taiwan
| | - Chee-Hing Yang
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien 970, Taiwan
| | - Shih-Yen Lo
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien 970, Taiwan
- Department of Laboratory Medicine, Buddhist Tzu Chi General Hospital, Hualien 970, Taiwan
| |
Collapse
|
2
|
Hepatitis C Virus Uses Host Lipids to Its Own Advantage. Metabolites 2021; 11:metabo11050273. [PMID: 33925362 PMCID: PMC8145847 DOI: 10.3390/metabo11050273] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/11/2021] [Accepted: 04/23/2021] [Indexed: 02/06/2023] Open
Abstract
Lipids and lipoproteins constitute indispensable components for living not only for humans. In the case of hepatitis C virus (HCV), the option of using the products of our lipid metabolism is “to be, or not to be”. On the other hand, HCV infection, which is the main cause of chronic hepatitis, cirrhosis and hepatocellular carcinoma, exerts a profound influence on lipid and lipoprotein metabolism of the host. The consequences of this alternation are frequently observed as hypolipidemia and hepatic steatosis in chronic hepatitis C (CHC) patients. The clinical relevance of these changes reflects the fact that lipids and lipoprotein play a crucial role in all steps of the life cycle of HCV. The virus circulates in the bloodstream as a highly lipidated lipo-viral particle (LVP) that defines HCV hepatotropism. Thus, strict relationships between lipids/lipoproteins and HCV are indispensable for the mechanism of viral entry into hepatocytes, viral replication, viral particles assembly and secretion. The purpose of this review is to summarize the tricks thanks to which HCV utilizes host lipid metabolism to its own advantage.
Collapse
|
3
|
Shimotohno K. HCV Assembly and Egress via Modifications in Host Lipid Metabolic Systems. Cold Spring Harb Perspect Med 2021; 11:cshperspect.a036814. [PMID: 32122916 PMCID: PMC7778218 DOI: 10.1101/cshperspect.a036814] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Hepatitis C virus (HCV) proliferates by hijacking the host lipid machinery. In vitro replication systems revealed many aspects of the virus life cycle; in particular, viral utilization of host lipid metabolism during HCV proliferation. HCV interacts with lipid droplets (LDs) before starting the process of virus capsid formation at the lipid-rich endoplasmic reticulum (ER) membrane compartment. HCV buds into the ER via lipoprotein assembly and secretion. Exchangeable apolipoproteins, represented by apolipoprotein E (apoE), play pivotal roles in enhancing HCV-specific infectivity. HCV virions are likely to interact with other lipoproteins circulating in blood vessels and incorporate apolipoproteins as well as lipids. This review focuses on virus assembly and egress by briefly describing the recent advances in this area.
Collapse
|
4
|
Diosa-Toro M, Prasanth KR, Bradrick SS, Garcia Blanco MA. Role of RNA-binding proteins during the late stages of Flavivirus replication cycle. Virol J 2020; 17:60. [PMID: 32334603 PMCID: PMC7183730 DOI: 10.1186/s12985-020-01329-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 04/11/2020] [Indexed: 12/21/2022] Open
Abstract
The genus Flavivirus encompasses several worldwide-distributed arthropod-borne viruses including, dengue virus, Japanese encephalitis virus, West Nile virus, yellow fever virus, Zika virus, and tick-borne encephalitis virus. Infection with these viruses manifest with symptoms ranging from febrile illness to life- threatening hypotensive shock and encephalitis. Therefore, flaviviruses pose a great risk to public health. Currently, preventive measures are falling short to control epidemics and there are no antivirals against any Flavivirus.Flaviviruses carry a single stranded positive-sense RNA genome that plays multiple roles in infected cells: it is translated into viral proteins, used as template for genome replication, it is the precursor of the subgenomic flaviviral RNA and it is assembled into new virions. Furthermore, viral RNA genomes are also packaged into extracellular vesicles, e.g. exosomes, which represent an alternate mode of virus dissemination.Because RNA molecules are at the center of Flavivirus replication cycle, viral and host RNA-binding proteins (RBPs) are critical determinants of infection. Numerous studies have revealed the function of RBPs during Flavivirus infection, particularly at the level of RNA translation and replication. These proteins, however, are also critical participants at the late stages of the replication cycle. Here we revise the function of host RBPs and the viral proteins capsid, NS2A and NS3, during the packaging of viral RNA and the assembly of new virus particles. Furthermore, we go through the evidence pointing towards the importance of host RBPs in mediating cellular RNA export with the idea that the biogenesis of exosomes harboring Flavivirus RNA would follow an analogous pathway.
Collapse
Affiliation(s)
- Mayra Diosa-Toro
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore.
| | - K Reddisiva Prasanth
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Shelton S Bradrick
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
- Global Health, Surveillance & Diagnostics Group, MRIGlobal, Kansas City, MO, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Mariano A Garcia Blanco
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore.
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA.
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
5
|
Cosset FL, Mialon C, Boson B, Granier C, Denolly S. HCV Interplay with Lipoproteins: Inside or Outside the Cells? Viruses 2020; 12:v12040434. [PMID: 32290553 PMCID: PMC7232430 DOI: 10.3390/v12040434] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/05/2020] [Accepted: 04/10/2020] [Indexed: 12/11/2022] Open
Abstract
Hepatitis C virus (HCV) infection is a major public health issue leading to chronic liver diseases. HCV particles are unique owing to their particular lipid composition, namely the incorporation of neutral lipids and apolipoproteins. The mechanism of association between HCV virion components and these lipoproteins factors remains poorly understood as well as its impact in subsequent steps of the viral life cycle, such as entry into cells. It was proposed that the lipoprotein biogenesis pathway is involved in HCV morphogenesis; yet, recent evidence indicated that HCV particles can mature and evolve biochemically in the extracellular medium after egress. In addition, several viral, cellular and blood components have been shown to influence and regulate this specific association. Finally, this specific structure and composition of HCV particles was found to influence entry into cells as well as their stability and sensitivity to neutralizing antibodies. Due to its specific particle composition, studying the association of HCV particles with lipoproteins remains an important goal towards the rational design of a protective vaccine.
Collapse
|
6
|
Denolly S, Granier C, Fontaine N, Pozzetto B, Bourlet T, Guérin M, Cosset FL. A serum protein factor mediates maturation and apoB-association of HCV particles in the extracellular milieu. J Hepatol 2019; 70:626-638. [PMID: 30553840 DOI: 10.1016/j.jhep.2018.11.033] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 11/15/2018] [Accepted: 11/30/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS In the sera of infected patients, hepatitis C virus (HCV) particles display heterogeneous forms with low-buoyant densities (<1.08), underscoring their lipidation via association with apoB-containing lipoproteins, which was proposed to occur during assembly or secretion from infected hepatocytes. However, the mechanisms inducing this association remain poorly-defined and most cell culture grown HCV (HCVcc) particles exhibit higher density (>1.08) and poor/no association with apoB. We aimed to elucidate the mechanisms of lipidation and to produce HCVcc particles resembling those in infected sera. METHODS We produced HCVcc particles of Jc1 or H77 strains from Huh-7.5 hepatoma cells cultured in standard conditions (10%-fetal calf serum) vs. in serum-free or human serum conditions before comparing their density profiles to patient-derived virus. We also characterized wild-type and Jc1/H77 hypervariable region 1 (HVR1)-swapped mutant HCVcc particles produced in serum-free media and incubated with different serum types or with purified lipoproteins. RESULTS Compared to serum-free or fetal calf serum conditions, production with human serum redistributed most HCVcc infectious particles to low density (<1.08) or very-low density (<1.04) ranges. In addition, short-time incubation with human serum was sufficient to shift HCVcc physical particles to low-density fractions, in time- and dose-dependent manners, which increased their specific infectivity, promoted apoB-association and induced neutralization-resistance. Moreover, compared to Jc1, we detected higher levels of H77 HCVcc infectious particles in very-low-density fractions, which could unambiguously be attributed to strain-specific features of the HVR1 sequence. Finally, all 3 lipoprotein classes, i.e., very-low-density, low-density and high-density lipoproteins, could synergistically induce low-density shift of HCV particles; yet, this required additional non-lipid serum factor(s) that include albumin. CONCLUSIONS The association of HCV particles with lipids may occur in the extracellular milieu. The lipidation level depends on serum composition as well as on HVR1-specific properties. These simple culture conditions allow production of infectious HCV particles resembling those of chronically-infected patients. LAY SUMMARY Hepatitis C virus (HCV) particles may associate with apoB and acquire neutral lipids after exiting cells, giving them low-buoyant density. The hypervariable region 1 (HVR1) is a majorviral determinant of E2 that controls this process. Besides lipoproteins, specific serum factors including albumin promote extracellular maturation of HCV virions. HCV particle production in vitro, with media of defined serum conditions, enables production of infectious particles resembling those of chronically infected patients.
Collapse
Affiliation(s)
- Solène Denolly
- CIRI - Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, F-69007 Lyon, France
| | - Christelle Granier
- CIRI - Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, F-69007 Lyon, France
| | - Nelly Fontaine
- CIRI - Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, F-69007 Lyon, France
| | - Bruno Pozzetto
- GIMAP, EA 3064, Faculté de Médecine, Université de Saint-Etienne, Univ Lyon, F-42023 Saint Etienne, France
| | - Thomas Bourlet
- GIMAP, EA 3064, Faculté de Médecine, Université de Saint-Etienne, Univ Lyon, F-42023 Saint Etienne, France
| | - Maryse Guérin
- Inserm, Sorbonne-Université, Research Unit of Cardiovascular, Metabolism and Nutrition Diseases UMR_S1166-ICAN, Paris F-75013, France
| | - François-Loïc Cosset
- CIRI - Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, F-69007 Lyon, France.
| |
Collapse
|
7
|
Chida T, Kawata K, Ohta K, Matsunaga E, Ito J, Shimoyama S, Yamazaki S, Noritake H, Suzuki T, Suda T, Kobayashi Y. Rapid Changes in Serum Lipid Profiles during Combination Therapy with Daclatasvir and Asunaprevir in Patients Infected with Hepatitis C Virus Genotype 1b. Gut Liver 2018; 12:201-207. [PMID: 29212314 PMCID: PMC5832345 DOI: 10.5009/gnl17179] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 06/28/2017] [Accepted: 06/28/2017] [Indexed: 12/13/2022] Open
Abstract
Background/Aims Changes in lipid profiles in patients infected with hepatitis C virus (HCV) during direct-acting antiviral therapy have been reported in recent years. However, the clinical aspects of disturbed lipid metabolism in chronic HCV infection have not been fully elucidated. Methods Dynamic changes in serum total, low-density lipoprotein (LDL), and high-density lipoprotein (HDL) cholesterol and apolipoprotein levels in patients infected with HCV genotype 1b were examined during combination therapy with daclatasvir (DCV) and asunaprevir (ASV). Results Total, LDL−, and HDL-cholesterol levels increased rapidly and persistently after week 4. Apolipoprotein (apo) A-I, apo B, apo C-II, and apo C-III levels were significantly higher at week 4 than at week 0. In contrast, apo A-II and apo E levels were significantly lower. The differences in LDL− and HDL-cholesterol levels were positively correlated with those of apo B and apo A-I, respectively. Interestingly, in patients with non-sustained virological response, these cholesterol levels decreased rapidly after viral breakthrough or viral relapse. Furthermore, similar changes were observed for apo A-I, apo B and apo C-III levels. Conclusions Clearance of HCV using combination therapy with DCV and ASV results in rapid changes in serum lipid profiles, suggesting an influence of HCV infection on disturbed lipid metabolism.
Collapse
Affiliation(s)
- Takeshi Chida
- Department of Internal Medicine II, Hamamatsu University School of Medicine, Hamamatsu, Japan.,Department of Virology and Parasitology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kazuhito Kawata
- Department of Internal Medicine II, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kazuyoshi Ohta
- Department of Internal Medicine II, Hamamatsu University School of Medicine, Hamamatsu, Japan.,Department of Virology and Parasitology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Erika Matsunaga
- Department of Internal Medicine II, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Jun Ito
- Department of Internal Medicine II, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Shin Shimoyama
- Department of Internal Medicine II, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Satoru Yamazaki
- Department of Internal Medicine II, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hidenao Noritake
- Department of Internal Medicine II, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tetsuro Suzuki
- Department of Virology and Parasitology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Takafumi Suda
- Department of Internal Medicine II, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yoshimasa Kobayashi
- Department of Internal Medicine II, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
8
|
Shawa IT, Felmlee DJ, Hegazy D, Sheridan DA, Cramp ME. Exploration of potential mechanisms of hepatitis C virus resistance in exposed uninfected intravenous drug users. J Viral Hepat 2017; 24:1082-1088. [PMID: 28475247 DOI: 10.1111/jvh.12720] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 03/27/2017] [Indexed: 12/14/2022]
Abstract
A rare outcome following exposure to hepatitis C virus (HCV) is a lack of observable infection as clinically measured by HCV RNA- or HCV-recognizing antibodies. The population who exhibit this trait is termed exposed uninfected (EU). Increasing evidence has refined characterization of these individuals, distinct from those who become infected but spontaneously clear HCV. Study of the EU population is highly pertinent for the discovery of antiviral mechanisms of resistance that can reveal antiviral therapeutic strategies. This review provides an overview of similarities and differences of the EU population relative to spontaneous resolvers and the majority whom develop chronic HCV infection, and focusses on possible mechanisms of resistance including innate and adaptive immunity, genetics and lipid interactions.
Collapse
Affiliation(s)
- I T Shawa
- Hepatology Research Group, Institute of Translational and Stratified Medicine, , Plymouth University Peninsula Schools of Medicine and Dentistry, Plymouth, UK
| | - D J Felmlee
- Hepatology Research Group, Institute of Translational and Stratified Medicine, , Plymouth University Peninsula Schools of Medicine and Dentistry, Plymouth, UK
| | - D Hegazy
- Hepatology Research Group, Institute of Translational and Stratified Medicine, , Plymouth University Peninsula Schools of Medicine and Dentistry, Plymouth, UK
| | - D A Sheridan
- Hepatology Research Group, Institute of Translational and Stratified Medicine, , Plymouth University Peninsula Schools of Medicine and Dentistry, Plymouth, UK
| | - M E Cramp
- Hepatology Research Group, Institute of Translational and Stratified Medicine, , Plymouth University Peninsula Schools of Medicine and Dentistry, Plymouth, UK
| |
Collapse
|
9
|
Russelli G, Pizzillo P, Iannolo G, Barbera F, Tuzzolino F, Liotta R, Traina M, Vizzini G, Gridelli B, Badami E, Conaldi PG. HCV replication in gastrointestinal mucosa: Potential extra-hepatic viral reservoir and possible role in HCV infection recurrence after liver transplantation. PLoS One 2017; 12:e0181683. [PMID: 28750044 PMCID: PMC5531480 DOI: 10.1371/journal.pone.0181683] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 07/04/2017] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Hepatitis C virus (HCV) predominantly infects hepatocytes, although it is known that receptors for viral entry are distributed on a wide array of target cells. Chronic HCV infection is indeed characterized by multiple non-liver manifestations, suggesting a more complex HCV tropism extended to extrahepatic tissues and remains to be fully elucidated. In this study, we investigated the gastrointestinal mucosa (GIM) as a potential extrahepatic viral replication site and its contribution to HCV recurrence. METHODS We analyzed GIM biopsies from a cohort of 76 patients, 11 of which were HCV-negative and 65 HCV-positive. Of these, 54 biopsies were from liver-transplanted patients. In 29 cases, we were able to investigate gastrointestinal biopsies from the same patient before and after transplant. To evaluate the presence of HCV, we looked for viral antigens and genome RNA, whilst to assess viral replicative activity, we searched for the replicative intermediate minus-strand RNA. We studied the genetic diversity and the phylogenetic relationship of HCV quasispecies from plasma, liver and gastrointestinal mucosa of HCV-liver-transplanted patients in order to assess HCV compartmentalization and possible contribution of gastrointestinal variants to liver re-infection after transplantation. RESULTS Here we show that HCV infects and replicates in the cells of the GIM and that the favorite hosts were mostly enteroendocrine cells. Interestingly, we observed compartmentalization of the HCV quasispecies present in the gastrointestinal mucosa compared to other tissues of the same patient. Moreover, the phylogenetic analysis revealed a high similarity between HCV variants detected in gastrointestinal mucosa and those present in the re-infected graft. CONCLUSIONS Our results demonstrated that the gastrointestinal mucosa might be considered as an extrahepatic reservoir of HCV and that could contribute to viral recurrence. Moreover, the finding that HCV infects and replicates in neuroendocrine cells opens new perspectives on the role of these cells in the natural history of HCV infection.
Collapse
Affiliation(s)
- Giovanna Russelli
- Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione), Palermo, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Paola Pizzillo
- Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione), Palermo, Italy
| | - Gioacchin Iannolo
- Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione), Palermo, Italy
| | - Floriana Barbera
- Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione), Palermo, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | | | - Rosa Liotta
- Pathology Service, Department of Diagnostic and Therapeutic Services, IRCCS-ISMETT, Palermo, Italy
| | - Mario Traina
- Endoscopy Service, Department of Diagnostic and Therapeutic Services, IRCCS-ISMETT, Palermo, Italy
| | - Giovanni Vizzini
- Department for the Treatment and Study of Abdominal Diseases and Abdominal Transplantation, IRCCS-ISMETT, Palermo, Italy
| | - Bruno Gridelli
- Department for the Treatment and Study of Abdominal Diseases and Abdominal Transplantation, IRCCS-ISMETT, Palermo, Italy
| | | | - Pier Giulio Conaldi
- Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione), Palermo, Italy
- Fondazione Ri.MED, Palermo, Italy
| |
Collapse
|
10
|
Crouchet E, Baumert TF, Schuster C. Hepatitis C virus-apolipoprotein interactions: molecular mechanisms and clinical impact. Expert Rev Proteomics 2017; 14:593-606. [PMID: 28625086 PMCID: PMC6138823 DOI: 10.1080/14789450.2017.1344102] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Chronic hepatitis C virus (HCV) infection is a leading cause of cirrhosis, hepatocellular carcinoma and liver failure. Moreover, chronic HCV infection is associated with liver steatosis and metabolic disorders. With 130-150 million people chronically infected in the world, HCV infection represents a major public health problem. One hallmark on the virus is its close link with hepatic lipid and lipoprotein metabolism. Areas covered: HCV is associated with lipoprotein components such as apolipoproteins. These interactions play a key role in the viral life cycle, viral persistence and pathogenesis of liver disease. This review introduces first the role of apolipoproteins in lipoprotein metabolism, then highlights the molecular mechanisms of HCV-lipoprotein interactions and finally discusses their clinical impact. Expert commentary: While the study of virus-host interactions has resulted in a improvement of the understanding of the viral life cycle and the development of highly efficient therapies, major challenges remain: access to therapy is limited and an urgently needed HCV vaccine remains still elusive. Furthermore, the pathogenesis of disease biology is still only partially understood. The investigation of HCV-lipoproteins interactions offers new perspectives for novel therapeutic approaches, contribute to HCV vaccine design and understand virus-induced liver disease and cancer.
Collapse
Affiliation(s)
- Emilie Crouchet
- Inserm, U1110: Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Thomas F. Baumert
- Inserm, U1110: Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Pôle hépato-digestif, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Catherine Schuster
- Inserm, U1110: Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| |
Collapse
|
11
|
Falcón V, Acosta-Rivero N, González S, Dueñas-Carrera S, Martinez-Donato G, Menéndez I, Garateix R, Silva JA, Acosta E, Kourı J. Ultrastructural and biochemical basis for hepatitis C virus morphogenesis. Virus Genes 2017; 53:151-164. [PMID: 28233195 DOI: 10.1007/s11262-017-1426-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 01/06/2017] [Indexed: 12/16/2022]
Abstract
Chronic infection with HCV is a leading cause of cirrhosis, hepatocellular carcinoma and liver failure. One of the least understood steps in the HCV life cycle is the morphogenesis of new viral particles. HCV infection alters the lipid metabolism and generates a variety of microenvironments in the cell cytoplasm that protect viral proteins and RNA promoting viral replication and assembly. Lipid droplets (LDs) have been proposed to link viral RNA synthesis and virion assembly by physically associating these viral processes. HCV assembly, envelopment, and maturation have been shown to take place at specialized detergent-resistant membranes in the ER, rich in cholesterol and sphingolipids, supporting the synthesis of luminal LDs-containing ApoE. HCV assembly involves a regulated allocation of viral and host factors to viral assembly sites. Then, virus budding takes place through encapsidation of the HCV genome and viral envelopment in the ER. Interaction of ApoE with envelope proteins supports the viral particle acquisition of lipids and maturation. HCV secretion has been suggested to entail the ion channel activity of viral p7, several components of the classical trafficking and autophagy pathways, ESCRT, and exosome-mediated export of viral RNA. Here, we review the most recent advances in virus morphogenesis and the interplay between viral and host factors required for the formation of HCV virions.
Collapse
Affiliation(s)
- Viviana Falcón
- Centro de Ingeniería Genética y Biotecnología, P.O. Box 6162, C.P. 10600, Havana, Cuba.
| | - Nelson Acosta-Rivero
- National Center for Scientific Research, P.O. Box 6414, 10600, Havana, Cuba.
- Centre for Protein Studies, Faculty of Biology, University of Havana, 10400, Havana, Cuba.
| | | | | | | | - Ivon Menéndez
- Centro de Ingeniería Genética y Biotecnología, P.O. Box 6162, C.P. 10600, Havana, Cuba
| | - Rocio Garateix
- Centro de Ingeniería Genética y Biotecnología, P.O. Box 6162, C.P. 10600, Havana, Cuba
| | - José A Silva
- Centro de Ingeniería Genética y Biotecnología, P.O. Box 6162, C.P. 10600, Havana, Cuba
| | | | | |
Collapse
|
12
|
Monrroy H, Angulo J, Pino K, Labbé P, Miquel JF, López-Lastra M, Soza A. Detection of high biliary and fecal viral loads in patients with chronic hepatitis C virus infection. GASTROENTEROLOGIA Y HEPATOLOGIA 2017; 40:339-347. [PMID: 28249699 DOI: 10.1016/j.gastrohep.2017.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 01/05/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND The life cycle of the hepatitis C virus (HCV) is closely associated with lipid metabolism. Recently, NPC1L1 (a cholesterol transporter) has been reported to function as an HCV receptor. This receptor is expressed in the hepatocyte canalicular membrane and in the intestine; serving as a key transporter for the cholesterol enterohepatic cycle. OBJECTIVES We hypothesized that HCV might have a similar cycle, so we aimed to study the presence of HCV in bile and stools of infected patients. MATERIALS AND METHODS Blood, feces, and duodenal bile samples were collected from patients infected with HCV. The biliary viral load was normalized to the bile salt concentration of each sample and the presence of HCV core protein was also evaluated. A total of 12 patients were recruited. HCV RNA was detected in the bile from ten patients. RESULTS The mean viral load was 2.5log10IU/60mg bile salt. In the stool samples, HCV RNA was detected in ten patients (mean concentration 2.7log10IU/g of feces). CONCLUSIONS HCV RNA is readily detectable and is present at relatively high concentrations in the bile and stool samples of infected patients. This may be relevant as a source of infection in men who have sex with men. Biliary HCV secretion may perhaps play a role in the persistence of viral infection via an enterohepatic cycle of the virus or intrahepatic spread.
Collapse
Affiliation(s)
- Hugo Monrroy
- Department of Gastroenterology, Pontificia Universidad Católica de Chile, Chile
| | - Jenniffer Angulo
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Chile
| | - Karla Pino
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Chile
| | - Pilar Labbé
- Department of Gastroenterology, Pontificia Universidad Católica de Chile, Chile
| | | | - Marcelo López-Lastra
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Chile
| | - Alejandro Soza
- Department of Gastroenterology, Pontificia Universidad Católica de Chile, Chile.
| |
Collapse
|
13
|
Sheridan DA, Hajarizadeh B, Fenwick FI, Matthews GV, Applegate T, Douglas M, Neely D, Askew B, Dore GJ, Lloyd AR, George J, Bassendine MF, Grebely J. Maximum levels of hepatitis C virus lipoviral particles are associated with early and persistent infection. Liver Int 2016; 36:1774-1782. [PMID: 27224844 DOI: 10.1111/liv.13176] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 05/21/2016] [Indexed: 02/13/2023]
Abstract
BACKGROUND & AIMS Hepatitis C virus (HCV) is bound to plasma lipoproteins and circulates as an infectious lipoviral particle (LVP). Experimental evidence indicates that LVPs have decreased susceptibility to antibody-mediated neutralisation and higher infectivity. This study tested the hypothesis that LVPs are required to establish persistent infection, and conversely, low levels of LVP in recent HCV infection increase the probability of spontaneous HCV clearance. METHODS LVP in non-fasting plasma was measured using the concentration of HCV RNA bound to large >100 nm sized lipoproteins after ex vivo addition of a lipid emulsion, that represented the maximum concentration of LVP (maxi-LVP). This method correlated with LVP in fasting plasma measured using iodixanol density gradient ultracentrifugation. Maxi-LVP was measured in a cohort of 180 HCV participants with recent HCV infection and detectable HCV RNA from the Australian Trial in Acute Hepatitis C (ATAHC) and Hepatitis C Incidence and Transmission Study in prison (HITS-p) cohorts. RESULTS Spontaneous clearance occurred in 15% (27 of 180) of individuals. In adjusted analyses, low plasma maxi-LVP level was independently associated with spontaneous HCV clearance (≤827 IU/ml; adjusted odds ratio 3.98, 95% CI: 1.02, 15.51, P = 0.047), after adjusting for interferon lambda-3 rs8099917 genotype, estimated duration of HCV infection and total HCV RNA level. CONCLUSIONS Maxi-LVP is a biomarker for the maximum concentration of LVP in non-fasting samples. Low maxi-LVP level is an independent predictor of spontaneous clearance of acute HCV.
Collapse
Affiliation(s)
- David A Sheridan
- Storr Liver Centre, Westmead Millennium Institute and Westmead Hospital, University of Sydney, Sydney, NSW, Australia
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
- Institute of Translational and Stratified Medicine, Plymouth University Peninsula Schools of Medicine & Dentistry, Plymouth, UK
| | | | - Fiona I Fenwick
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Gail V Matthews
- The Kirby Institute, UNSW Australia, Kensington, NSW, Australia
| | - Tanya Applegate
- The Kirby Institute, UNSW Australia, Kensington, NSW, Australia
| | - Mark Douglas
- Storr Liver Centre, Westmead Millennium Institute and Westmead Hospital, University of Sydney, Sydney, NSW, Australia
| | - Dermot Neely
- Department of Clinical Biochemistry, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Bev Askew
- HB Innovations Ltd, Newcastle upon Tyne, UK
| | - Gregory J Dore
- The Kirby Institute, UNSW Australia, Kensington, NSW, Australia
| | - Andrew R Lloyd
- Inflammation and Infection Research Centre, School of Medical Sciences, The University of New South Wales, Kensington, NSW, Australia
| | - Jacob George
- Storr Liver Centre, Westmead Millennium Institute and Westmead Hospital, University of Sydney, Sydney, NSW, Australia
| | - Margaret F Bassendine
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
- Department of Medicine, Imperial College London, London, UK
| | - Jason Grebely
- The Kirby Institute, UNSW Australia, Kensington, NSW, Australia
| |
Collapse
|
14
|
Hashimoto S, Yatsuhashi H, Abiru S, Yamasaki K, Komori A, Nagaoka S, Saeki A, Uchida S, Bekki S, Kugiyama Y, Nagata K, Nakamura M, Migita K, Nakao K. Rapid Increase in Serum Low-Density Lipoprotein Cholesterol Concentration during Hepatitis C Interferon-Free Treatment. PLoS One 2016; 11:e0163644. [PMID: 27680885 PMCID: PMC5040437 DOI: 10.1371/journal.pone.0163644] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 09/12/2016] [Indexed: 12/12/2022] Open
Abstract
Background & Aim We performed lipid analyses at the early period of therapy in patients with chronic hepatitis C who underwent interferon (IFN)-free direct-acting antiviral (DAA) treatment, and we attempted to identify the factors that contributed to a rapid increase in the patients’ serum low-density lipoprotein cholesterol (LDL-C) concentration. Methods We retrospectively analyzed the cases of 100 consecutive patients with HCV infection treated at the National Hospital Organization Nagasaki Medical Center: 24 patients underwent daclatasvir (DCV) and asunaprevir (ASV) combination therapy (DCV/ASV) for 24 weeks, and the other 76 patients underwent ledipasvir and sofosbuvir combination therapy (LDV/SOF) for 12 weeks. ΔLDL-C was defined as the changed in LDL-C level at 28 days from the start of therapy. To determine whether ΔLDL-C was associated with several kinds of factors including viral kinetics, we performed a stepwise multiple linear regression analysis. Results The LDL-C levels in patients treated with LDV/SOF were markedly and significantly elevated (87.45 to 122.5 mg/dl; p<10−10) compared to those in the DCV/ASV-treated patients (80.15 to 87.8 mg/dl; p = 0.0056). The median levels of ΔLDL-C in the LDV/SOF and DCV/ASV groups were 33.2 and 13.1, respectively. LDV/SOF combination therapy as an IFN-free regimen (p<0.001) and ΔHCV core antigen (0–1 day drop) (p<0.044) were identified as independent factors that were closely related to the ΔLDL-C. Conclusions A rapid increase in the serum LDL-C concentration during the IFN-free treatment of hepatitis C was associated with the type of HCV therapy and a decline of HCV core protein.
Collapse
Affiliation(s)
- Satoru Hashimoto
- Clinical Research Center, National Hospital Organization (NHO) Nagasaki Medical Center, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Department of Gastroenterology and Hepatology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Hiroshi Yatsuhashi
- Clinical Research Center, National Hospital Organization (NHO) Nagasaki Medical Center, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- * E-mail:
| | - Seigo Abiru
- Clinical Research Center, National Hospital Organization (NHO) Nagasaki Medical Center, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kazumi Yamasaki
- Clinical Research Center, National Hospital Organization (NHO) Nagasaki Medical Center, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Atsumasa Komori
- Clinical Research Center, National Hospital Organization (NHO) Nagasaki Medical Center, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Shinya Nagaoka
- Clinical Research Center, National Hospital Organization (NHO) Nagasaki Medical Center, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Akira Saeki
- Clinical Research Center, National Hospital Organization (NHO) Nagasaki Medical Center, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Shinjiro Uchida
- Clinical Research Center, National Hospital Organization (NHO) Nagasaki Medical Center, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Shigemune Bekki
- Clinical Research Center, National Hospital Organization (NHO) Nagasaki Medical Center, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yuki Kugiyama
- Clinical Research Center, National Hospital Organization (NHO) Nagasaki Medical Center, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kazuyoshi Nagata
- Clinical Research Center, National Hospital Organization (NHO) Nagasaki Medical Center, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Minoru Nakamura
- Clinical Research Center, National Hospital Organization (NHO) Nagasaki Medical Center, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kiyoshi Migita
- Clinical Research Center, National Hospital Organization (NHO) Nagasaki Medical Center, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kazuhiko Nakao
- Department of Gastroenterology and Hepatology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
15
|
Kinoshita C, Nagano T, Seki N, Tomita Y, Sugita T, Aida Y, Itagaki M, Satoh K, Sutoh S, Abe H, Tsubota A, Aizawa Y. Hepatitis C virus G1b infection decreases the number of small low-density lipoprotein particles. World J Gastroenterol 2016; 22:6716-6725. [PMID: 27547014 PMCID: PMC4970482 DOI: 10.3748/wjg.v22.i29.6716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 06/11/2016] [Accepted: 07/06/2016] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate how hepatitis C virus (HCV) G1b infection influences the particle number of lipoproteins. METHODS The numbers of lipoprotein particles in fasting sera from 173 Japanese subjects, 82 with active HCV G1b infection (active HCV group) and 91 with cleared HCV infection (SVR group), were examined. Serum lipoprotein was fractionated by high-performance liquid chromatography into twenty fractions. The cholesterol and triglyceride concentrations in each fraction were measured using LipoSEARCH. The number of lipoprotein particles in each fraction was calculated using a newly developed algorithm, and the relationship between chronic HCV G1b infection and the lipoprotein particle number was determined by multiple linear regression analysis. RESULTS The median number of low-density lipoprotein (LDL) particles was significantly lower in the active HCV group [1182 nmol/L, interquartile range (IQR): 444 nmol/L] than in the SVR group (1363 nmol/L, IQR: 472 nmol/L, P < 0.001), as was that of high-density lipoprotein (HDL) particles (14168 nmol/L vs 15054 nmol/L, IQR: 4114 nmol/L vs 3385 nmol/L, P = 0.042). The number of very low-density lipoprotein (VLDL) particles was similar between the two groups. Among the four LDL sub-fractions, the number of large LDL particles was similar between the two groups. However, the numbers of medium (median: 533.0 nmol/L, IQR: 214.7 nmol/L vs median: 633.5 nmol/L, IQR: 229.6 nmol/L, P < 0.001), small (median: 190.9 nmol/L, IQR: 152.4 nmol/L vs median: 263.2 nmol/L, IQR: 159.9 nmol/L; P < 0.001), and very small LDL particles (median: 103.5 nmol/L, IQR: 66.8 nmol/L vs median: 139.3 nmol/L, IQR: 67.3 nmol/L, P < 0.001) were significantly lower in the active HCV group than in the SVR group, respectively. Multiple linear regression analysis indicated an association between HCV G1b infection and the decreased numbers of medium, small, and very small LDL particles. However, active HCV infection did not affect the number of large LDL particles or any sub-fractions of VLDL and HDL particles. CONCLUSION HCV G1b infection decreases the numbers of medium, small, and very small LDL particles.
Collapse
|
16
|
Narayanan S, Nieh AH, Kenwood BM, Davis CA, Tosello-Trampont AC, Elich TD, Breazeale SD, Ward E, Anderson RJ, Caldwell SH, Hoehn KL, Hahn YS. Distinct Roles for Intracellular and Extracellular Lipids in Hepatitis C Virus Infection. PLoS One 2016; 11:e0156996. [PMID: 27280294 PMCID: PMC4900644 DOI: 10.1371/journal.pone.0156996] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 05/23/2016] [Indexed: 12/20/2022] Open
Abstract
Hepatitis C is a chronic liver disease that contributes to progressive metabolic dysfunction. Infection of hepatocytes by hepatitis C virus (HCV) results in reprogramming of hepatic and serum lipids. However, the specific contribution of these distinct pools of lipids to HCV infection remains ill defined. In this study, we investigated the role of hepatic lipogenesis in HCV infection by targeting the rate-limiting step in this pathway, which is catalyzed by the acetyl-CoA carboxylase (ACC) enzymes. Using two structurally unrelated ACC inhibitors, we determined that blockade of lipogenesis resulted in reduced viral replication, assembly, and release. Supplementing exogenous lipids to cells treated with ACC inhibitors rescued HCV assembly with no effect on viral replication and release. Intriguingly, loss of viral RNA was not recapitulated at the protein level and addition of 2-bromopalmitate, a competitive inhibitor of protein palmitoylation, mirrored the effects of ACC inhibitors on reduced viral RNA without a concurrent loss in protein expression. These correlative results suggest that newly synthesized lipids may have a role in protein palmitoylation during HCV infection.
Collapse
Affiliation(s)
- Sowmya Narayanan
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, United States of America
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, United States of America
| | - Albert H. Nieh
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, United States of America
| | - Brandon M. Kenwood
- Department of Pharmacology, University of Virginia, Charlottesville, United States of America
| | - Christine A. Davis
- Department of Biology, University of Richmond, Richmond, United States of America
| | | | - Tedd D. Elich
- Cropsolution Inc., Morrisville, United States of America
| | | | - Eric Ward
- Cropsolution Inc., Morrisville, United States of America
| | | | - Stephen H. Caldwell
- Division of Gastroenterology and Hepatology, University of Virginia, Charlottesville, United States of America
| | - Kyle L. Hoehn
- Department of Pharmacology, University of Virginia, Charlottesville, United States of America
| | - Young S. Hahn
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, United States of America
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, United States of America
| |
Collapse
|
17
|
Fukuhara T, Ono C, Puig-Basagoiti F, Matsuura Y. Roles of Lipoproteins and Apolipoproteins in Particle Formation of Hepatitis C Virus. Trends Microbiol 2016; 23:618-629. [PMID: 26433694 DOI: 10.1016/j.tim.2015.07.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 07/07/2015] [Accepted: 07/20/2015] [Indexed: 02/06/2023]
Abstract
More than 160 million people worldwide are infected with hepatitis C virus (HCV), and cirrhosis and hepatocellular carcinoma induced by HCV infection are life-threatening diseases. HCV takes advantage of many aspects of lipid metabolism for an efficient propagation in hepatocytes. Due to the morphological and physiological similarities of HCV particles to lipoproteins, lipid-associated HCV particles are named lipoviroparticles. Recent analyses have revealed that exchangeable apolipoproteins directly interact with the viral membrane to generate infectious HCV particles. In this review, we summarize the roles of lipid metabolism in the life cycle of HCV.
Collapse
Affiliation(s)
- Takasuke Fukuhara
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Chikako Ono
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Francesc Puig-Basagoiti
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Yoshiharu Matsuura
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.
| |
Collapse
|
18
|
Arisar FAQ, Khan SB, Umar A, Shaikh NUS, Choudhry F. Changes in Serum Lipid Profile among Patients Suffering from Chronic Liver Disease Secondary to Hepatitis C. OPEN JOURNAL OF GASTROENTEROLOGY 2016; 06:333-342. [DOI: 10.4236/ojgas.2016.611036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
19
|
Villareal VA, Rodgers MA, Costello DA, Yang PL. Targeting host lipid synthesis and metabolism to inhibit dengue and hepatitis C viruses. Antiviral Res 2015; 124:110-21. [PMID: 26526588 DOI: 10.1016/j.antiviral.2015.10.013] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 10/08/2015] [Accepted: 10/11/2015] [Indexed: 12/16/2022]
Abstract
Lipids are necessary for every step in the replication cycle of hepatitis C virus (HCV) and dengue virus (DENV), members of the family Flaviviridae. Recent studies have demonstrated that discrete steps in the replication cycles of these viruses can be inhibited by pharmacological agents that target host factors mediating lipid synthesis, metabolism, trafficking, and signal transduction. Despite this, targeting host lipid metabolism and trafficking as an antiviral strategy by blockade of entire pathways may be limited due to host toxicity. Knowledge of the molecular details of lipid structure and function in replication and the mechanisms whereby specific lipids are generated and trafficked to the relevant sites may enable more targeted antiviral strategies without global effects on the host cell. In this review, we discuss lipids demonstrated to be critical to the replication cycles of HCV and DENV and highlight potential areas for anti-viral development. This review article forms part of a symposium on flavivirus drug discovery in Antiviral Research.
Collapse
Affiliation(s)
- Valerie A Villareal
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| | - Mary A Rodgers
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| | - Deirdre A Costello
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| | - Priscilla L Yang
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
20
|
Del Campo JA, Romero-Gómez M. Modulation of host lipid metabolism by hepatitis C virus: Role of new therapies. World J Gastroenterol 2015; 21:10776-10782. [PMID: 26478669 PMCID: PMC4600579 DOI: 10.3748/wjg.v21.i38.10776] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 07/07/2015] [Accepted: 09/14/2015] [Indexed: 02/06/2023] Open
Abstract
It is well established that hepatitis C virus (HCV) infection and replication relies on host lipid metabolism. HCV proteins interact and associate with lipid droplets to facilitate virion assembly and production. Besides, circulating infective particles are associated with very low-density lipoprotein. On the other hand, higher serum lipid levels have been associated with sustained viral response to pegylated interferon and ribavirin therapy in chronic HCV infection, suggesting a relevant role in viral clearance for host proteins. Host and viral genetic factors play an essential role in chronic infection. Lipid metabolism is hijacked by viral infection and could determine the success of viral replication. Recently development of direct acting antiviral agents has shown a very high efficacy (> 90%) in sustained viral response rates even for cirrhotic patients and most of the viral genotypes. HCV RNA clearance induced by Sofosbuvir has been associated with an increased concentration and size of the low-density lipoprotein particles. In this review, host genetic factors, viral factors and the interaction between them will be depicted to clarify the major issues involved in viral infection and lipid metabolism.
Collapse
|
21
|
Douam F, Ploss A. Proteomic approaches to analyzing hepatitis C virus biology. Proteomics 2015; 15:2051-65. [PMID: 25809442 PMCID: PMC4559851 DOI: 10.1002/pmic.201500009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 02/25/2015] [Accepted: 03/19/2015] [Indexed: 12/15/2022]
Abstract
Hepatitis C virus (HCV) is a major cause of liver disease worldwide. Acute infection often progresses to chronicity resulting frequently in fibrosis, cirrhosis, and in rare cases, in the development of hepatocellular carcinoma. Although HCV has proven to be an arduous object of research and has raised important technical challenges, several experimental models have been developed all over the last two decades in order to improve our understanding of the virus life cycle, pathogenesis and virus-host interactions. The recent development of direct acting-agents, leading to considerable progress in treatment of patients, represents the direct outcomes of these achievements. Proteomic approaches have been of critical help to shed light on several aspect of the HCV biology such as virion composition, viral replication, and virus assembly and to unveil diagnostic or prognostic markers of HCV-induced liver disease. Here, we review how proteomic approaches have led to improve our understanding of HCV life cycle and liver disease, thus highlighting the relevance of these approaches for studying the complex interactions between other challenging human viral pathogens and their host.
Collapse
Affiliation(s)
- Florian Douam
- Department of Molecular Biology, Princeton University, 110 Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544
| | - Alexander Ploss
- Department of Molecular Biology, Princeton University, 110 Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544
| |
Collapse
|
22
|
Abstract
The past decade has witnessed steady and rapid progress in HCV research, which has led to the recent breakthrough in therapies against this significant human pathogen. Yet a deeper understanding of the life cycle of the virus is required to develop more affordable treatments and to advance vaccine design. HCV entry presents both a challenge for scientific research and an opportunity for alternative intervention approaches, owning to its highly complex nature and the myriad of players involved. More than half a dozen cellular proteins are implicated in HCV entry; and a more definitive picture regarding the structures of the glycoproteins is emerging. A role of apolipoproteins in HCV entry has also been established. Still, major questions remain, and the answers to these, which we summarize in this review, will hopefully close the gaps in our understanding and complete the puzzle that is HCV entry.
Collapse
Affiliation(s)
- Sarah C Ogden
- Department of Biological Science, Florida State University, Tallahassee, FL 32306-4295, USA
| | - Hengli Tang
- Department of Biological Science, Florida State University, Tallahassee, FL 32306-4295, USA ; Institute of Health Sciences, Anhui University, Hefei, 230601, PR China
| |
Collapse
|
23
|
AP-2-associated protein kinase 1 and cyclin G-associated kinase regulate hepatitis C virus entry and are potential drug targets. J Virol 2015; 89:4387-404. [PMID: 25653444 DOI: 10.1128/jvi.02705-14] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED Hepatitis C virus (HCV) enters its target cell via clathrin-mediated endocytosis. AP-2-associated protein kinase 1 (AAK1) and cyclin G-associated kinase (GAK) are host kinases that regulate clathrin adaptor protein (AP)-mediated trafficking in the endocytic and secretory pathways. We previously reported that AAK1 and GAK regulate HCV assembly by stimulating binding of the μ subunit of AP-2, AP2M1, to HCV core protein. We also discovered that AAK1 and GAK inhibitors, including the approved anticancer drugs sunitinib and erlotinib, could block HCV assembly. Here, we hypothesized that AAK1 and GAK regulate HCV entry independently of their effect on HCV assembly. Indeed, silencing AAK1 and GAK expression inhibited entry of pseudoparticles and cell culture grown-HCV and internalization of Dil-labeled HCV particles with no effect on HCV attachment or RNA replication. AAK1 or GAK depletion impaired epidermal growth factor (EGF)-mediated enhanced HCV entry and endocytosis of EGF receptor (EGFR), an HCV entry cofactor and erlotinib's cancer target. Moreover, either RNA interference-mediated depletion of AP2M1 or NUMB, each a substrate of AAK1 and/or GAK, or overexpression of either an AP2M1 or NUMB phosphorylation site mutant inhibited HCV entry. Last, in addition to affecting assembly, sunitinib and erlotinib inhibited HCV entry at a postbinding step, their combination was synergistic, and their antiviral effect was reversed by either AAK1 or GAK overexpression. Together, these results validate AAK1 and GAK as critical regulators of HCV entry that function in part by activating EGFR, AP2M1, and NUMB and as the molecular targets underlying the antiviral effect of sunitinib and erlotinib (in addition to EGFR), respectively. IMPORTANCE Understanding the host pathways hijacked by HCV is critical for developing host-centered anti-HCV approaches. Entry represents a potential target for antiviral strategies; however, no FDA-approved HCV entry inhibitors are currently available. We reported that two host kinases, AAK1 and GAK, regulate HCV assembly. Here, we provide evidence that AAK1 and GAK regulate HCV entry independently of their role in HCV assembly and define the mechanisms underlying AAK1- and GAK-mediated HCV entry. By regulating temporally distinct steps in the HCV life cycle, AAK1 and GAK represent "master regulators" of HCV infection and potential targets for antiviral strategies. Indeed, approved anticancer drugs that potently inhibit AAK1 or GAK inhibit HCV entry in addition to assembly. These results contribute to an understanding of the mechanisms of HCV entry and reveal attractive host targets for antiviral strategies as well as approved candidate inhibitors of these targets, with potential implications for other viruses that hijack clathrin-mediated pathways.
Collapse
|
24
|
Vercauteren K, Mesalam AA, Leroux-Roels G, Meuleman P. Impact of lipids and lipoproteins on hepatitis C virus infection and virus neutralization. World J Gastroenterol 2014; 20:15975-91. [PMID: 25473151 PMCID: PMC4239485 DOI: 10.3748/wjg.v20.i43.15975] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 07/09/2014] [Accepted: 09/05/2014] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) infections represent a major global health problem. End-stage liver disease caused by chronic HCV infection is a major indication for liver transplantation. However, after transplantation the engrafted liver inevitably becomes infected by the circulating virus. Direct acting antivirals are not yet approved for use in liver transplant patients, and limited efficacy and severe side effects hamper the use of pegylated interferon combined with ribavirin in a post-transplant setting. Therefore, alternative therapeutic options need to be explored. Viral entry represents an attractive target for such therapeutic intervention. Understanding the mechanisms of viral entry is essential to define the viral and cellular factors involved. The HCV life cycle is dependent of and associated with lipoprotein physiology and the presence of lipoproteins has been correlated with altered antiviral efficacy of entry inhibitors. In this review, we summarise the current knowledge on how lipoprotein physiology influences the HCV life cycle. We focus especially on the influence of lipoproteins on antibodies that target HCV envelope proteins or antibodies that target the cellular receptors of the virus. This information can be particularly relevant for the prevention of HCV re-infection after liver transplantation.
Collapse
|
25
|
Laird ME, Mohsen A, Duffy D, Mamdouh R, LeFouler L, Casrouge A, El-Daly M, Rafik M, Abdel-Hamid M, Soulier A, Pawlotsky JM, Hézode C, Rosa I, Renard P, Mohamed MK, Bonnard P, Izopet J, Mallet V, Pol S, Albert ML, Fontanet A. Apolipoprotein H expression is associated with IL28B genotype and viral clearance in hepatitis C virus infection. J Hepatol 2014; 61:770-6. [PMID: 24905490 DOI: 10.1016/j.jhep.2014.05.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 05/05/2014] [Accepted: 05/25/2014] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS HCV requires host lipid metabolism for replication, and apolipoproteins have been implicated in the response to treatment. METHODS We examined plasma apolipoprotein concentrations in three cohorts of patients: mono-infected patients with symptomatic acute hepatitis C (aHCV); those undergoing treatment for chronic hepatitis C (cHCV); and HIV/HCV co-infected patients being treated for their chronic hepatitis C. We also evaluated associations between apolipoproteins and IL28B polymorphisms, a defined genetic determinant of viral clearance. RESULTS Plasma apolipoprotein H (ApoH) levels were significantly higher in patients who achieved spontaneous clearance or responded to pegylated-interferon/ribavirin therapy. Strikingly, patients carrying the IL28B rs12979860 CC SNP correlated with the plasma concentration of ApoH in all three cohorts. Both ApoH and IL28B CC SNP were associated with HCV clearance in univariate analysis. Additional multivariate analysis revealed that the association between IL28B and HCV clearance was closely linked to that of Apo H and HCV clearance, suggesting that both belong to the same biological pathway to clearance. The association between IL28B CC SNP and ApoH was not observed in healthy individuals, suggesting that early post-infection events trigger differential ApoH expression in an IL28B allele dependent manner. CONCLUSIONS This relationship identifies ApoH as the first induced protein quantitative trait associated with IL28B, and characterises a novel host factor implicated in HCV clearance.
Collapse
Affiliation(s)
- Melissa E Laird
- Laboratory of Dendritic Cell Immunobiology, Institut Pasteur, Paris, France; INSERM U818, Paris, France
| | - Amira Mohsen
- Community Medicine Department, National Research Center, Cairo, Egypt
| | - Darragh Duffy
- Laboratory of Dendritic Cell Immunobiology, Institut Pasteur, Paris, France; INSERM U818, Paris, France
| | - Rasha Mamdouh
- Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Lenaig LeFouler
- Emerging Disease Epidemiology Unit, Institut Pasteur, Paris, France
| | - Armanda Casrouge
- Laboratory of Dendritic Cell Immunobiology, Institut Pasteur, Paris, France; INSERM U818, Paris, France
| | - Mai El-Daly
- Liver Disease Research Unit, National Hepatology & Tropical Medicine Research Institute, Cairo, Egypt
| | - Mona Rafik
- Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Mohamed Abdel-Hamid
- Liver Disease Research Unit, National Hepatology & Tropical Medicine Research Institute, Cairo, Egypt; Faculty of Medicine, Minia University, Egypt
| | - Alexandre Soulier
- National Reference Center for Viral Hepatitis B, C, and D, Department of Virology, Hôpital Henri Mondor, Université Paris-Est, Créteil, France; INSERM U955, Créteil, France
| | - Jean-Michel Pawlotsky
- National Reference Center for Viral Hepatitis B, C, and D, Department of Virology, Hôpital Henri Mondor, Université Paris-Est, Créteil, France; INSERM U955, Créteil, France
| | - Christophe Hézode
- INSERM U955, Créteil, France; Department of Hepatology and Gastroenterology, Hôpital Henri Mondor, Université Paris-Est, Créteil, France
| | - Isabelle Rosa
- INSERM U955, Créteil, France; Department of Hepatology and Gastroenterology, Hôpital Henri Mondor, Université Paris-Est, Créteil, France
| | - Philippe Renard
- Department of Gastroenterology and Hepatology, Hôpital Victor Dupouy, Argenteuil, France
| | - Mostafa K Mohamed
- Liver Disease Research Unit, National Hepatology & Tropical Medicine Research Institute, Cairo, Egypt
| | - Philippe Bonnard
- Maladies Infectieuses et Tropicales, Hôpital Tenon (APHP), Paris, France; INSERM U-707, UPMC, Paris, France
| | - Jacques Izopet
- Department of Virology, CHU Toulouse, Toulouse, France; INSERM U1043, IFR-BMT, Toulouse, France
| | - Vincent Mallet
- Université Paris Descartes, Paris, France; Institut Cochin, INSERM (IMR-S1016), CNRS (UMR 8104), Paris, France; Assistance Publique - Hôpitaux de Paris (APHP), Groupe Hospitalier Cochin Saint-Vincent de Paul, Unité d'Hepatologie, Paris, France
| | - Stanislas Pol
- Université Paris Descartes, Paris, France; Institut Cochin, INSERM (IMR-S1016), CNRS (UMR 8104), Paris, France; Assistance Publique - Hôpitaux de Paris (APHP), Groupe Hospitalier Cochin Saint-Vincent de Paul, Unité d'Hepatologie, Paris, France
| | - Matthew L Albert
- Laboratory of Dendritic Cell Immunobiology, Institut Pasteur, Paris, France; INSERM U818, Paris, France; Assistance Publique - Hôpitaux de Paris (APHP), Groupe Hospitalier Cochin Saint-Vincent de Paul, Unité d'Hepatologie, Paris, France.
| | - Arnaud Fontanet
- Emerging Disease Epidemiology Unit, Institut Pasteur, Paris, France; Conservatoire National des Arts et Métiers, Paris, France.
| |
Collapse
|
26
|
Van Thiel DH, George M, Attar BM, Ramadori G, Ion-Nedelcu N. Plasma triglyceride levels may modulate hepatitis C viral replication. Dig Dis Sci 2014; 59:881-5. [PMID: 24563239 DOI: 10.1007/s10620-014-3079-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 02/11/2014] [Indexed: 12/21/2022]
Abstract
BACKGROUND Plasma and hepatic lipid abnormalities are frequent in hepatitis C infected individuals. METHODS Plasma lipid and medical records profiles were prospectively obtained in 130 consecutive individuals seen by a single hepatologist in a university liver disease clinic. The relationships between viral load, genotype, plasma lipid fractions, HDL, LDL particle number and particle size were examined. RESULTS Of 130 individuals studied, 74 had hepatitis C while 15 had NAFLD/NASH and 30 had alcohol related liver disease. The LDL particle number and LDL-C levels did not differ between those with and without hepatitis C although the number of small LDL particles was greater in those with hepatitis C infection. The HDL-C and total cholesterol levels were greater in those without hepatitis C than those with hepatitis C (P = 0.009). In contrast, the serum triglyceride level was greater in the hepatitis C viral group (P = 0.013). Importantly, the hepatitis C viral load regardless of the genotype correlated directly with the triglyceride and VLDL levels with r values of 0.73 and 0.84, respectively. CONCLUSIONS There are: (1) important differences in lipid classes, number and the size of lipid particles exist between hepatitis C virus infected and noninfected liver disease groups, (2) the serum total triglyceride and the LDL levels correlate significantly with the hepatitis C viral load and, (3) Serum triglyceride level may play an important role in viral replication. These data further suggest that therapies directed at lowering plasma triglyceride levels may enhance the efficacy of current antiviral treatment regimens.
Collapse
|
27
|
Incorporation of hepatitis C virus E1 and E2 glycoproteins: the keystones on a peculiar virion. Viruses 2014; 6:1149-87. [PMID: 24618856 PMCID: PMC3970144 DOI: 10.3390/v6031149] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 02/21/2014] [Accepted: 02/27/2014] [Indexed: 12/13/2022] Open
Abstract
Hepatitis C virus (HCV) encodes two envelope glycoproteins, E1 and E2. Their structure and mode of fusion remain unknown, and so does the virion architecture. The organization of the HCV envelope shell in particular is subject to discussion as it incorporates or associates with host-derived lipoproteins, to an extent that the biophysical properties of the virion resemble more very-low-density lipoproteins than of any virus known so far. The recent development of novel cell culture systems for HCV has provided new insights on the assembly of this atypical viral particle. Hence, the extensive E1E2 characterization accomplished for the last two decades in heterologous expression systems can now be brought into the context of a productive HCV infection. This review describes the biogenesis and maturation of HCV envelope glycoproteins, as well as the interplay between viral and host factors required for their incorporation in the viral envelope, in a way that allows efficient entry into target cells and evasion of the host immune response.
Collapse
|
28
|
Activity of hexokinase is increased by its interaction with hepatitis C virus protein NS5A. J Virol 2014; 88:3246-54. [PMID: 24390321 DOI: 10.1128/jvi.02862-13] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
UNLABELLED The study of cellular central carbon metabolism modulations induced by viruses is an emerging field. Human cytomegalovirus (HCMV), herpes simplex virus (HSV), Kaposi's sarcoma-associated herpesvirus (KSHV), and hepatitis C virus (HCV) have been shown recently to reprogram cell metabolism to support their replication. During HCV infection the global glucidolipidic metabolism of hepatocytes is highly impacted. It was suggested that HCV might modify glucose uptake and glycolysis to increase fatty acids synthesis, but underlying mechanisms have not been completely elucidated. We thus investigated how HCV may modulate glycolysis. We observed that in infected Huh7.5 cells and in subgenomic replicon-positive Huh9.13 cells, glucose consumption as well as lactate secretion was increased. Using protein complementation assays and coimmunoprecipitation, we identified a direct interaction between the HCV NS5A protein and cellular hexokinase 2 (HK2), the first rate-limiting enzyme of glycolysis. NS5A expression was sufficient to enhance glucose consumption and lactate secretion in Huh7.5 cells. Moreover, determination of HK activity in cell homogenates revealed that addition of exogenous NS5A protein, either the full-length protein or its D2 or D3, but not D1, domain, was sufficient to increase enzyme activity. Finally, determination of recombinant HK2 catalytic parameters (V(max) and K(m)) in the presence of NS5A identified this viral protein as an activator of the enzyme. In summary, this study describes a direct interaction between HCV NS5A protein and cellular HK2 which is accompanied by an increase in HK2 activity that might contribute to an increased glycolysis rate during HCV infection. IMPORTANCE Substantial evidence indicates that viruses reprogram the central carbon metabolism of the cell to support their replication. Nevertheless, precise underlying mechanisms are poorly described. Metabolic pathways are structured as connected enzymatic cascades providing elemental biomolecular blocks necessary for cell life and viral replication. In this study, we observed an increase in glucose consumption and lactate secretion in HCV-infected cells, revealing higher glycolytic activity. We also identified an interaction between the HCV NS5A nonstructural protein and cellular hexokinase 2, the first rate-limiting enzyme of glycolysis. This interaction results in an enhancement of catalytic parameters of the enzyme, which might explain, at least in part, the aerobic glycolysis shift observed in HCV-infected cells.
Collapse
|
29
|
Yu L, Morishima C, Ioannou GN. Dietary cholesterol intake is associated with progression of liver disease in patients with chronic hepatitis C: analysis of the Hepatitis C Antiviral Long-term Treatment Against Cirrhosis trial. Clin Gastroenterol Hepatol 2013; 11:1661-6.e1-3. [PMID: 23707779 DOI: 10.1016/j.cgh.2013.05.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2012] [Revised: 04/18/2013] [Accepted: 05/01/2013] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Little is known about whether dietary cholesterol affects disease progression in patients with chronic hepatitis C virus infection. METHODS We analyzed data from the Hepatitis C Antiviral Long-term Treatment Against Cirrhosis trial, which included patients with advanced fibrosis and compensated cirrhosis. Cholesterol intake was determined for 608 participants on the basis of responses to food frequency questionnaires, administered at baseline and 1.8 years later. We investigated whether cholesterol intake was associated with clinical progression (death, variceal bleeding, encephalopathy, ascites, peritonitis, Child-Turcotte-Pugh score ≥ 7, or hepatocellular carcinoma) or histologic progression of disease (an increase in Ishak fibrosis score of 2 or more points in a second liver biopsy compared with the first). RESULTS After adjustments for age, sex, race, presence of cirrhosis, body mass index, treatment with peginterferon, lifetime alcohol consumption, smoking, health status, and coffee and macronutrient intake, each higher quartile of cholesterol intake was associated with a 46% increase in the risk of clinical or histologic progression (adjusted hazard ratio [AHR], 1.46; 95% confidence interval [CI], 1.13-1.87; P for the trend = .004). Compared with patients in the lowest quartile of cholesterol intake (32-152 mg/day), those in the 3rd (224-310 mg/day; AHR, 2.83; 95% CI, 1.45-5.51) and 4th quartiles (>310 mg/day; AHR, 2.74; 95% CI, 1.22-6.16) had significantly increased risk of disease progression. CONCLUSIONS On the basis of analysis of data from the Hepatitis C Antiviral Long-term Treatment Against Cirrhosis trial, higher dietary cholesterol intake is associated with higher risk of disease progression in HCV-infected patients with advanced fibrosis or compensated cirrhosis.
Collapse
Affiliation(s)
- Lei Yu
- Division of Gastroenterology, University of Washington, Seattle, Washington.
| | | | | |
Collapse
|
30
|
Lindenbach BD, Rice CM. The ins and outs of hepatitis C virus entry and assembly. Nat Rev Microbiol 2013; 11:688-700. [PMID: 24018384 DOI: 10.1038/nrmicro3098] [Citation(s) in RCA: 279] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hepatitis C virus, a major human pathogen, produces infectious virus particles with several unique features, such as an ability to interact with serum lipoproteins, a dizzyingly complicated process of virus entry, and a pathway of virus assembly and release that is closely linked to lipoprotein secretion. Here, we review these unique features, with an emphasis on recent discoveries concerning virus particle structure, virus entry and virus particle assembly and release.
Collapse
Affiliation(s)
- Brett D Lindenbach
- Department of Microbial Pathogenesis, Yale University, New Haven, Connecticut 06536, USA
| | | |
Collapse
|
31
|
Sun HY, Lin CC, Lee JC, Wang SW, Cheng PN, Wu IC, Chang TT, Lai MD, Shieh DB, Young KC. Very low-density lipoprotein/lipo-viro particles reverse lipoprotein lipase-mediated inhibition of hepatitis C virus infection via apolipoprotein C-III. Gut 2013; 62:1193-203. [PMID: 22689516 DOI: 10.1136/gutjnl-2011-301798] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Circulating hepatitis C virus (HCV) virions are associated with triglyceride-rich lipoproteins, including very low-density lipoprotein (VLDL) and low-density lipoprotein (LDL), designated as lipo-viro-particles (LVPs). Previous studies showed that lipoprotein lipase (LPL), a key enzyme for hydrolysing the triglyceride in VLDL to finally become LDL, may suppress HCV infection. This investigation considers the regulation of LPL by lipoproteins and LVPs, and their roles in the LPL-mediated anti-HCV function. DESIGN The lipoproteins were fractionated from normolipidemic blood samples using iodixanol gradients. Subsequent immunoglobulin-affinity purification from the canonical VLDL and LDL yielded the corresponding VLDL-LVP and LDL-LVP. Apolipoprotein (apo) Cs, LPL activity and HCV infection were quantified. RESULTS A higher triglyceride/cholesterol ratio of LDL was found more in HCV-infected donors than in healthy volunteers, and the triglyceride/cholesterol ratio of LDL-LVP was much increased, suggesting that the LPL hydrolysis of triglyceride may be impaired. VLDL, VLDL-LVP, LDL-LVP, but not LDL, suppressed LPL lipolytic activity, which was restored by antibodies that recognised apoC-III/-IV and correlated with the steadily abundant apoC-III/-IV quantities in those particles. In a cell-based system, treatment with VLDL and LVPs reversed the LPL-mediated inhibition of HCV infection in apoC-III/-IV-dependent manners. A multivariate logistic regression revealed that plasma HCV viral loads correlated negatively with LPL lipolytic activity, but positively with the apoC-III content of VLDL. Additionally, apoC-III in VLDL was associated with a higher proportion of HCV-RNA than was IgG. CONCLUSION This study reveals that LPL is an anti-HCV factor, and that apoC-III in VLDL and LVPs reduces the LPL-mediated inhibition of HCV infection.
Collapse
Affiliation(s)
- Hung-Yu Sun
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Hepatitis C virus, cholesterol and lipoproteins--impact for the viral life cycle and pathogenesis of liver disease. Viruses 2013; 5:1292-324. [PMID: 23698400 PMCID: PMC3712309 DOI: 10.3390/v5051292] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 04/10/2013] [Accepted: 04/27/2013] [Indexed: 02/07/2023] Open
Abstract
Hepatitis C virus (HCV) is a leading cause of chronic liver disease, including chronic hepatitis, fibrosis, cirrhosis, and hepatocellular carcinoma. Hepatitis C infection associates with lipid and lipoprotein metabolism disorders such as hepatic steatosis, hypobetalipoproteinemia, and hypocholesterolemia. Furthermore, virus production is dependent on hepatic very-low-density lipoprotein (VLDL) assembly, and circulating virions are physically associated with lipoproteins in complexes termed lipoviral particles. Evidence has indicated several functional roles for the formation of these complexes, including co-opting of lipoprotein receptors for attachment and entry, concealing epitopes to facilitate immune escape, and hijacking host factors for HCV maturation and secretion. Here, we review the evidence surrounding pathogenesis of the hepatitis C infection regarding lipoprotein engagement, cholesterol and triglyceride regulation, and the molecular mechanisms underlying these effects.
Collapse
|
33
|
Sheridan DA, Neely RDG, Bassendine MF. Hepatitis C virus and lipids in the era of direct acting antivirals (DAAs). Clin Res Hepatol Gastroenterol 2013; 37:10-6. [PMID: 22959093 DOI: 10.1016/j.clinre.2012.07.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Revised: 07/23/2012] [Accepted: 07/25/2012] [Indexed: 02/07/2023]
Abstract
The six different HCV-genotypes have marked differences in response to therapy with pegylated interferon-α and ribavirin. The introduction of the direct acting antiviral (DAA) protease inhibitors, telaprevir and boceprevir in combination with pegylated interferon-α and ribavirin has become the new standard of care for genotype 1 infection. Several host factors associated with response to pegylated interferon-α and ribavirin are not as important in predicting response to triple therapy, and yet low-density lipoprotein cholesterol (LDLC) and statin use remain important associations of outcome with DAAs. This review focuses on the clinical associations between lipids and treatment response to interferon based antiviral treatments. We consider how understanding the interactions of HCV and host lipid metabolism remains relevant in the era of DAAs for genotype 1 infection and for treatment of non-genotype 1 chronic hepatitis C.
Collapse
Affiliation(s)
- David A Sheridan
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom.
| | | | | |
Collapse
|
34
|
Pécheur EI. Lipoprotein receptors and lipid enzymes in hepatitis C virus entry and early steps of infection. SCIENTIFICA 2012; 2012:709853. [PMID: 24278733 PMCID: PMC3820461 DOI: 10.6064/2012/709853] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 10/31/2012] [Indexed: 06/02/2023]
Abstract
Viruses are obligate intracellular agents that depend on host cells for successful propagation, hijacking cellular machineries to their own profit. The molecular interplay between host factors and invading viruses is a continuous coevolutionary process that determines viral host range and pathogenesis. The hepatitis C virus (HCV) is a strictly human pathogen, causing chronic liver injuries accompanied by lipid disorders. Upon infection, in addition to protein-protein and protein-RNA interactions usual for such a positive-strand RNA virus, HCV relies on protein-lipid interactions at multiple steps of its life cycle to establish persistent infection, making use of hepatic lipid pathways. This paper focuses on lipoproteins in HCV entry and on receptors and enzymes involved in lipid metabolism that HCV exploits to enter hepatocytes.
Collapse
Affiliation(s)
- Eve-Isabelle Pécheur
- Department of Mechanisms of Chronic Hepatitis B and C, Centre de Recherche en Cancérologie de Lyon, 69008 Lyon, France
- Inserm U1052/CNRS UMR 5286, CRCL, Université de Lyon, 151 Cours Albert Thomas, 69424 Lyon Cedex 03, France
| |
Collapse
|
35
|
|
36
|
Perrin-Cocon L, Diaz O, André P, Lotteau V. Modified lipoproteins provide lipids that modulate dendritic cell immune function. Biochimie 2012; 95:103-8. [PMID: 22959067 DOI: 10.1016/j.biochi.2012.08.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 08/09/2012] [Indexed: 12/19/2022]
Abstract
Both physiological and pathological situations can result in biochemical changes of low-density lipoproteins (LDL). Because they can deliver signals to dendritic cells (DC), these modified lipoproteins now appear as regulators of the immune response. Among these modified lipoproteins, oxidized LDL (oxLDL) that accumulate during inflammatory conditions have been extensively studied. Numerous studies have shown that oxLDL induce the maturation of DC, enhancing their ability to activate IFNγ secretion by T cells. LDL treated by secreted phospholipase A(2) also promote DC maturation. Among the bioactive lipids generated by oxidation or phospholipase treatment of LDL, lysophosphatidylcholine (LPC) and some saturated fatty acids induce DC maturation whereas some unsaturated fatty acids or oxidized derivatives have opposite effects. Among other factors, the nuclear receptor peroxisome-proliferator activated receptor γ (PPARγ) plays a crucial role in this regulation. Non-modified lipoproteins also contribute to the regulation of DC function, suggesting that the balance between native and modified lipoproteins, as well as the biochemical nature of the LDL modifications, can regulate the activation threshold of DC. Here we discuss two pathological situations in which the impact of LDL modifications on inflammation and immunity could play an important role. During atherosclerosis, modified LDL accumulating in the arterial intima may interfere with DC maturation and function, promoting a Th1 immune response and a local inflammation favoring the development of the pathology. In patients chronically infected, the hepatitis C virus (HCV) interferes with lipoprotein metabolism resulting in the production of infectious modified lipoproteins. These lipo-viral-particles (LVP) are modified low-density lipoproteins containing viral material that can alter DC maturation and affect specific toll-like receptor signaling. In conclusion, lipoprotein modifications play an important role in the regulation of immunity by delivering signals of danger to DC and modulating their function.
Collapse
|
37
|
Scholtes C, Ramière C, Rainteau D, Perrin-Cocon L, Wolf C, Humbert L, Carreras M, Guironnet-Paquet A, Zoulim F, Bartenschlager R, Lotteau V, André P, Diaz O. High plasma level of nucleocapsid-free envelope glycoprotein-positive lipoproteins in hepatitis C patients. Hepatology 2012; 56:39-48. [PMID: 22290760 DOI: 10.1002/hep.25628] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2011] [Accepted: 01/19/2012] [Indexed: 02/06/2023]
Abstract
UNLABELLED Hepatitis C virus (HCV) particles associate viral and lipoprotein moieties to form hybrid lipoviral particles (LVPs). Cell culture-produced HCV (HCVcc) and ex vivo-characterized LVPs primarily differ by their apolipoprotein (apo) B content, which is low for HCVcc, but high for LVPs. Recombinant nucleocapsid-free subviral LVPs are assembled and secreted by apoB-producing cell lines. To determine whether such subviral particles circulate in HCV-infected individuals, LVPs complexed with immunoglobulin were precipitated with protein A from low-density plasma fractions of 36 hepatitis C patients, and their lipid content, apolipoprotein profile, and viral composition were determined. HCV RNA in LVPs was quantified and molar ratios of apoB and HCV genome copy number were calculated. LVPs lipidome from four patients was determined via electrospray ionization/tandem mass spectrometry. Protein A-purified LVPs contained at least the envelope glycoprotein E2 and E2-specific antibodies. LVPs were present in every patient and were characterized by high lipid content, presence of apolipoproteins characteristic of triglyceride-rich lipoproteins (TRLs), HCV RNA, and viral glycoprotein. Importantly, save for four patients, LVPs fractions contained large amounts of apoB, with on average more than 1 × 10(6) apoB molecules per HCV RNA genome. Because there is one apoB molecule per TRL, this ratio suggested that most LVPs are nucleocapsid-free, envelope glycoprotein-containing subviral particles. LVPs and TRLs had similar composition of triacylglycerol and phospholipid classes. CONCLUSION LVPs are a mixed population of particles, comprising predominantly subviral particles that represent a distinct class of modified lipoproteins within the TRL family.
Collapse
|
38
|
Vercauteren K, Leroux-Roels G, Meuleman P. Blocking HCV entry as potential antiviral therapy. Future Virol 2012. [DOI: 10.2217/fvl.12.47] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
39
|
Matrigel-embedded 3D culture of Huh-7 cells as a hepatocyte-like polarized system to study hepatitis C virus cycle. Virology 2012; 425:31-9. [PMID: 22280897 DOI: 10.1016/j.virol.2011.12.021] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 11/11/2011] [Accepted: 12/31/2011] [Indexed: 12/26/2022]
Abstract
Hepatocytes are highly polarized cells where intercellular junctions, including tight junctions (TJs), determine the polarity. Recently, the TJ-associated proteins claudin-1 and occludin have been implicated in hepatitis C virus (HCV) entry and spread. Nevertheless, cell line-based experimental systems that exhibit hepatocyte-like polarity and permit robust infection and virion production are not currently available. Thus, we sought to determine whether cell line-based, Matrigel-embedded cultures could be used to study hepatitis C virus (HCV) infection and virion production in a context of hepatocyte-like polarized cells. In contrast to standard bidimensional cultures, Matrigel-cultured Huh-7 cells adopted hepatocyte polarization features forming a continuous network of functional proto-bile canaliculi structures. These 3D cultures supported HCV infection by JFH-1 virus and produced infective viral particles which shifted towards lower densities with higher associated specific infectivity. In conclusion, our findings describe a novel use of Matrigel to study the entire HCV cycle in a more relevant context.
Collapse
|
40
|
Coller KE, Heaton NS, Berger KL, Cooper JD, Saunders JL, Randall G. Molecular determinants and dynamics of hepatitis C virus secretion. PLoS Pathog 2012; 8:e1002466. [PMID: 22241992 PMCID: PMC3252379 DOI: 10.1371/journal.ppat.1002466] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Accepted: 11/16/2011] [Indexed: 12/12/2022] Open
Abstract
The current model of hepatitis C virus (HCV) production involves the assembly of virions on or near the surface of lipid droplets, envelopment at the ER in association with components of VLDL synthesis, and egress via the secretory pathway. However, the cellular requirements for and a mechanistic understanding of HCV secretion are incomplete at best. We combined an RNA interference (RNAi) analysis of host factors for infectious HCV secretion with the development of live cell imaging of HCV core trafficking to gain a detailed understanding of HCV egress. RNAi studies identified multiple components of the secretory pathway, including ER to Golgi trafficking, lipid and protein kinases that regulate budding from the trans-Golgi network (TGN), VAMP1 vesicles and adaptor proteins, and the recycling endosome. Our results support a model wherein HCV is infectious upon envelopment at the ER and exits the cell via the secretory pathway. We next constructed infectious HCV with a tetracysteine (TC) tag insertion in core (TC-core) to monitor the dynamics of HCV core trafficking in association with its cellular cofactors. In order to isolate core protein movements associated with infectious HCV secretion, only trafficking events that required the essential HCV assembly factor NS2 were quantified. TC-core traffics to the cell periphery along microtubules and this movement can be inhibited by nocodazole. Sub-populations of TC-core localize to the Golgi and co-traffic with components of the recycling endosome. Silencing of the recycling endosome component Rab11a results in the accumulation of HCV core at the Golgi. The majority of dynamic core traffics in association with apolipoprotein E (ApoE) and VAMP1 vesicles. This study identifies many new host cofactors of HCV egress, while presenting dynamic studies of HCV core trafficking in infected cells. The current model of HCV egress is that virions assemble at lipid droplets, envelope at the ER and then likely exit the hepatocyte via the secretory pathway in association with apolipoproteins. To gain a more detailed insight into infectious HCV release, we combined an RNAi analysis of host factors that are required for infectious HCV secretion with live cell imaging of HCV core trafficking. Using this approach, we identified numerous components of the secretory pathway that are both required for infectious HCV release and co-traffic with HCV core. The dynamics of HCV core trafficking, both in terms of frequency of transport, particle velocity, and the corresponding run lengths were quantified. We observe that dynamic core movements in the periphery require NS2, a viral protein required for virion assembly. Core co-traffics with multiple components of the secretory pathway, including the Golgi, recycling endosome, microtubules, VAMP1 secretory vesicles, and ApoE. This study identifies new molecular determinants of HCV secretion and describes the dynamics of their movements with HCV core in real time.
Collapse
Affiliation(s)
- Kelly E. Coller
- Department of Microbiology, The University of Chicago, Chicago, Illinois, United States of America
| | - Nicholas S. Heaton
- Department of Microbiology, The University of Chicago, Chicago, Illinois, United States of America
| | - Kristi L. Berger
- Department of Microbiology, The University of Chicago, Chicago, Illinois, United States of America
| | - Jacob D. Cooper
- Department of Microbiology, The University of Chicago, Chicago, Illinois, United States of America
| | - Jessica L. Saunders
- Department of Microbiology, The University of Chicago, Chicago, Illinois, United States of America
| | - Glenn Randall
- Department of Microbiology, The University of Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
41
|
Bassendine MF, Sheridan DA, Felmlee DJ, Bridge SH, Toms GL, Neely RDG. HCV and the hepatic lipid pathway as a potential treatment target. J Hepatol 2011; 55:1428-40. [PMID: 21718665 DOI: 10.1016/j.jhep.2011.06.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 06/15/2011] [Accepted: 06/17/2011] [Indexed: 02/07/2023]
Abstract
Atherosclerosis has been described as a liver disease of the heart [1]. The liver is the central regulatory organ of lipid pathways but since dyslipidaemias are major contributors to cardiovascular disease and type 2 diabetes rather than liver disease, research in this area has not been a major focus for hepatologists. Virus-host interaction is a continuous co-evolutionary process [2] involving the host immune system and viral escape mechanisms [3]. One of the strategies HCV has adopted to escape immune clearance and establish persistent infection is to make use of hepatic lipid pathways. This review aims to: • update the hepatologist on lipid metabolism • review the evidence that HCV exploits hepatic lipid pathways to its advantage • discuss approaches to targeting host lipid pathways as adjunctive therapy.
Collapse
|
42
|
Jahan S, Samreen B, Khaliq S, Ijaz B, Khan M, Siddique MH, Ahmad W, Hassan S. HCV entry receptors as potential targets for siRNA-based inhibition of HCV. GENETIC VACCINES AND THERAPY 2011; 9:15. [PMID: 21896165 PMCID: PMC3179693 DOI: 10.1186/1479-0556-9-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 09/06/2011] [Indexed: 12/15/2022]
Abstract
Background Hepatitis C virus (HCV) is a major health concern with almost 3% of the world's population (350 million individuals) and 10% of the Pakistani population chronically infected with this viral pathogen. The current therapy of interferon-α and ribavirin against HCV has limited efficiency, so alternative options are desperately needed. RNA interference (RNAi), which results in a sequence-specific degradation of HCV RNA has potential as a powerful alternative molecular therapeutic approach. Concerning viral entry, the HCV structural gene E2 is mainly involved in virus attachment to the host cell surface receptors i.e., CD81 tetraspanin, scavenger receptor class B type 1 (SR-B1), low density lipoprotein receptor (LDLR) and claudin1 (CLDN1). Results In this report, we studied the relationship of the HCV receptors CD81, LDL, CLDN1 and SR-B1to HCV infection. The potential of siRNAs to inhibit HCV-3a replication in serum-infected Huh-7 cells was demonstrated by treatment with siRNAs against HCV receptors, which resulted in a significant decrease in HCV viral copy number. Conclusions Our data clearly demonstrate that the RNAi-mediated silencing of HCV receptors is among the first of its type for the development of an effective siRNA-based therapeutic option against HCV-3a. These findings will shed further light on the possible role of receptors in inhibition of HCV-3a viral titre through siRNA mediated silencing.
Collapse
Affiliation(s)
- Shah Jahan
- Applied and Functional Genomics Lab, Centre of Excellence in Molecular Biology, University of the Punjab, Pakistan.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Corey KE, Mendez-Navarro J, Barlow LL, Patwardhan V, Zheng H, Kim AY, Lauer GM, Chung RT. Acute hepatitis C infection lowers serum lipid levels. J Viral Hepat 2011; 18:e366-71. [PMID: 21692949 PMCID: PMC3739431 DOI: 10.1111/j.1365-2893.2011.01434.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Chronic hepatitis C infection is associated with hypolipidaemia that resolves with viral clearance. Lipid levels in a subgroup of patients rebound to levels that may increase the risk of coronary heart disease. The impact of acute hepatitis C infection and its clearance on lipid levels is unknown. We undertook a retrospective evaluation of subjects with acute hepatitis C infection evaluating lipid levels before, during and following acute infection. Thirty-eight subjects with acute hepatitis C infection had lipid levels available. Twelve patients had pre-infection and intra-infection lipid levels available. Cholesterol (197.8-152.4 mg/dL, P = 0.025), low-density lipoprotein (LDL) (116.1-76.3 mg/dL, P = 0.001) and non-high-density lipoprotein (non-HDL) cholesterol (164.0-122.7 mg/dL, P = 0.007) decreased dramatically during acute hepatitis C virus infection. Nineteen patients who achieved viral clearance had lipid levels available during infection and following resolution of infection. In these patients, cholesterol (145.0-176.0 mg/dL, P = 0.01), LDL (87.0-110.1 P = 0.0046) and non-HDL cholesterol (108.6-133.6 mg/dL, P = 0.008) increased significantly. No change was seen in patients who developed chronic infection. Four patients had lipid levels before, during and following resolution of infections and had increased postinfection LDL, cholesterol and non-HDL cholesterol from pre-infection levels, indicating acute infection may be associated with an increase in postinfection lipid levels and may confer an increased risk of coronary heart disease. Acute hepatitis C infection results in hypolipidaemia with decreased LDL, cholesterol and non-HDL cholesterol levels that increase following infection resolution. Levels may increase above pre-infection baseline lipid levels and should be monitored.
Collapse
Affiliation(s)
- K. E. Corey
- Gastrointestinal Unit, Massachusetts General Hospital, Boston, MA, USA
| | - J. Mendez-Navarro
- Gastrointestinal Unit, Massachusetts General Hospital, Boston, MA, USA,National Medical Center “Hospital Especialidades CMN Siglo XXI”, IMSS, Mexico City, Mexico
| | - L. L. Barlow
- Gastrointestinal Unit, Massachusetts General Hospital, Boston, MA, USA
| | - V. Patwardhan
- Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - H. Zheng
- MGH Biostatistics Center, Massachusetts General Hospital, Boston, MA, USA
| | - A. Y. Kim
- Division of Infectious Disease, Massachusetts General Hospital, Boston, MA, USA
| | - G. M. Lauer
- Gastrointestinal Unit, Massachusetts General Hospital, Boston, MA, USA
| | - R. T. Chung
- Gastrointestinal Unit, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
44
|
Benedicto I, Molina-Jiménez F, Moreno-Otero R, López-Cabrera M, Majano PL. Interplay among cellular polarization, lipoprotein metabolism and hepatitis C virus entry. World J Gastroenterol 2011; 17:2683-90. [PMID: 21734774 PMCID: PMC3122255 DOI: 10.3748/wjg.v17.i22.2683] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 12/23/2010] [Accepted: 12/30/2010] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) infects more than three million new individuals worldwide each year. In a high percentage of patients, acute infections become chronic, eventually progressing to fibrosis, cirrhosis, and hepatocellular carcinoma. Given the lack of effective prophylactic or therapeutic vaccines, and the limited sustained virological response rates to current therapies, new approaches are needed to prevent, control, and clear HCV infection. Entry into the host cell, being the first step of the viral cycle, is a potential target for the design of new antiviral compounds. Despite the recent discovery of the tight junction-associated proteins claudin-1 and occludin as HCV co-receptors, which is an important step towards the understanding of HCV entry, the precise mechanisms are still largely unknown. In addition, increasing evidence indicates that tools that are broadly employed to study HCV infection do not accurately reflect the real process in terms of viral particle composition and host cell phenotype. Thus, systems that more closely mimic natural infection are urgently required to elucidate the mechanisms of HCV entry, which will in turn help to design antiviral strategies against this part of the infection process.
Collapse
|
45
|
Miyazaki T, Honda A, Ikegami T, Saitoh Y, Hirayama T, Hara T, Doy M, Matsuzaki Y. Hepatitis C virus infection causes hypolipidemia regardless of hepatic damage or nutritional state: An epidemiological survey of a large Japanese cohort. Hepatol Res 2011; 41:530-41. [PMID: 21501354 DOI: 10.1111/j.1872-034x.2011.00803.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
AIM Infection with hepatitis C virus (HCV) is the leading cause of liver cirrhosis that develops into hepatocellular carcinoma. Previous studies have shown in vitro that lipids within hepatocytes are crucially important for a series of HCV infection-proliferation-release processes. On the other hand, in the patients with HCV, the serum total cholesterol (Total-C) and low-density lipoprotein cholesterol (LDL-C) levels have been reported to be lower. We conducted an epidemiological survey of a large cohort and investigated whether the lower serum lipid levels were caused by a direct or the secondary effects of HCV infection (i.e. hepatic damage or nutritional disorder). METHODS Among 146 857 participants (male, 34%; female, 66%) undergoing public health examinations between 2002 and 2007 in Ibaraki Prefecture, Japan, the HCV positive rates determined by HCV antibody/antigen and/or RNA tests were 1.37% and 0.67% in males and females, respectively. RESULTS In addition to Total-C and LDL-C, serum high-density lipoprotein cholesterol and triglyceride concentrations were also significantly lower in the HCV positive subjects compared with the negative subjects, regardless of sex, age or nutritional state evaluated by body mass index. Multivariate analysis showed that HCV infection was the strongest among the factors to be significantly associated with the lower level of these lipids. Particularly, the hypolipidemia was also confirmed in the HCV positive subjects with normal aminotransferase levels (alanine aminotransferase ≤30 and aspartate aminotransferase ≤30). CONCLUSION This epidemiological survey in a large Japanese cohort suggests that the HCV infection itself might directly cause hypolipidemia, irrespective of host factors including age, hepatic damage and nutritional state.
Collapse
Affiliation(s)
- Teruo Miyazaki
- Department of Development for Community Medicine, Tokyo Medical University Center for Collaborative Research Department of Internal Medicine, Division of Gastroenterology and Hepatology, Tokyo Medical University Ibaraki Medical Center Ibaraki Prefectural Institute of Public Health, Mito Ibaraki Prefectural Central Hospital, Kasama, Japan
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Yamamoto M, Aizaki H, Fukasawa M, Teraoka T, Miyamura T, Wakita T, Suzuki T. Structural requirements of virion-associated cholesterol for infectivity, buoyant density and apolipoprotein association of hepatitis C virus. J Gen Virol 2011; 92:2082-2087. [PMID: 21593275 DOI: 10.1099/vir.0.032391-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Our earlier study has demonstrated that hepatitis C virus (HCV)-associated cholesterol plays a key role in virus infectivity. In this study, the structural requirement of sterols for infectivity, buoyant density and apolipoprotein association of HCV was investigated further. We removed cholesterol from virions with methyl β-cyclodextrin, followed by replenishment with 10 exogenous cholesterol analogues. Among the sterols tested, dihydrocholesterol and coprostanol maintained the buoyant density of HCV and its infectivity, and 7-dehydrocholesterol restored the physical appearance of HCV, but suppressed its infectivity. Other sterol variants with a 3β-hydroxyl group or with an aliphatic side chain did not restore density or infectivity. We also provide evidence that virion-associated cholesterol contributes to the interaction between HCV particles and apolipoprotein E. The molecular basis for the effects of different sterols on HCV infectivity is discussed.
Collapse
Affiliation(s)
- Mami Yamamoto
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Saiwai-cho 3-5-8, Fuchu, Tokyo 183-8509, Japan.,Department of Virology II, National Institute of Infectious Diseases, Toyama 1-23-1, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Hideki Aizaki
- Department of Virology II, National Institute of Infectious Diseases, Toyama 1-23-1, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Masayoshi Fukasawa
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Toyama 1-23-1, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Tohru Teraoka
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Saiwai-cho 3-5-8, Fuchu, Tokyo 183-8509, Japan
| | - Tatsuo Miyamura
- Department of Virology II, National Institute of Infectious Diseases, Toyama 1-23-1, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Takaji Wakita
- Department of Virology II, National Institute of Infectious Diseases, Toyama 1-23-1, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Tetsuro Suzuki
- Department of Infectious Diseases, Hamamatsu University School of Medicine, Handayama 1-20-1, Higashi-ku, Hamamatsu 431-3192, Japan.,Department of Virology II, National Institute of Infectious Diseases, Toyama 1-23-1, Shinjuku-ku, Tokyo 162-8640, Japan
| |
Collapse
|
47
|
Angus AGN, Patel AH. Immunotherapeutic potential of neutralizing antibodies targeting conserved regions of the HCV envelope glycoprotein E2. Future Microbiol 2011; 6:279-94. [DOI: 10.2217/fmb.11.9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
HCV is a major cause of chronic liver disease worldwide. There is no vaccine available and the current antiviral therapies fail to cure approximately half of treated patients. Liver disease caused by HCV infection is the most common indication for orthotopic liver transplantation. Unfortunately, reinfection of the new liver is universal and often results in an aggressive form of the disease leading to graft loss and the need for retransplantation. Immunotherapies using antibodies that potently inhibit HCV infection have the potential to control or even prevent graft reinfection. The virion envelope glycoproteins E1 and E2, which are involved in HCV entry into host cells, are the targets of neutralizing antibodies. To date, a number of monoclonal antibodies targeting conserved regions of E2 have been described that display outstanding neutralizing capabilities against HCV infection in both in vitro and in vivo systems. This article will summarize the current literature on these neutralizing anti-E2 antibodies and discuss their potential immunotherapeutic efficacy.
Collapse
Affiliation(s)
- Allan GN Angus
- MRC - University of Glasgow Centre for Virus Research, University of Glasgow, Church Street, Glasgow G11 5JR, UK
| | | |
Collapse
|
48
|
Felmlee DJ, Sheridan DA, Bridge SH, Nielsen SU, Milne RW, Packard CJ, Caslake MJ, McLauchlan J, Toms GL, Neely RDG, Bassendine MF. Intravascular transfer contributes to postprandial increase in numbers of very-low-density hepatitis C virus particles. Gastroenterology 2010; 139:1774-83, 1783.e1-6. [PMID: 20682323 DOI: 10.1053/j.gastro.2010.07.047] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Revised: 06/28/2010] [Accepted: 07/22/2010] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS The physical association of hepatitis C virus (HCV) particles with lipoproteins in plasma results in distribution of HCV in a broad range of buoyant densities. This association is thought to increase virion infectivity by mediating cell entry via lipoprotein receptors. We sought to determine if factors that affect triglyceride-rich lipoprotein (TRL) metabolism alter the density and dynamics of HCV particles in the plasma of patients with chronic HCV infection. METHODS Fasting patients (n = 10) consumed a high-fat milkshake; plasma was collected and fractionated by density gradients. HCV- RNA was measured in the very-low-density fraction (VLDF, d < 1.025 g/mL) before and at 7 serial time points postprandially. RESULTS The amount of HCV RNA in the VLDF (HCV(VLDF)) increased a mean of 26-fold, peaking 180 minutes after the meal (P < .01). Quantification of HCV RNA throughout the density gradient fractions revealed that HCV(VLDF) rapidly disappeared, rather than migrating into the adjacent density fraction. Immuno-affinity separation of the VLDF, using antibodies that recognize apolipoprotein B-100 and not apolipoprotein B-48, showed that HCV(VLDF) is composed of chylomicron- and VLDL-associated HCV particles; peaking 120 and 180 minutes after the meal, respectively. Plasma from fasting HCV-infected patients mixed with uninfected plasma increased the quantity of HCV(VLDF), compared with that mixed with phosphate-buffered saline, showing extracellular assembly of HCV(VLDF). CONCLUSIONS Dietary triglyceride alters the density and dynamics of HCV in plasma. The rapid clearance rate of HCV(VLDF) indicates that association with TRL is important for HCV infectivity. HCV particles, such as exchangeable apolipoproteins, appear to reassociate with TRLs in the vascular compartment.
Collapse
Affiliation(s)
- Daniel J Felmlee
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Serum lipids in European chronic HCV genotype 1 patients during and after treatment with pegylated interferon-α-2a and ribavirin. Eur J Gastroenterol Hepatol 2010; 22:1303-7. [PMID: 20729742 DOI: 10.1097/meg.0b013e32833de92c] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
AIMS Chronic hepatitis C alters the host's lipid metabolism and hepatitis C virus (HCV) eradication may be followed by an increase of serum cholesterol to adverse levels. We therefore aimed to determine the impact of chronic hepatitis C and its treatment on circulating lipids in a large European cohort of HCV genotype 1 patients. METHODS The serum lipid profile of 575 HCV genotype 1-infected patients was characterized before, during and after treatment with pegylated interferon-α-2a (180 μg/week) and ribavirin (1000-1200 mg/day) for 48 weeks within a randomized controlled clinical trial. RESULTS Total baseline cholesterol levels were significantly higher in patients with sustained virologic response (SVR) compared to nonresponders/relapsers (177 vs. 167 mg/dl, P=0.01), and low-cholesterol levels were an independent negative predictor of SVR (P=0.084). During the antiviral treatment, cholesterol levels substantially decreased as a putative marker of interferon-activity, but rebounded above baseline in patients with SVR (177-188 mg/dl, P=0.02), and to baseline in nonresponders/relapsers. Proportions of patients with cholesterol (>240 mg/dl) at baseline and after HCV eradication were 4 and 6%, respectively. Significant differences of triglyceride levels in patients with and without SVR were only observed at follow-up (136 and 117 mg/dl, respectively, P=0.028) but not at baseline. CONCLUSION Our study reports a substantial pretreatment hypocholesterolemia in European HCV genotype 1 patients with nonresponse to interferon-α-based therapy and lower pretreatment cholesterol levels were an independent predictor of not attaining SVR. After treatment-induced HCV eradication median cholesterol levels increased above baseline, but the proportion of patients with high-risk cholesterol levels remained relatively low.
Collapse
|
50
|
Abstract
Lipid droplets (LDs) are cellular lipid storage organelles involved not only in lipid homeostasis but also in a variety of diseases. Chronic hepatitis C virus (HCV) infection affects host lipid metabolism, and thus induces LD accumulation in the liver. Recent studies have suggested that cellular LDs also play a crucial role in the HCV life cycle. Interactions between HCV proteins, especially the core protein, and LDs are required for the morphogenesis of infectious HCV. The present minireview will summarize the recent research progress about this unique relationship between LDs and the HCV life cycle.
Collapse
Affiliation(s)
- Masayoshi Fukasawa
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan.
| |
Collapse
|