1
|
Lee MH, Choi HS, Kim NY, Sim E, Choi JY, Hong S, Shin YK, Yu CH, Gu SH, Song DH, Hur GH, Shin S. Post-Vaccination Delivery of CpG ODNs Enhances the Th2-Associated Protective Immunity of the Smallpox DNA Vaccine. Mol Biotechnol 2024; 66:1718-1726. [PMID: 37428433 DOI: 10.1007/s12033-023-00800-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 06/15/2023] [Indexed: 07/11/2023]
Abstract
Potential threat of smallpox bioterrorism and concerns related to the adverse effects of currently licensed live-virus vaccines suggest the need to develop novel vaccines with better efficacy against smallpox. Use of DNA vaccines containing specific antigen-encoding plasmids prevents the risks associated with live-virus vaccines, offering a promising alternative to conventional smallpox vaccines. In this study, we investigated the efficiency of toll-like receptor (TLR) ligands in enhancing the immunogenicity of smallpox DNA vaccines. BALB/c mice were immunized with a DNA vaccine encoding the vaccinia virus L1R protein, along with the cytosine-phosphate-guanine (CpG) motif as a vaccine adjuvant, and their immune response was analyzed. Administration of B-type CpG oligodeoxynucleotides (ODNs) as TLR9 ligands 24 h after DNA vaccination enhanced the Th2-biased L1R-specific antibody immunity in mice. Moreover, B-type CpG ODNs improved the protective effects of the DNA vaccine against the lethal Orthopoxvirus challenge. Therefore, use of L1R DNA vaccines with CpG ODNs as adjuvants is a promising approach to achieve effective immunogenicity against smallpox infection.
Collapse
Affiliation(s)
- Min Hoon Lee
- R&D Center, ABION Inc., Seoul, Republic of Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| | | | - Na Young Kim
- R&D Center, ABION Inc., Seoul, Republic of Korea
| | - Euni Sim
- R&D Center, ABION Inc., Seoul, Republic of Korea
| | | | - Sungyoul Hong
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Young Kee Shin
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Chi Ho Yu
- Chem-Bio Technology Center, Agency for Defense Development, Daejeon, Republic of Korea
| | - Se Hun Gu
- Chem-Bio Technology Center, Agency for Defense Development, Daejeon, Republic of Korea
| | - Dong Hyun Song
- Chem-Bio Technology Center, Agency for Defense Development, Daejeon, Republic of Korea
| | - Gyueng Haeng Hur
- Chem-Bio Technology Center, Agency for Defense Development, Daejeon, Republic of Korea
| | - Sungho Shin
- Bio-MAX/N-Bio, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Kao CF, Tsai MH, Carillo KJ, Tzou DL, Chang W. Structural and functional analysis of vaccinia viral fusion complex component protein A28 through NMR and molecular dynamic simulations. PLoS Pathog 2023; 19:e1011500. [PMID: 37948471 PMCID: PMC10664964 DOI: 10.1371/journal.ppat.1011500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/22/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023] Open
Abstract
Host cell entry of vaccinia virus (a poxvirus) proceeds through multiple steps that involve many viral proteins to mediate cell infection. Upon binding to cells, vaccinia virus membrane fuses with host membranes via a viral entry fusion protein complex comprising 11 proteins: A16, A21, A28, F9, G3, G9, H2, J5, L1, L5 and O3. Despite vaccinia virus having two infectious forms, mature and enveloped, that have different membrane layers, both forms require an identical viral entry fusion complex for membrane fusion. Components of the poxvirus entry fusion complex that have been structurally assessed to date share no known homology with all other type I, II and III viral fusion proteins, and the large number of fusion protein components renders it a unique system to investigate poxvirus-mediated membrane fusion. Here, we determined the NMR structure of a truncated version of vaccinia A28 protein. We also expressed a soluble H2 protein and showed that A28 interacts with H2 protein at a 1:1 ratio in vitro. Furthermore, we performed extensive in vitro alanine mutagenesis to identify A28 protein residues that are critical for H2 binding, entry fusion complex formation, and virus-mediated membrane fusion. Finally, we used molecular dynamic simulations to model full-length A28-H2 subcomplex in membranes. In summary, we characterized vaccinia virus A28 protein and determined residues important in its interaction with H2 protein and membrane components. We also provide a structural model of the A28-H2 protein interaction to illustrate how it forms a 1:1 subcomplex on a modeled membrane.
Collapse
Affiliation(s)
- Chi-Fei Kao
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Min-Hsin Tsai
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | | | - Der-Lii Tzou
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Wen Chang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
3
|
Cruz NVG, Luques MN, Castiñeiras TMPP, Costa Ferreira Jr O, Peralta RHS, da Costa LJ, Damaso CR. Genomic Characterization of the Historical Smallpox Vaccine Strain Wyeth Isolated from a 1971 Seed Vial. Viruses 2022; 15:83. [PMID: 36680123 PMCID: PMC9864299 DOI: 10.3390/v15010083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/24/2022] [Accepted: 12/27/2022] [Indexed: 12/29/2022] Open
Abstract
The Wyeth strain of vaccinia virus (VACV) produced by Wyeth Pharmaceuticals was supposedly used to manufacture the old freeze-dried American smallpox vaccine, Dryvax, until its discontinuation in 2008. Although the genomic sequences of numerous Dryvax clones have been reported, data on VACV-Wyeth genomes are still lacking. Genomic analysis of old VACV strains is relevant to understand the evolutionary relationships of smallpox vaccines, particularly with the recent resumption of smallpox vaccination in certain population groups as an attempt to control the worldwide monkeypox outbreak. Here we analyzed the complete genome sequences of three VACV-Wyeth clonal isolates obtained from a single seed vial donated to the Brazilian eradication program in the 1970s. Wyeth clones show >99.3% similarity to each other and >95.3% similarity with Dryvax clones, mapping together in clade I of the vaccinia group. Although the patterns of SNPs and INDELs comparing Dryvax and Wyeth clones are overall uniform, important differences were detected particularly at the ends of the genome. In addition, we detected recombinant events of clone Wyeth A111 and the Dryvax clone Acam2000, suggesting that other regions of the genomes may have similar patchy patterns of recombination. A small-scale serological survey using VACV-Wyeth as antigen in ELISA assays revealed that 63 of the 65 individuals born before the end of smallpox vaccination in Brazil still have anti-VACV IgG antibodies, demonstrating the usefulness of the VACV-Wyeth strain in future extended serological studies of the Brazilian population.
Collapse
Affiliation(s)
- Nádia Vaez G. Cruz
- Instituto de Biologia do Exército, Rio de Janeiro 20911-270, Brazil
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Matheus Nobrega Luques
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Terezinha Marta Pereira P. Castiñeiras
- Núcleo de Enfrentamento e Estudo de Doenças Infecciosas Emergentes e Reemergentes (NEEDIER), Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Orlando Costa Ferreira Jr
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | | | - Luciana J. da Costa
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Clarissa R. Damaso
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| |
Collapse
|
4
|
Abstract
Genetic recombination is used as a tool for modifying the composition of poxvirus genomes in both discovery and applied research. This review documents the history behind the development of these tools as well as what has been learned about the processes that catalyze virus recombination and the links between it and DNA replication and repair. The study of poxvirus recombination extends back to the 1930s with the discovery that one virus can reactivate another by a process later shown to generate recombinants. In the years that followed it was shown that recombinants can be produced in virus-by-virus crosses within a genus (e.g., variola-by-rabbitpox) and efforts were made to produce recombination-based genetic maps with modest success. The marker rescue mapping method proved more useful and led to methods for making genetically engineered viruses. Many further insights into the mechanism of recombination have been provided by transfection studies which have shown that this is a high-frequency process associated with hybrid DNA formation and inextricably linked to replication. The links reflect the fact that poxvirus DNA polymerases, specifically the vaccinia virus E9 enzyme, can catalyze strand transfer in in vivo and in vitro reactions dependent on the 3'-to-5' proofreading exonuclease and enhanced by the I3 replicative single-strand DNA binding protein. These reactions have shaped the composition of virus genomes and are modulated by constraints imposed on virus-virus interactions by viral replication in cytoplasmic factories. As recombination reactions are used for replication fork assembly and repair in many biological systems, further study of these reactions may provide new insights into still poorly understood features of poxvirus DNA replication.
Collapse
Affiliation(s)
- David Hugh Evans
- Department of Medical Microbiology & Immunology and Li Ka Shing Institute of Virology, The University of Alberta, Edmonton, AB T6G 2J7, Canada
| |
Collapse
|
5
|
Long-read assays shed new light on the transcriptome complexity of a viral pathogen. Sci Rep 2020; 10:13822. [PMID: 32796917 PMCID: PMC7427789 DOI: 10.1038/s41598-020-70794-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 08/03/2020] [Indexed: 12/21/2022] Open
Abstract
Characterization of global transcriptomes using conventional short-read sequencing is challenging due to the insensitivity of these platforms to transcripts isoforms, multigenic RNA molecules, and transcriptional overlaps. Long-read sequencing (LRS) can overcome these limitations by reading full-length transcripts. Employment of these technologies has led to the redefinition of transcriptional complexities in reported organisms. In this study, we applied LRS platforms from Pacific Biosciences and Oxford Nanopore Technologies to profile the vaccinia virus (VACV) transcriptome. We performed cDNA and direct RNA sequencing analyses and revealed an extremely complex transcriptional landscape of this virus. In particular, VACV genes produce large numbers of transcript isoforms that vary in their start and termination sites. A significant fraction of VACV transcripts start or end within coding regions of neighbouring genes. This study provides new insights into the transcriptomic profile of this viral pathogen.
Collapse
|
6
|
Khalafalla AI, Al Hosani MA, Ishag HZA, Al Muhairi SS. More cell culture passaged Camelpox virus sequences found resembling those of vaccinia virus. Open Vet J 2020; 10:144-156. [PMID: 32821659 PMCID: PMC7419068 DOI: 10.4314/ovj.v10i2.4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 03/24/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Camelpox is the most infectious and economically important disease of camelids that causes significant morbidity and mortality rates. Several live attenuated vaccines against Camelpox virus (CMLV) are produced worldwide by passaging field isolates in cell culture. Sequence of a high passage Saudi isolate of CMLV was previously found closely resembled Vaccinia virus (VACV). AIM To determine whether other high cell culture passage CMLV isolates are genetically resemble VACV and further to explore the possible mechanism of the resemblance. METHODS We performed polymerase chain reaction and DNA sequence analysis of A-type inclusion body protein (ATIP), L1R, and open reading frame (ORF) 185 genes on different cell culture passage levels of a field isolate, two high passage vaccines, wild-type, and reference strains of CMLV. RESULTS We demonstrate that additional two high passage attenuated vaccine candidate from Sudan and UAE likewise contain sequences resembling VACV more than CMLV. Furthermore, sequence analysis of the ATIP gene of selected virus passages in cell culture revealed that the shift to VACV-like occurred between passage 11 and 20 and up to the 10th passage the genome still resembles wild-type virus. This observation was further confirmed by recombination analysis which indicated recombination events at ATIP and ORF185 genes occurred at higher passages. CONCLUSION We confirmed that the cell culture passage CMLV turns to resemble VACV after cell culture passage and concluded that the resemblance may not be a result of contamination or misidentification as previously thought but could be due to recombination events that occurred during the passage process.
Collapse
Affiliation(s)
- Abdelmalik I. Khalafalla
- Veterinary Laboratories Division, Animal Health Sector, Abu Dhabi Agriculture and Food Safety Authority (ADAFSA), Abu Dhabi, UAE
- Department of Microbiology, Faculty of Veterinary Medicine, University of Khartoum, Shambat, Khartoum North Sudan
| | - Mohamed A. Al Hosani
- Veterinary Laboratories Division, Animal Health Sector, Abu Dhabi Agriculture and Food Safety Authority (ADAFSA), Abu Dhabi, UAE
| | - Hassan Zackaria Ali Ishag
- Veterinary Laboratories Division, Animal Health Sector, Abu Dhabi Agriculture and Food Safety Authority (ADAFSA), Abu Dhabi, UAE
| | - Salama S. Al Muhairi
- Veterinary Laboratories Division, Animal Health Sector, Abu Dhabi Agriculture and Food Safety Authority (ADAFSA), Abu Dhabi, UAE
| |
Collapse
|
7
|
Shchelkunov SN, Yakubitskiy SN, Sergeev AA, Kabanov AS, Bauer TV, Bulychev LE, Pyankov SA. Effect of the Route of Administration of the Vaccinia Virus Strain LIVP to Mice on Its Virulence and Immunogenicity. Viruses 2020; 12:E795. [PMID: 32722032 PMCID: PMC7472337 DOI: 10.3390/v12080795] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/10/2020] [Accepted: 07/23/2020] [Indexed: 12/30/2022] Open
Abstract
The mass smallpox vaccination campaign has played a crucial role in smallpox eradication. Various strains of the vaccinia virus (VACV) were used as a live smallpox vaccine in different countries, their origin being unknown in most cases. The VACV strains differ in terms of pathogenicity exhibited upon inoculation of laboratory animals and reactogenicity exhibited upon vaccination of humans. Therefore, each generated strain or clonal variant of VACV needs to be thoroughly studied in in vivo systems. The clonal variant 14 of LIVP strain (LIVP-14) was the study object in this work. A comparative analysis of the virulence and immunogenicity of LIVP-14 inoculated intranasally (i.n.), intradermally (i.d.), or subcutaneously (s.c.) to BALB/c mice at doses of 108, 107, and 106 pfu was carried out. Adult mice exhibited the highest sensitivity to the i.n. administered LIVP-14 strain, although the infection was not lethal. The i.n. inoculated LIVP-14 replicated efficiently in the lungs. Furthermore, this virus was accumulated in the brain at relatively high concentrations. Significantly lower levels of LIVP-14 were detected in the liver, kidneys, and spleen of experimental animals. No clinical manifestations of the disease were observed after i.d. or s.c. injection of LIVP-14 to mice. After s.c. inoculation, the virus was detected only at the injection site, while it could disseminate to the liver and lungs when delivered via i.d. administration. A comparative analysis of the production of virus-specific antibodies by ELISA and PRNT revealed that the highest level of antibodies was induced in i.n. inoculated mice; a lower level of antibodies was observed after i.d. administration of the virus and the lowest level after s.c. injection. Even at the lowest studied dose (106 pfu), i.n. or i.d. administered LIVP-14 completely protected mice against infection with the cowpox virus at the lethal dose. Our findings imply that, according to the ratio between such characteristics as pathogenicity/immunogenicity/protectivity, i.d. injection is the optimal method of inoculation with the VACV LIVP-14 strain to ensure the safe formation of immune defense after vaccination against orthopoxviral infections.
Collapse
Affiliation(s)
- Sergei N. Shchelkunov
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, Koltsovo 630559, Novosibirsk Region, Russia; (S.N.Y.); (A.A.S.); (A.S.K.); (T.V.B.); (L.E.B.); (S.A.P.)
| | | | | | | | | | | | | |
Collapse
|
8
|
Delaune D, Iseni F, Ferrier-Rembert A, Peyrefitte CN, Ferraris O. The French Armed Forces Virology Unit: A Chronological Record of Ongoing Research on Orthopoxvirus. Viruses 2017; 10:E3. [PMID: 29295488 PMCID: PMC5795416 DOI: 10.3390/v10010003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 12/20/2017] [Accepted: 12/21/2017] [Indexed: 01/04/2023] Open
Abstract
Since the official declaration of smallpox eradication in 1980, the general population vaccination has ceased worldwide. Therefore, people under 40 year old are generally not vaccinated against smallpox and have no cross protection against orthopoxvirus infections. This naïve population may be exposed to natural or intentional orthopoxvirus emergences. The virology unit of the Institut de Recherche Biomédicale des Armées (France) has developed research programs on orthopoxviruses since 2000. Its missions were conceived to improve the diagnosis capabilities, to foster vaccine development, and to develop antivirals targeting specific viral proteins. The role of the virology unit was asserted in 2012 when the responsibility of the National Reference Center for the Orthopoxviruses was given to the unit. This article presents the evolution of the unit activity since 2000, and the past and current research focusing on orthopoxviruses.
Collapse
Affiliation(s)
- Déborah Delaune
- Unité de virologie, Centre National de Référence-Laboratoire Expert Orthopoxvirus, Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France.
| | - Frédéric Iseni
- Unité de virologie, Centre National de Référence-Laboratoire Expert Orthopoxvirus, Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France.
| | - Audrey Ferrier-Rembert
- Unité de virologie, Centre National de Référence-Laboratoire Expert Orthopoxvirus, Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France.
| | - Christophe N Peyrefitte
- Unité de virologie, Centre National de Référence-Laboratoire Expert Orthopoxvirus, Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France.
| | - Olivier Ferraris
- Unité de virologie, Centre National de Référence-Laboratoire Expert Orthopoxvirus, Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France.
| |
Collapse
|
9
|
Esparza J, Schrick L, Damaso CR, Nitsche A. Equination (inoculation of horsepox): An early alternative to vaccination (inoculation of cowpox) and the potential role of horsepox virus in the origin of the smallpox vaccine. Vaccine 2017; 35:7222-7230. [PMID: 29137821 DOI: 10.1016/j.vaccine.2017.11.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 10/18/2017] [Accepted: 11/02/2017] [Indexed: 11/28/2022]
Abstract
For almost 150 years after Edward Jenner had published the "Inquiry" in 1798, it was generally assumed that the cowpox virus was the vaccine against smallpox. It was not until 1939 when it was shown that vaccinia, the smallpox vaccine virus, was serologically related but different from the cowpox virus. In the absence of a known natural host, vaccinia has been considered to be a laboratory virus that may have originated from mutational or recombinational events involving cowpox virus, variola viruses or some unknown ancestral Orthopoxvirus. A favorite candidate for a vaccinia ancestor has been the horsepox virus. Edward Jenner himself suspected that cowpox derived from horsepox and he also believed that "matter" obtained from either disease could be used as preventative of smallpox. During the 19th century, inoculation with cowpox (vaccination) was used in Europe alongside with inoculation with horsepox (equination) to prevent smallpox. Vaccine-manufacturing practices during the 19th century may have resulted in the use of virus mixtures, leading to different genetic modifications that resulted in present-day vaccinia strains. Horsepox, a disease previously reported only in Europe, has been disappearing on that continent since the beginning of the 20th century and now seems to have become extinct, although the virus perhaps remains circulating in an unknown reservoir. Genomic sequencing of a horsepox virus isolated in Mongolia in 1976 indicated that, while closely related to vaccinia, this horsepox virus contained additional, potentially ancestral sequences absent in vaccinia. Recent genetic analyses of extant vaccinia viruses have revealed that some strains contain ancestral horsepox virus genes or are phylogenetically related to horsepox virus. We have recently reported that a commercially produced smallpox vaccine, manufactured in the United States in 1902, is genetically highly similar to horsepox virus, providing a missing link in this 200-year-old mystery.
Collapse
Affiliation(s)
- José Esparza
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Livia Schrick
- Centre for Biological Threats and Special Pathogens 1 - Highly Pathogenic Viruses & German Consultant Laboratory for Poxviruses & WHO Collaborating Centre for Emerging Infections and Biological Threats, Robert Koch Institute, Berlin, Germany
| | - Clarissa R Damaso
- Laboratório de Biologia Molecular de Virus, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Andreas Nitsche
- Centre for Biological Threats and Special Pathogens 1 - Highly Pathogenic Viruses & German Consultant Laboratory for Poxviruses & WHO Collaborating Centre for Emerging Infections and Biological Threats, Robert Koch Institute, Berlin, Germany
| |
Collapse
|
10
|
Liu S, Ruban L, Wang Y, Zhou Y, Nesbeth DN. Establishing elements of a synthetic biology platform for Vaccinia virus production: BioBrick™ design, serum-free virus production and microcarrier-based cultivation of CV-1 cells. Heliyon 2017; 3:e00238. [PMID: 28203643 PMCID: PMC5294666 DOI: 10.1016/j.heliyon.2017.e00238] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 01/20/2017] [Accepted: 01/23/2017] [Indexed: 11/30/2022] Open
Abstract
Vaccinia virus (VACV) is an established vector for vaccination and is beginning to prove effective as an oncolytic agent. Industrial production of VACV stands to benefit in future from advances made by synthetic biology in genome engineering and standardisation. The CV-1 cell line can be used for VACV propagation and has been used extensively with the CRISPR/Cas9 system for making precise edits of the VACV genome. Here we take first steps toward establishing a scalable synthetic biology platform for VACV production with CV-1 cells featuring standardised biological tools and serum free cell cultivation. We propose a new BioBrick™ plasmid backbone format for inserting transgenes into VACV. We then test the performance of CV-1 cells in propagation of a conventional recombinant Lister strain VACV, VACVL-15 RFP, in a serum-free process. CV-1 cells grown in 5% foetal bovine serum (FBS) Dulbecco’s Modified Eagle Medium (DMEM) were adapted to growth in OptiPRO and VP-SFM brands of serum-free media. Specific growth rates of 0.047 h−1 and 0.044 h−1 were observed for cells adapted to OptiPRO and VP-SFM respectively, compared to 0.035 h−1 in 5% FBS DMEM. Cells adapted to OptiPRO and to 5% FBS DMEM achieved recovery ratios of over 96%, an indication of their robustness to cryopreservation. Cells adapted to VP-SFM showed a recovery ratio of 82%. Virus productivity in static culture, measured as plaque forming units (PFU) per propagator cell, was 75 PFU/cell for cells in 5% FBS DMEM. VP-SFM and OptiPRO adaptation increased VACV production to 150 PFU/cell and 350 PFU/cell respectively. Boosted PFU/cell from OptiPRO-adapted cells persisted when 5% FBS DMEM or OptiPRO medium was observed during the infection step and when titre was measured using cells adapted to 5% FBS DMEM or OptiPRO medium. Finally, OptiPRO-adapted CV-1 cells were successfully cultivated using Cytodex-1 microcarriers to inform future scale up studies.
Collapse
Affiliation(s)
- Shuchang Liu
- Department of Biochemical Engineering, University College London, Bernard Katz Building, London WC1E 6BT, UK; Barts Cancer Institute, Queen Mary University of London, London EC1 M 6BQ, UK
| | - Ludmila Ruban
- Department of Biochemical Engineering, University College London, Bernard Katz Building, London WC1E 6BT, UK
| | - Yaohe Wang
- Barts Cancer Institute, Queen Mary University of London, London EC1 M 6BQ, UK
| | - Yuhong Zhou
- Department of Biochemical Engineering, University College London, Bernard Katz Building, London WC1E 6BT, UK
| | - Darren N Nesbeth
- Department of Biochemical Engineering, University College London, Bernard Katz Building, London WC1E 6BT, UK
| |
Collapse
|
11
|
Genome Sequence of Vaccinia virus Strain Lister-Butantan, a Lister Vaccine Variant Used during a Smallpox Eradication Campaign in Brazil. GENOME ANNOUNCEMENTS 2016; 4:4/3/e00536-16. [PMID: 27340056 PMCID: PMC4919395 DOI: 10.1128/genomea.00536-16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Here, we report the 187.8-kb genome sequence of Vaccinia virus Lister-Butantan, which was used in Brazil during the WHO smallpox eradication campaign. Its genome showed an average similarity of 98.18% with the original Lister isolate, highlighting the low divergence among related Vaccinia virus vaccine strains, even after several passages in animals and cell culture.
Collapse
|
12
|
Abstract
Smallpox has shaped human history, from the earliest human civilizations well into the 20th century. With high mortality rates, rapid transmission, and serious long-term effects on survivors, smallpox was a much-feared disease. The eradication of smallpox represents an unprecedented medical victory for the lasting benefit of human health and prosperity. Concerns remain, however, about the development and use of the smallpox virus as a biological weapon, which necessitates the need for continued vaccine development. Smallpox vaccine development is thus a much-reviewed topic of high interest. This review focuses on the current state of smallpox vaccines and their context in biodefense efforts.
Collapse
Affiliation(s)
- Emily A Voigt
- a Mayo Vaccine Research Group , Mayo Clinic , Rochester , MN , USA
| | | | - Gregory A Poland
- a Mayo Vaccine Research Group , Mayo Clinic , Rochester , MN , USA
| |
Collapse
|
13
|
Flesch IEA, Hollett NA, Wong YC, Quinan BR, Howard D, da Fonseca FG, Tscharke DC. Extent of Systemic Spread Determines CD8+ T Cell Immunodominance for Laboratory Strains, Smallpox Vaccines, and Zoonotic Isolates of Vaccinia Virus. THE JOURNAL OF IMMUNOLOGY 2015. [PMID: 26195812 DOI: 10.4049/jimmunol.1402508] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
CD8(+) T cells that recognize virus-derived peptides presented on MHC class I are vital antiviral effectors. Such peptides presented by any given virus vary greatly in immunogenicity, allowing them to be ranked in an immunodominance hierarchy. However, the full range of parameters that determine immunodominance and the underlying mechanisms remain unknown. In this study, we show across a range of vaccinia virus strains, including the current clonal smallpox vaccine, that the ability of a strain to spread systemically correlated with reduced immunodominance. Reduction in immunodominance was observed both in the lymphoid system and at the primary site of infection. Mechanistically, reduced immunodominance was associated with more robust priming and especially priming in the spleen. Finally, we show this is not just a property of vaccine and laboratory strains of virus, because an association between virulence and immunodominance was also observed in isolates from an outbreak of zoonotic vaccinia virus that occurred in Brazil.
Collapse
Affiliation(s)
- Inge E A Flesch
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Natasha A Hollett
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Yik Chun Wong
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Bárbara Resende Quinan
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory 2601, Australia; Laboratório de Virologia Básica e Aplicada, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil; and
| | - Debbie Howard
- John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Flávio G da Fonseca
- Laboratório de Virologia Básica e Aplicada, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil; and
| | - David C Tscharke
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory 2601, Australia; John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| |
Collapse
|
14
|
Sánchez-Sampedro L, Perdiguero B, Mejías-Pérez E, García-Arriaza J, Di Pilato M, Esteban M. The evolution of poxvirus vaccines. Viruses 2015; 7:1726-803. [PMID: 25853483 PMCID: PMC4411676 DOI: 10.3390/v7041726] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 03/16/2015] [Accepted: 03/27/2015] [Indexed: 02/07/2023] Open
Abstract
After Edward Jenner established human vaccination over 200 years ago, attenuated poxviruses became key players to contain the deadliest virus of its own family: Variola virus (VARV), the causative agent of smallpox. Cowpox virus (CPXV) and horsepox virus (HSPV) were extensively used to this end, passaged in cattle and humans until the appearance of vaccinia virus (VACV), which was used in the final campaigns aimed to eradicate the disease, an endeavor that was accomplished by the World Health Organization (WHO) in 1980. Ever since, naturally evolved strains used for vaccination were introduced into research laboratories where VACV and other poxviruses with improved safety profiles were generated. Recombinant DNA technology along with the DNA genome features of this virus family allowed the generation of vaccines against heterologous diseases, and the specific insertion and deletion of poxvirus genes generated an even broader spectrum of modified viruses with new properties that increase their immunogenicity and safety profile as vaccine vectors. In this review, we highlight the evolution of poxvirus vaccines, from first generation to the current status, pointing out how different vaccines have emerged and approaches that are being followed up in the development of more rational vaccines against a wide range of diseases.
Collapse
MESH Headings
- Animals
- History, 18th Century
- History, 19th Century
- History, 20th Century
- History, 21st Century
- Humans
- Poxviridae/immunology
- Poxviridae/isolation & purification
- Smallpox/prevention & control
- Smallpox Vaccine/history
- Smallpox Vaccine/immunology
- Smallpox Vaccine/isolation & purification
- Vaccines, Attenuated/history
- Vaccines, Attenuated/immunology
- Vaccines, Attenuated/isolation & purification
- Vaccines, Synthetic/history
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/isolation & purification
Collapse
Affiliation(s)
- Lucas Sánchez-Sampedro
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid-28049, Spain.
| | - Beatriz Perdiguero
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid-28049, Spain.
| | - Ernesto Mejías-Pérez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid-28049, Spain
| | - Juan García-Arriaza
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid-28049, Spain
| | - Mauro Di Pilato
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid-28049, Spain.
| | - Mariano Esteban
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid-28049, Spain.
| |
Collapse
|
15
|
Evolution of and evolutionary relationships between extant vaccinia virus strains. J Virol 2014; 89:1809-24. [PMID: 25410873 DOI: 10.1128/jvi.02797-14] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED Although vaccinia virus (VACV) was once used as a vaccine to eradicate smallpox on a worldwide scale, the biological origins of VACV are uncertain, as are the historical relationships between the different strains once used as smallpox vaccines. Here, we sequenced additional VACV strains that either represent relatively pristine examples of old vaccines (e.g., Dryvax, Lister, and Tashkent) or have been subjected to additional laboratory passage (e.g., IHD-W and WR). These genome sequences were compared with those previously reported for other VACVs as well as other orthopoxviruses. These extant VACVs do not always cluster in simple phylogenetic trees that are aligned with the known historical relationships between these strains. Rather, the pattern of deletions suggests that all existing strains likely come from a complex stock of viruses that has been passaged, distributed, and randomly sampled over time, thus obscuring simple historical or geographic links. We examined surviving nonclonal vaccine stocks, like Dryvax, which continue to harbor larger and now rare variants, including one that we have designated "clone DPP25." DPP25 encodes genes not found in most VACV strains, including an ankyrin-F-box protein, a homolog of the variola virus (Bangladesh) B18R gene which we show can be deleted without affecting virulence in mice. We propose a simple common mechanism by which recombination of a larger and hypothetical DPP25-like ancestral strain, combined with selection for retention of critically important genes near the terminal inverted repeat boundaries (vaccinia virus growth factor gene and an interferon alpha/beta receptor homolog), could produce all known VACV variants. IMPORTANCE Smallpox was eradicated by using a combination of intensive disease surveillance and vaccination using vaccinia virus (VACV). Interestingly, little is known about the historical relationships between different strains of VACV and how these viruses may have evolved from a common ancestral strain. To understand these relationships, additional strains were sequenced and compared to existing strains of VACV as well as other orthopoxviruses by using whole-genome sequence alignments. Extant strains of VACV did not always cluster in simple phylogenetic trees based on known historical relationships between these strains. Based on these findings, it is possible that all existing strains of VACV are derived from a single complex stock of viruses that has been passaged, distributed, and sampled over time.
Collapse
|
16
|
Genome Sequence of WAU86/88-1, a New Variant of Vaccinia Virus Lister Strain from Poland. GENOME ANNOUNCEMENTS 2014; 2:2/1/e01086-13. [PMID: 24407630 PMCID: PMC3886943 DOI: 10.1128/genomea.01086-13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The poxviruses Warsaw Agricultural University 86 (WAU86) and 88-1 (WAU88-1) were isolated in 1986 to 1988 from separate outbreaks in laboratory mice in Poland and described as ectromelia virus isolates. The genome sequences of these poxviruses reveal that they are almost identical and represent a novel variant of the vaccinia virus Lister strain.
Collapse
|
17
|
Comprehensive phylogenetic reconstructions of African swine fever virus: proposal for a new classification and molecular dating of the virus. PLoS One 2013; 8:e69662. [PMID: 23936068 PMCID: PMC3723844 DOI: 10.1371/journal.pone.0069662] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 06/11/2013] [Indexed: 12/13/2022] Open
Abstract
African swine fever (ASF) is a highly lethal disease of domestic pigs caused by the only known DNA arbovirus. It was first described in Kenya in 1921 and since then many isolates have been collected worldwide. However, although several phylogenetic studies have been carried out to understand the relationships between the isolates, no molecular dating analyses have been achieved so far. In this paper, comprehensive phylogenetic reconstructions were made using newly generated, publicly available sequences of hundreds of ASFV isolates from the past 70 years. Analyses focused on B646L, CP204L, and E183L genes from 356, 251, and 123 isolates, respectively. Phylogenetic analyses were achieved using maximum likelihood and Bayesian coalescence methods. A new lineage-based nomenclature is proposed to designate 35 different clusters. In addition, dating of ASFV origin was carried out from the molecular data sets. To avoid bias, diversity due to positive selection or recombination events was neutralized. The molecular clock analyses revealed that ASFV strains currently circulating have evolved over 300 years, with a time to the most recent common ancestor (TMRCA) in the early 18(th) century.
Collapse
|
18
|
Zhang Q, Tian M, Feng Y, Zhao K, Xu J, Liu Y, Shao Y. Genomic sequence and virulence of clonal isolates of vaccinia virus Tiantan, the Chinese smallpox vaccine strain. PLoS One 2013; 8:e60557. [PMID: 23593246 PMCID: PMC3625194 DOI: 10.1371/journal.pone.0060557] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 02/28/2013] [Indexed: 11/19/2022] Open
Abstract
Despite the worldwide eradication of smallpox in 1979, the potential bioterrorism threat from variola virus and the ongoing use of vaccinia virus (VACV) as a vector for vaccine development argue for continued research on VACV. In China, the VACV Tiantan strain (TT) was used in the smallpox eradication campaign. Its progeny strain is currently being used to develop a human immunodeficiency virus (HIV) vaccine. Here we sequenced the full genomes of five TT clones isolated by plaque purification from the TT (752-1) viral stock. Phylogenetic analysis with other commonly used VACV strains showed that TT (752-1) and its clones clustered and exhibited higher sequence diversity than that found in Dryvax clones. The ∼190 kbp genomes of TT appeared to encode 273 open reading frames (ORFs). ORFs located in the middle of the genome were more conserved than those located at the two termini, where many virulence and immunomodulation associated genes reside. Several patterns of nucleotide changes including point mutations, insertions and deletions were identified. The polymorphisms in seven virulence-associated proteins and six immunomodulation-related proteins were analyzed. We also investigated the neuro- and skin- virulence of TT clones in mice and rabbits, respectively. The TT clones exhibited significantly less virulence than the New York City Board of Health (NYCBH) strain, as evidenced by less extensive weight loss and morbidity in mice as well as produced smaller skin lesions and lower incidence of putrescence in rabbits. The complete genome sequences, ORF annotations, and phenotypic diversity yielded from this study aid our understanding of the Chinese historic TT strain and are useful for HIV vaccine projects employing TT as a vector.
Collapse
Affiliation(s)
- Qicheng Zhang
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention (NCAIDS), Chinese Center for Disease Control and Prevention, Beijing, China
- Key Laboratory of Molecular Microbiology and Biotechnology (Ministry of Education) and Key Laboratory of Microbial Functional Genomics (Tianjin), College of Life Sciences, Nankai University, Tianjin, China
| | - Meijuan Tian
- Division of Infectious Diseases & HIV Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Yi Feng
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention (NCAIDS), Chinese Center for Disease Control and Prevention, Beijing, China
| | - Kai Zhao
- National Vaccine and Serum Institute, Beijing, China
| | - Jing Xu
- National Vaccine and Serum Institute, Beijing, China
| | - Ying Liu
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention (NCAIDS), Chinese Center for Disease Control and Prevention, Beijing, China
- * E-mail: (YS); (YL)
| | - Yiming Shao
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention (NCAIDS), Chinese Center for Disease Control and Prevention, Beijing, China
- Key Laboratory of Molecular Microbiology and Biotechnology (Ministry of Education) and Key Laboratory of Microbial Functional Genomics (Tianjin), College of Life Sciences, Nankai University, Tianjin, China
- * E-mail: (YS); (YL)
| |
Collapse
|
19
|
Favier AL, Flusin O, Lepreux S, Fleury H, Labrèze C, Georges A, Crance JM, Boralevi F. Necrotic ulcerated lesion in a young boy caused by cowpox virus infection. Case Rep Dermatol 2011; 3:186-94. [PMID: 22110431 PMCID: PMC3219450 DOI: 10.1159/000331426] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The case presented here points towards the fact that skin lesion observed with a cowpox virus is a rare event but should be considered more as the number of cases has increased in the last years. Cowpox virus (CPXV) belongs to the Poxviridae family. The transmission of CPXV to humans is caused by wild rodents or mostly by domestic animals and pet rats. In humans, CPXV is responsible for localized skin lesions regularly accompanied by lymphadenopathy. The lesions remain localized but self-inoculation from the primary lesions could occur. Then physicians have to be vigilant concerning bandages. In this case report, a necrotic and ulcerated lesion of a CPXV infection in a young boy is reported. The CPXV was possibly transmitted by wild rodents. The importance of performing the diagnosis is also pointed out. Virus information was obtained from phylogenetic analyses showing that the CPXV isolate was distinct from outbreaks of human cowpox which occurred in 2009 in France and Germany but was close to the CPXV Brighton Red strain. For several years, cases of viral zoonosis caused by CPXV have increased and physicians should be made aware that people could be infected without history of direct contact with animals.
Collapse
Affiliation(s)
- Anne-Laure Favier
- Unité de Virologie, Institut de Recherche Biomédicale des Armées, IRBA, Antenne de la Tronche-CRSSA, Grenoble, Bordeaux, France
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Deletion of major nonessential genomic regions in the vaccinia virus Lister strain enhances attenuation without altering vaccine efficacy in mice. J Virol 2011; 85:5016-26. [PMID: 21367889 DOI: 10.1128/jvi.02359-10] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The vaccinia virus (VACV) Lister strain was one of the vaccine strains that enabled smallpox eradication. Although the strain is most often harmless, there have been numerous incidents of mild to life-threatening accidents with this strain and others. In an attempt to further attenuate the Lister strain, we investigated the role of 5 genomic regions known to be deleted in the modified VACV Ankara (MVA) genome in virulence in immunodeficient mice, immunogenicity in immunocompetent mice, and vaccine efficacy in a cowpox virus challenge model. Lister mutants were constructed so as to delete each of the 5 regions or various combinations of these regions. All of the mutants replicated efficiently in tissue culture except region I mutants, which multiplied more poorly in human cells than the parental strain. Mutants with single deletions were not attenuated or only moderately so in athymic nude mice. Mutants with multiple deletions were more highly attenuated than those with single deletions. Deleting regions II, III, and V together resulted in total attenuation for nude mice and partial attenuation for SCID mice. In immunocompetent mice, the Lister deletion mutants induced VACV specific humoral responses equivalent to those of the parental strain but in some cases lower cell-mediated immune responses. All of the highly attenuated mutants protected mice from a severe cowpox virus challenge at low vaccine doses. The data suggest that several of the Lister mutants combining multiple deletions could be used in smallpox vaccination or as live virus vectors at doses equivalent to those used for the traditional vaccine while displaying increased safety.
Collapse
|
21
|
Kotwal GJ. Influence of glycosylation and oligomerization of vaccinia virus complement control protein on level and pattern of functional activity and immunogenicity. Protein Cell 2011; 1:1084-92. [PMID: 21213103 DOI: 10.1007/s13238-010-0139-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Accepted: 11/23/2010] [Indexed: 11/25/2022] Open
Abstract
Vaccinia virus complement control protein (VCP) is one of the proteins encoded by vaccinia virus to modulate the host inflammatory response. VCP modulates the inflammatory response and protects viral habitat by inhibiting the classical and the alternative pathways of complement activation. The extended structure of VCP, mobility between its sequential domains, charge distribution and type of residues at the binding regions are factors that have been identified to influence its ability to bind to complement proteins. We report that a Lister strain of vaccinia virus encodes a VCP homolog (Lis VCP) that is functional, glycosylated, has two amino acids less than the well-characterized VCP from vaccinia virus WR strain (WR VCP), and the human smallpox inhibitor of complement enzymes (SPICE) from variola virus. The glycosylated VCP of Lister is immunogenic in contrast to the weak immunogenicity of the nonglycosylated VCP. Lis VCP is the only orthopoxviral VCP homolog found to be glycosylated, and we speculate that glycosylation influences its pattern of complement inhibition. We also correlate dimerization of VCP observed only in mammalian and baculovirus expression systems to higher levels of activity than monomers, observed in the yeast expression system.
Collapse
Affiliation(s)
- Girish J Kotwal
- Department of Pharmaceutical Sciences, Sullivan University College of Pharmacy, Louisville, KY, USA.
| |
Collapse
|
22
|
Tysome JR, Briat A, Alusi G, Cao F, Gao D, Yu J, Wang P, Yang S, Dong Z, Wang S, Deng L, Francis J, Timiryasova T, Fodor I, Lemoine NR, Wang Y. Lister strain of vaccinia virus armed with endostatin-angiostatin fusion gene as a novel therapeutic agent for human pancreatic cancer. Gene Ther 2009; 16:1223-33. [PMID: 19587709 PMCID: PMC2762962 DOI: 10.1038/gt.2009.74] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Revised: 02/27/2009] [Accepted: 03/01/2009] [Indexed: 12/13/2022]
Abstract
Survival after pancreatic cancer remains poor despite incremental advances in surgical and adjuvant therapy, and new strategies for treatment are needed. Oncolytic virotherapy is an attractive approach for cancer treatment. In this study, we have evaluated the effectiveness of the Lister vaccine strain of vaccinia virus armed with the endostatin-angiostatin fusion gene (VVhEA) as a novel therapeutic approach for pancreatic cancer. The Lister vaccine strain of vaccinia virus was effective against all human pancreatic carcinoma cells tested in vitro, especially those insensitive to oncolytic adenovirus. The virus displayed inherently high selectivity for cancer cells, sparing normal cells both in vitro and in vivo, with effective infection of tumors after both intravenous (i.v.) and intratumoral (i.t.) administrations. The expression of the endostatin-angiostatin fusion protein was confirmed in a pancreatic cancer model both in vitro and in vivo, with evidence of inhibition of angiogenesis. This novel vaccinia virus showed significant antitumor potency in vivo against the Suit-2 model by i.t. administration. This study suggests that the novel Lister strain of vaccinia virus armed with the endostatin-angiostatin fusion gene is a potential therapeutic agent for pancreatic cancer.
Collapse
Affiliation(s)
- James R Tysome
- Centre for Molecular Oncology & Imaging, Institute of Cancer, Barts and the London School of Medicine and Dentistry, London EC1M 6BQ, UK
| | - Arnaud Briat
- Centre for Molecular Oncology & Imaging, Institute of Cancer, Barts and the London School of Medicine and Dentistry, London EC1M 6BQ, UK
| | - Ghassan Alusi
- Centre for Molecular Oncology & Imaging, Institute of Cancer, Barts and the London School of Medicine and Dentistry, London EC1M 6BQ, UK
| | - Fengyu Cao
- Sino-British Research Center for Molecular Oncology, Zhengzhou University, Zhengzhou 450052, China
| | - Dongling Gao
- Sino-British Research Center for Molecular Oncology, Zhengzhou University, Zhengzhou 450052, China
| | - Jinxia Yu
- Sino-British Research Center for Molecular Oncology, Zhengzhou University, Zhengzhou 450052, China
| | - Pengju Wang
- Sino-British Research Center for Molecular Oncology, Zhengzhou University, Zhengzhou 450052, China
| | - Shaolong Yang
- Sino-British Research Center for Molecular Oncology, Zhengzhou University, Zhengzhou 450052, China
| | - Ziming Dong
- Sino-British Research Center for Molecular Oncology, Zhengzhou University, Zhengzhou 450052, China
| | - Shengdian Wang
- National Laboratory of Biomacromolecules, Centre for Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, China
| | - Liufu Deng
- National Laboratory of Biomacromolecules, Centre for Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, China
| | - Jennelle Francis
- Centre for Molecular Oncology & Imaging, Institute of Cancer, Barts and the London School of Medicine and Dentistry, London EC1M 6BQ, UK
| | - Tatyana Timiryasova
- Center for Health Disparities & Molecular Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Istvan Fodor
- Center for Health Disparities & Molecular Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Nick R Lemoine
- Centre for Molecular Oncology & Imaging, Institute of Cancer, Barts and the London School of Medicine and Dentistry, London EC1M 6BQ, UK
- Sino-British Research Center for Molecular Oncology, Zhengzhou University, Zhengzhou 450052, China
| | - Yaohe Wang
- Centre for Molecular Oncology & Imaging, Institute of Cancer, Barts and the London School of Medicine and Dentistry, London EC1M 6BQ, UK
- Sino-British Research Center for Molecular Oncology, Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
23
|
Phenotypic and genetic diversity of the traditional Lister smallpox vaccine. Vaccine 2008; 27:708-17. [PMID: 19059294 DOI: 10.1016/j.vaccine.2008.11.063] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Revised: 10/28/2008] [Accepted: 11/07/2008] [Indexed: 11/21/2022]
Abstract
As an initial step in the development of a second-generation smallpox vaccine derived from the Lister strain, to be prepared for a variola virus threat, diversity of the traditional vaccine was examined by characterizing a series of ten viral clones. In vitro and in vivo phenotypic studies showed that the biological behavior of the clones diverged from each other and in most cases diverged from the vaccinia virus (VACV) Lister parental population. Taken together, these results demonstrate the heterogeneity of the viral population within the smallpox vaccine and highlight the difficulty in choosing one clone which would meet the current requirements for a safe and effective vaccine candidate.
Collapse
|
24
|
Vigne S, Germi R, Duraffour S, Larrat S, Andrei G, Snoeck R, Garin D, Crance JM. Specific Inhibition of Orthopoxvirus Replication by a Small Interfering RNA Targeting the D5R Gene. Antivir Ther 2008. [DOI: 10.1177/135965350801300307] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Concerns about the potential use of smallpox in bioterrorism have stimulated interest in the development of novel antiviral treatments. Currently, there are no effective therapies against smallpox and new treatment strategies are greatly needed. Methods In this study, specifically designed small interfering RNAs (siRNAs), targeting five proteins essential for orthopoxvirus replication, were investigated for their ability to inhibit vaccinia virus strain Western Reserve (VACVWR) replication. Results Among these siRNAs, 100 nM siD5R-2, an siRNA targeting the D5 protein, decreased VACVWR replication up to 90% when used either prophylactically or therapeutically in human lung carcinoma A549 cells. This siRNA induced a striking concentration-dependent inhibition of VACVWR replication and a prolonged prophylactic antiviral effect that lasted for 72 h, at a concentration of 100 nM. Confocal microscopy of Alexa–siD5R-2-treated VACVWR-infected cells confirmed a decrease in viral replication. Furthermore, siD5R-2 was shown to specifically reduce the D5R mRNA and protein expression using real-time reverse tran-scriptase-PCR and western blotting analysis, without inducing interferon-β in A549 cells. We also demonstrated the antiviral potency of siD5R-2 against different pathogenic orthopoxviruses, such as cowpox and monkeypox viruses, which were inhibited up to 70% at the lowest concentration (1 nM) tested. Finally, siD5R-2 showed antiviral effects in VACVWR-infected human keratinocyte and fibroblast cell cultures. Conclusions These results suggest that siD5R-2 could be a potential candidate to treat poxvirus infections.
Collapse
Affiliation(s)
- Solenne Vigne
- Virology Laboratory, Centre de Recherches du Service de Santé des Armées (CRSSA) Emile Pardé, Grenoble, France
| | - Raphaële Germi
- Molecular and Structural Virology Laboratory, Université Joseph Fourier, Centre Hospitalier Universitaire, Grenoble, France
| | - Sophie Duraffour
- Virology Laboratory, Centre de Recherches du Service de Santé des Armées (CRSSA) Emile Pardé, Grenoble, France
- Rega Institute for Medical Research, Katholieke Universiteit, Leuven, Belgium
| | - Sylvie Larrat
- Molecular and Structural Virology Laboratory, Université Joseph Fourier, Centre Hospitalier Universitaire, Grenoble, France
| | - Graciela Andrei
- Rega Institute for Medical Research, Katholieke Universiteit, Leuven, Belgium
| | - Robert Snoeck
- Rega Institute for Medical Research, Katholieke Universiteit, Leuven, Belgium
| | - Daniel Garin
- Virology Laboratory, Centre de Recherches du Service de Santé des Armées (CRSSA) Emile Pardé, Grenoble, France
- Ecole du Val-de-Grâce, Paris, France
| | - Jean-Marc Crance
- Virology Laboratory, Centre de Recherches du Service de Santé des Armées (CRSSA) Emile Pardé, Grenoble, France
| |
Collapse
|
25
|
Safety, immunogenicity and protective efficacy in mice of a new cell-cultured Lister smallpox vaccine candidate. Vaccine 2007; 25:8290-7. [DOI: 10.1016/j.vaccine.2007.09.050] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2007] [Revised: 08/01/2007] [Accepted: 09/20/2007] [Indexed: 11/15/2022]
|