1
|
de Wispelaere M, Carocci M, Burri DJ, Neidermyer WJ, Olson CM, Roggenbach I, Liang Y, Wang J, Whelan SPJ, Gray NS, Yang PL. A broad-spectrum antiviral molecule, QL47, selectively inhibits eukaryotic translation. J Biol Chem 2020; 295:1694-1703. [PMID: 31914414 PMCID: PMC7008383 DOI: 10.1074/jbc.ra119.011132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/16/2019] [Indexed: 12/13/2022] Open
Abstract
Small-molecule inhibitors of translation are critical tools to study the molecular mechanisms of protein synthesis. In this study, we sought to characterize how QL47, a host-targeted, small-molecule antiviral agent, inhibits steady-state viral protein expression. We demonstrate that this small molecule broadly inhibits both viral and host protein synthesis and targets a translation step specific to eukaryotic cells. We show that QL47 inhibits protein neosynthesis initiated by both canonical cap-driven and noncanonical initiation strategies, most likely by targeting an early step in translation elongation. Our findings thus establish QL47 as a new small-molecule inhibitor that can be utilized to probe the eukaryotic translation machinery and that can be further developed as a new therapeutic agent.
Collapse
Affiliation(s)
- Mélissanne de Wispelaere
- Department of Microbiology and Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115
| | - Margot Carocci
- Department of Microbiology and Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115
| | - Dominique J Burri
- Department of Microbiology and Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115
| | - William J Neidermyer
- Department of Microbiology and Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115
| | - Calla M Olson
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215
| | - Imme Roggenbach
- Department of Microbiology and Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115
| | - Yanke Liang
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215
| | - Jinhua Wang
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215
| | - Sean P J Whelan
- Department of Microbiology and Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115
| | - Nathanael S Gray
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215
| | - Priscilla L Yang
- Department of Microbiology and Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115.
| |
Collapse
|
2
|
de Wispelaere M, Carocci M, Liang Y, Liu Q, Sun E, Vetter ML, Wang J, Gray NS, Yang PL. Discovery of host-targeted covalent inhibitors of dengue virus. Antiviral Res 2016; 139:171-179. [PMID: 28034743 DOI: 10.1016/j.antiviral.2016.12.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 12/14/2016] [Accepted: 12/21/2016] [Indexed: 10/20/2022]
Abstract
We report here on an approach targeting the host reactive cysteinome to identify inhibitors of host factors required for the infectious cycle of Flaviviruses and other viruses. We used two parallel cellular phenotypic screens to identify a series of covalent inhibitors, exemplified by QL-XII-47, that are active against dengue virus. We show that the compounds effectively block viral protein expression and that this inhibition is associated with repression of downstream processes of the infectious cycle, and thus significantly contributes to the potent antiviral activity of these compounds. We demonstrate that QL-XII-47's antiviral activity requires selective, covalent modification of a host target by showing that the compound's antiviral activity is recapitulated when cells are preincubated with QL-XII-47 and then washed prior to viral infection and by showing that QL-XII-47R, a non-reactive analog, lacks antiviral activity at concentrations more than 20-fold higher than QL-XII-47's IC90. QL-XII-47's inhibition of Zika virus, West Nile virus, hepatitis C virus, and poliovirus further suggests that it acts via a target mediating inhibition of these other medically relevant viruses. These results demonstrate the utility of screens targeting the host reactive cysteinome for rapid identification of compounds with potent antiviral activity.
Collapse
Affiliation(s)
| | - Margot Carocci
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Yanke Liang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Qingsong Liu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Eileen Sun
- Department of Chemistry and Chemical Biology, Department of Physics, Harvard University, Cambridge, MA 02138, USA
| | - Michael L Vetter
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Jinhua Wang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Nathanael S Gray
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Priscilla L Yang
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
3
|
Prolactin Regulatory Element Binding Protein Is Involved in Hepatitis C Virus Replication by Interaction with NS4B. J Virol 2016; 90:3093-111. [PMID: 26739056 DOI: 10.1128/jvi.01540-15] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 12/30/2015] [Indexed: 12/12/2022] Open
Abstract
UNLABELLED It has been proposed that the hepatitis C virus (HCV) NS4B protein triggers the membranous HCV replication compartment, but the underlying molecular mechanism is not fully understood. Here, we screened for NS4B-associated membrane proteins by tandem affinity purification and proteome analysis and identified 202 host proteins. Subsequent screening of replicon cells with small interfering RNA identified prolactin regulatory element binding (PREB) to be a novel HCV host cofactor. The interaction between PREB and NS4B was confirmed by immunoprecipitation, immunofluorescence, and proximity ligation assays. PREB colocalized with double-stranded RNA and the newly synthesized HCV RNA labeled with bromouridine triphosphate in HCV replicon cells. Furthermore, PREB shifted to detergent-resistant membranes (DRMs), where HCV replication complexes reside, in the presence of NS4B expression in Huh7 cells. However, a PREB mutant lacking the NS4B-binding region (PREBd3) could not colocalize with double-stranded RNA and did not shift to the DRM in the presence of NS4B. These results indicate that PREB locates at the HCV replication complex by interacting with NS4B. PREB silencing inhibited the formation of the membranous HCV replication compartment and increased the protease and nuclease sensitivity of HCV replicase proteins and RNA in DRMs, respectively. Collectively, these data indicate that PREB promotes HCV RNA replication by participating in the formation of the membranous replication compartment and by maintaining its proper structure by interacting with NS4B. Furthermore, PREB was induced by HCV infection in vitro and in vivo. Our findings provide new insights into HCV host cofactors. IMPORTANCE The hepatitis C virus (HCV) protein NS4B can induce alteration of the endoplasmic reticulum and the formation of a membranous web structure, which provides a platform for the HCV replication complex. The molecular mechanism by which NS4B induces the membranous HCV replication compartment is not understood. We screened for NS4B-associated membrane proteins by tandem affinity purification and proteome analysis, followed by screening with small interfering RNA. We identified prolactin regulatory element binding (PREB) to be a novel HCV host cofactor. PREB is induced by HCV infection and recruited into the replication complex by interaction with NS4B. Recruited PREB promotes HCV RNA replication by participating in the formation of the membranous HCV replication compartment. To our knowledge, the effect of NS4B-binding protein on the formation of the membranous HCV replication compartment is newly described in this report. Our findings are expected to provide new insights into HCV host cofactors.
Collapse
|
4
|
Nakai M, Seya T, Matsumoto M, Shimotohno K, Sakamoto N, Aly HH. The J6JFH1 Strain of Hepatitis C Virus Infects Human B-Cells with Low Replication Efficacy. Viral Immunol 2014; 27:285-94. [DOI: 10.1089/vim.2013.0140] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Affiliation(s)
- Masato Nakai
- Department of Microbiology and Immunology, Hokkaido University Graduate School of Medicine, Kita-ku, Japan
- Department of Gastroenterology, Hokkaido University Graduate School of Medicine, Kita-ku, Japan
| | - Tsukasa Seya
- Department of Microbiology and Immunology, Hokkaido University Graduate School of Medicine, Kita-ku, Japan
| | - Misako Matsumoto
- Department of Microbiology and Immunology, Hokkaido University Graduate School of Medicine, Kita-ku, Japan
| | - Kunitada Shimotohno
- Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Ichikawa, Japan
| | - Naoya Sakamoto
- Department of Gastroenterology, Hokkaido University Graduate School of Medicine, Kita-ku, Japan
| | - Hussein H. Aly
- Department of Microbiology and Immunology, Hokkaido University Graduate School of Medicine, Kita-ku, Japan
| |
Collapse
|
5
|
Adenovirus vectors lacking virus-associated RNA expression enhance shRNA activity to suppress hepatitis C virus replication. Sci Rep 2013; 3:3575. [PMID: 24356586 PMCID: PMC3868971 DOI: 10.1038/srep03575] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 12/06/2013] [Indexed: 11/08/2022] Open
Abstract
First-generation adenovirus vectors (FG AdVs) expressing short-hairpin RNA (shRNA) effectively downregulate the expressions of target genes. However, this vector, in fact, expresses not only the transgene product, but also virus-associated RNAs (VA RNAs) that disturb cellular RNAi machinery. We have established a production method for VA-deleted AdVs lacking expression of VA RNAs. Here, we showed that the highest shRNA activity was obtained when the shRNA was inserted not at the popularly used E1 site, but at the E4 site. We then compared the activities of shRNAs against hepatitis C virus (HCV) expressed from VA-deleted AdVs or conventional AdVs. The VA-deleted AdVs inhibited HCV production much more efficiently. Therefore, VA-deleted AdVs were more effective than the currently used AdVs for shRNA downregulation, probably because of the lack of competition between VA RNAs and the shRNAs. These VA-deleted AdVs might enable more effective gene therapies for chronic hepatitis C.
Collapse
|
6
|
Sengupta S, Powell E, Kong L, Blackard JT. Effects of HCV on basal and tat-induced HIV LTR activation. PLoS One 2013; 8:e64956. [PMID: 23762271 PMCID: PMC3677892 DOI: 10.1371/journal.pone.0064956] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2012] [Accepted: 04/23/2013] [Indexed: 01/19/2023] Open
Abstract
Hepatitis C virus (HCV) co-infection occurs in ∼30–40% of the HIV-infected population in the US. While a significant body of research suggests an adverse effect of HIV on HCV replication and disease progression, the impact of HCV on HIV infection has not been well studied. Increasing data suggest that hepatocytes and other liver cell populations can serve as reservoirs for HIV replication. Therefore, to gain insight into the impact of HCV on HIV, the effects of the HCV Core protein and infectious hepatitis C virions were evaluated on basal and Tat-induced activation of the HIV long terminal repeat (LTR) in hepatocytes. The HIV LTR was highly induced by the HIV transactivator protein Tat in hepatocytes. Activation varied according to the number of NF-kB binding sites present in the LTRs from different HIV subtypes. Involvement of the NF-kB binding pathway in LTR activation was demonstrated using an NF-kB inhibitor and deletion of the NF-kB binding sites. TNFα, a pro-inflammatory cytokine that plays an important role in HIV pathogenesis, also induced LTR activity in hepatocytes. However, HIV LTR activity was suppressed in hepatocytes in the presence of HCV Core protein, and the suppressive effect persisted in the presence of TNFα. In contrast, infectious hepatitis C virions upregulated HIV LTR activation and gene transcription. Core-mediated suppression remained unaltered in the presence of HCV NS3/4A protein, suggesting the involvement of other viral/cellular factors. These findings have significant clinical implications as they imply that HCV could accelerate HIV disease progression in HIV/HCV co-infected patients. Such analyses are important to elucidate the mechanisms by which these viruses interact and could facilitate the development of more effective therapies to treat HIV/HCV co-infection.
Collapse
Affiliation(s)
- Satarupa Sengupta
- Division of Digestive Diseases, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Eleanor Powell
- Division of Digestive Diseases, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Ling Kong
- Division of Digestive Diseases, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Jason T. Blackard
- Division of Digestive Diseases, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
7
|
Sarhan MA, Chen AY, Russell RS, Michalak TI. Patient-derived hepatitis C virus and JFH-1 clones differ in their ability to infect human hepatoma cells and lymphocytes. J Gen Virol 2012; 93:2399-2407. [DOI: 10.1099/vir.0.045393-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Hepatitis C virus (HCV) is a hepatotropic virus that also infects cells of the immune system. HCV clones cultivated in human hepatoma Huh-7.5 cells have significantly advanced our understanding of HCV replication and candidate hepatocyte receptors. However, naturally occurring patient-derived HCV, in contrast to the HCV JFH-1 clone, is unable to infect Huh-7.5 cells, while it can replicate in human primary T-cells and selected T-cell lines. To better understand this incongruity, we examined the susceptibility of primary T-cells, PBMCs and T-cell lines to infection with patient-derived HCV, the classical HCV JFH-1 and a cell culture-adapted JFH1T known to be highly infectious to Huh-7.5 cells. We also tested whether Huh-7.5 cells are prone to virus readily infecting T-lymphocytes. The results revealed that while primary T-cells and Molt4 and Jurkat T-cell lines were susceptible to patient-derived HCV, they were resistant to infection with either JFH1T or JFH-1. However, the JFH1T clone interacted more firmly, although non-productively, with the cells than JFH-1. Further, Huh-7.5 cells robustly supported replication of JFH1T but not patient-derived, wild-type virus, despite using highly sensitive detection assays. In conclusion, JFH-1 and JFH1T clones were unable to establish productive infection in human primary T-cells, PBMCs and T-cell lines known to be prone to infection by patient-derived HCV, while Huh-7.5 cells were resistant to infection with naturally occurring virus infecting immune cells. The data showed that the ability to infect lymphocytes is a characteristic of native virus but not laboratory HCV clones.
Collapse
Affiliation(s)
- Mohammed A. Sarhan
- Molecular Virology and Hepatology Research Group, Division of BioMedical Sciences, Faculty of Medicine, Health Sciences Center, Memorial University, St John’s, Newfoundland and Labrador, Canada
| | - Annie Y. Chen
- Molecular Virology and Hepatology Research Group, Division of BioMedical Sciences, Faculty of Medicine, Health Sciences Center, Memorial University, St John’s, Newfoundland and Labrador, Canada
| | - Rodney S. Russell
- Immunology and Infectious Disease Group, Division of BioMedical Sciences, Faculty of Medicine, Health Sciences Center, Memorial University, St John’s, Newfoundland and Labrador, Canada
| | - Tomasz I. Michalak
- Immunology and Infectious Disease Group, Division of BioMedical Sciences, Faculty of Medicine, Health Sciences Center, Memorial University, St John’s, Newfoundland and Labrador, Canada
- Molecular Virology and Hepatology Research Group, Division of BioMedical Sciences, Faculty of Medicine, Health Sciences Center, Memorial University, St John’s, Newfoundland and Labrador, Canada
| |
Collapse
|
8
|
Ando T, Imamura H, Suzuki R, Aizaki H, Watanabe T, Wakita T, Suzuki T. Visualization and measurement of ATP levels in living cells replicating hepatitis C virus genome RNA. PLoS Pathog 2012; 8:e1002561. [PMID: 22396648 PMCID: PMC3291659 DOI: 10.1371/journal.ppat.1002561] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Accepted: 01/18/2012] [Indexed: 12/22/2022] Open
Abstract
Adenosine 5′-triphosphate (ATP) is the primary energy currency of all living organisms and participates in a variety of cellular processes. Although ATP requirements during viral lifecycles have been examined in a number of studies, a method by which ATP production can be monitored in real-time, and by which ATP can be quantified in individual cells and subcellular compartments, is lacking, thereby hindering studies aimed at elucidating the precise mechanisms by which viral replication energized by ATP is controlled. In this study, we investigated the fluctuation and distribution of ATP in cells during RNA replication of the hepatitis C virus (HCV), a member of the Flaviviridae family. We demonstrated that cells involved in viral RNA replication actively consumed ATP, thereby reducing cytoplasmic ATP levels. Subsequently, a method to measure ATP levels at putative subcellular sites of HCV RNA replication in living cells was developed by introducing a recently-established Förster resonance energy transfer (FRET)-based ATP indicator, called ATeam, into the NS5A coding region of the HCV replicon. Using this method, we were able to observe the formation of ATP-enriched dot-like structures, which co-localize with non-structural viral proteins, within the cytoplasm of HCV-replicating cells but not in non-replicating cells. The obtained FRET signals allowed us to estimate ATP concentrations within HCV replicating cells as ∼5 mM at possible replicating sites and ∼1 mM at peripheral sites that did not appear to be involved in HCV replication. In contrast, cytoplasmic ATP levels in non-replicating Huh-7 cells were estimated as ∼2 mM. To our knowledge, this is the first study to demonstrate changes in ATP concentration within cells during replication of the HCV genome and increased ATP levels at distinct sites within replicating cells. ATeam may be a powerful tool for the study of energy metabolism during replication of the viral genome. ATP is the major energy currency of living cells. Replication of the virus genome is a physiological mechanism that is known to require energy for operations such as the synthesis of DNA or RNA and their unwinding. However, it has been difficult to comprehend how the ATP level is regulated inside single living cells where the virus replicates, since average ATP values in cell extracts have only been estimated using existing methods for ATP measurement. ATeam, which was established in 2009, is a genetically-encoded Förster resonance energy transfer (FRET)-based indicator for ATP that is composed of a small bacterial protein that specifically binds ATP sandwiched between two fluorescent proteins. In this study, by applying ATeam to the subgenomic replicon system, we have developed a method to monitor ATP at putative subcellular sites of RNA replication of the hepatitis C virus (HCV), a major human pathogen associated with liver disease, in living cells. We show here, for the first time, changes in ATP concentrations at distinct sites within cells undergoing HCV RNA replication. ATeam might open the door to understanding how regulation of ATP can affect the lifecycles of pathogens.
Collapse
Affiliation(s)
- Tomomi Ando
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Hiromi Imamura
- The Hakubi Center and Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Ryosuke Suzuki
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hideki Aizaki
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Toshiki Watanabe
- Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Takaji Wakita
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tetsuro Suzuki
- Hamamatsu University School of Medicine, Department of Infectious Diseases, Hamamatsu, Japan
- * E-mail:
| |
Collapse
|
9
|
Saeed M, Suzuki R, Watanabe N, Masaki T, Tomonaga M, Muhammad A, Kato T, Matsuura Y, Watanabe H, Wakita T, Suzuki T. Role of the endoplasmic reticulum-associated degradation (ERAD) pathway in degradation of hepatitis C virus envelope proteins and production of virus particles. J Biol Chem 2011; 286:37264-73. [PMID: 21878646 DOI: 10.1074/jbc.m111.259085] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Viral infections frequently cause endoplasmic reticulum (ER) stress in host cells leading to stimulation of the ER-associated degradation (ERAD) pathway, which subsequently targets unassembled glycoproteins for ubiquitylation and proteasomal degradation. However, the role of the ERAD pathway in the viral life cycle is poorly defined. In this paper, we demonstrate that hepatitis C virus (HCV) infection activates the ERAD pathway, which in turn controls the fate of viral glycoproteins and modulates virus production. ERAD proteins, such as EDEM1 and EDEM3, were found to increase ubiquitylation of HCV envelope proteins via direct physical interaction. Knocking down of EDEM1 and EDEM3 increased the half-life of HCV E2, as well as virus production, whereas exogenous expression of these proteins reduced the production of infectious virus particles. Further investigation revealed that only EDEM1 and EDEM3 bind with SEL1L, an ER membrane adaptor protein involved in translocation of ERAD substrates from the ER to the cytoplasm. When HCV-infected cells were treated with kifunensine, a potent inhibitor of the ERAD pathway, the half-life of HCV E2 increased and so did virus production. Kifunensine inhibited the binding of EDEM1 and EDEM3 with SEL1L, thus blocking the ubiquitylation of HCV E2 protein. Chemical inhibition of the ERAD pathway neither affected production of the Japanese encephalitis virus (JEV) nor stability of the JEV envelope protein. A co-immunoprecipitation assay showed that EDEM orthologs do not bind with JEV envelope protein. These findings highlight the crucial role of the ERAD pathway in the life cycle of specific viruses.
Collapse
Affiliation(s)
- Mohsan Saeed
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Anwar A, Hosoya T, Leong KM, Onogi H, Okuno Y, Hiramatsu T, Koyama H, Suzuki M, Hagiwara M, Garcia-Blanco MA. The kinase inhibitor SFV785 dislocates dengue virus envelope protein from the replication complex and blocks virus assembly. PLoS One 2011; 6:e23246. [PMID: 21858043 PMCID: PMC3157368 DOI: 10.1371/journal.pone.0023246] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Accepted: 07/11/2011] [Indexed: 02/02/2023] Open
Abstract
Dengue virus (DENV) is the etiologic agent for dengue fever, for which there is no approved vaccine or specific anti-viral drug. As a remedy for this, we explored the use of compounds that interfere with the action of required host factors and describe here the characterization of a kinase inhibitor (SFV785), which has selective effects on NTRK1 and MAPKAPK5 kinase activity, and anti-viral activity on Hepatitis C, DENV and yellow fever viruses. SFV785 inhibited DENV propagation without inhibiting DENV RNA synthesis or translation. The compound did not cause any changes in the cellular distribution of non-structural 3, a protein critical for DENV RNA synthesis, but altered the distribution of the structural envelope protein from a reticulate network to enlarged discrete vesicles, which altered the co-localization with the DENV replication complex. Ultrastructural electron microscopy analyses of DENV-infected SFV785-treated cells showed the presence of viral particles that were distinctly different from viable enveloped virions within enlarged ER cisternae. These viral particles were devoid of the dense nucleocapsid. The secretion of the viral particles was not inhibited by SFV785, however a reduction in the amount of secreted infectious virions, DENV RNA and capsid were observed. Collectively, these observations suggest that SFV785 inhibited the recruitment and assembly of the nucleocapsid in specific ER compartments during the DENV assembly process and hence the production of infectious DENV. SFV785 and derivative compounds could be useful biochemical probes to explore the DENV lifecycle and could also represent a new class of anti-virals.
Collapse
Affiliation(s)
- Azlinda Anwar
- Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, Singapore
- * E-mail: (AA); (MH); (MAG-B)
| | - Takamitsu Hosoya
- Laboratory of Chemical Biology, Graduate School of Biomedical Science and Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kok Mun Leong
- Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, Singapore
| | - Hiroshi Onogi
- Laboratory of Gene Expression, Graduate School of Biomedical Science and Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
- KinoPharma. Inc., Tokyo, Japan
| | - Yukiko Okuno
- Laboratory of Gene Expression, Graduate School of Biomedical Science and Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - Toshiyuki Hiramatsu
- Laboratory of Chemical Biology, Graduate School of Biomedical Science and Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroko Koyama
- Division of Regeneration and Advanced Medical Science, Gifu University Graduate School of Medicine, Gifu, Japan
| | | | - Masatoshi Hagiwara
- Laboratory of Gene Expression, Graduate School of Biomedical Science and Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Anatomy and Developmental Biology, Kyoto University Graduate School of Medicine, Kyoto, Japan
- * E-mail: (AA); (MH); (MAG-B)
| | - Mariano A. Garcia-Blanco
- Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, Singapore
- Center for RNA Biology, Departments of Molecular Genetics and Microbiology, and Medicine, Duke University School of Medicine, Durham, North Carolina, United States of America
- * E-mail: (AA); (MH); (MAG-B)
| |
Collapse
|
11
|
Akazawa D, Morikawa K, Omi N, Takahashi H, Nakamura N, Mochizuki H, Date T, Ishii K, Suzuki T, Wakita T. Production and characterization of HCV particles from serum-free culture. Vaccine 2011; 29:4821-8. [PMID: 21550372 DOI: 10.1016/j.vaccine.2011.04.069] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 04/08/2011] [Accepted: 04/19/2011] [Indexed: 01/02/2023]
Abstract
Hepatitis C virus (HCV) is a major cause of liver cancer, and it is therefore important to develop a prophylactic strategy for HCV infection. In recent years, a system for cell culture of the infectious HCV particle has been established, and the inactivated particle has potential as an antigen for vaccine development. In this study, we aimed to establish highly efficient HCV particle purification procedures using the following serum-free culture of HCV particles. First, naïve human hepatoma Huh7 cells were grown in serum-free medium that was supplemented with human-derived insulin, transferrin and sodium selenite. Then, in vitro transcribed JFH-1 or J6/JFH-1 chimeric HCV-RNA was transfected into the serum-free conditioned Huh7 cells. Infectious HCV was secreted into the culture supernatant with the same efficiency as that from cells cultured in FBS-containing medium. The HCV-core protein and RNA continued to be detected in the culture supernatant when the infected cells were subcultured in serum-free medium. Sucrose gradient centrifugation analyses indicated that the profiles of HCV-core, HCV-RNA and the infectivity of HCV particles were almost identical between HCV from FBS-supplemented and serum-free cultures. We further determined that anti-CD81, anti-SR-BI and anti-E2 antibodies inhibited infection by serum-free cultured HCV to a greater extent than infection by HCV from FBS-supplemented cultures. These HCV particles also differed in the level of associated apoplipoproteins: the ApoE level was lower in serum-free cultured HCV. ApoB and ApoE antibody-depletion assays suggested that infection of serum-free cultured HCV was independent of ApoB and ApoE proteins. These data suggest that lipids conjugated with HCV affect infection and neutralization.
Collapse
Affiliation(s)
- Daisuke Akazawa
- Pharmaceutical Research Laboratories, Toray Industries, Inc., Kanagawa, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Kato N, Mori K, Abe KI, Dansako H, Kuroki M, Ariumi Y, Wakita T, Ikeda M. Efficient replication systems for hepatitis C virus using a new human hepatoma cell line. Virus Res 2009; 146:41-50. [DOI: 10.1016/j.virusres.2009.08.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Revised: 08/12/2009] [Accepted: 08/21/2009] [Indexed: 01/12/2023]
|
13
|
Abe KI, Ikeda M, Ariumi Y, Dansako H, Wakita T, Kato N. HCV genotype 1b chimeric replicon with NS5B of JFH-1 exhibited resistance to cyclosporine A. Arch Virol 2009; 154:1671-7. [PMID: 19779801 DOI: 10.1007/s00705-009-0502-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Accepted: 08/21/2009] [Indexed: 01/27/2023]
Abstract
Cyclosporine A (CsA) is a well-characterized anti-HCV reagent. Recently it was reported that the genotype 2a JFH-1 strain was more resistant than genotype 1 HCV strains to CsA in a cell culture system. However, the JFH-1 responsible region for the resistance to CsA remains unclear. It was also demonstrated that in genotype 1b HCVs, NS5B interacts with cyclophilin (CyP). To clarify whether or not NS5B of JFH-1 is significant for CsA resistance, we developed a chimeric replicon with NS5B of JFH-1 in the genotype 1b backbone. The chimeric replicon was more resistant to CsA than the parental genotype 1b replicon. Furthermore, reduction of CyPA had a greater effect on HCV RNA replication and sensitivity to CsA than reduction of CyPB. Here, we demonstrated that NS5B of JFH-1 contributed to this strain's CsA-resistant phenotype. NS5B and CyPA are significant for determining HCV's sensitivity to CsA.
Collapse
Affiliation(s)
- Ken-ichi Abe
- Department of Tumor Virology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Shikata-cho, Okayama, Japan
| | | | | | | | | | | |
Collapse
|
14
|
Interaction of hepatitis C virus nonstructural protein 5A with core protein is critical for the production of infectious virus particles. J Virol 2008; 82:7964-76. [PMID: 18524832 DOI: 10.1128/jvi.00826-08] [Citation(s) in RCA: 294] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Nonstructural protein 5A (NS5A) of the hepatitis C virus (HCV) possesses multiple and diverse functions in RNA replication, interferon resistance, and viral pathogenesis. Recent studies suggest that NS5A is involved in the assembly and maturation of infectious viral particles; however, precisely how NS5A participates in virus production has not been fully elucidated. In the present study, we demonstrate that NS5A is a prerequisite for HCV particle production as a result of its interaction with the viral capsid protein (core protein). The efficiency of virus production correlated well with the levels of interaction between NS5A and the core protein. Alanine substitutions for the C-terminal serine cluster in domain III of NS5A (amino acids 2428, 2430, and 2433) impaired NS5A basal phosphorylation, leading to a marked decrease in NS5A-core interaction, disturbance of the subcellular localization of NS5A, and disruption of virion production. Replacing the same serine cluster with glutamic acid, which mimics the presence of phosphoserines, partially preserved the NS5A-core interaction and virion production, suggesting that phosphorylation of these serine residues is important for virion production. In addition, we found that the alanine substitutions in the serine cluster suppressed the association of the core protein with viral genome RNA, possibly resulting in the inhibition of nucleocapsid assembly. These results suggest that NS5A plays a key role in regulating the early phase of HCV particle formation by interacting with core protein and that its C-terminal serine cluster is a determinant of the NS5A-core interaction.
Collapse
|
15
|
Interaction of hepatitis C virus nonstructural protein 5A with core protein is critical for the production of infectious virus particles. J Virol 2008. [PMID: 18524832 DOI: 10.1128/jvi.00826-08.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nonstructural protein 5A (NS5A) of the hepatitis C virus (HCV) possesses multiple and diverse functions in RNA replication, interferon resistance, and viral pathogenesis. Recent studies suggest that NS5A is involved in the assembly and maturation of infectious viral particles; however, precisely how NS5A participates in virus production has not been fully elucidated. In the present study, we demonstrate that NS5A is a prerequisite for HCV particle production as a result of its interaction with the viral capsid protein (core protein). The efficiency of virus production correlated well with the levels of interaction between NS5A and the core protein. Alanine substitutions for the C-terminal serine cluster in domain III of NS5A (amino acids 2428, 2430, and 2433) impaired NS5A basal phosphorylation, leading to a marked decrease in NS5A-core interaction, disturbance of the subcellular localization of NS5A, and disruption of virion production. Replacing the same serine cluster with glutamic acid, which mimics the presence of phosphoserines, partially preserved the NS5A-core interaction and virion production, suggesting that phosphorylation of these serine residues is important for virion production. In addition, we found that the alanine substitutions in the serine cluster suppressed the association of the core protein with viral genome RNA, possibly resulting in the inhibition of nucleocapsid assembly. These results suggest that NS5A plays a key role in regulating the early phase of HCV particle formation by interacting with core protein and that its C-terminal serine cluster is a determinant of the NS5A-core interaction.
Collapse
|