1
|
McKean DM, Zhang Q, Narayan P, Morton SU, Strohmenger V, Tang VT, McAllister S, Sharma A, Quiat D, Reichart D, DeLaughter DM, Wakimoto H, Gorham JM, Brown K, McDonough B, Willcox JA, Jang MY, DePalma SR, Ward T, Pediatric Cardiac Genomics Consortium Investigators, Kim R, Cleveland JD, Seidman J, Seidman CE. Increased endothelial sclerostin caused by elevated DSCAM mediates multiple trisomy 21 phenotypes. J Clin Invest 2024; 134:e167811. [PMID: 38828726 PMCID: PMC11142749 DOI: 10.1172/jci167811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 04/11/2024] [Indexed: 06/05/2024] Open
Abstract
Trisomy 21 (T21), a recurrent aneuploidy occurring in 1:800 births, predisposes to congenital heart disease (CHD) and multiple extracardiac phenotypes. Despite a definitive genetic etiology, the mechanisms by which T21 perturbs development and homeostasis remain poorly understood. We compared the transcriptome of CHD tissues from 49 patients with T21 and 226 with euploid CHD (eCHD). We resolved cell lineages that misexpressed T21 transcripts by cardiac single-nucleus RNA sequencing and RNA in situ hybridization. Compared with eCHD samples, T21 samples had increased chr21 gene expression; 11-fold-greater levels (P = 1.2 × 10-8) of SOST (chr17), encoding the Wnt inhibitor sclerostin; and 1.4-fold-higher levels (P = 8.7 × 10-8) of the SOST transcriptional activator ZNF467 (chr7). Euploid and T21 cardiac endothelial cells coexpressed SOST and ZNF467; however, T21 endothelial cells expressed 6.9-fold more SOST than euploid endothelial cells (P = 2.7 × 10-27). Wnt pathway genes were downregulated in T21 endothelial cells. Expression of DSCAM, residing within the chr21 CHD critical region, correlated with SOST (P = 1.9 × 10-5) and ZNF467 (P = 2.9 × 10-4). Deletion of DSCAM from T21 endothelial cells derived from human induced pluripotent stem cells diminished sclerostin secretion. As Wnt signaling is critical for atrioventricular canal formation, bone health, and pulmonary vascular homeostasis, we concluded that T21-mediated increased sclerostin levels would inappropriately inhibit Wnt activities and promote Down syndrome phenotypes. These findings imply therapeutic potential for anti-sclerostin antibodies in T21.
Collapse
Affiliation(s)
- David M. McKean
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
- Cardiovascular Division, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Qi Zhang
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Priyanka Narayan
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
- Weill Cornell Medicine, New York, New York, USA
| | - Sarah U. Morton
- Division of Newborn Medicine, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Viktoria Strohmenger
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
- Walter Brendle Centre of Experimental Medicine, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Vi T. Tang
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Sophie McAllister
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Ananya Sharma
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Daniel Quiat
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
- Department of Cardiology, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Daniel Reichart
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Hiroko Wakimoto
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Joshua M. Gorham
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Kemar Brown
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Barbara McDonough
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Jon A. Willcox
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Min Young Jang
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Steven R. DePalma
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
- Howard Hughes Medical Institute, Harvard University, Boston, Massachusetts, USA
| | - Tarsha Ward
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Richard Kim
- Section of Cardiothoracic Surgery, University of Southern California Keck School of Medicine, Los Angeles, California, USA
| | - John D. Cleveland
- Section of Cardiothoracic Surgery, University of Southern California Keck School of Medicine, Los Angeles, California, USA
| | - J.G. Seidman
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Christine E. Seidman
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
- Cardiovascular Division, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Howard Hughes Medical Institute, Harvard University, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Feher B, Kampleitner C, Heimel P, Tangl S, Helms JA, Kuchler U, Gruber R. The effect of osteocyte-derived RANKL on bone graft remodeling: An in vivo experimental study. Clin Oral Implants Res 2023; 34:1417-1427. [PMID: 37792417 DOI: 10.1111/clr.14187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 09/11/2023] [Accepted: 09/17/2023] [Indexed: 10/05/2023]
Abstract
OBJECTIVES Autologous bone is considered the gold standard for grafting, yet it suffers from a tendency to undergo resorption over time. While the exact mechanisms of this resorption remain elusive, osteocytes have been shown to play an important role in stimulating osteoclastic activity through their expression of receptor activator of NF-κB (RANK) ligand (RANKL). The aim of this study was to assess the function of osteocyte-derived RANKL in bone graft remodeling. MATERIALS AND METHODS In Tnfsf11fl/fl ;Dmp1-Cre mice without osteocyte-specific RANKL as well as in Dmp1-Cre control mice, 2.6 mm calvarial bone disks were harvested and transplanted into mice with matching genetic backgrounds either subcutaneously or subperiosteally, creating 4 groups in total. Histology and micro-computed tomography of the grafts and the donor regions were performed 28 days after grafting. RESULTS Histology revealed marked resorption of subcutaneous control Dmp1-Cre grafts and new bone formation around subperiosteal Dmp1-Cre grafts. In contrast, Tnfsf11fl/fl ;Dmp1-Cre grafts showed effectively neither signs of bone resorption nor formation. Quantitative micro-computed tomography revealed a significant difference in residual graft area between subcutaneous and subperiosteal Dmp1-Cre grafts (p < .01). This difference was not observed between subcutaneous and subperiosteal Tnfsf11fl/fl ;Dmp1-Cre grafts (p = .17). Residual graft volume (p = .08) and thickness (p = .13) did not differ significantly among the groups. Donor area regeneration was comparable between Tnfsf11fl/fl ;Dmp1-Cre and Dmp1-Cre mice and restricted to the defect margins. CONCLUSIONS The results suggest an active function of osteocyte-derived RANKL in bone graft remodeling.
Collapse
Affiliation(s)
- Balazs Feher
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
- Department of Oral Surgery, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Carina Kampleitner
- Karl Donath Laboratory for Hard Tissue and Biomaterial Research, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Vienna, Austria
| | - Patrick Heimel
- Karl Donath Laboratory for Hard Tissue and Biomaterial Research, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Vienna, Austria
| | - Stefan Tangl
- Karl Donath Laboratory for Hard Tissue and Biomaterial Research, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Jill A Helms
- Department of Surgery, School of Medicine, Stanford University, Palo Alto, California, USA
| | - Ulrike Kuchler
- Department of Oral Surgery, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Reinhard Gruber
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
3
|
Kaplan M, Kalajzic Z, Choi T, Maleeh I, Ricupero CL, Skelton MN, Daily ML, Chen J, Wadhwa S. The role of inhibition of osteocyte apoptosis in mediating orthodontic tooth movement and periodontal remodeling: a pilot study. Prog Orthod 2021; 22:21. [PMID: 34308514 PMCID: PMC8310814 DOI: 10.1186/s40510-021-00366-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 06/07/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Orthodontic tooth movement (OTM) has been shown to induce osteocyte apoptosis in alveolar bone shortly after force application. However, how osteocyte apoptosis affects orthodontic tooth movement is unknown. The goal of this study was to assess the effect of inhibition of osteocyte apoptosis on osteoclastogenesis, changes in the alveolar bone density, and the magnitude of OTM using a bisphosphonate analog (IG9402), a drug that affects osteocyte and osteoblast apoptosis but does not affect osteoclasts. MATERIAL AND METHODS Two sets of experiments were performed. Experiment 1 was used to specifically evaluate the effect of IG9402 on osteocyte apoptosis in the alveolar bone during 24 h of OTM. For this experiment, twelve mice were divided into two groups: group 1, saline administration + OTM24-h (n=6), and group 2, IG9402 administration + OTM24-h (n=6). The contralateral unloaded sides served as the control. The goal of experiment 2 was to evaluate the role of osteocyte apoptosis on OTM magnitude and osteoclastogenesis 10 days after OTM. Twenty mice were divided into 4 groups: group 1, saline administration without OTM (n=5); group 2, IG9402 administration without OTM (n=5); group 3, saline + OTM10-day (n=6); and group 4, IG9402 + OTM10-day (n=4). For both experiments, tooth movement was achieved using Ultra Light (25g) Sentalloy Closed Coil Springs attached between the first maxillary molar and the central incisor. Linear measurements of tooth movement and alveolar bone density (BVF) were assessed by MicroCT analysis. Cell death (or apoptosis) was assessed by terminal dUTP nick-end labeling (TUNEL) assay, while osteoclast and macrophage formation were assessed by tartrate-resistant acid phosphatase (TRAP) staining and F4/80+ immunostaining. RESULTS We found that IG9402 significantly blocked osteocyte apoptosis in alveolar bone (AB) at 24 h of OTM. At 10 days, IG9402 prevented OTM-induced loss of alveolar bone density and changed the morphology and quality of osteoclasts and macrophages, but did not significantly affect the amount of tooth movement. CONCLUSION Our study demonstrates that osteocyte apoptosis may play a significant role in osteoclast and macrophage formation during OTM, but does not seem to play a role in the magnitude of orthodontic tooth movement.
Collapse
Affiliation(s)
- Michele Kaplan
- Division of Orthodontics, College of Dental Medicine, Columbia University, New York, NY, USA.
| | - Zana Kalajzic
- Department of Oral Health and Diagnostic Sciences, Division of Oral Medicine, UConn Health, Farmington, CT, USA
| | - Thomas Choi
- Division of Orthodontics, College of Dental Medicine, Columbia University, New York, NY, USA
| | - Imad Maleeh
- Division of Orthodontics, College of Dental Medicine, Columbia University, New York, NY, USA
| | - Christopher L Ricupero
- Division of Orthodontics, College of Dental Medicine, Columbia University, New York, NY, USA
| | - Michelle N Skelton
- Division of Orthodontics, College of Dental Medicine, Columbia University, New York, NY, USA
| | - Madeleine L Daily
- Division of Orthodontics, College of Dental Medicine, Columbia University, New York, NY, USA
| | - Jing Chen
- Division of Orthodontics, College of Dental Medicine, Columbia University, New York, NY, USA
| | - Sunil Wadhwa
- Division of Orthodontics, College of Dental Medicine, Columbia University, New York, NY, USA
| |
Collapse
|
4
|
Ouk C, Roland L, Gachard N, Poulain S, Oblet C, Rizzo D, Saintamand A, Lemasson Q, Carrion C, Thomas M, Balabanian K, Espéli M, Parrens M, Soubeyran I, Boulin M, Faumont N, Feuillard J, Vincent-Fabert C. Continuous MYD88 Activation Is Associated With Expansion and Then Transformation of IgM Differentiating Plasma Cells. Front Immunol 2021; 12:641692. [PMID: 34017329 PMCID: PMC8129569 DOI: 10.3389/fimmu.2021.641692] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/14/2021] [Indexed: 11/19/2022] Open
Abstract
Activating mutations of MYD88 (MYD88L265P being the far most frequent) are found in most cases of Waldenström macroglobulinemia (WM) as well as in various aggressive B-cell lymphoma entities with features of plasma cell (PC) differentiation, such as activated B-cell type diffuse large B-cell lymphoma (DLBCL). To understand how MYD88 activation exerts its transformation potential, we developed a new mouse model in which the MYD88L252P protein, the murine ortholog of human MYD88L265P, is continuously expressed in CD19 positive B-cells together with the Yellow Fluorescent Protein (Myd88L252P mice). In bone marrow, IgM B and plasma cells were expanded with a CD138 expression continuum from IgMhigh CD138low to IgMlow CD138high cells and the progressive loss of the B220 marker. Serum protein electrophoresis (SPE) longitudinal analysis of 40 Myd88L252P mice (16 to 56 weeks old) demonstrated that ageing was first associated with serum polyclonal hyper gammaglobulinemia (hyper Ig) and followed by a monoclonal immunoglobulin (Ig) peak related to a progressive increase in IgM serum levels. All Myd88L252P mice exhibited spleen enlargement which was directly correlated with the SPE profile and was maximal for monoclonal Ig peaks. Myd88L252P mice exhibited very early increased IgM PC differentiation. Most likely due to an early increase in the Ki67 proliferation index, IgM lymphoplasmacytic (LP) and plasma cells continuously expanded with age being first associated with hyper Ig and then with monoclonal Ig peak. This peak was consistently associated with a spleen LP-like B-cell lymphoma. Clonal expression of both membrane and secreted µ chain isoforms was demonstrated at the mRNA level by high throughput sequencing. The Myd88L252P tumor transcriptomic signature identified both proliferation and canonical NF-κB p65/RelA activation. Comparison with MYD88L265P WM showed that Myd88L252P tumors also shared the typical lymphoplasmacytic transcriptomic signature of WM bone marrow purified tumor B-cells. Altogether these results demonstrate for the first time that continuous MYD88 activation is specifically associated with clonal transformation of differentiating IgM B-cells. Since MYD88L252P targets the IgM PC differentiation continuum, it provides an interesting preclinical model for development of new therapeutic approaches to both WM and aggressive MYD88 associated DLBCLs.
Collapse
Affiliation(s)
- Catherine Ouk
- UMR CNRS 7276/INSERM U1262 CRIBL, University of Limoges, and Hematology Laboratory of Dupuytren Hospital University Center (CHU) of Limoges, Limoges, France
| | - Lilian Roland
- UMR CNRS 7276/INSERM U1262 CRIBL, University of Limoges, and Hematology Laboratory of Dupuytren Hospital University Center (CHU) of Limoges, Limoges, France
| | - Nathalie Gachard
- UMR CNRS 7276/INSERM U1262 CRIBL, University of Limoges, and Hematology Laboratory of Dupuytren Hospital University Center (CHU) of Limoges, Limoges, France
| | - Stéphanie Poulain
- UMR CANTHER « CANcer Heterogeneity, Plasticity and Resistance to THERapies » INSERM 1277-CNRS 9020 UMRS 12, University of Lille, Hematology Laboratory, Biology and Pathology Center, CHU de Lille, Lille, France
| | - Christelle Oblet
- UMR CNRS 7276/INSERM U1262 CRIBL, University of Limoges, and Hematology Laboratory of Dupuytren Hospital University Center (CHU) of Limoges, Limoges, France
| | - David Rizzo
- UMR CNRS 7276/INSERM U1262 CRIBL, University of Limoges, and Hematology Laboratory of Dupuytren Hospital University Center (CHU) of Limoges, Limoges, France
| | - Alexis Saintamand
- UMR CNRS 7276/INSERM U1262 CRIBL, University of Limoges, and Hematology Laboratory of Dupuytren Hospital University Center (CHU) of Limoges, Limoges, France
| | - Quentin Lemasson
- UMR CNRS 7276/INSERM U1262 CRIBL, University of Limoges, and Hematology Laboratory of Dupuytren Hospital University Center (CHU) of Limoges, Limoges, France
| | - Claire Carrion
- UMR CNRS 7276/INSERM U1262 CRIBL, University of Limoges, and Hematology Laboratory of Dupuytren Hospital University Center (CHU) of Limoges, Limoges, France
| | - Morgane Thomas
- UMR CNRS 7276/INSERM U1262 CRIBL, University of Limoges, and Hematology Laboratory of Dupuytren Hospital University Center (CHU) of Limoges, Limoges, France
| | - Karl Balabanian
- Institut de Recherche Saint-Louis, EMiLy, INSERM U1160, University of Paris, Paris, France
| | - Marion Espéli
- Institut de Recherche Saint-Louis, EMiLy, INSERM U1160, University of Paris, Paris, France
| | - Marie Parrens
- Pathology Department, Hospital University Center of Bordeaux, Bordeaux, France
| | | | - Mélanie Boulin
- UMR CNRS 7276/INSERM U1262 CRIBL, University of Limoges, and Hematology Laboratory of Dupuytren Hospital University Center (CHU) of Limoges, Limoges, France
| | - Nathalie Faumont
- UMR CNRS 7276/INSERM U1262 CRIBL, University of Limoges, and Hematology Laboratory of Dupuytren Hospital University Center (CHU) of Limoges, Limoges, France
| | - Jean Feuillard
- UMR CNRS 7276/INSERM U1262 CRIBL, University of Limoges, and Hematology Laboratory of Dupuytren Hospital University Center (CHU) of Limoges, Limoges, France
| | - Christelle Vincent-Fabert
- UMR CNRS 7276/INSERM U1262 CRIBL, University of Limoges, and Hematology Laboratory of Dupuytren Hospital University Center (CHU) of Limoges, Limoges, France
| |
Collapse
|
5
|
Natha CM, Vemulapalli V, Fiori MC, Chang CWT, Altenberg GA. Connexin hemichannel inhibitors with a focus on aminoglycosides. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166115. [PMID: 33711451 DOI: 10.1016/j.bbadis.2021.166115] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 02/06/2021] [Accepted: 02/22/2021] [Indexed: 12/31/2022]
Abstract
Connexins are membrane proteins involved directly in cell-to-cell communication through the formation of gap-junctional channels. These channels result from the head-to-head docking of two hemichannels, one from each of two adjacent cells. Undocked hemichannels are also present at the plasma membrane where they mediate the efflux of molecules that participate in autocrine and paracrine signaling, but abnormal increase in hemichannel activity can lead to cell damage in disorders such as cardiac infarct, stroke, deafness, cataracts, and skin diseases. For this reason, connexin hemichannels have emerged as a valid therapeutic target. Know small molecule hemichannel inhibitors are not ideal leads for the development of better drugs for clinical use because they are not specific and/or have toxic effects. Newer inhibitors are more selective and include connexin mimetic peptides, anti-connexin antibodies and drugs that reduce connexin expression such as antisense oligonucleotides. Re-purposed drugs and their derivatives are also promising because of the significant experience with their clinical use. Among these, aminoglycoside antibiotics have been identified as inhibitors of connexin hemichannels that do not inhibit gap-junctional channels. In this review, we discuss connexin hemichannels and their inhibitors, with a focus on aminoglycoside antibiotics and derivatives of kanamycin A that inhibit connexin hemichannels, but do not have antibiotic effect.
Collapse
Affiliation(s)
- Cristina M Natha
- Department of Cell Physiology and Molecular Biophysics, and Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Varun Vemulapalli
- Department of Cell Physiology and Molecular Biophysics, and Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Mariana C Fiori
- Department of Cell Physiology and Molecular Biophysics, and Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Cheng-Wei T Chang
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT, USA
| | - Guillermo A Altenberg
- Department of Cell Physiology and Molecular Biophysics, and Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| |
Collapse
|
6
|
The Role of Macrophage in the Pathogenesis of Osteoporosis. Int J Mol Sci 2019; 20:ijms20092093. [PMID: 31035384 PMCID: PMC6539137 DOI: 10.3390/ijms20092093] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/20/2019] [Accepted: 04/26/2019] [Indexed: 12/13/2022] Open
Abstract
Osteoporosis is a systemic disease with progressive bone loss. The bone loss is associated with an imbalance between bone resorption via osteoclasts and bone formation via osteoblasts. Other cells including T cells, B cells, macrophages, and osteocytes are also involved in the pathogenesis of osteoporosis. Different cytokines from activated macrophages can regulate or stimulate the development of osteoclastogenesis-associated bone loss. The fusion of macrophages can form multinucleated osteoclasts and, thus, cause bone resorption via the expression of IL-4 and IL-13. Different cytokines, endocrines, and chemokines are also expressed that may affect the presentation of macrophages in osteoporosis. Macrophages have an effect on bone formation during fracture-associated bone repair. However, activated macrophages may secrete proinflammatory cytokines that induce bone loss by osteoclastogenesis, and are associated with the activation of bone resorption. Targeting activated macrophages at an appropriate stage may help inhibit or slow the progression of bone loss in patients with osteoporosis.
Collapse
|
7
|
Graves DT, Alshabab A, Albiero ML, Mattos M, Correa JD, Chen S, Yang Y. Osteocytes play an important role in experimental periodontitis in healthy and diabetic mice through expression of RANKL. J Clin Periodontol 2018; 45:285-292. [PMID: 29220094 PMCID: PMC5811370 DOI: 10.1111/jcpe.12851] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2017] [Indexed: 02/05/2023]
Abstract
AIM Periodontitis results from bacteria-induced inflammation. A key cytokine, RANKL, is produced by a number of cell types. The cellular source of RANKL critical for periodontitis has not been established. METHODS We induced periodontal bone loss by oral inoculation of Porphyromonas gingivalis and Fusobacterium nucleatum in both normoglycaemic and streptozotocin-induced type 1 diabetic mice. Experimental transgenic mice had osteocyte-specific deletion of floxed receptor activator of nuclear factor kappa-B ligand (RANKL) mediated by DMP-1-driven Cre recombinase. Outcomes were assessed by micro-CT, histomorphometric analysis, immunofluorescent analysis of RANKL and tartrate-resistant acid phosphatase staining for osteoclasts and osteoclast activity. RESULTS Oral infection stimulated RANKL expression in osteocytes of wild-type mice, which was increased by diabetes and blocked in transgenic mice. Infected wild-type mice had significant bone loss and increased osteoclast numbers and activity, which were further enhanced by diabetes. No bone loss or increase in osteoclastogenesis or activity was detected in transgenic mice with RANKL deletion in osteocytes that were normoglycaemic or diabetic. CONCLUSIONS This study demonstrates for the first time the essential role of osteocytes in bacteria-induced periodontal bone loss and in diabetes-enhanced periodontitis.
Collapse
Affiliation(s)
- Dana T Graves
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ahmed Alshabab
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Periodontics, Faculty of Dentistry, Najran University, Saudi Arabia
| | - Mayra Laino Albiero
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Periodontics, State University of Campinas, Piracicaba, Brazil
| | - Marcelo Mattos
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joice Dias Correa
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
- School of Dentistry, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Shanshan Chen
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology Sichuan University, Chengdu, Sichuan, China
| | - Yang Yang
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
8
|
Booth FW, Roberts CK, Thyfault JP, Ruegsegger GN, Toedebusch RG. Role of Inactivity in Chronic Diseases: Evolutionary Insight and Pathophysiological Mechanisms. Physiol Rev 2017; 97:1351-1402. [PMID: 28814614 PMCID: PMC6347102 DOI: 10.1152/physrev.00019.2016] [Citation(s) in RCA: 379] [Impact Index Per Article: 47.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 03/06/2017] [Accepted: 03/09/2017] [Indexed: 12/13/2022] Open
Abstract
This review proposes that physical inactivity could be considered a behavior selected by evolution for resting, and also selected to be reinforcing in life-threatening situations in which exercise would be dangerous. Underlying the notion are human twin studies and animal selective breeding studies, both of which provide indirect evidence for the existence of genes for physical inactivity. Approximately 86% of the 325 million in the United States (U.S.) population achieve less than the U.S. Government and World Health Organization guidelines for daily physical activity for health. Although underappreciated, physical inactivity is an actual contributing cause to at least 35 unhealthy conditions, including the majority of the 10 leading causes of death in the U.S. First, we introduce nine physical inactivity-related themes. Next, characteristics and models of physical inactivity are presented. Following next are individual examples of phenotypes, organ systems, and diseases that are impacted by physical inactivity, including behavior, central nervous system, cardiorespiratory fitness, metabolism, adipose tissue, skeletal muscle, bone, immunity, digestion, and cancer. Importantly, physical inactivity, itself, often plays an independent role as a direct cause of speeding the losses of cardiovascular and strength fitness, shortening of healthspan, and lowering of the age for the onset of the first chronic disease, which in turn decreases quality of life, increases health care costs, and accelerates mortality risk.
Collapse
Affiliation(s)
- Frank W Booth
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri; Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri; Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri; Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri; Geriatrics, Research, Education and Clinical Center (GRECC), VA Greater Los Angeles Healthcare System, Los Angeles, California; Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas; and Cardiovascular Division, Department of Medicine, University of Missouri, Columbia, Missouri
| | - Christian K Roberts
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri; Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri; Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri; Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri; Geriatrics, Research, Education and Clinical Center (GRECC), VA Greater Los Angeles Healthcare System, Los Angeles, California; Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas; and Cardiovascular Division, Department of Medicine, University of Missouri, Columbia, Missouri
| | - John P Thyfault
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri; Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri; Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri; Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri; Geriatrics, Research, Education and Clinical Center (GRECC), VA Greater Los Angeles Healthcare System, Los Angeles, California; Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas; and Cardiovascular Division, Department of Medicine, University of Missouri, Columbia, Missouri
| | - Gregory N Ruegsegger
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri; Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri; Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri; Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri; Geriatrics, Research, Education and Clinical Center (GRECC), VA Greater Los Angeles Healthcare System, Los Angeles, California; Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas; and Cardiovascular Division, Department of Medicine, University of Missouri, Columbia, Missouri
| | - Ryan G Toedebusch
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri; Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri; Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri; Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri; Geriatrics, Research, Education and Clinical Center (GRECC), VA Greater Los Angeles Healthcare System, Los Angeles, California; Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas; and Cardiovascular Division, Department of Medicine, University of Missouri, Columbia, Missouri
| |
Collapse
|
9
|
Zhong ZA, Kot A, Lay YAE, Zhang H, Jia J, Lane NE, Yao W. Sex-Dependent, Osteoblast Stage-Specific Effects of Progesterone Receptor on Bone Acquisition. J Bone Miner Res 2017; 32:1841-1852. [PMID: 28569405 PMCID: PMC5611815 DOI: 10.1002/jbmr.3186] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 05/22/2017] [Accepted: 05/27/2017] [Indexed: 12/12/2022]
Abstract
The role of the progesterone receptor (PR) in the regulation of sexual dimorphism in bone has yet to be determined. Here we utilized genetic fate mapping and Western blotting to demonstrate age-dependent PR expression in the mouse femoral metaphysis and diaphysis. To define sex-dependent and osteoblast stage-specific effects of PR on bone acquisition, we selectively deleted PR at different stages of osteoblast differentiation. We found that when Prx1-Cre mice were crossed with PR floxed mice to generate a mesenchymal stem cell (MSC) conditional KO model (Prx1; PRcKO), the mutant mice developed greater trabecular bone volume with higher mineral apposition rate and bone formation. This may be explained by increased number of MSCs and greater osteogenic potential, particularly in males. Age-related trabecular bone loss was similar between the Prx1; PRcKO mice and their WT littermates in both sexes. Hormone deficiency during the period of rapid bone growth induced rapid trabecular bone loss in both the WT and the Prx1; PRcKO mice in both sexes. No differences in trabecular bone mass was observed when PR was deleted in mature osteoblasts using osteocalcin-Cre (Bglap-Cre). Also, there were no differences in cortical bone mass in all three PRcKO mice. In conclusion, PR inactivation in early osteoprogenitor cells but not in mature osteoblasts influenced trabecular bone accrual in a sex-dependent manner. PR deletion in osteoblast lineage cells did not affect cortical bone mass. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Zhendong A. Zhong
- Center for Musculoskeletal Health, Department of Internal Medicine, University of California Davis Medical Center, Sacramento, CA 95817, USA
- Center for Cancer and Cell Biology, Program in Skeletal Disease and Tumor Microenvironment, Van Andel Research Institute, Grand Rapids MI 49503, USA
| | - Alexander Kot
- Center for Musculoskeletal Health, Department of Internal Medicine, University of California Davis Medical Center, Sacramento, CA 95817, USA
| | - Yu-An E. Lay
- Center for Musculoskeletal Health, Department of Internal Medicine, University of California Davis Medical Center, Sacramento, CA 95817, USA
| | - Hongliang Zhang
- Center for Musculoskeletal Health, Department of Internal Medicine, University of California Davis Medical Center, Sacramento, CA 95817, USA
- Department of Emergency Medicine, Center for Rare Diseases, Second Xiangya Hospital of the Central-South University, Hunan, Changsha, China
| | - Junjing Jia
- Center for Musculoskeletal Health, Department of Internal Medicine, University of California Davis Medical Center, Sacramento, CA 95817, USA
| | - Nancy E. Lane
- Center for Musculoskeletal Health, Department of Internal Medicine, University of California Davis Medical Center, Sacramento, CA 95817, USA
| | - Wei Yao
- Center for Musculoskeletal Health, Department of Internal Medicine, University of California Davis Medical Center, Sacramento, CA 95817, USA
| |
Collapse
|
10
|
Notsu M, Kanazawa I, Takeno A, Yokomoto-Umakoshi M, Tanaka KI, Yamaguchi T, Sugimoto T. Advanced Glycation End Product 3 (AGE3) Increases Apoptosis and the Expression of Sclerostin by Stimulating TGF-β Expression and Secretion in Osteocyte-Like MLO-Y4-A2 Cells. Calcif Tissue Int 2017; 100:402-411. [PMID: 28229177 DOI: 10.1007/s00223-017-0243-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 01/24/2017] [Indexed: 12/14/2022]
Abstract
Advanced glycation end products (AGEs) cause bone fragility due to deterioration in bone quality. We previously reported that AGE3 induced apoptosis and inhibited differentiation via increased transforming growth factor (TGF)-β signaling in osteoblastic cells. Additionally, we demonstrated that AGE3 increased apoptosis and sclerostin expression and decreased receptor activator of nuclear factor-κB ligand (RANKL) expression in osteocyte-like cells. However, it remains unclear whether TGF-β signaling is involved in the effects of AGEs on apoptosis and the expression of sclerostin and RANKL in osteocytes. Effects of AGE3 on apoptosis of mouse osteocyte-like MLO-Y4-A2 cells were examined by DNA fragmentation ELISA. Expression of TGF-β, sclerostin, and RANKL was evaluated using real-time PCR, Western blotting, and ELISA kits. To block TGF-β signaling, we used SD208, a TGF-β type I receptor kinase inhibitor. AGE3 (200 µg/mL) significantly increased apoptosis and mRNA expression of Sost, the gene encoding sclerostin, and decreased Rankl mRNA expression in MLO-Y4-A2 cells. AGE3 significantly increased the expression of TGF-β. Co-incubation of SD208 with AGE3 significantly rescued AGE3-induced apoptosis in a dose-dependent manner. Moreover, SD208 restored AGE3-increased mRNA and protein expression of sclerostin. In contrast, SD208 did not affect AGE3-decreased mRNA and protein expression of RANKL. These findings suggest that AGE3 increases apoptosis and sclerostin expression through increasing TGF-β expression in osteocytes, and that AGE3 decreases RANKL expression independent of TGF-β signaling.
Collapse
Affiliation(s)
- Masakazu Notsu
- Internal Medicine 1, Shimane University Faculty of Medicine, 89-1, Enya-cho, Izumo, Shimane, 693-8501, Japan
| | - Ippei Kanazawa
- Internal Medicine 1, Shimane University Faculty of Medicine, 89-1, Enya-cho, Izumo, Shimane, 693-8501, Japan.
| | - Ayumu Takeno
- Internal Medicine 1, Shimane University Faculty of Medicine, 89-1, Enya-cho, Izumo, Shimane, 693-8501, Japan
| | - Maki Yokomoto-Umakoshi
- Internal Medicine 1, Shimane University Faculty of Medicine, 89-1, Enya-cho, Izumo, Shimane, 693-8501, Japan
| | - Ken-Ichiro Tanaka
- Internal Medicine 1, Shimane University Faculty of Medicine, 89-1, Enya-cho, Izumo, Shimane, 693-8501, Japan
| | - Toru Yamaguchi
- Internal Medicine 1, Shimane University Faculty of Medicine, 89-1, Enya-cho, Izumo, Shimane, 693-8501, Japan
| | - Toshitsugu Sugimoto
- Internal Medicine 1, Shimane University Faculty of Medicine, 89-1, Enya-cho, Izumo, Shimane, 693-8501, Japan
| |
Collapse
|
11
|
Functions of Rho family of small GTPases and Rho-associated coiled-coil kinases in bone cells during differentiation and mineralization. Biochim Biophys Acta Gen Subj 2017; 1861:1009-1023. [PMID: 28188861 DOI: 10.1016/j.bbagen.2017.02.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 02/02/2017] [Accepted: 02/06/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND Members of Rho-associated coiled-coil kinases (ROCKs) are effectors of Rho family of small GTPases. ROCKs have multiple functions that include regulation of cellular contraction and polarity, adhesion, motility, proliferation, apoptosis, differentiation, maturation and remodeling of the extracellular matrix (ECM). SCOPE OF THE REVIEW Here, we focus on the action of RhoA and RhoA effectors, ROCK1 and ROCK2, in cells related to tissue mineralization: mesenchymal stem cells, chondrocytes, preosteoblasts, osteoblasts, osteocytes, lining cells and osteoclasts. MAJOR CONCLUSIONS The activation of the RhoA/ROCK pathway promotes stress fiber formation and reduces chondrocyte and osteogenic differentiations, in contrast to that in mesenchymal stem cells which stimulated the osteogenic and the chondrogenic differentiation. The effects of Rac1 and Cdc42 in promoting chondrocyte hypertrophy and of Rac1, Rac2 and Cdc42 in osteoclast are discussed. In addition, members of the Rho family of GTPases such Rac1, Rac2, Rac3 and Cdc42, acting upstream of ROCK and/or other protein effectors, may compensate the actions of RhoA, affecting directly or indirectly the actions of ROCKs as well as other protein effectors. GENERAL SIGNIFICANCE ROCK activity can trigger cartilage degradation and affect bone formation, therefore these kinases may represent a possible therapeutic target to treat osteoarthritis and osseous diseases. Inhibition of Rho/ROCK activity in chondrocytes prevents cartilage degradation, stimulate mineralization of osteoblasts and facilitate bone formation around implanted metals. Treatment with osteoprotegerin results in a significant decrease in the expression of Rho GTPases, ROCK1 and ROCK2, reducing bone resorption. Inhibition of ROCK signaling increases osteoblast differentiation in a topography-dependent manner.
Collapse
|
12
|
Abstract
PURPOSE OF THE REVIEW This review highlights recent developments into how intercellular communication through connexin43 facilitates bone modeling and remodeling. RECENT FINDINGS Connexin43 is required for both skeletal development and maintenance, particularly in cortical bone, where it carries out multiple functions, including preventing osteoclastogenesis, restraining osteoprogenitor proliferation, promoting osteoblast differentiation, coordinating organized collagen matrix deposition, and maintaining osteocyte survival. Emerging data shows that connexin43 regulates both the exchange of small molecules among osteoblast lineage cells and the docking of signaling proteins to the gap junction, affecting the efficiency of signal transduction. Understanding how and what connexin43 communicates to coordinate tissue remodeling has therapeutic implications in bone. Altering the information shared by intercellular communication and/or targeting the recruitment of signaling machinery to the gap junction could be used to impact the skeletal homeostatic set point, either driving osteogenesis or inhibiting resorption.
Collapse
Affiliation(s)
- Megan C Moorer
- Department of Orthopaedics, University of Maryland School of Medicine, 100 Penn Street, Allied Health Building, Room 540E, Baltimore, MD, 21201, USA
| | - Joseph P Stains
- Department of Orthopaedics, University of Maryland School of Medicine, 100 Penn Street, Allied Health Building, Room 540E, Baltimore, MD, 21201, USA.
| |
Collapse
|
13
|
Zhang J, Link DC. Targeting of Mesenchymal Stromal Cells by Cre-Recombinase Transgenes Commonly Used to Target Osteoblast Lineage Cells. J Bone Miner Res 2016; 31:2001-2007. [PMID: 27237054 PMCID: PMC5523961 DOI: 10.1002/jbmr.2877] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 05/16/2016] [Accepted: 05/26/2016] [Indexed: 01/26/2023]
Abstract
The targeting specificity of tissue-specific Cre-recombinase transgenes is a key to interpreting phenotypes associated with their use. The Ocn-Cre and Dmp1-Cre transgenes are widely used to target osteoblasts and osteocytes, respectively. Here, we used high-resolution microscopy of bone sections and flow cytometry to carefully define the targeting specificity of these transgenes. These transgenes were crossed with Cxcl12gfp mice to identify Cxcl12-abundant reticular (CAR) cells, which are a perivascular mesenchymal stromal population implicated in hematopoietic stem/progenitor cell maintenance. We show that in addition to osteoblasts, Ocn-Cre targets a majority of CAR cells and arteriolar pericytes. Surprisingly, Dmp1-Cre also targets a subset of CAR cells, in which expression of osteoblast-lineage genes is enriched. Finally, we introduce a new tissue-specific Cre-recombinase, Tagln-Cre, which efficiently targets osteoblasts, a majority of CAR cells, and both venous sinusoidal and arteriolar pericytes. These data show that Ocn-Cre and Dmp1-Cre target broader stromal cell populations than previously appreciated and may aid in the design of future studies. Moreover, these data highlight the heterogeneity of mesenchymal stromal cells in the bone marrow and provide tools to interrogate this heterogeneity. © 2016 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Jingzhu Zhang
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Daniel C Link
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
14
|
Duan P, Bonewald LF. The role of the wnt/β-catenin signaling pathway in formation and maintenance of bone and teeth. Int J Biochem Cell Biol 2016; 77:23-29. [PMID: 27210503 DOI: 10.1016/j.biocel.2016.05.015] [Citation(s) in RCA: 265] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 05/16/2016] [Accepted: 05/17/2016] [Indexed: 02/05/2023]
Abstract
The Wnt signaling pathway is known as one of the important molecular cascades that regulate cell fate throughout lifespan. The Wnt signaling pathway is further separated into the canonical signaling pathway that depends on the function of β-catenin (Wnt/β-catenin pathway) and the noncanonical pathways that operate independently of β-catenin (planar cell polarity pathway and Wnt/Ca(2+) pathway). The Wnt/β-catenin signaling pathway is complex and consists of numerous receptors, inhibitors, activators, modulators, phosphatases, kinases and other components. However, there is one central, critical molecule to this pathway, β-catenin. While there are at least 3 receptors, LRP 4, 5 and 6, and over twenty activators known as the wnts, and several inhibitors such as sclerostin, dickkopf and secreted frizzled-related protein, these all target β-catenin. These regulators/modulators function to target β-catenin either to the proteasome for degradation or to the nucleus to regulate gene expression. Therefore, the interaction of β-catenin with different factors and Wnt/β-catenin signaling pathway will be the subject of this review with a focus on how this pathway relates to and functions in the formation and maintenance of bone and teeth based on mainly basic and pre-clinical research. Also in this review, the role of this pathway in osteocytes, bone cells embedded in the mineralized matrix, is covered in depth. This pathway is not only important in mineralized tissue growth and development, but for modulation of the skeleton in response to loading and unloading and the viability and health of the adult and aging skeleton.
Collapse
Affiliation(s)
- Peipei Duan
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO, USA
| | - L F Bonewald
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO, USA.
| |
Collapse
|
15
|
Takeno A, Kanazawa I, Tanaka KI, Notsu M, Yokomoto M, Yamaguchi T, Sugimoto T. Activation of AMP-activated protein kinase protects against homocysteine-induced apoptosis of osteocytic MLO-Y4 cells by regulating the expressions of NADPH oxidase 1 (Nox1) and Nox2. Bone 2015; 77:135-41. [PMID: 25933943 DOI: 10.1016/j.bone.2015.04.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 03/19/2015] [Accepted: 04/15/2015] [Indexed: 01/04/2023]
Abstract
BACKGROUND Elevated plasma homocysteine (Hcy) level is associated with the risk of osteoporotic fracture. While Hcy increases oxidative stress, AMP-activated protein kinase (AMPK) activation ameliorates it. This study aimed to investigate whether Hcy induces apoptosis of osteocytic MLO-Y4 cells through regulating expressions of oxidant and anti-oxidant enzymes and determine the effects of AMPK activation by 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR) and metformin on the Hcy-induced apoptosis of the cells. RESULTS DNA fragment ELISA and TUNEL staining assays showed that Hcy treatments (0.1-5.0 mM) induced apoptosis of MLO-Y4 cells in a dose-dependent manner. The detrimental effect of Hcy was partly but significantly reversed by an antioxidant (N-acetylcysteine) and NADPH oxidase (Nox) inhibitors (apocynin and diphenyleneiodonium). In addition, treatment with AICAR (0.05-0.1 mM) and metformin (10-100 μM) ameliorated Hcy-induced apoptosis of the cells. The favorable effect of metformin on Hcy-induced apoptosis was completely canceled by an AMPK inhibitor Ara-A. Hcy increased the expression levels of Nox1 and Nox2, while it had no effects on the expressions of Nox4 or the anti-oxidant enzymes, superoxide dismutase 1 and 2. Hcy-induced increases in the expressions of Nox1 and Nox2 decreased significantly by treatments with AICAR. CONCLUSION These findings suggest that Hcy induces apoptosis of osteocytes by increasing the expressions of Nox1 and Nox2, and AMPK activation by AICAR and metformin effectively prevents the detrimental reactions. Thus, AMPK activation may be a potent therapeutic candidate for preventing Hcy-induced osteocyte apoptosis and the resulting bone fragility.
Collapse
Affiliation(s)
- Ayumu Takeno
- Internal Medicine 1, Shimane University Faculty of Medicine, 89-1, Enya-cho, Izumo, Shimane 693-8501, Japan.
| | - Ippei Kanazawa
- Internal Medicine 1, Shimane University Faculty of Medicine, 89-1, Enya-cho, Izumo, Shimane 693-8501, Japan.
| | - Ken-Ichiro Tanaka
- Internal Medicine 1, Shimane University Faculty of Medicine, 89-1, Enya-cho, Izumo, Shimane 693-8501, Japan.
| | - Masakazu Notsu
- Internal Medicine 1, Shimane University Faculty of Medicine, 89-1, Enya-cho, Izumo, Shimane 693-8501, Japan.
| | - Maki Yokomoto
- Internal Medicine 1, Shimane University Faculty of Medicine, 89-1, Enya-cho, Izumo, Shimane 693-8501, Japan.
| | - Toru Yamaguchi
- Internal Medicine 1, Shimane University Faculty of Medicine, 89-1, Enya-cho, Izumo, Shimane 693-8501, Japan.
| | - Toshitsugu Sugimoto
- Internal Medicine 1, Shimane University Faculty of Medicine, 89-1, Enya-cho, Izumo, Shimane 693-8501, Japan.
| |
Collapse
|
16
|
Arzuaga X, Gehlhaus M, Strong J. Modes of action associated with uranium induced adverse effects in bone function and development. Toxicol Lett 2015; 236:123-30. [PMID: 25976116 DOI: 10.1016/j.toxlet.2015.05.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 05/07/2015] [Indexed: 12/19/2022]
Abstract
Uranium, a naturally occurring element used in military and industrial applications, accumulates in the skeletal system of animals and humans. Evidence from animal and in-vitro studies demonstrates that uranium exposure is associated with alterations in normal bone functions. The available studies suggest that upon absorption uranium directly affects bone development and maintenance by inhibiting osteoblast differentiation and normal functions, and indirectly by disrupting renal production of Vitamin D. Animal studies also provide evidence for increased susceptibility to uranium-induced bone toxicity during early life stages. The objective of this review is to provide a summary of uranium-induced bone toxicity and the potential mechanisms by which uranium can interfere with bone development and promote fragility. Since normal Vitamin D production and osteoblast functions are essential for bone growth and maintenance, young individuals and the elderly may represent potentially susceptible populations to uranium-induced bone damage.
Collapse
Affiliation(s)
- Xabier Arzuaga
- National Center for Environmental Assessment, U.S. Environmental Protection Agency, WA, DC 20460, USA
| | - Martin Gehlhaus
- National Center for Environmental Assessment, U.S. Environmental Protection Agency, WA, DC 20460, USA
| | - Jamie Strong
- National Center for Environmental Assessment, U.S. Environmental Protection Agency, WA, DC 20460, USA.
| |
Collapse
|
17
|
Thaler R, Sturmlechner I, Spitzer S, Riester SM, Rumpler M, Zwerina J, Klaushofer K, van Wijnen AJ, Varga F. Acute-phase protein serum amyloid A3 is a novel paracrine coupling factor that controls bone homeostasis. FASEB J 2014; 29:1344-59. [PMID: 25491310 DOI: 10.1096/fj.14-265512] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 11/17/2014] [Indexed: 11/11/2022]
Abstract
Serum amyloid A (A-SAA/Saa3) was shown before to affect osteoblastic metabolism. Here, using RT-quantitative PCR and/or immunoblotting, we show that expression of mouse Saa3 and human SAA1 and SAA2 positively correlates with increased cellular maturation toward the osteocyte phenotype. Expression is not detected in C3H10T1/2 embryonic fibroblasts but is successively higher in preosteoblastic MC3T3-E1 cells, late osteoblastic MLO-A5 cells, and MLO-Y4 osteocytes, consistent with findings using primary bone cells from newborn mouse calvaria. Recombinant Saa3 protein functionally inhibits osteoblast differentiation as reflected by reductions in the expression of osteoblast markers and decreased mineralization in newborn mouse calvaria. Yet, Saa3 protein enhances osteoclastogenesis in mouse macrophages/monocytes based on the number of multinucleated and tartrate-resistant alkaline phosphatase-positive cells and Calcr mRNA expression. Depletion of Saa3 in MLO osteocytes results in the loss of the mature osteocyte phenotype. Recombinant osteocalcin, which is reciprocally regulated with Saa3 at the osteoblast/osteocyte transition, attenuates Saa3 expression in MLO-Y4 osteocytes. Mechanistically, Saa3 produced by MLO-Y4 osteocytes is integrated into the extracellular matrix of MC3T3-E1 osteoblasts, where it associates with the P2 purinergic receptor P2rx7 to stimulate Mmp13 expression via the P2rx7/MAPK/ERK/activator protein 1 axis. Our data suggest that Saa3 may function as an important coupling factor in bone development and homeostasis.
Collapse
Affiliation(s)
- Roman Thaler
- *Ludwig Boltzmann Institute of Osteology, Wiener Gebietskrankenkasse and Allgemeine Unfallversicherungsanstalt, Trauma Center Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria; and Departments of Orthopedic Surgery and Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - Ines Sturmlechner
- *Ludwig Boltzmann Institute of Osteology, Wiener Gebietskrankenkasse and Allgemeine Unfallversicherungsanstalt, Trauma Center Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria; and Departments of Orthopedic Surgery and Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - Silvia Spitzer
- *Ludwig Boltzmann Institute of Osteology, Wiener Gebietskrankenkasse and Allgemeine Unfallversicherungsanstalt, Trauma Center Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria; and Departments of Orthopedic Surgery and Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - Scott M Riester
- *Ludwig Boltzmann Institute of Osteology, Wiener Gebietskrankenkasse and Allgemeine Unfallversicherungsanstalt, Trauma Center Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria; and Departments of Orthopedic Surgery and Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - Monika Rumpler
- *Ludwig Boltzmann Institute of Osteology, Wiener Gebietskrankenkasse and Allgemeine Unfallversicherungsanstalt, Trauma Center Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria; and Departments of Orthopedic Surgery and Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - Jochen Zwerina
- *Ludwig Boltzmann Institute of Osteology, Wiener Gebietskrankenkasse and Allgemeine Unfallversicherungsanstalt, Trauma Center Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria; and Departments of Orthopedic Surgery and Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - Klaus Klaushofer
- *Ludwig Boltzmann Institute of Osteology, Wiener Gebietskrankenkasse and Allgemeine Unfallversicherungsanstalt, Trauma Center Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria; and Departments of Orthopedic Surgery and Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - Andre J van Wijnen
- *Ludwig Boltzmann Institute of Osteology, Wiener Gebietskrankenkasse and Allgemeine Unfallversicherungsanstalt, Trauma Center Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria; and Departments of Orthopedic Surgery and Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - Franz Varga
- *Ludwig Boltzmann Institute of Osteology, Wiener Gebietskrankenkasse and Allgemeine Unfallversicherungsanstalt, Trauma Center Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria; and Departments of Orthopedic Surgery and Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|