1
|
Tani Y, Takita M, Kobashi Y, Wakui M, Zhao T, Yamamoto C, Saito H, Kawashima M, Sugiura S, Nishikawa Y, Omata F, Shimazu Y, Kawamura T, Sugiyama A, Nakayama A, Kaneko Y, Kodama T, Kami M, Tsubokura M. Varying Cellular Immune Response against SARS-CoV-2 after the Booster Vaccination: A Cohort Study from Fukushima Vaccination Community Survey, Japan. Vaccines (Basel) 2023; 11:vaccines11050920. [PMID: 37243024 DOI: 10.3390/vaccines11050920] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Booster vaccination reduces the incidence of severe cases and mortality related to COVID-19, with cellular immunity playing an important role. However, little is known about the proportion of the population that has achieved cellular immunity after booster vaccination. Thus, we conducted a Fukushima cohort database and assessed humoral and cellular immunity in 2526 residents and healthcare workers in Fukushima Prefecture in Japan through continuous blood collection every 3 months from September 2021. We identified the proportion of people with induced cellular immunity after booster vaccination using the T-SPOT.COVID test, and analyzed their background characteristics. Among 1089 participants, 64.3% (700/1089) had reactive cellular immunity after booster vaccination. Multivariable analysis revealed the following independent predictors of reactive cellular immunity: age < 40 years (adjusted odds ratio: 1.81; 95% confidence interval: 1.19-2.75; p-value: 0.005) and adverse reactions after vaccination (1.92, 1.19-3.09, 0.007). Notably, despite IgG(S) and neutralizing antibody titers of ≥500 AU/mL, 33.9% (349/1031) and 33.5% (341/1017) of participants, respectively, did not have reactive cellular immunity. In summary, this is the first study to evaluate cellular immunity at the population level after booster vaccination using the T-SPOT.COVID test, albeit with several limitations. Future studies will need to evaluate previously infected subjects and their T-cell subsets.
Collapse
Affiliation(s)
- Yuta Tani
- Medical Governance Research Institute, Tokyo 108-0074, Japan
| | - Morihito Takita
- Medical Governance Research Institute, Tokyo 108-0074, Japan
- Department of Radiation Health Management, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Yurie Kobashi
- Department of Radiation Health Management, Fukushima Medical University, Fukushima 960-1295, Japan
- Department of General Internal Medicine, Hirata Central Hospital, Fukushima 963-8202, Japan
| | - Masatoshi Wakui
- Department of Laboratory Medicine, Keio University School of Medicine, Tokyo 160-0016, Japan
| | - Tianchen Zhao
- Department of Radiation Health Management, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Chika Yamamoto
- Department of Radiation Health Management, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Hiroaki Saito
- Department of Radiation Health Management, Fukushima Medical University, Fukushima 960-1295, Japan
- Department of Internal Medicine, Soma Central Hospital, Fukushima 976-0016, Japan
| | - Moe Kawashima
- Department of Radiation Health Management, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Sota Sugiura
- Medical Governance Research Institute, Tokyo 108-0074, Japan
| | - Yoshitaka Nishikawa
- Department of General Internal Medicine, Hirata Central Hospital, Fukushima 963-8202, Japan
| | - Fumiya Omata
- Department of General Internal Medicine, Hirata Central Hospital, Fukushima 963-8202, Japan
| | - Yuzo Shimazu
- Department of General Internal Medicine, Hirata Central Hospital, Fukushima 963-8202, Japan
| | - Takeshi Kawamura
- Proteomics Laboratory, Isotope Science Center, The University of Tokyo, Tokyo 113-0032, Japan
- Laboratory for Systems Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo 153-8904, Japan
| | - Akira Sugiyama
- Proteomics Laboratory, Isotope Science Center, The University of Tokyo, Tokyo 113-0032, Japan
| | - Aya Nakayama
- Proteomics Laboratory, Isotope Science Center, The University of Tokyo, Tokyo 113-0032, Japan
| | - Yudai Kaneko
- Laboratory for Systems Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo 153-8904, Japan
- Medical and Biological Laboratories Co., Ltd., Tokyo 105-0012, Japan
| | - Tetsuhiko Kodama
- Laboratory for Systems Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo 153-8904, Japan
| | - Masahiro Kami
- Medical Governance Research Institute, Tokyo 108-0074, Japan
| | - Masaharu Tsubokura
- Department of Radiation Health Management, Fukushima Medical University, Fukushima 960-1295, Japan
- Department of General Internal Medicine, Hirata Central Hospital, Fukushima 963-8202, Japan
- Department of Internal Medicine, Soma Central Hospital, Fukushima 976-0016, Japan
| |
Collapse
|
2
|
Phetsouphanh C, Khoo WH, Jackson K, Klemm V, Howe A, Aggarwal A, Akerman A, Milogiannakis V, Stella AO, Rouet R, Schofield P, Faulks ML, Law H, Danwilai T, Starr M, Munier CML, Christ D, Singh M, Croucher PI, Brilot-Turville F, Turville S, Phan TG, Dore GJ, Darley D, Cunningham P, Matthews GV, Kelleher AD, Zaunders JJ. High titre neutralizing antibodies in response to SARS-CoV-2 infection require RBD-specific CD4 T cells that include proliferative memory cells. Front Immunol 2022; 13:1032911. [PMID: 36544780 PMCID: PMC9762180 DOI: 10.3389/fimmu.2022.1032911] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/31/2022] [Indexed: 12/12/2022] Open
Abstract
Background Long-term immunity to SARS-CoV-2 infection, including neutralizing antibodies and T cell-mediated immunity, is required in a very large majority of the population in order to reduce ongoing disease burden. Methods We have investigated the association between memory CD4 and CD8 T cells and levels of neutralizing antibodies in convalescent COVID-19 subjects. Findings Higher titres of convalescent neutralizing antibodies were associated with significantly higher levels of RBD-specific CD4 T cells, including specific memory cells that proliferated vigorously in vitro. Conversely, up to half of convalescent individuals had low neutralizing antibody titres together with a lack of receptor binding domain (RBD)-specific memory CD4 T cells. These low antibody subjects had other, non-RBD, spike-specific CD4 T cells, but with more of an inhibitory Foxp3+ and CTLA-4+ cell phenotype, in contrast to the effector T-bet+, cytotoxic granzymes+ and perforin+ cells seen in RBD-specific memory CD4 T cells from high antibody subjects. Single cell transcriptomics of antigen-specific CD4+ T cells from high antibody subjects similarly revealed heterogenous RBD-specific CD4+ T cells that comprised central memory, transitional memory and Tregs, as well as cytotoxic clusters containing diverse TCR repertoires, in individuals with high antibody levels. However, vaccination of low antibody convalescent individuals led to a slight but significant improvement in RBD-specific memory CD4 T cells and increased neutralizing antibody titres. Interpretation Our results suggest that targeting CD4 T cell epitopes proximal to and within the RBD-region should be prioritized in booster vaccines.
Collapse
Affiliation(s)
| | - Weng Hua Khoo
- Garvan Institute of Medical Research, Sydney, NSW, Australia,St. Vincent’s Clinical School, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Sydney, NSW, Australia
| | | | - Vera Klemm
- Kirby Institute, University of New South Wales (UNSW), Sydney, NSW, Australia
| | - Annett Howe
- Kirby Institute, University of New South Wales (UNSW), Sydney, NSW, Australia
| | - Anupriya Aggarwal
- Kirby Institute, University of New South Wales (UNSW), Sydney, NSW, Australia
| | - Anouschka Akerman
- Kirby Institute, University of New South Wales (UNSW), Sydney, NSW, Australia
| | | | | | - Romain Rouet
- Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Peter Schofield
- Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Megan L. Faulks
- Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Hannah Law
- Kirby Institute, University of New South Wales (UNSW), Sydney, NSW, Australia
| | - Thidarat Danwilai
- NSW State Reference Laboratory for HIV, St. Vincent’s Centre for Applied Medical Research, Sydney, NSW, Australia
| | - Mitchell Starr
- NSW State Reference Laboratory for HIV, St. Vincent’s Centre for Applied Medical Research, Sydney, NSW, Australia
| | - C. Mee Ling Munier
- Kirby Institute, University of New South Wales (UNSW), Sydney, NSW, Australia
| | - Daniel Christ
- Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Mandeep Singh
- Garvan Institute of Medical Research, Sydney, NSW, Australia,St. Vincent’s Clinical School, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Sydney, NSW, Australia
| | | | - Fabienne Brilot-Turville
- Brain and Mind Centre, Children’s Hospital at Westmead, University of Sydney, Sydney, NSW, Australia,Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, NSW, Australia
| | - Stuart Turville
- Kirby Institute, University of New South Wales (UNSW), Sydney, NSW, Australia
| | - Tri Giang Phan
- Garvan Institute of Medical Research, Sydney, NSW, Australia,St. Vincent’s Clinical School, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Sydney, NSW, Australia
| | - Gregory J. Dore
- Kirby Institute, University of New South Wales (UNSW), Sydney, NSW, Australia,Department of Infectious Diseases, St. Vincent's Hospital, Sydney, NSW, Australia
| | - David Darley
- Department of Infectious Diseases, St. Vincent's Hospital, Sydney, NSW, Australia
| | - Philip Cunningham
- NSW State Reference Laboratory for HIV, St. Vincent’s Centre for Applied Medical Research, Sydney, NSW, Australia
| | - Gail V. Matthews
- Kirby Institute, University of New South Wales (UNSW), Sydney, NSW, Australia,Department of Infectious Diseases, St. Vincent's Hospital, Sydney, NSW, Australia
| | - Anthony D. Kelleher
- Kirby Institute, University of New South Wales (UNSW), Sydney, NSW, Australia,Department of Immunology, St Vincent's Hospital, Sydney, NSW, Australia
| | - John J. Zaunders
- NSW State Reference Laboratory for HIV, St. Vincent’s Centre for Applied Medical Research, Sydney, NSW, Australia,*Correspondence: John J. Zaunders,
| |
Collapse
|
3
|
Mohamed Y, El-Maradny YA, Saleh AK, Nayl AA, El-Gendi H, El-Fakharany EM. A comprehensive insight into current control of COVID-19: Immunogenicity, vaccination, and treatment. Biomed Pharmacother 2022; 153:113499. [PMID: 36076589 PMCID: PMC9343749 DOI: 10.1016/j.biopha.2022.113499] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/29/2022] [Accepted: 07/30/2022] [Indexed: 02/07/2023] Open
Abstract
The healthy immune system eliminates pathogens and maintains tissue homeostasis through extraordinarily complex networks with feedback systems while avoiding potentially massive tissue destruction. Many parameters influence humoral and cellular vaccine responses, including intrinsic and extrinsic, environmental, and behavioral, nutritional, perinatal and administrative parameters. The relative contributions of persisting antibodies and immune memory as well as the determinants of immune memory induction, to protect against specific diseases are the main parameters of long-term vaccine efficacy. Natural and vaccine-induced immunity and monoclonal antibody immunotherapeutic, may be evaded by SARS-CoV-2 variants. Besides the complications of the production of COVID-19 vaccinations, there is no effective single treatment against COVID-19. However, administration of a combined treatment at different stages of COVID-19 infection may offer some cure assistance. Combination treatment of antiviral drugs and immunomodulatory drugs may reduce inflammation in critical COVID-19 patients with cytokine release syndrome. Molnupiravir, remdesivir and paxlovid are the approved antiviral agents that may reduce the recovery time. In addition, immunomodulatory drugs such as lactoferrin and monoclonal antibodies are used to control inflammatory responses in their respective auto-immune conditions. Therefore, the widespread occurrence of highly transmissible variants like Delta and Omicron indicates that there is still a lot of work to be done in designing efficient vaccines and medicines for COVID-19. In this review, we briefly discussed the immunological response against SARS-CoV-2 and the vaccines approved by the World Health Organization (WHO) for COVID-19, their mechanisms, and side effects. Moreover, we mentioned various treatment trials and strategies for COVID-19.
Collapse
Affiliation(s)
- Yasser Mohamed
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg EL-Arab, Alexandria 21934, Egypt; Laboratory of Kafr El-Sheikh Fever Hospital, Kafr El-Sheikh Fever Hospital, 33511 Kafr El-Sheikh, Egypt.
| | - Yousra A El-Maradny
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg EL-Arab, Alexandria 21934, Egypt; Microbiology Department, High Institute of Public Health, Alexandria University, Alexandria 21526, Egypt.
| | - Ahmed K Saleh
- Cellulose and Paper Department, National Research Centre, El-Tahrir St., Dokki, P.O. 12622, Giza, Egypt
| | - AbdElAziz A Nayl
- Department of Chemistry, College of Science, Jouf University, Sakaka 72341, Al Jouf, Saudi Arabia.
| | - Hamada El-Gendi
- Bioprocess Development Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Universities and Research Institutes zone, New Borg El-Arab, Alexandria 21934, Egypt.
| | - Esmail M El-Fakharany
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg EL-Arab, Alexandria 21934, Egypt.
| |
Collapse
|
4
|
Jin W, Fang M, Sayin I, Smith C, Hunter JL, Richardson B, Golden JB, Haley C, Schmader KE, Betts MR, Tyring SK, Cameron CM, Cameron MJ, Canaday DH. Differential CD4+ T-Cell Cytokine and Cytotoxic Responses Between Reactivation and Latent Phases of Herpes Zoster Infection. Pathog Immun 2022; 7:171-188. [PMID: 36865570 PMCID: PMC9973729 DOI: 10.20411/pai.v7i2.560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/17/2023] [Indexed: 02/19/2023] Open
Abstract
Background CD4+ T cells are a critical component of effective immune responses to varicella zoster virus (VZV), but their functional properties during the reactivation acute vs latent phase of infection remain poorly defined. Methods Here we assessed the functional and transcriptomic properties of peripheral blood CD4+ T cells in persons with acute herpes zoster (HZ) compared to those with a prior history of HZ infection using multicolor flow cytometry and RNA sequencing. Results We found significant differences between the polyfunctionality of VZV-specific total memory, effector memory, and central memory CD4+ T cells in acute vs prior HZ. VZV-specific CD4+ memory T-cell responses in acute HZ reactivation had higher frequencies of IFN-γ and IL-2 producing cells compared to those with prior HZ. In addition, cytotoxic markers were higher in VZV-specific CD4+ T cells than non-VZV-specific cells. Transcriptomic analysis of ex vivo total memory CD4+ T cells from these individuals showed differential regulation of T-cell survival and differentiation pathways, including TCR, cytotoxic T lymphocytes (CTL), T helper, inflammation, and MTOR signaling pathways. These gene signatures correlated with the frequency of IFN-γ and IL-2 producing cells responding to VZV. Conclusions In summary, VZV-specific CD4+ T cells from acute HZ individuals had unique functional and transcriptomic features, and VZV-specific CD4+ T cells as a group had a higher expression of cytotoxic molecules including Perforin, Granzyme-B, and CD107a.
Collapse
Affiliation(s)
- Wenjie Jin
- Division of Infectious Diseases Case Western Reserve University, Cleveland, OH.,Division of Infectious Diseases Case Western Reserve University, Cleveland, OH
| | - Mike Fang
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH
| | - Ismail Sayin
- Division of Infectious Diseases Case Western Reserve University, Cleveland, OH.,Division of Infectious Diseases and Geriatric Research, Education and Clinical Center (GRECC), Cleveland Veterans Administration Medical Center, Cleveland, OH
| | - Carson Smith
- Division of Infectious Diseases Case Western Reserve University, Cleveland, OH.,Division of Infectious Diseases and Geriatric Research, Education and Clinical Center (GRECC), Cleveland Veterans Administration Medical Center, Cleveland, OH
| | | | - Brian Richardson
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH
| | - Jackelyn B Golden
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH
| | - Christopher Haley
- Center for Clinical Studies and Department of Dermatology, University of Texas Health Science Center, McGovern School of Medicine, Houston, TX
| | - Kenneth E Schmader
- Division of Geriatrics, Duke University Medical Center and GRECC, Durham Veterans Affairs Medical Center, Durham, NC
| | - Michael R Betts
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Stephen K Tyring
- Center for Clinical Studies and Department of Dermatology, University of Texas Health Science Center, McGovern School of Medicine, Houston, TX
| | - Cheryl M Cameron
- Department of Nutrition, Case Western Reserve University, Cleveland, OH
| | - Mark J Cameron
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH
| | - David H Canaday
- Division of Infectious Diseases Case Western Reserve University, Cleveland, OH.,Division of Infectious Diseases and Geriatric Research, Education and Clinical Center (GRECC), Cleveland Veterans Administration Medical Center, Cleveland, OH
| |
Collapse
|
5
|
Sealy RE, Hurwitz JL. Cross-Reactive Immune Responses toward the Common Cold Human Coronaviruses and Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2): Mini-Review and a Murine Study. Microorganisms 2021; 9:1643. [PMID: 34442723 PMCID: PMC8398386 DOI: 10.3390/microorganisms9081643] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/17/2021] [Accepted: 07/26/2021] [Indexed: 12/28/2022] Open
Abstract
While severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes serious morbidity and mortality in humans (coronavirus disease 2019, COVID-19), there is an enormous range of disease outcomes following virus exposures. Some individuals are asymptomatic while others succumb to virus infection within days. Presently, the factors responsible for disease severity are not fully understood. One factor that may influence virus control is pre-existing immunity conferred by an individual's past exposures to common cold human coronaviruses (HCoVs). Here, we describe previous literature and a new, murine study designed to examine cross-reactive immune responses between SARS-CoV-2 and common cold HCoVs (represented by prototypes OC43, HKU1, 229E, and NL63). Experimental results have been mixed. In SARS-CoV-2-unexposed humans, cross-reactive serum antibodies were identified toward nucleocapsid (N) and the spike subunit S2. S2-specific antibodies were in some cases associated with neutralization. SARS-CoV-2-unexposed humans rarely exhibited antibody responses to the SARS-CoV-2 spike subunit S1, and when naïve mice were immunized with adjuvanted S1 from either SARS-CoV-2 or common cold HCoVs, S1-specific antibodies were poorly cross-reactive. When humans were naturally infected with SARS-CoV-2, cross-reactive antibodies that recognized common cold HCoV antigens increased in magnitude. Cross-reactive T cells, like antibodies, were present in humans prior to SARS-CoV-2 exposures and increased following SARS-CoV-2 infections. Some studies suggested that human infections with common cold HCoVs afforded protection against disease caused by subsequent exposures to SARS-CoV-2. Small animal models are now available for the testing of controlled SARS-CoV-2 infections. Additionally, in the United Kingdom, a program of SARS-CoV-2 human challenge experiments has received regulatory approval. Future, controlled experimental challenge studies may better define how pre-existing, cross-reactive immune responses influence SARS-CoV-2 infection outcomes.
Collapse
Affiliation(s)
- Robert E. Sealy
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA;
| | - Julia L. Hurwitz
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA;
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
6
|
Aydillo T, Rombauts A, Stadlbauer D, Aslam S, Abelenda-Alonso G, Escalera A, Amanat F, Jiang K, Krammer F, Carratala J, García-Sastre A. Immunological imprinting of the antibody response in COVID-19 patients. Nat Commun 2021; 12:3781. [PMID: 34145263 PMCID: PMC8213790 DOI: 10.1038/s41467-021-23977-1] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 05/25/2021] [Indexed: 12/20/2022] Open
Abstract
In addition to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), humans are also susceptible to six other coronaviruses, for which consecutive exposures to antigenically related and divergent seasonal coronaviruses are frequent. Despite the prevalence of COVID-19 pandemic and ongoing research, the nature of the antibody response against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is unclear. Here we longitudinally profile the early humoral immune response against SARS-CoV-2 in hospitalized coronavirus disease 2019 (COVID-19) patients and quantify levels of pre-existing immunity to OC43, HKU1 and 229E seasonal coronaviruses, and find a strong back-boosting effect to conserved but not variable regions of OC43 and HKU1 betacoronaviruses spike protein. However, such antibody memory boost to human coronaviruses negatively correlates with the induction of IgG and IgM against SARS-CoV-2 spike and nucleocapsid protein. Our findings thus provide evidence of immunological imprinting by previous seasonal coronavirus infections that can potentially modulate the antibody profile to SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Teresa Aydillo
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alexander Rombauts
- Department of Infectious Diseases, Bellvitge University Hospital, Bellvitge Biomedical Research Institute (IDIBELL), University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
- Spanish Network for Research on Infectious Diseases (REIPI, RD16/0016, Carlos III Health Institute, Madrid, Spain
| | - Daniel Stadlbauer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sadaf Aslam
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gabriela Abelenda-Alonso
- Department of Infectious Diseases, Bellvitge University Hospital, Bellvitge Biomedical Research Institute (IDIBELL), University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
- Spanish Network for Research on Infectious Diseases (REIPI, RD16/0016, Carlos III Health Institute, Madrid, Spain
| | - Alba Escalera
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Fatima Amanat
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kaijun Jiang
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Jordi Carratala
- Department of Infectious Diseases, Bellvitge University Hospital, Bellvitge Biomedical Research Institute (IDIBELL), University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.
- Spanish Network for Research on Infectious Diseases (REIPI, RD16/0016, Carlos III Health Institute, Madrid, Spain.
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Division of Infectious Disease, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
7
|
Wu D, Yang XO. Dysregulation of Pulmonary Responses in Severe COVID-19. Viruses 2021; 13:957. [PMID: 34064104 PMCID: PMC8224314 DOI: 10.3390/v13060957] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/04/2021] [Accepted: 05/19/2021] [Indexed: 12/13/2022] Open
Abstract
Patients with coronavirus disease 2019 (COVID-19) predominantly have a respiratory tract infection with various symptoms and high mortality is associated with respiratory failure second to severe disease. The risk factors leading to severe disease remain unclear. Here, we reanalyzed a published single-cell RNA-Seq (scRNA-Seq) dataset and found that bronchoalveolar lavage fluid (BALF) of patients with severe disease compared to those with mild disease contained decreased TH17-type cells, decreased IFNA1-expressing cells with lower expression of toll-like receptor 7 (TLR7) and TLR8, increased IgA-expressing B cells, and increased hyperactive epithelial cells (and/or macrophages) expressing matrix metalloproteinases (MMPs), hyaluronan synthase 2 (HAS2), and plasminogen activator inhibitor-1 (PAI-1), which may together contribute to the pulmonary pathology in severe COVID-19. We propose IFN-I (and TLR7/TLR8) and PAI-1 as potential biomarkers to predict the susceptibility to severe COVID-19.
Collapse
Affiliation(s)
- Dandan Wu
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA;
- Department of Crop Genetics and Breeding, College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Xuexian O. Yang
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA;
| |
Collapse
|
8
|
Majumdar S, Murphy PM. Chemokine Regulation During Epidemic Coronavirus Infection. Front Pharmacol 2021; 11:600369. [PMID: 33613280 PMCID: PMC7890195 DOI: 10.3389/fphar.2020.600369] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 12/11/2020] [Indexed: 12/15/2022] Open
Abstract
SARS-CoV-2 (Severe Acute Respiratory Syndrome coronavirus-2) is the third coronavirus to emerge as a cause of severe and frequently fatal pneumonia epidemics in humans, joining SARS-CoV and MERS-CoV (Middle East Respiratory Syndrome-coronavirus). As with many infectious diseases, the immune response to coronavirus infection may act as a double-edged sword: necessary for promoting antiviral host defense, but, if not appropriately regulated, also able to incite life-threatening immunopathology. Key immunoregulatory mediators include the chemokines, a large family of leukocyte chemoattractants that coordinate leukocyte infiltration, positioning and activation in infected tissue by acting at specific G protein-coupled receptors. Here, we compare the involvement of chemokines and chemokine receptors during infection with the three epidemic coronaviruses and discuss their potential value as biomarkers and targets for therapeutic development.
Collapse
Affiliation(s)
| | - Philip M. Murphy
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, United States
| |
Collapse
|
9
|
DiPiazza AT, Graham BS, Ruckwardt TJ. T cell immunity to SARS-CoV-2 following natural infection and vaccination. Biochem Biophys Res Commun 2021; 538:211-217. [PMID: 33190827 PMCID: PMC7584424 DOI: 10.1016/j.bbrc.2020.10.060] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 10/21/2020] [Indexed: 12/15/2022]
Abstract
SARS-CoV-2 first emerged in the human population in late 2019 in Wuhan, China, and in a matter of months, spread across the globe resulting in the Coronavirus Disease 19 (COVID-19) pandemic and substantial economic fallout. SARS-CoV-2 is transmitted between humans via respiratory particles, with infection presenting a spectrum of clinical manifestations ranging from asymptomatic to respiratory failure with multiorgan dysfunction and death in severe cases. Prior experiences with human pathogenic coronaviruses and respiratory virus diseases in general have revealed an important role for cellular immunity in limiting disease severity. Here, we review some of the key mechanisms underlying cell-mediated immunity to respiratory viruses and summarize our current understanding of the functional capacity and role of SARS-CoV-2-specific T cells following natural infection and vaccination.
Collapse
Affiliation(s)
- Anthony T DiPiazza
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892, USA.
| | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Tracy J Ruckwardt
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892, USA.
| |
Collapse
|
10
|
Pinotti F, Wikramaratna PS, Obolski U, Paton RS, Damineli DSC, Alcantara LCJ, Giovanetti M, Gupta S, Lourenço J. Potential impact of individual exposure histories to endemic human coronaviruses on age-dependent severity of COVID-19. BMC Med 2021; 19:19. [PMID: 33430856 PMCID: PMC7801230 DOI: 10.1186/s12916-020-01887-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 12/11/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Cross-reactivity to SARS-CoV-2 from exposure to endemic human coronaviruses (eHCoV) is gaining increasing attention as a possible driver of both protection against infection and COVID-19 severity. Here we explore the potential role of cross-reactivity induced by eHCoVs on age-specific COVID-19 severity in a mathematical model of eHCoV and SARS-CoV-2 transmission. METHODS We use an individual-based model, calibrated to prior knowledge of eHCoV dynamics, to fully track individual histories of exposure to eHCoVs. We also model the emergent dynamics of SARS-CoV-2 and the risk of hospitalisation upon infection. RESULTS We hypothesise that primary exposure with any eHCoV confers temporary cross-protection against severe SARS-CoV-2 infection, while life-long re-exposure to the same eHCoV diminishes cross-protection, and increases the potential for disease severity. We show numerically that our proposed mechanism can explain age patterns of COVID-19 hospitalisation in EU/EEA countries and the UK. We further show that some of the observed variation in health care capacity and testing efforts is compatible with country-specific differences in hospitalisation rates under this model. CONCLUSIONS This study provides a "proof of possibility" for certain biological and epidemiological mechanisms that could potentially drive COVID-19-related variation across age groups. Our findings call for further research on the role of cross-reactivity to eHCoVs and highlight data interpretation challenges arising from health care capacity and SARS-CoV-2 testing.
Collapse
Affiliation(s)
| | | | - Uri Obolski
- School of Public Health, Tel Aviv University, Tel Aviv, Israel
- Porter School of the Environment and Earth Sciences, Tel Aviv University, Tel Aviv, Israel
| | | | - Daniel S C Damineli
- Department of Pediatrics, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Luiz C J Alcantara
- Laboratório de Genética Celular e Molecular, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Laboratório de Flavivírus, Instituto Oswaldo Cruz Fiocruz, Rio de Janeiro, Brazil
| | - Marta Giovanetti
- Laboratório de Genética Celular e Molecular, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Laboratório de Flavivírus, Instituto Oswaldo Cruz Fiocruz, Rio de Janeiro, Brazil
| | - Sunetra Gupta
- Department of Zoology, University of Oxford, Oxford, UK
| | - José Lourenço
- Department of Zoology, University of Oxford, Oxford, UK
| |
Collapse
|
11
|
Han K, Blair RV, Iwanaga N, Liu F, Russell-Lodrigue KE, Qin Z, Midkiff CC, Golden NA, Doyle-Meyers LA, Kabir ME, Chandler KE, Cutrera KL, Ren M, Monjure CJ, Lehmicke G, Fischer T, Beddingfield B, Wanek AG, Birnbaum A, Maness NJ, Roy CJ, Datta PK, Rappaport J, Kolls JK, Qin X. Lung Expression of Human Angiotensin-Converting Enzyme 2 Sensitizes the Mouse to SARS-CoV-2 Infection. Am J Respir Cell Mol Biol 2021; 64:79-88. [PMID: 32991819 PMCID: PMC7781002 DOI: 10.1165/rcmb.2020-0354oc] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 09/21/2020] [Indexed: 12/11/2022] Open
Abstract
Preclinical mouse models that recapitulate some characteristics of coronavirus disease (COVID-19) will facilitate focused study of pathogenesis and virus-host responses. Human agniotensin-converting enzyme 2 (hACE2) serves as an entry receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to infect people via binding to envelope spike proteins. Herein we report development and characterization of a rapidly deployable COVID-19 mouse model. C57BL/6J (B6) mice expressing hACE2 in the lung were transduced by oropharyngeal delivery of the recombinant human adenovirus type 5 that expresses hACE2 (Ad5-hACE2). Mice were infected with SARS-CoV-2 at Day 4 after transduction and developed interstitial pneumonia associated with perivascular inflammation, accompanied by significantly higher viral load in lungs at Days 3, 6, and 12 after infection compared with Ad5-empty control group. SARS-CoV-2 was detected in pneumocytes in alveolar septa. Transcriptomic analysis of lungs demonstrated that the infected Ad5-hACE mice had a significant increase in IFN-dependent chemokines Cxcl9 and Cxcl10, and genes associated with effector T-cell populations including Cd3 g, Cd8a, and Gzmb. Pathway analysis showed that several Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were enriched in the data set, including cytokine-cytokine receptor interaction, the chemokine signaling pathway, the NOD-like receptor signaling pathway, the measles pathway, and the IL-17 signaling pathway. This response is correlative to clinical response in lungs of patients with COVID-19. These results demonstrate that expression of hACE2 via adenovirus delivery system sensitized the mouse to SARS-CoV-2 infection and resulted in the development of a mild COVID-19 phenotype, highlighting the immune and inflammatory host responses to SARS-CoV-2 infection. This rapidly deployable COVID-19 mouse model is useful for preclinical and pathogenesis studies of COVID-19.
Collapse
Affiliation(s)
- Kun Han
- Tulane National Primate Research Center, Covington, Louisiana; and
| | - Robert V. Blair
- Tulane National Primate Research Center, Covington, Louisiana; and
| | - Naoki Iwanaga
- Department of Medicine and Department of Pediatrics, Center for Translational Research in Infection and Inflammation, and
| | - Fengming Liu
- Tulane National Primate Research Center, Covington, Louisiana; and
- Department of Immunology and Microbiology, Tulane University School of Medicine, New Orleans, Louisiana
| | | | - Zhongnan Qin
- Tulane National Primate Research Center, Covington, Louisiana; and
- Department of Immunology and Microbiology, Tulane University School of Medicine, New Orleans, Louisiana
| | | | - Nadia A. Golden
- Tulane National Primate Research Center, Covington, Louisiana; and
| | | | - Mohammad E. Kabir
- Tulane National Primate Research Center, Covington, Louisiana; and
- Department of Immunology and Microbiology, Tulane University School of Medicine, New Orleans, Louisiana
| | | | | | - Mi Ren
- Tulane National Primate Research Center, Covington, Louisiana; and
- Department of Immunology and Microbiology, Tulane University School of Medicine, New Orleans, Louisiana
| | | | - Gabrielle Lehmicke
- Tulane National Primate Research Center, Covington, Louisiana; and
- Department of Immunology and Microbiology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Tracy Fischer
- Tulane National Primate Research Center, Covington, Louisiana; and
- Department of Immunology and Microbiology, Tulane University School of Medicine, New Orleans, Louisiana
| | | | - Alanna G. Wanek
- Department of Medicine and Department of Pediatrics, Center for Translational Research in Infection and Inflammation, and
| | - Angela Birnbaum
- Tulane National Primate Research Center, Covington, Louisiana; and
| | - Nicholas J. Maness
- Tulane National Primate Research Center, Covington, Louisiana; and
- Department of Immunology and Microbiology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Chad J. Roy
- Tulane National Primate Research Center, Covington, Louisiana; and
- Department of Immunology and Microbiology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Prasun K. Datta
- Tulane National Primate Research Center, Covington, Louisiana; and
- Department of Immunology and Microbiology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Jay Rappaport
- Tulane National Primate Research Center, Covington, Louisiana; and
- Department of Immunology and Microbiology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Jay K. Kolls
- Department of Medicine and Department of Pediatrics, Center for Translational Research in Infection and Inflammation, and
| | - Xuebin Qin
- Tulane National Primate Research Center, Covington, Louisiana; and
- Department of Immunology and Microbiology, Tulane University School of Medicine, New Orleans, Louisiana
| |
Collapse
|
12
|
Taefehshokr N, Taefehshokr S, Heit B. Mechanisms of Dysregulated Humoral and Cellular Immunity by SARS-CoV-2. Pathogens 2020; 9:E1027. [PMID: 33302366 PMCID: PMC7762606 DOI: 10.3390/pathogens9121027] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 11/30/2020] [Accepted: 12/06/2020] [Indexed: 02/06/2023] Open
Abstract
The current coronavirus disease 2019 (COVID-19) pandemic, a disease caused by severe acute respiratory syndrome corona virus 2 (SARS-CoV-2), was first identified in December 2019 in China, and has led to thousands of mortalities globally each day. While the innate immune response serves as the first line of defense, viral clearance requires activation of adaptive immunity, which employs B and T cells to provide sanitizing immunity. SARS-CoV-2 has a potent arsenal of mechanisms used to counter this adaptive immune response through processes, such as T cells depletion and T cell exhaustion. These phenomena are most often observed in severe SARS-CoV-2 patients, pointing towards a link between T cell function and disease severity. Moreover, neutralizing antibody titers and memory B cell responses may be short lived in many SARS-CoV-2 patients, potentially exposing these patients to re-infection. In this review, we discuss our current understanding of B and T cells immune responses and activity in SARS-CoV-2 pathogenesis.
Collapse
Affiliation(s)
- Nima Taefehshokr
- Department of Microbiology and Immunology, Center for Human Immunology, The University of Western Ontario, London, ON N0M 2N0, Canada;
| | - Sina Taefehshokr
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 51368, Iran;
| | - Bryan Heit
- Department of Microbiology and Immunology, Center for Human Immunology, The University of Western Ontario, London, ON N0M 2N0, Canada;
- Robarts Research Institute, London, ON N6A 5K8, Canada
| |
Collapse
|
13
|
Woldemeskel BA, Kwaa AK, Garliss CC, Laeyendecker O, Ray SC, Blankson JN. Healthy donor T cell responses to common cold coronaviruses and SARS-CoV-2. J Clin Invest 2020; 130:6631-6638. [PMID: 32966269 PMCID: PMC7685719 DOI: 10.1172/jci143120] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 09/09/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUNDT cell responses to the common cold coronaviruses have not been well characterized. Preexisting T cell immunity to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been reported, and a recent study suggested that this immunity was due to cross-recognition of the novel coronavirus by T cells specific for the common cold coronaviruses.METHODSWe used the enzyme-linked immunospot (ELISPOT) assay to characterize the T cell responses against peptide pools derived from the spike protein of 3 common cold coronaviruses (HCoV-229E, HCoV-NL63, and HCoV-OC43) and SARS-CoV-2 in 21 healthy donors (HDs) who were seronegative for SARS-CoV-2 and had no known exposure to the virus. An in vitro expansion culture assay was also used to analyze memory T cell responses.RESULTSWe found responses to the spike protein of the 3 common cold coronaviruses in many of the donors. We then focused on HCoV-NL63 and detected broad T cell responses to the spike protein and identified 22 targeted peptides. Interestingly, only 1 study participant had a significant response to SARS-CoV-2 spike or nucleocapsid protein in the ELISPOT assay. In vitro expansion studies suggested that T cells specific for the HCoV-NL63 spike protein in this individual could also recognize SARS-CoV-2 spike protein peptide pools.CONCLUSIONHDs have circulating T cells specific for the spike proteins of HCoV-NL63, HCoV-229E, and HCoV-OC43. T cell responses to SARS-CoV-2 spike and nucleocapsid proteins were present in only 1 participant and were potentially the result of cross-recognition by T cells specific for the common cold coronaviruses. Further studies are needed to determine whether this cross-recognition influences coronavirus disease 2019 (COVID-19) outcomes.
Collapse
Affiliation(s)
- Bezawit A. Woldemeskel
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Abena K. Kwaa
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Caroline C. Garliss
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Oliver Laeyendecker
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Baltimore, Maryland, USA
| | - Stuart C. Ray
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Joel N. Blankson
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
14
|
Lipsitch M, Grad YH, Sette A, Crotty S. Cross-reactive memory T cells and herd immunity to SARS-CoV-2. Nat Rev Immunol 2020; 20:709-713. [PMID: 33024281 PMCID: PMC7537578 DOI: 10.1038/s41577-020-00460-4] [Citation(s) in RCA: 192] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2020] [Indexed: 11/12/2022]
Abstract
Immunity is a multifaceted phenomenon. For T cell-mediated memory responses to SARS-CoV-2, it is relevant to consider their impact both on COVID-19 disease severity and on viral spread in a population. Here, we reflect on the immunological and epidemiological aspects and implications of pre-existing cross-reactive immune memory to SARS-CoV-2, which largely originates from previous exposure to circulating common cold coronaviruses. We propose four immunological scenarios for the impact of cross-reactive CD4+ memory T cells on COVID-19 severity and viral transmission. For each scenario, we discuss its implications for the dynamics of herd immunity and on projections of the global impact of SARS-CoV-2 on the human population, and assess its plausibility. In sum, we argue that key potential impacts of cross-reactive T cell memory are already incorporated into epidemiological models based on data of transmission dynamics, particularly with regard to their implications for herd immunity. The implications of immunological processes on other aspects of SARS-CoV-2 epidemiology are worthy of future study.
Collapse
Affiliation(s)
- Marc Lipsitch
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Yonatan H Grad
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, USA.
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA, USA.
| | - Shane Crotty
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, USA.
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA, USA.
| |
Collapse
|
15
|
Minakshi R, Jan AT, Rahman S, Kim J. A Testimony of the Surgent SARS-CoV-2 in the Immunological Panorama of the Human Host. Front Cell Infect Microbiol 2020; 10:575404. [PMID: 33262955 PMCID: PMC7687052 DOI: 10.3389/fcimb.2020.575404] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 08/26/2020] [Indexed: 12/19/2022] Open
Abstract
The resurgence of SARS in the late December of 2019 due to a novel coronavirus, SARS-CoV-2, has shadowed the world with a pandemic. The physiopathology of this virus is very much in semblance with the previously known SARS-CoV and MERS-CoV. However, the unprecedented transmissibility of SARS-CoV-2 has been puzzling the scientific efforts. Though the virus harbors much of the genetic and architectural features of SARS-CoV, a few differences acquired during its evolutionary selective pressure is helping the SARS-CoV-2 to establish prodigious infection. Making entry into host the cell through already established ACE-2 receptor concerted with the action of TMPRSS2, is considered important for the virus. During the infection cycle of SARS-CoV-2, the innate immunity witnesses maximum dysregulations in its molecular network causing fatalities in aged, comorbid cases. The overt immunopathology manifested due to robust cytokine storm shows ARDS in severe cases of SARS-CoV-2. A delayed IFN activation gives appropriate time to the replicating virus to evade the host antiviral response and cause disruption of the adaptive response as well. We have compiled various aspects of SARS-CoV-2 in relation to its unique structural features and ability to modulate innate as well adaptive response in host, aiming at understanding the dynamism of infection.
Collapse
Affiliation(s)
- Rinki Minakshi
- Department of Microbiology, Swami Shraddhanand College, University of Delhi, New Delhi, India
| | - Arif Tasleem Jan
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, India
| | - Safikur Rahman
- Munshi Singh College, BR Ambedkar Bihar University, Muzaffarpur, India
| | - Jihoe Kim
- Department of Medical Biotechnology, Research Institute of Cell Culture, Yeungnam University, Gyeongsan-si, South Korea
| |
Collapse
|
16
|
|
17
|
Lebeau G, Vagner D, Frumence É, Ah-Pine F, Guillot X, Nobécourt E, Raffray L, Gasque P. Deciphering SARS-CoV-2 Virologic and Immunologic Features. Int J Mol Sci 2020; 21:E5932. [PMID: 32824753 PMCID: PMC7460647 DOI: 10.3390/ijms21165932] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/11/2020] [Accepted: 08/14/2020] [Indexed: 02/07/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus (SARS-CoV)-2 and its associated pathology, COVID-19, have been of particular concerns these last months due to the worldwide burden they represent. The number of cases requiring intensive care being the critical point in this epidemic, a better understanding of the pathophysiology leading to these severe cases is urgently needed. Tissue lesions can be caused by the pathogen or can be driven by an overwhelmed immune response. Focusing on SARS-CoV-2, we and others have observed that this virus can trigger indeed an immune response that can be dysregulated in severe patients and leading to further injury to multiple organs. The purpose of the review is to bring to light the current knowledge about SARS-CoV-2 virologic and immunologic features. Thus, we address virus biology, life cycle, tropism for many organs and how ultimately it will affect several host biological and physiological functions, notably the immune response. Given that therapeutic avenues are now highly warranted, we also discuss the immunotherapies available to manage the infection and the clinical outcomes.
Collapse
Affiliation(s)
- Grégorie Lebeau
- Unité de Recherche Études Pharmaco-Immunologiques, Centre Hospitalier Universitaire La Réunion Site Félix Guyon, CS11021, 97400 Saint Denis de La Réunion, France; (D.V.); (É.F.); (X.G.); (P.G.)
- Laboratoire de Biologie, Secteur Laboratoire d’immunologie Clinique et Expérimentale de la Zone de l’océan Indien (LICE-OI), Centre Hospitalier Universitaire La Réunion Site Félix Guyon, CS11021, 97400 Saint Denis de La Réunion, France
| | - Damien Vagner
- Unité de Recherche Études Pharmaco-Immunologiques, Centre Hospitalier Universitaire La Réunion Site Félix Guyon, CS11021, 97400 Saint Denis de La Réunion, France; (D.V.); (É.F.); (X.G.); (P.G.)
- Unité Mixte de Recherche Processus Infectieux en Milieu Insulaire Tropical (PIMIT), Université de La Réunion, INSERM UMR 1187, CNRS 9192, IRD 249, Platform CYROI, 2 rue Maxime Rivière, 97491 Sainte Clotilde, La Réunion, France
| | - Étienne Frumence
- Unité de Recherche Études Pharmaco-Immunologiques, Centre Hospitalier Universitaire La Réunion Site Félix Guyon, CS11021, 97400 Saint Denis de La Réunion, France; (D.V.); (É.F.); (X.G.); (P.G.)
- Laboratoire de Biologie, Secteur Laboratoire d’immunologie Clinique et Expérimentale de la Zone de l’océan Indien (LICE-OI), Centre Hospitalier Universitaire La Réunion Site Félix Guyon, CS11021, 97400 Saint Denis de La Réunion, France
| | - Franck Ah-Pine
- Service d’anatomo-Pathologie, Centre Hospitalier Universitaire Sud Réunion, 97410 Saint Pierre, France;
| | - Xavier Guillot
- Unité de Recherche Études Pharmaco-Immunologiques, Centre Hospitalier Universitaire La Réunion Site Félix Guyon, CS11021, 97400 Saint Denis de La Réunion, France; (D.V.); (É.F.); (X.G.); (P.G.)
- Service de Rhumatologie, Centre Hospitalier Universitaire La Réunion Site Félix Guyon, CS11021, 97400 Saint Denis de La Réunion, France
| | - Estelle Nobécourt
- Service d’endocrinologie Diabétologie, Centre Hospitalier Universitaire Sud Réunion, 97410 Saint Pierre, France;
- Université de Formation et de Recherche Santé, Université de la Réunion, 97400 Saint-Denis, France
| | - Loïc Raffray
- Service de Médecine Interne, Centre Hospitalier Universitaire La Réunion Site Félix Guyon, CS11021, 97400 Saint Denis de La Réunion, France;
| | - Philippe Gasque
- Unité de Recherche Études Pharmaco-Immunologiques, Centre Hospitalier Universitaire La Réunion Site Félix Guyon, CS11021, 97400 Saint Denis de La Réunion, France; (D.V.); (É.F.); (X.G.); (P.G.)
- Laboratoire de Biologie, Secteur Laboratoire d’immunologie Clinique et Expérimentale de la Zone de l’océan Indien (LICE-OI), Centre Hospitalier Universitaire La Réunion Site Félix Guyon, CS11021, 97400 Saint Denis de La Réunion, France
| |
Collapse
|
18
|
Vari SG, International Research and Innovation in Medicine Program Cedars-Sinai Medical Center, Los Angeles, CA, USA. COVID-19 infection: disease mechanism, vascular dysfunction, immune responses, markers, multiorgan failure, treatments, and vaccination. UKRAINIAN BIOCHEMICAL JOURNAL 2020. [DOI: 10.15407/ubj92.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
19
|
Abstract
Recent studies have shown T cell reactivity to SARS-CoV-2 in 20–50% of unexposed individuals; it is speculated that this is due to T cell memory to common cold coronaviruses. Here, Crotty and Sette discuss the potential implications of these findings for disease severity, herd immunity and vaccine development.
Collapse
Affiliation(s)
- Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, USA.
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA, USA.
| | - Shane Crotty
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, USA.
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA, USA.
| |
Collapse
|
20
|
Altmann DM, Boyton RJ. SARS-CoV-2 T cell immunity: Specificity, function, durability, and role in protection. Sci Immunol 2020; 5:5/49/eabd6160. [DOI: 10.1126/sciimmunol.abd6160] [Citation(s) in RCA: 188] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 07/14/2020] [Indexed: 01/02/2023]
Abstract
In efforts to synthesize a clear understanding of SARS-CoV-2 protective immunity, antibody analysis has been paralleled by T cell studies across asymptomatic, mild and severe COVID-19. Defining CD4 and CD8 effector functions in protection is important considering that antibody responses appear short-lived and T cell memory is potentially more durable. To fully understand population level immunity, screening for both antibody and T cell immunity using standardized testing methods would be beneficial.
Collapse
Affiliation(s)
- Daniel M. Altmann
- Department of Immunology and Inflammation, Imperial College, London W12 0NN, UK
| | - Rosemary J. Boyton
- Department of Infectious Disease, Imperial College, London W12 0NN, UK
- Lung Division, Royal Brompton & Harefield NHS Foundation Trust, London, UK
| |
Collapse
|