1
|
Morris VS, Richards EMB, Morris R, Dart C, Helassa N. Structure-Function Diversity of Calcium-Binding Proteins (CaBPs): Key Roles in Cell Signalling and Disease. Cells 2025; 14:152. [PMID: 39936944 PMCID: PMC11816674 DOI: 10.3390/cells14030152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/10/2025] [Accepted: 01/16/2025] [Indexed: 02/13/2025] Open
Abstract
Calcium (Ca2+) signalling is a fundamental cellular process, essential for a wide range of physiological functions. It is regulated by various mechanisms, including a diverse family of Ca2+-binding proteins (CaBPs), which are structurally and functionally similar to calmodulin (CaM). The CaBP family consists of six members (CaBP1, CaBP2, CaBP4, CaBP5, CaBP7, and CaBP8), each exhibiting unique localisation, structural features, and functional roles. In this review, we provide a structure-function analysis of the CaBP family, highlighting the key similarities and differences both within the family and in comparison to CaM. It has been shown that CaBP1-5 share similar structural and interaction characteristics, while CaBP7 and CaBP8 form a distinct subfamily with unique properties. This review of current CaBP knowledge highlights the critical gaps in our understanding, as some CaBP members are less well characterised than others. We also examine pathogenic mutations within CaBPs and their functional impact, showing the need for further research to improve treatment options for associated disorders.
Collapse
Affiliation(s)
| | | | | | | | - Nordine Helassa
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 3BX, UK; (V.S.M.); (E.M.B.R.); (R.M.); (C.D.)
| |
Collapse
|
2
|
Xiong L, Huang W, Liu Y, Zhao H, Wang Y, Jin Y, Zhang L, Zhang Y. Study on Antipyretic Properties of Phenolics in Lonicerae Japonicae Flos Based on Ultrahigh Performance Liquid Chromatography-Tandem Mass Spectrometry Combined with Network Pharmacology. J Food Biochem 2023; 2023:1-17. [DOI: 10.1155/2023/8883860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Objective. To identify and quantify the active phenolic components in Lonicerae japonicae flos (LJF) for fever treatment and their mechanism of action using network pharmacology and molecular docking. Methods. Based on qualitative analysis of LJF, 194 phenolics were obtained, including 81 phenolic acids and 113 flavonoids. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses were used to identify potential targets for these components to interact with fever. Molecular docking with microsomal PGE2 synthase-1, EP1, EP2, EP3, and EP4 targets was used to determine antipyretic components. The antipyretic efficacy of the main components was verified by in vivo experiments. Finally, high-performance liquid chromatography-tandem mass spectrometry was used to quantify the main antipyretic components of LJF. Results. Phenolics in LJF may prevent and treat fever by participating in calcium signaling, regulating TRP channels, and cAMP signaling. Luteolin-7-O-glucoside, apigenin-7-O-glucoside, 3,5-O-dicaffeoylquinic acid, luteolin, and other components have a good docking effect with PGE2 synthase-1 and its four subtypes. 3,5-O-dicaffeoylquinic acid, luteolin-7-O-glucoside, and apigenin-7-O-glucoside have good antipyretic effects in a yeast-induced pyrexia model. The content of these antipyretic components varies with the developmental period of LJF. Phenolic acids are the main components that distinguish the different developmental periods of LJF. Conclusion. The potential antipyretic components and molecular mechanisms of phenolics provide a basis for the traditional medicinal effects and future development and utilization of LJF.
Collapse
Affiliation(s)
- Lewen Xiong
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Wenjing Huang
- Weifang Traditional Chinese Medicine Hospital, Weifang, China
| | - Yan Liu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Hongwei Zhao
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yang Wang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Ying Jin
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Longfei Zhang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yongqing Zhang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| |
Collapse
|
3
|
Muñoz-Reyes D, McClelland LJ, Arroyo-Urea S, Sánchez-Yepes S, Sabín J, Pérez-Suárez S, Menendez M, Mansilla A, García-Nafría J, Sprang S, Sanchez-Barrena MJ. The neuronal calcium sensor NCS-1 regulates the phosphorylation state and activity of the Gα chaperone and GEF Ric-8A. eLife 2023; 12:e86151. [PMID: 38018500 PMCID: PMC10732572 DOI: 10.7554/elife.86151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 11/24/2023] [Indexed: 11/30/2023] Open
Abstract
The neuronal calcium sensor 1 (NCS-1), an EF-hand Ca2+ binding protein, and Ric-8A coregulate synapse number and probability of neurotransmitter release. Recently, the structures of Ric-8A bound to Gα have revealed how Ric-8A phosphorylation promotes Gα recognition and activity as a chaperone and guanine nucleotide exchange factor. However, the molecular mechanism by which NCS-1 regulates Ric-8A activity and its interaction with Gα subunits is not well understood. Given the interest in the NCS-1/Ric-8A complex as a therapeutic target in nervous system disorders, it is necessary to shed light on this molecular mechanism of action at atomic level. We have reconstituted NCS-1/Ric-8A complexes to conduct a multimodal approach and determine the sequence of Ca2+ signals and phosphorylation events that promote the interaction of Ric-8A with Gα. Our data show that the binding of NCS-1 and Gα to Ric-8A are mutually exclusive. Importantly, NCS-1 induces a structural rearrangement in Ric-8A that traps the protein in a conformational state that is inaccessible to casein kinase II-mediated phosphorylation, demonstrating one aspect of its negative regulation of Ric-8A-mediated G-protein signaling. Functional experiments indicate a loss of Ric-8A guanine nucleotide exchange factor (GEF) activity toward Gα when complexed with NCS-1, and restoration of nucleotide exchange activity upon increasing Ca2+ concentration. Finally, the high-resolution crystallographic data reported here define the NCS-1/Ric-8A interface and will allow the development of therapeutic synapse function regulators with improved activity and selectivity.
Collapse
Affiliation(s)
- Daniel Muñoz-Reyes
- Department of Crystallography and Structural Biology, Institute of Physical-Chemistry 'Blas Cabrera', CSICMadridSpain
| | - Levi J McClelland
- Center for Biomolecular Structure and Dynamics, and Division of Biological Sciences, University of MontanaMissoulaUnited States
| | - Sandra Arroyo-Urea
- Institute for Biocomputation and Physics of Complex Systems (BIFI) and Laboratorio de Microscopías Avanzadas (LMA), University of ZaragozaZaragozaSpain
| | - Sonia Sánchez-Yepes
- Department of Neurobiology, Instituto Ramón y Cajal de Investigación Sanitaria, Hospital Universitario Ramón y CajalMadridSpain
| | - Juan Sabín
- AFFINImeter Scientific & Development team, Software 4 Science DevelopmentsSantiago de CompostelaSpain
- Departamento de Física Aplicada, Universidad de Santiago de CompostelaSantiago de CompostelaSpain
| | - Sara Pérez-Suárez
- Department of Crystallography and Structural Biology, Institute of Physical-Chemistry 'Blas Cabrera', CSICMadridSpain
| | - Margarita Menendez
- Department of Biological Physical-Chemisty, Institute of Physical-Chemistry 'Blas Cabrera', CSICMadridSpain
- Ciber of Respiratory Diseases, ISCIIIMadridSpain
| | - Alicia Mansilla
- Department of Neurobiology, Instituto Ramón y Cajal de Investigación Sanitaria, Hospital Universitario Ramón y CajalMadridSpain
- Department of Systems Biology, Universidad de AlcalaMadridSpain
| | - Javier García-Nafría
- Institute for Biocomputation and Physics of Complex Systems (BIFI) and Laboratorio de Microscopías Avanzadas (LMA), University of ZaragozaZaragozaSpain
| | - Stephen Sprang
- Center for Biomolecular Structure and Dynamics, and Division of Biological Sciences, University of MontanaMissoulaUnited States
| | - Maria Jose Sanchez-Barrena
- Department of Crystallography and Structural Biology, Institute of Physical-Chemistry 'Blas Cabrera', CSICMadridSpain
| |
Collapse
|
4
|
Zhang L, Cheng X, Tao S, Peng LY, Zhu Z, Bao YY. Neuronal calcium sensor 2 is key to moulting and oocyte development in the brown planthopper, Nilaparvata lugens. INSECT MOLECULAR BIOLOGY 2022; 31:722-733. [PMID: 35789509 DOI: 10.1111/imb.12799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Intracellular calcium (Ca2+ ) is vital for signal transduction in many cellular events. Several Ca2+ -binding proteins mediate the transduction of intracellular calcium signals. The EF-hand motifs containing neuronal calcium sensor (NCS) proteins are mainly expressed in the nervous system, where they have important roles in the regulation of a variety of neuronal functions. NCS1 has four EF-hand motifs and well-defined neuronal development functions in a variety of eukaryotes. However, NCS2 has only been identified in invertebrates such as insects and nematodes thus far. The functions of NCS2 remain largely unknown. Here, we identified an orthologous NCS2 in the hemipteran Nilaparvata lugens. Based on qRT-PCR, this gene was found to be primarily expressed in the brain. Knockdown of NCS2 in each nymphal instar by RNA interference led to lethality and caused aggradation and disordered arrangement of lipid droplets in the ovaries and testes of adults, which were associated with the absence of mature oocytes in female ovaries and reduction of spermiation in male adults. Our findings revealed a novel function for NCS2 as a regulator in development and reproduction and suggested that this protein had an important role in modulating lipid droplet remodelling in ovary and testis of N. lugens adults.
Collapse
Affiliation(s)
- Lu Zhang
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Xu Cheng
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Shuai Tao
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Lu-Yao Peng
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Zhen Zhu
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Yan-Yuan Bao
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| |
Collapse
|
5
|
Function of Drosophila Synaptotagmins in membrane trafficking at synapses. Cell Mol Life Sci 2021; 78:4335-4364. [PMID: 33619613 PMCID: PMC8164606 DOI: 10.1007/s00018-021-03788-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/29/2021] [Accepted: 02/09/2021] [Indexed: 12/13/2022]
Abstract
The Synaptotagmin (SYT) family of proteins play key roles in regulating membrane trafficking at neuronal synapses. Using both Ca2+-dependent and Ca2+-independent interactions, several SYT isoforms participate in synchronous and asynchronous fusion of synaptic vesicles (SVs) while preventing spontaneous release that occurs in the absence of stimulation. Changes in the function or abundance of the SYT1 and SYT7 isoforms alter the number and route by which SVs fuse at nerve terminals. Several SYT family members also regulate trafficking of other subcellular organelles at synapses, including dense core vesicles (DCV), exosomes, and postsynaptic vesicles. Although SYTs are linked to trafficking of multiple classes of synaptic membrane compartments, how and when they interact with lipids, the SNARE machinery and other release effectors are still being elucidated. Given mutations in the SYT family cause disorders in both the central and peripheral nervous system in humans, ongoing efforts are defining how these proteins regulate vesicle trafficking within distinct neuronal compartments. Here, we review the Drosophila SYT family and examine their role in synaptic communication. Studies in this invertebrate model have revealed key similarities and several differences with the predicted activity of their mammalian counterparts. In addition, we highlight the remaining areas of uncertainty in the field and describe outstanding questions on how the SYT family regulates membrane trafficking at nerve terminals.
Collapse
|
6
|
Guo C, Webb SE, Chan CM, Miller AL. TPC2-mediated Ca 2+ signaling is required for axon extension in caudal primary motor neurons in zebrafish embryos. J Cell Sci 2020; 133:jcs244780. [PMID: 32546534 DOI: 10.1242/jcs.244780] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 05/27/2020] [Indexed: 12/13/2022] Open
Abstract
The role of two-pore channel type 2 (TPC2, encoded by tcpn2)-mediated Ca2+ release was recently characterized in zebrafish during establishment of the early spinal circuitry, one of the key events in the coordination of neuromuscular activity. Here, we extend our study to investigate the in vivo role of TPC2 in the regulation of caudal primary motor neuron (CaP) axon extension. We used a combination of TPC2 knockdown with a translation-blocking morpholino antisense oligonucleotide (MO), TPC2 knockout via the generation of a tpcn2dhkz1a mutant line of zebrafish using CRISPR/Cas9 gene-editing and pharmacological inhibition of TPC2 via incubation with bafilomycin A1 (an H+-ATPase inhibitor) or trans-ned-19 (an NAADP receptor antagonist), and showed that these treatments attenuated CaP Ca2+ signaling and inhibited axon extension. We also characterized the expression of an arc1-like transcript in CaPs grown in primary culture. MO-mediated knockdown of ARC1-like in vivo led to attenuation of the Ca2+ transients in the CaP growth cones and an inhibition of axon extension. Together, our new data suggest a link between ARC1-like, TPC2 and Ca2+ signaling during axon extension in zebrafish.
Collapse
Affiliation(s)
- Chenxi Guo
- Division of Life Science and State Key Laboratory for Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Sarah E Webb
- Division of Life Science and State Key Laboratory for Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Ching Man Chan
- Division of Life Science and State Key Laboratory for Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Andrew L Miller
- Division of Life Science and State Key Laboratory for Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| |
Collapse
|
7
|
English K, Shepherd A, Uzor NE, Trinh R, Kavelaars A, Heijnen CJ. Astrocytes rescue neuronal health after cisplatin treatment through mitochondrial transfer. Acta Neuropathol Commun 2020; 8:36. [PMID: 32197663 PMCID: PMC7082981 DOI: 10.1186/s40478-020-00897-7] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 02/13/2020] [Indexed: 12/28/2022] Open
Abstract
Neurodegenerative disorders, including chemotherapy-induced cognitive impairment, are associated with neuronal mitochondrial dysfunction. Cisplatin, a commonly used chemotherapeutic, induces neuronal mitochondrial dysfunction in vivo and in vitro. Astrocytes are key players in supporting neuronal development, synaptogenesis, axonal growth, metabolism and, potentially mitochondrial health. We tested the hypothesis that astrocytes transfer healthy mitochondria to neurons after cisplatin treatment to restore neuronal health.We used an in vitro system in which astrocytes containing mito-mCherry-labeled mitochondria were co-cultured with primary cortical neurons damaged by cisplatin. Culture of primary cortical neurons with cisplatin reduced neuronal survival and depolarized neuronal mitochondrial membrane potential. Cisplatin induced abnormalities in neuronal calcium dynamics that were characterized by increased resting calcium levels, reduced calcium responses to stimulation with KCl, and slower calcium clearance. The same dose of cisplatin that caused neuronal damage did not affect astrocyte survival or astrocytic mitochondrial respiration. Co-culture of cisplatin-treated neurons with astrocytes increased neuronal survival, restored neuronal mitochondrial membrane potential, and normalized neuronal calcium dynamics especially in neurons that had received mitochondria from astrocytes which underlines the importance of mitochondrial transfer. These beneficial effects of astrocytes were associated with transfer of mitochondria from astrocytes to cisplatin-treated neurons. We show that siRNA-mediated knockdown of the Rho-GTPase Miro-1 in astrocytes reduced mitochondrial transfer from astrocytes to neurons and prevented the normalization of neuronal calcium dynamics.In conclusion, we showed that transfer of mitochondria from astrocytes to neurons rescues neurons from the damage induced by cisplatin treatment. Astrocytes are far more resistant to cisplatin than cortical neurons. We propose that transfer of functional mitochondria from astrocytes to neurons is an important repair mechanism to protect the vulnerable cortical neurons against the toxic effects of cisplatin.
Collapse
Affiliation(s)
- Krystal English
- Division of Internal Medicine, Department of Symptom Research, Laboratories of Neuroimmunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Andrew Shepherd
- Division of Internal Medicine, Department of Symptom Research, Laboratories of Neuroimmunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Ndidi-Ese Uzor
- Department of Neurobiology & Anatomy, The University of Texas McGovern Medical School, Houston, TX 77030 USA
- Department of Neurology, The University of Texas McGovern Medical School, Houston, TX 77030 USA
| | - Ronnie Trinh
- Division of Internal Medicine, Department of Symptom Research, Laboratories of Neuroimmunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Annemieke Kavelaars
- Division of Internal Medicine, Department of Symptom Research, Laboratories of Neuroimmunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Cobi J. Heijnen
- Division of Internal Medicine, Department of Symptom Research, Laboratories of Neuroimmunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| |
Collapse
|
8
|
Sasaoka M, Ota T, Kageyama M. Rotenone-induced inner retinal degeneration via presynaptic activation of voltage-dependent sodium and L-type calcium channels in rats. Sci Rep 2020; 10:969. [PMID: 31969611 PMCID: PMC6976703 DOI: 10.1038/s41598-020-57638-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 12/31/2019] [Indexed: 01/11/2023] Open
Abstract
Rotenone, a mitochondrial complex I inhibitor, causes retinal degeneration via unknown mechanisms. To elucidate the molecular mechanisms of its action, we further characterized a rat model of rotenone-induced retinal degeneration. Intravitreal injection of rotenone (2 nmol/eye) damaged mainly the inner retinal layers, including cell loss in the ganglion cell and inner nuclear layers, which were very similar to those induced by 10 nmol/eye N-methyl-D-aspartate (NMDA). These morphological changes were accompanied by the reduced b-wave amplitude of electroretinogram, and increased immunostaining of 2,4-dinitrophenyl, an oxidative stress marker. Rotenone also downregulated expression of neurofilament light-chain gene (Nfl) as a retinal ganglion cell (RGC) marker. This effect was prevented by simultaneous injection of rotenone with antioxidants or NMDA receptor antagonists. More importantly, voltage-dependent sodium and L-type calcium channel blockers and intracellular calcium signaling modulators remarkably suppressed rotenone-induced Nfl downregulation, whereas none of these agents modified NMDA-induced Nfl downregulation. These results suggest that rotenone-induced inner retinal degeneration stems from indirect postsynaptic NMDA stimulation that is triggered by oxidative stress-mediated presynaptic intracellular calcium signaling via activation of voltage-dependent sodium and L-type calcium channels.
Collapse
Affiliation(s)
- Masaaki Sasaoka
- Global Alliances and External Research, Santen Pharmaceutical Co., Ltd., Ikoma-shi, Nara, 630-0101, Japan
| | - Takashi Ota
- Global Alliances and External Research, Santen Pharmaceutical Co., Ltd., Ikoma-shi, Nara, 630-0101, Japan
| | - Masaaki Kageyama
- Global Alliances and External Research, Santen Pharmaceutical Co., Ltd., Ikoma-shi, Nara, 630-0101, Japan.
| |
Collapse
|
9
|
Abstract
Synaptic plasticity is a fundamental property of neurons referring to the activity-dependent changes in the strength and efficacy of synaptic transmission at preexisting synapses. Such changes can last from milliseconds to hours, days, or even longer and are involved in learning and memory as well as in development and response of the brain to injuries. Several types of synaptic plasticity have been described across neuronal types, brain regions, and species, but all of them share in one way or another capital importance of Ca2+-mediated processes. In this chapter, we will focus on the Ca2+-dependent events necessary for the induction and expression of multiple forms of synaptic plasticity.
Collapse
|
10
|
Ijomone OM, Aluko OM, Okoh COA, Martins AC, Aschner M. Role for calcium signaling in manganese neurotoxicity. J Trace Elem Med Biol 2019; 56:146-155. [PMID: 31470248 DOI: 10.1016/j.jtemb.2019.08.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 08/15/2019] [Accepted: 08/16/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND Calcium is an essential macronutrient that is involved in many cellular processes. Homeostatic control of intracellular levels of calcium ions [Ca2+] is vital to maintaining cellular structure and function. Several signaling molecules are involved in regulating Ca2+ levels in cells and perturbation of calcium signaling processes is implicated in several neurodegenerative and neurologic conditions. Manganese [Mn] is a metal which is essential for basic physiological functions. However, overexposure to Mn from environmental contamination and workplace hazards is a global concern. Mn overexposure leads to its accumulation in several human organs particularly the brain. Mn accumulation in the brain results in a manganism, a Parkinsonian-like syndrome. Additionally, Mn is a risk factor for several neurodegenerative diseases including Parkinson's disease and Alzheimer's disease. Mn neurotoxicity also affects several neurotransmitter systems including dopaminergic, cholinergic and GABAergic. The mechanisms of Mn neurotoxicity are still being elucidated. AIM The review will highlight a potential role for calcium signaling molecules in the mechanisms of Mn neurotoxicity. CONCLUSION Ca2+ regulation influences the neurodegenerative process and there is possible role for perturbed calcium signaling in Mn neurotoxicity. Mechanisms implicated in Mn-induced neurodegeneration include oxidative stress, generation of free radicals, and apoptosis. These are influenced by mitochondrial integrity which can be dependent on intracellular Ca2+ homeostasis. Nevertheless, further elucidation of the direct effects of calcium signaling dysfunction and calcium-binding proteins activities in Mn neurotoxicity is required.
Collapse
Affiliation(s)
- Omamuyovwi M Ijomone
- The Neuro- Lab, Department of Human Anatomy, Federal University of Technology Akure, Ondo, Nigeria.
| | - Oritoke M Aluko
- Department of Physiology, Federal University of Technology Akure, Ondo, Nigeria
| | - Comfort O A Okoh
- The Neuro- Lab, Department of Human Anatomy, Federal University of Technology Akure, Ondo, Nigeria
| | - Airton Cunha Martins
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States.
| |
Collapse
|
11
|
Calcium Signaling in Neurons and Glial Cells: Role of Cav1 channels. Neuroscience 2019; 421:95-111. [DOI: 10.1016/j.neuroscience.2019.09.041] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 09/27/2019] [Accepted: 09/30/2019] [Indexed: 11/18/2022]
|
12
|
Rocha A, Trujillo KA. Neurotoxicity of low-level lead exposure: History, mechanisms of action, and behavioral effects in humans and preclinical models. Neurotoxicology 2019; 73:58-80. [PMID: 30836127 PMCID: PMC7462347 DOI: 10.1016/j.neuro.2019.02.021] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 02/26/2019] [Accepted: 02/27/2019] [Indexed: 12/20/2022]
Abstract
Lead is a neurotoxin that produces long-term, perhaps irreversible, effects on health and well-being. This article summarizes clinical and preclinical studies that have employed a variety of research techniques to examine the neurotoxic effects of low levels of lead exposure. A historical perspective is presented, followed by an overview of studies that examined behavioral and cognitive outcomes. In addition, a short summary of potential mechanisms of action is provided with a focus on calcium-dependent processes. The current level of concern, or reference level, set by the CDC is 5 μg/dL of lead in blood and a revision to 3.5 μg/dL has been suggested. However, levels of lead below 3 μg/dL have been shown to produce diminished cognitive function and maladaptive behavior in humans and animal models. Because much of the research has focused on higher concentrations of lead, work on low concentrations is needed to better understand the neurobehavioral effects and mechanisms of action of this neurotoxic metal.
Collapse
MESH Headings
- Adolescent
- Adolescent Behavior/drug effects
- Adolescent Development/drug effects
- Adult
- Age Factors
- Aged
- Animals
- Brain/drug effects
- Brain/growth & development
- Child
- Child Behavior/drug effects
- Child Development/drug effects
- Child, Preschool
- Cognition/drug effects
- Dose-Response Relationship, Drug
- History, 20th Century
- History, 21st Century
- Humans
- Lead Poisoning, Nervous System, Adult/history
- Lead Poisoning, Nervous System, Adult/physiopathology
- Lead Poisoning, Nervous System, Adult/psychology
- Lead Poisoning, Nervous System, Childhood/history
- Lead Poisoning, Nervous System, Childhood/physiopathology
- Lead Poisoning, Nervous System, Childhood/psychology
- Mice
- Middle Aged
- Rats
- Risk Assessment
- Risk Factors
- Toxicity Tests
- Young Adult
Collapse
Affiliation(s)
- Angelica Rocha
- California State University San Marcos, San Marcos, CA 92069, USA.
| | - Keith A Trujillo
- California State University San Marcos, San Marcos, CA 92069, USA
| |
Collapse
|
13
|
Burgoyne RD, Helassa N, McCue HV, Haynes LP. Calcium Sensors in Neuronal Function and Dysfunction. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a035154. [PMID: 30833454 DOI: 10.1101/cshperspect.a035154] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Calcium signaling in neurons as in other cell types can lead to varied changes in cellular function. Neuronal Ca2+ signaling processes have also become adapted to modulate the function of specific pathways over a wide variety of time domains and these can have effects on, for example, axon outgrowth, neuronal survival, and changes in synaptic strength. Ca2+ also plays a key role in synapses as the trigger for fast neurotransmitter release. Given its physiological importance, abnormalities in neuronal Ca2+ signaling potentially underlie many different neurological and neurodegenerative diseases. The mechanisms by which changes in intracellular Ca2+ concentration in neurons can bring about diverse responses is underpinned by the roles of ubiquitous or specialized neuronal Ca2+ sensors. It has been established that synaptotagmins have key functions in neurotransmitter release, and, in addition to calmodulin, other families of EF-hand-containing neuronal Ca2+ sensors, including the neuronal calcium sensor (NCS) and the calcium-binding protein (CaBP) families, play important physiological roles in neuronal Ca2+ signaling. It has become increasingly apparent that these various Ca2+ sensors may also be crucial for aspects of neuronal dysfunction and disease either indirectly or directly as a direct consequence of genetic variation or mutations. An understanding of the molecular basis for the regulation of the targets of the Ca2+ sensors and the physiological roles of each protein in identified neurons may contribute to future approaches to the development of treatments for a variety of human neuronal disorders.
Collapse
Affiliation(s)
- Robert D Burgoyne
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Nordine Helassa
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Hannah V McCue
- Centre for Genomic Research, University of Liverpool, Liverpool, United Kingdom
| | - Lee P Haynes
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
14
|
Catoni C, Calì T, Brini M. Calcium, Dopamine and Neuronal Calcium Sensor 1: Their Contribution to Parkinson's Disease. Front Mol Neurosci 2019; 12:55. [PMID: 30967759 PMCID: PMC6440390 DOI: 10.3389/fnmol.2019.00055] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 02/14/2019] [Indexed: 01/11/2023] Open
Abstract
Parkinson’s disease (PD) is a debilitating neurodegenerative disorder characterized by loss of dopaminergic neurons in the substantia nigra pars compacta. The causes of PD in humans are still unknown, although metabolic characteristics of the neurons affected by the disease have been implicated in their selective susceptibility. Mitochondrial dysfunction and proteostatic stress are recognized to be important in the pathogenesis of both familial and sporadic PD, and they both culminate in bioenergetic deficits. Exposure to calcium overload has recently emerged as a key determinant, and pharmacological treatment that inhibits Ca2+ entry diminishes neuronal damage in chemical models of PD. In this review, we first introduce general concepts on neuronal Ca2+ signaling and then summarize the current knowledge on fundamental properties of substantia nigra pars compacta dopaminergic neurons, on the role of the interplay between Ca2+ and dopamine signaling in neuronal activity and susceptibility to cell death. We also discuss the possible involvement of a “neglected” player, the Neuronal Calcium Sensor-1 (NCS-1), which has been shown to participate to dopaminergic signaling by regulating dopamine dependent receptor desensitization in normal brain but, data supporting a direct role in PD pathogenesis are still missing. However, it is intriguing to speculate that the Ca2+-dependent modulation of NCS-1 activity could eventually counteract dopaminergic neurons degeneration.
Collapse
Affiliation(s)
| | - Tito Calì
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Marisa Brini
- Department of Biology, University of Padova, Padua, Italy
| |
Collapse
|
15
|
Azam S, Miksovska J. Pb 2+ Binds to Downstream Regulatory Element Antagonist Modulator (DREAM) and Modulates Its Interactions with Binding Partners: A Link between Neuronal Calcium Sensors and Pb 2+ Neurotoxicity. ACS Chem Neurosci 2019; 10:1263-1272. [PMID: 30399317 DOI: 10.1021/acschemneuro.8b00335] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Pb2+ exposure leads to diverse neurological disorders; however, the mechanism of Pb2+-induced neurotoxicity is not clearly understood. Here we demonstrate that Pb2+ binds to EF-hands in apo-DREAM (downstream regulatory element antagonist modulator) with a lower equilibrium dissociation constant ( Kd = 20 ± 2 nM) than Ca2+ ( Kd = 1 μM). Based on the Trp169 emission and CD spectra, we report that Pb2+ association triggers changes in the protein secondary and tertiary structures that are analogous to those previously observed for Ca2+-bound protein. The hydrophobic cavity in the C-terminal domain of DREAM is solvent exposed in the presence of Pb2+ as determined using a hydrophobic probe, 1-anilinonaphthalene-8-sulfonic acid (1,8-ANS). Pb2+ association with DREAM also modulates interactions between DREAM and its intracellular partners as evident from the fact that Pb2+-bound DREAM associates with peptide-based model systems, presenilin-1 helix-9 "PS1HL9" KV4.3(70-90) "site-2" and KV4.3(2-22) "site 1". Namely, dissociation constants for Pb2+-bound DREAM interaction with PS1HL9 ( Kd = 2.4 ± 0.1 μM), site-2 ( Kd = 11.0 ± 0.5 μM) and site 1 ( Kd = 5.0 ± 0.6 μM) are nearly identical to those observed for Ca2+ bound DREAM. Isothermal titration calorimetry data reveal that Pb2+ binds to two high-affinity sites in Ca2+ bound DREAM with the overall apparent constant of 4.81 ± 0.06 μM and its binding to Ca2+ bound DREAM is entropy-driven. Taking into account the structural and sequence similarity between DREAM and other neuronal calcium sensor (NCS) proteins, these results strongly indicate that DREAM and possibly other NCS proteins bind Pb2+ with a higher affinity than that for Ca2+ and Pb2+ interactions with NCS proteins can contribute to Pb2+-induced neurotoxicity.
Collapse
Affiliation(s)
- Samiol Azam
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Jaroslava Miksovska
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| |
Collapse
|
16
|
Mundhenk J, Fusi C, Kreutz MR. Caldendrin and Calneurons-EF-Hand CaM-Like Calcium Sensors With Unique Features and Specialized Neuronal Functions. Front Mol Neurosci 2019; 12:16. [PMID: 30787867 PMCID: PMC6372560 DOI: 10.3389/fnmol.2019.00016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 01/17/2019] [Indexed: 01/02/2023] Open
Abstract
The calmodulin (CaM)-like Ca2+-sensor proteins caldendrin, calneuron-1 and -2 are members of the neuronal calcium-binding protein (nCaBP)-family, a family that evolved relatively late during vertebrate evolution. All three proteins are abundant in brain but show a strikingly different subcellular localization. Whereas caldendrin is enriched in the postsynaptic density (PSD), calneuron-1 and -2 accumulate at the trans-Golgi-network (TGN). Caldendrin exhibit a unique bipartite structure with a basic and proline-rich N-terminus while calneurons are the only EF-Hand CaM-like transmembrane proteins. These uncommon structural features come along with highly specialized functions of calneurons in Golgi-to-plasma-membrane trafficking and for caldendrin in actin-remodeling in dendritic spine synapses. In this review article, we will provide a synthesis of available data on the structure and biophysical properties of all three proteins. We will then discuss their cellular function with special emphasis on synaptic neurotransmission. Finally, we will summarize the evidence for a role of these proteins in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Jennifer Mundhenk
- RG Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Camilla Fusi
- RG Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Michael R Kreutz
- RG Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Leibniz Group "Dendritic Organelles and Synaptic Function", Center for Molecular Neurobiology, ZMNH, Hamburg, Germany
| |
Collapse
|
17
|
Azam S, Louis GS, Miksovska J. Cadmium association with DREAM promotes DREAM interactions with intracellular partners in a similar manner to its physiological ligand, calcium. Metallomics 2019; 11:1115-1127. [DOI: 10.1039/c9mt00059c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cd2+exposure has been associated with neurodegenerative diseases and other pathologies, but the underlying mechanism through which it exerts toxic effects remain unresolved.
Collapse
Affiliation(s)
- Samiol Azam
- Department of Chemistry and Biochemistry, Florida International University
- Miami
- USA
| | - Gessica St Louis
- Department of Chemistry and Biochemistry, Florida International University
- Miami
- USA
| | - Jaroslava Miksovska
- Department of Chemistry and Biochemistry, Florida International University
- Miami
- USA
- Biomolecular Sciences Institute, Florida International University
- Miami
| |
Collapse
|
18
|
Franco R, Aguinaga D, Reyes I, Canela EI, Lillo J, Tarutani A, Hasegawa M, Del Ser-Badia A, Del Rio JA, Kreutz MR, Saura CA, Navarro G. N-Methyl-D-Aspartate Receptor Link to the MAP Kinase Pathway in Cortical and Hippocampal Neurons and Microglia Is Dependent on Calcium Sensors and Is Blocked by α-Synuclein, Tau, and Phospho-Tau in Non-transgenic and Transgenic APP Sw,Ind Mice. Front Mol Neurosci 2018; 11:273. [PMID: 30233307 PMCID: PMC6127644 DOI: 10.3389/fnmol.2018.00273] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 07/18/2018] [Indexed: 11/14/2022] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs) respond to glutamate to allow the influx of calcium ions and the signaling to the mitogen-activated protein kinase (MAPK) cascade. Both MAPK- and Ca2+-mediated events are important for both neurotransmission and neural cell function and fate. Using a heterologous expression system, we demonstrate that NMDAR may interact with the EF-hand calcium-binding proteins calmodulin, calneuron-1, and NCS1 but not with caldendrin. NMDARs were present in primary cultures of both neurons and microglia from cortex and hippocampus. Calmodulin in microglia, and calmodulin and NCS1 in neurons, are necessary for NMDA-induced MAP kinase pathway activation. Remarkably, signaling to the MAP kinase pathway was blunted in primary cultures of cortical and hippocampal neurons and microglia from wild-type animals by proteins involved in neurodegenerative diseases: α-synuclein, Tau, and p-Tau. A similar blockade by pathogenic proteins was found using samples from the APPSw,Ind transgenic Alzheimer’s disease model. Interestingly, a very marked increase in NMDAR–NCS1 complexes was identified in neurons and a marked increase of both NMDAR–NCS1 and NMDAR–CaM complexes was identified in microglia from the transgenic mice. The results show that α-synuclein, Tau, and p-Tau disrupt the signaling of NMDAR to the MAPK pathway and that calcium sensors are important for NMDAR function both in neurons and microglia. Finally, it should be noted that the expression of receptor–calcium sensor complexes, specially those involving NCS1, is altered in neural cells from APPSw,Ind mouse embryos/pups.
Collapse
Affiliation(s)
- Rafael Franco
- Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - David Aguinaga
- Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Irene Reyes
- Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Enric I Canela
- Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Jaume Lillo
- Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona, Barcelona, Spain
| | - Airi Tarutani
- Department of Dementia and Higher Brain Function, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Masato Hasegawa
- Department of Dementia and Higher Brain Function, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Anna Del Ser-Badia
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.,Department de Bioquímica i Biologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - José A Del Rio
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.,Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia, The Barcelona Institute of Science and Technology, Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona, Barcelona, Spain
| | - Michael R Kreutz
- RG Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Leibniz Group Dendritic Organelles and Synaptic Function, Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Carlos A Saura
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.,Department de Bioquímica i Biologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Gemma Navarro
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.,Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
19
|
Angelats E, Requesens M, Aguinaga D, Kreutz MR, Franco R, Navarro G. Neuronal Calcium and cAMP Cross-Talk Mediated by Cannabinoid CB 1 Receptor and EF-Hand Calcium Sensor Interactions. Front Cell Dev Biol 2018; 6:67. [PMID: 30073165 PMCID: PMC6060245 DOI: 10.3389/fcell.2018.00067] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 06/12/2018] [Indexed: 11/19/2022] Open
Abstract
Endocannabinoids are important players in neural development and function. They act via receptors, whose activation inhibits cAMP production. The aim of the paper was to look for calcium- and cAMP-signaling cross-talk mediated by cannabinoid CB1 receptors (CB1R) and to assess the relevance of EF-hand CaM-like calcium sensors in this regard. Using a heterologous expression system, we demonstrated that CB1R interacts with calneuron-1 and NCS1 but not with caldendrin. Furthermore, interaction motives were identified in both calcium binding proteins and the receptor, and we showed that the first two sensors competed for binding to the receptor in a Ca2+-dependent manner. Assays in neuronal primary cultures showed that, CB1R-NCS1 complexes predominate at basal Ca2+ levels, whereas in the presence of ionomycin, a calcium ionophore, CB1R-calneuron-1 complexes were more abundant. Signaling assays following forskolin-induced intracellular cAMP levels showed in mouse striatal neurons that binding of CB1R to NCS1 is required for CB1R-mediated signaling, while the binding of CB1R to calneuron-1 completely blocked Gi-mediated signaling in response to a selective receptor agonist, arachidonyl-2-chloroethylamide. Calcium levels and interaction with calcium sensors may even lead to apparent Gs coupling after CB1R agonist challenge.
Collapse
Affiliation(s)
- Edgar Angelats
- Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biomedicine, University of Barcelona, Barcelona, Spain.,Centro de Investigación en Red, Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Requesens
- Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biomedicine, University of Barcelona, Barcelona, Spain.,Centro de Investigación en Red, Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain
| | - David Aguinaga
- Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biomedicine, University of Barcelona, Barcelona, Spain.,Centro de Investigación en Red, Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain
| | - Michael R Kreutz
- RG Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Leibniz Group "Dendritic Organelles and Synaptic Function", Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Rafael Franco
- Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biomedicine, University of Barcelona, Barcelona, Spain.,Centro de Investigación en Red, Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain
| | - Gemma Navarro
- Centro de Investigación en Red, Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain.,Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain
| |
Collapse
|
20
|
Sheng B, Jiang Y, Wu D, Lai N, Ye Z, Zhang B, Fang X, Xu S. RNAi-mediated SYT14 knockdown inhibits the growth of human glioma cell line U87MG. Brain Res Bull 2018; 140:60-64. [PMID: 29634997 DOI: 10.1016/j.brainresbull.2018.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 12/04/2017] [Accepted: 04/04/2018] [Indexed: 10/17/2022]
Abstract
SYT14 (Synaptotagmin 14) participates in pathomechanical neurodegeneration and contributes to abnormal neurodevelopment. However, the functional mechanism of SYT14 in human glioma tumorigenesis remains unclear. In the present study, we measured the expression levels of SYT14 mRNA in human glioma cell lines, U373MG, U178, and U87MG and neural stem cells (NSC) cell line by RT-PCR, and used lentivirus-mediated small hairpin RNAs (shRNAs) to knock down SYT14 expression in U87MG cells. Changes in SYT14 expression were determined by real-time PCR. Cell proliferation and colony formation assays were used to analyze the role of SYT14 in U87MG cell proliferation, and cell apoptosis was assessed by flow cytometry. SYT14 mRNA expression was detected in the three glioma cell lines, and was highest in the U87MG cell line. The RNAi-mediated knockdown of SYT14 significantly decreased cell proliferation and colony formation in U87MG cells, and caused a moderate increase in apoptosis. Fewer S phase cells and more G2/M phase cells were observed. These data indicate that SYT14 is highly expressed in glioma cells, and may participate in glioma cell proliferation, apoptosis, and colony formation.
Collapse
Affiliation(s)
- Bin Sheng
- Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College, Wuhu City, Anhui, 241001, China
| | - Yuxin Jiang
- Department of Physiology, School of Basic Medicine, Wannan Medical College, Wuhu City, Anhui, 241000, China
| | - Degang Wu
- Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College, Wuhu City, Anhui, 241001, China
| | - Niansheng Lai
- Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College, Wuhu City, Anhui, 241001, China
| | - Zhennan Ye
- Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou City, Guangdong, 510000, China
| | - Bingbing Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College, Wuhu City, Anhui, 241001, China
| | - Xinggen Fang
- Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College, Wuhu City, Anhui, 241001, China.
| | - Shanshui Xu
- Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College, Wuhu City, Anhui, 241001, China.
| |
Collapse
|
21
|
Zhou K, Cherra SJ, Goncharov A, Jin Y. Asynchronous Cholinergic Drive Correlates with Excitation-Inhibition Imbalance via a Neuronal Ca 2+ Sensor Protein. Cell Rep 2018; 19:1117-1129. [PMID: 28494862 DOI: 10.1016/j.celrep.2017.04.043] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 03/13/2017] [Accepted: 04/15/2017] [Indexed: 10/19/2022] Open
Abstract
Excitation-inhibition imbalance in neural networks is widely linked to neurological and neuropsychiatric disorders. However, how genetic factors alter neuronal activity, leading to excitation-inhibition imbalance, remains unclear. Here, using the C. elegans locomotor circuit, we examine how altering neuronal activity for varying time periods affects synaptic release pattern and animal behavior. We show that while short-duration activation of excitatory cholinergic neurons elicits a reversible enhancement of presynaptic strength, persistent activation results to asynchronous and reduced cholinergic drive, inducing imbalance between endogenous excitation and inhibition. We find that the neuronal calcium sensor protein NCS-2 is required for asynchronous cholinergic release in an activity-dependent manner and dampens excitability of inhibitory neurons non-cell autonomously. The function of NCS-2 requires its Ca2+ binding and membrane association domains. These results reveal a synaptic mechanism implicating asynchronous release in regulation of excitation-inhibition balance.
Collapse
Affiliation(s)
- Keming Zhou
- Division of Biological Sciences, Section of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA; Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA 92093, USA
| | - Salvatore J Cherra
- Division of Biological Sciences, Section of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Alexandr Goncharov
- Division of Biological Sciences, Section of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA; Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yishi Jin
- Division of Biological Sciences, Section of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA; Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
22
|
Kobuke K, Oki K, Gomez-Sanchez CE, Gomez-Sanchez EP, Ohno H, Itcho K, Yoshii Y, Yoneda M, Hattori N. Calneuron 1 Increased Ca 2+ in the Endoplasmic Reticulum and Aldosterone Production in Aldosterone-Producing Adenoma. Hypertension 2017; 71:125-133. [PMID: 29109191 DOI: 10.1161/hypertensionaha.117.10205] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 09/01/2017] [Accepted: 10/10/2017] [Indexed: 11/16/2022]
Abstract
Aldosterone production is initiated by angiotensin II stimulation and activation of intracellular Ca2+ signaling. In aldosterone-producing adenoma (APA) cells, the activation of intracellular Ca2+ signaling is independent of the renin-angiotensin-aldosterone systems. The purpose of our study was to clarify molecular mechanisms of aldosterone production related to Ca2+ signaling. Transcriptome analysis revealed that the CALN1 gene encoding calneuron 1 had the strongest correlation with CYP11B2 (aldosterone synthase) among genes encoding Ca2+-binding proteins in APA. CALN1 modulation and synthetic or fluorescent compounds were used for functional studies in human adrenocortical carcinoma (HAC15) cells. CALN1 expression was 4.4-fold higher in APAs than nonfunctioning adrenocortical adenomas. CALN1 expression colocalized with CYP11B2 expression as investigated using immunohistochemistry in APA and zona glomerulosa of male rats fed by a low-salt diet. CALN1 expression was detected in the endoplasmic reticulum (ER) by using GFP-fused CALN1, CellLight ER-RFP, and the corresponding antibodies. CALN1-overexpressing HAC15 cells showed increased Ca2+ in the ER and cytosol fluorescence-based studies. Aldosterone production was potentiated in HAC15 cells by CALN1 expression, and dose-responsive inhibition with TMB-8 showed that CALN1-mediated Ca2+ storage in ER involved sarcoendoplasmic reticulum calcium transport ATPase. The silencing of CALN1 decreased Ca2+ in ER, and abrogated angiotensin II- or KCNJ5 T158A-mediated aldosterone production in HAC15 cells. Increased CALN1 expression in APA was associated with elevated Ca2+ storage in ER and aldosterone overproduction. Suppression of CALN1 expression prevented angiotensin II- or KCNJ5 T158A-mediated aldosterone production in HAC15 cells, suggesting that CALN1 is a potential therapeutic target for excess aldosterone production.
Collapse
Affiliation(s)
- Kazuhiro Kobuke
- From the Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan (K.K., K.O., H.O., K.I., Y.Y., M.Y., N.H.); Division of Endocrinology, G.V. (Sonny) Montgomery VA Medical Center, Jackson, MS (C.E.G.-S., E.P.G.-S.); and University of Mississippi Medical Center, Jackson (C.E.G.-S., E.P.G.-S.)
| | - Kenji Oki
- From the Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan (K.K., K.O., H.O., K.I., Y.Y., M.Y., N.H.); Division of Endocrinology, G.V. (Sonny) Montgomery VA Medical Center, Jackson, MS (C.E.G.-S., E.P.G.-S.); and University of Mississippi Medical Center, Jackson (C.E.G.-S., E.P.G.-S.).
| | - Celso E Gomez-Sanchez
- From the Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan (K.K., K.O., H.O., K.I., Y.Y., M.Y., N.H.); Division of Endocrinology, G.V. (Sonny) Montgomery VA Medical Center, Jackson, MS (C.E.G.-S., E.P.G.-S.); and University of Mississippi Medical Center, Jackson (C.E.G.-S., E.P.G.-S.)
| | - Elise P Gomez-Sanchez
- From the Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan (K.K., K.O., H.O., K.I., Y.Y., M.Y., N.H.); Division of Endocrinology, G.V. (Sonny) Montgomery VA Medical Center, Jackson, MS (C.E.G.-S., E.P.G.-S.); and University of Mississippi Medical Center, Jackson (C.E.G.-S., E.P.G.-S.)
| | - Haruya Ohno
- From the Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan (K.K., K.O., H.O., K.I., Y.Y., M.Y., N.H.); Division of Endocrinology, G.V. (Sonny) Montgomery VA Medical Center, Jackson, MS (C.E.G.-S., E.P.G.-S.); and University of Mississippi Medical Center, Jackson (C.E.G.-S., E.P.G.-S.)
| | - Kiyotaka Itcho
- From the Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan (K.K., K.O., H.O., K.I., Y.Y., M.Y., N.H.); Division of Endocrinology, G.V. (Sonny) Montgomery VA Medical Center, Jackson, MS (C.E.G.-S., E.P.G.-S.); and University of Mississippi Medical Center, Jackson (C.E.G.-S., E.P.G.-S.)
| | - Yoko Yoshii
- From the Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan (K.K., K.O., H.O., K.I., Y.Y., M.Y., N.H.); Division of Endocrinology, G.V. (Sonny) Montgomery VA Medical Center, Jackson, MS (C.E.G.-S., E.P.G.-S.); and University of Mississippi Medical Center, Jackson (C.E.G.-S., E.P.G.-S.)
| | - Masayasu Yoneda
- From the Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan (K.K., K.O., H.O., K.I., Y.Y., M.Y., N.H.); Division of Endocrinology, G.V. (Sonny) Montgomery VA Medical Center, Jackson, MS (C.E.G.-S., E.P.G.-S.); and University of Mississippi Medical Center, Jackson (C.E.G.-S., E.P.G.-S.)
| | - Noboru Hattori
- From the Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan (K.K., K.O., H.O., K.I., Y.Y., M.Y., N.H.); Division of Endocrinology, G.V. (Sonny) Montgomery VA Medical Center, Jackson, MS (C.E.G.-S., E.P.G.-S.); and University of Mississippi Medical Center, Jackson (C.E.G.-S., E.P.G.-S.)
| |
Collapse
|
23
|
Holahan MR. A Shift from a Pivotal to Supporting Role for the Growth-Associated Protein (GAP-43) in the Coordination of Axonal Structural and Functional Plasticity. Front Cell Neurosci 2017; 11:266. [PMID: 28912688 PMCID: PMC5583208 DOI: 10.3389/fncel.2017.00266] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 08/18/2017] [Indexed: 11/14/2022] Open
Abstract
In a number of animal species, the growth-associated protein (GAP), GAP-43 (aka: F1, neuromodulin, B-50, G50, pp46), has been implicated in the regulation of presynaptic vesicular function and axonal growth and plasticity via its own biochemical properties and interactions with a number of other presynaptic proteins. Changes in the expression of GAP-43 mRNA or distribution of the protein coincide with axonal outgrowth as a consequence of neuronal damage and presynaptic rearrangement that would occur following instances of elevated patterned neural activity including memory formation and development. While functional enhancement in GAP-43 mRNA and/or protein activity has historically been hypothesized as a central mediator of axonal neuroplastic and regenerative responses in the central nervous system, it does not appear to be the crucial substrate sufficient for driving these responses. This review explores the historical discovery of GAP-43 (and associated monikers), its transcriptional, post-transcriptional and post-translational regulation and current understanding of protein interactions and regulation with respect to its role in axonal function. While GAP-43 itself appears to have moved from a pivotal to a supporting factor, there is no doubt that investigations into its functions have provided a clearer understanding of the biochemical underpinnings of axonal plasticity.
Collapse
|
24
|
Structure-based dynamic arrays in regulatory domains of sodium-calcium exchanger (NCX) isoforms. Sci Rep 2017; 7:993. [PMID: 28428550 PMCID: PMC5430519 DOI: 10.1038/s41598-017-01102-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 03/24/2017] [Indexed: 02/06/2023] Open
Abstract
Mammalian Na+/Ca2+ exchangers, NCX1 and NCX3, generate splice variants, whereas NCX2 does not. The CBD1 and CBD2 domains form a regulatory tandem (CBD12), where Ca2+ binding to CBD1 activates and Ca2+ binding to CBD2 (bearing the splicing segment) alleviates the Na+-induced inactivation. Here, the NCX2-CBD12, NCX3-CBD12-B, and NCX3-CBD12-AC proteins were analyzed by small-angle X-ray scattering (SAXS) and hydrogen-deuterium exchange mass-spectrometry (HDX-MS) to resolve regulatory variances in the NCX2 and NCX3 variants. SAXS revealed the unified model, according to which the Ca2+ binding to CBD12 shifts a dynamic equilibrium without generating new conformational states, and where more rigid conformational states become more populated without any global conformational changes. HDX-MS revealed the differential effects of the B and AC exons on the folding stability of apo CBD1 in NCX3-CBD12, where the dynamic differences become less noticeable in the Ca2+-bound state. Therefore, the apo forms predefine incremental changes in backbone dynamics upon Ca2+ binding. These observations may account for slower inactivation (caused by slower dissociation of occluded Ca2+ from CBD12) in the skeletal vs the brain-expressed NCX2 and NCX3 variants. This may have physiological relevance, since NCX must extrude much higher amounts of Ca2+ from the skeletal cell than from the neuron.
Collapse
|
25
|
Zhao JY, Zhao XT, Sun JT, Zou LF, Yang SX, Han X, Zhu WC, Yin Q, Hong XY. Transcriptome and proteome analyses reveal complex mechanisms of reproductive diapause in the two-spotted spider mite, Tetranychus urticae. INSECT MOLECULAR BIOLOGY 2017; 26:215-232. [PMID: 28001328 DOI: 10.1111/imb.12286] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Although a variety of factors underlying diapause have been identified in arthropods and other organisms, the molecular mechanisms regulating diapause are still largely unknown. Here, to better understand this process, we examined diapause-associated genes in the two-spotted spider mite, Tetranychus urticae, by comparing the transcriptomes and proteomes of early diapausing and reproductive adult females. Amongst genes underlying diapause revealed by the transcriptomic and proteomic data sets, we described the noticeable change in Ca2+ -associated genes, including 65 Ca2+ -binding protein genes and 23 Ca2+ transporter genes, indicating that Ca2+ signalling has a substantial role in diapause regulation. Other interesting changes in diapause included up-regulation of (1) glutamate receptors that may be involved in synaptic plasticity changes, (2) genes involved in cytoskeletal reorganization including genes encoding each of the components of thick and thin filaments, tubulin and members of integrin signalling and (3) genes involved in anaerobic energy metabolism, which reflects a shift to anaerobic energy metabolism in early diapausing mites.
Collapse
Affiliation(s)
- J-Y Zhao
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - X-T Zhao
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - J-T Sun
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - L-F Zou
- Beijing Genomics Institute-Shenzhen, Shenzhen, China
| | - S-X Yang
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - X Han
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - W-C Zhu
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Q Yin
- Beijing Genomics Institute-Shenzhen, Shenzhen, China
| | - X-Y Hong
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
26
|
Structure-Dynamic Coupling Through Ca2+-Binding Regulatory Domains of Mammalian NCX Isoform/Splice Variants. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 981:41-58. [DOI: 10.1007/978-3-319-55858-5_3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
27
|
Todd PAC, McCue HV, Haynes LP, Barclay JW, Burgoyne RD. Interaction of ARF-1.1 and neuronal calcium sensor-1 in the control of the temperature-dependency of locomotion in Caenorhabditis elegans. Sci Rep 2016; 6:30023. [PMID: 27435667 PMCID: PMC4951722 DOI: 10.1038/srep30023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 06/27/2016] [Indexed: 12/15/2022] Open
Abstract
Neuronal calcium sensor-1 (NCS-1) mediates changes in cellular function by regulating various target proteins. Many potential targets have been identified but the physiological significance of only a few has been established. Upon temperature elevation, Caenorhabditis elegans exhibits reversible paralysis. In the absence of NCS-1, worms show delayed onset and a shorter duration of paralysis. This phenotype can be rescued by re-expression of ncs-1 in AIY neurons. Mutants with defects in four potential NCS-1 targets (arf-1.1, pifk-1, trp-1 and trp-2) showed qualitatively similar phenotypes to ncs-1 null worms, although the effect of pifk-1 mutation on time to paralysis was considerably delayed. Inhibition of pifk-1 also resulted in a locomotion phenotype. Analysis of double mutants showed no additive effects between mutations in ncs-1 and trp-1 or trp-2. In contrast, double mutants of arf-1.1 and ncs-1 had an intermediate phenotype, consistent with NCS-1 and ARF-1.1 acting in the same pathway. Over-expression of arf-1.1 in the AIY neurons was sufficient to rescue partially the phenotype of both the arf-1.1 and the ncs-1 null worms. These findings suggest that ARF-1.1 interacts with NCS-1 in AIY neurons and potentially pifk-1 in the Ca(2+) signaling pathway that leads to inhibited locomotion at an elevated temperature.
Collapse
Affiliation(s)
- Paul A. C. Todd
- Department of Cellular and Molecular Physiology, The Physiological Laboratory, Institute of Translational Medicine, University of Liverpool, Crown Street, Liverpool, L69 3BX, United Kingdom
| | - Hannah V. McCue
- Department of Cellular and Molecular Physiology, The Physiological Laboratory, Institute of Translational Medicine, University of Liverpool, Crown Street, Liverpool, L69 3BX, United Kingdom
| | - Lee P. Haynes
- Department of Cellular and Molecular Physiology, The Physiological Laboratory, Institute of Translational Medicine, University of Liverpool, Crown Street, Liverpool, L69 3BX, United Kingdom
| | - Jeff W. Barclay
- Department of Cellular and Molecular Physiology, The Physiological Laboratory, Institute of Translational Medicine, University of Liverpool, Crown Street, Liverpool, L69 3BX, United Kingdom
| | - Robert D. Burgoyne
- Department of Cellular and Molecular Physiology, The Physiological Laboratory, Institute of Translational Medicine, University of Liverpool, Crown Street, Liverpool, L69 3BX, United Kingdom
| |
Collapse
|
28
|
Tanaka F, Doi H, Kunii M. Autosomal recessive spinocerebellar ataxias in Japan. Rinsho Shinkeigaku 2016; 56:395-9. [PMID: 27181749 DOI: 10.5692/clinicalneurol.cn-000879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Recent new sequencing techniques allow the identification of novel responsible genes for autosomal recessive spinocerebellar ataxias (ARCAs). However, the same phenotypes are sometimes attributed to the different responsible genes in ARCAs. On the contrary, the same responsible genes may cause heterogeneous phenotypes with respect to the age at onset, symptoms, and the severity of the disease progression. In addition, it is an important issue to clarify whether the gene mutations identified in Caucasian patients with infantile-onset ARCAs are also observed in Japanese patients with adult-onset ARCAs. In this article we review the characteristics of several ARCAs, the existence of which has been recently identified or confirmed in Japan.
Collapse
Affiliation(s)
- Fumiaki Tanaka
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine
| | | | | |
Collapse
|
29
|
Lemire S, Jeromin A, Boisselier É. Membrane binding of Neuronal Calcium Sensor-1 (NCS1). Colloids Surf B Biointerfaces 2015; 139:138-47. [PMID: 26705828 DOI: 10.1016/j.colsurfb.2015.11.065] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 10/29/2015] [Accepted: 11/22/2015] [Indexed: 01/10/2023]
Abstract
Neuronal Calcium Sensor-1 (NCS1) belongs to the family of Neuronal Calcium Sensor (NCS) proteins. NCS1 is composed of four EF-hand motifs and an N-terminal myristoylation. However, the presence of a calcium-myristoyl switch in NCS1 and its role in the membrane binding are controversial. The model of Langmuir lipid monolayers is thus used to mimic the cell membrane in order to characterize the membrane interactions of NCS1. Two binding parameters are calculated from monolayer measurements: the maximum insertion pressure, up to which protein binding is energetically favorable, and the synergy, reporting attractive or repulsive interactions with the lipid monolayers. Binding membrane measurements performed in the presence of myristoylated NCS1 reveal better binding interactions for phospholipids composed of phosphoethanolamine polar head groups and unsaturated fatty acyl chains. In the absence of calcium, the membrane binding measurements are drastically modified and suggest that the protein is more strongly bound to the membrane. Indeed, the binding of calcium by three EF-hand motifs of NCS1 leads to a conformation change. NCS1 arrangement at the membrane could thus be reshuffled for better interactions with its substrates. The N-terminal peptide of NCS1 is composed of two amphiphilic helices involved in the membrane interactions of NCS1. Moreover, the presence of the myristoyl group has a weak influence on the membrane binding of NCS1 suggesting the absence of a calcium-myristoyl switch mechanism in this protein. The myristoylation could thus have a structural role required in the folding/unfolding of NCS1 which is essential to its multiple biological functions.
Collapse
Affiliation(s)
- Samuel Lemire
- CUO-Recherche, Hôpital du Saint-Sacrement, Centre de recherche du CHU de Québec and Département d'ophtalmologie, Faculté de médecine, Université Laval, Québec, Québec, Canada
| | | | - Élodie Boisselier
- CUO-Recherche, Hôpital du Saint-Sacrement, Centre de recherche du CHU de Québec and Département d'ophtalmologie, Faculté de médecine, Université Laval, Québec, Québec, Canada.
| |
Collapse
|
30
|
Wang B, Pan L, Wei M, Wang Q, Liu WW, Wang N, Jiang XY, Zhang X, Bao L. FMRP-Mediated Axonal Delivery of miR-181d Regulates Axon Elongation by Locally Targeting Map1b and Calm1. Cell Rep 2015; 13:2794-807. [DOI: 10.1016/j.celrep.2015.11.057] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 10/15/2015] [Accepted: 11/17/2015] [Indexed: 01/04/2023] Open
|
31
|
Mauceri D, Hagenston AM, Schramm K, Weiss U, Bading H. Nuclear Calcium Buffering Capacity Shapes Neuronal Architecture. J Biol Chem 2015; 290:23039-49. [PMID: 26231212 DOI: 10.1074/jbc.m115.654962] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Indexed: 12/20/2022] Open
Abstract
Calcium-binding proteins (CaBPs) such as parvalbumin are part of the cellular calcium buffering system that determines intracellular calcium diffusion and influences the spatiotemporal dynamics of calcium signals. In neurons, CaBPs are primarily localized to the cytosol and function, for example, in nerve terminals in short-term synaptic plasticity. However, CaBPs are also expressed in the cell nucleus, suggesting that they modulate nuclear calcium signals, which are key regulators of neuronal gene expression. Here we show that the calcium buffering capacity of the cell nucleus in mouse hippocampal neurons regulates neuronal architecture by modulating the expression levels of VEGFD and the complement factor C1q-c, two nuclear calcium-regulated genes that control dendrite geometry and spine density, respectively. Increasing the levels of nuclear calcium buffers by means of expression of a nuclearly targeted form of parvalbumin fused to mCherry (PV.NLS-mC) led to a reduction in VEGFD expression and, as a result, to a decrease in total dendritic length and complexity. In contrast, mRNA levels of the synapse pruning factor C1q-c were increased in neurons expressing PV.NLS-mC, causing a reduction in the density and size of dendritic spines. Our results establish a close link between nuclear calcium buffering capacity and the transcription of genes that determine neuronal structure. They suggest that the development of cognitive deficits observed in neurological conditions associated with CaBP deregulation may reflect the loss of necessary structural features of dendrites and spines.
Collapse
Affiliation(s)
- Daniela Mauceri
- From the Department of Neurobiology, Interdisciplinary Centre for Neurosciences, University of Heidelberg, INF 364, 69120 Heidelberg, Germany
| | - Anna M Hagenston
- From the Department of Neurobiology, Interdisciplinary Centre for Neurosciences, University of Heidelberg, INF 364, 69120 Heidelberg, Germany
| | - Kathrin Schramm
- From the Department of Neurobiology, Interdisciplinary Centre for Neurosciences, University of Heidelberg, INF 364, 69120 Heidelberg, Germany
| | - Ursula Weiss
- From the Department of Neurobiology, Interdisciplinary Centre for Neurosciences, University of Heidelberg, INF 364, 69120 Heidelberg, Germany
| | - Hilmar Bading
- From the Department of Neurobiology, Interdisciplinary Centre for Neurosciences, University of Heidelberg, INF 364, 69120 Heidelberg, Germany
| |
Collapse
|
32
|
Zernii EY, Grigoriev II, Nazipova AA, Scholten A, Kolpakova TV, Zinchenko DV, Kazakov AS, Senin II, Permyakov SE, Dell'Orco D, Philippov PP, Koch KW. Regulatory function of the C-terminal segment of guanylate cyclase-activating protein 2. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:1325-37. [PMID: 26001899 DOI: 10.1016/j.bbapap.2015.05.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Revised: 04/22/2015] [Accepted: 05/13/2015] [Indexed: 12/13/2022]
Abstract
Neuronal responses to Ca2+-signals are provided by EF-hand-type neuronal Ca2+-sensor (NCS) proteins, which have similar core domains containing Ca2+-binding and target-recognizing sites. NCS proteins vary in functional specificity, probably depending on the structure and conformation of their non-conserved C-terminal segments. Here, we investigated the role of the C-terminal segment in guanylate cyclase activating protein-2, GCAP2, an NCS protein controlling the Ca2+-dependent regulation of photoreceptor guanylate cyclases. We obtained two chimeric proteins by exchanging C-terminal segments between GCAP2 and its photoreceptor homolog recoverin, a Ca2+-sensor controlling rhodopsin kinase (RK) activity. The exchange affected neither the structural integrity of GCAP2 and recoverin nor the Ca2+-sensitivity of GCAP2. Intrinsic fluorescence, circular dichroism, biochemical studies and hydrophobic dye probing revealed Ca2+-dependent conformational transition of the C-terminal segment of GCAP2 occurring in the molecular environment of both proteins. In Ca2+-GCAP2, the C-terminal segment was constrained and its replacement provided the protein with approximately two-fold inhibitory activity towards RK, suggesting that the segment contributes to specific target recognition by interfering with RK-binding. Upon Ca2+-release, it became less constrained and more available for phosphorylation by cyclic nucleotide-dependent protein kinase. The transition from the Ca2+-bound to the apo-state exposed hydrophobic sites in GCAP2, and was associated with its activating function without affecting its dimerization. The released C-terminal segment participated further in photoreceptor membrane binding making it sensitive to phosphorylation. Thus, the C-terminal segment in GCAP2 confers target selectivity, facilitates membrane binding and provides sensitivity of the membrane localization of the protein to phosphorylation by signaling kinases.
Collapse
Affiliation(s)
- Evgeni Yu Zernii
- Department of Cell Signaling, Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992 Russia
| | - Ilya I Grigoriev
- Department of Cell Signaling, Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992 Russia
| | - Aliya A Nazipova
- Protein Research Group, Institute for Biological Instrumentation of the Russian Academy of Sciences, Pushchino, Moscow region, 142290 Russia
| | - Alexander Scholten
- Department of Neurosciences, Biochemistry Group, University of Oldenburg, Oldenburg, 26111 Germany
| | - Tatiana V Kolpakova
- Department of Cell Signaling, Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992 Russia
| | - Dmitry V Zinchenko
- Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Pushchino, Moscow region, 142290 Russia
| | - Alexey S Kazakov
- Protein Research Group, Institute for Biological Instrumentation of the Russian Academy of Sciences, Pushchino, Moscow region, 142290 Russia
| | - Ivan I Senin
- Department of Cell Signaling, Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992 Russia
| | - Sergei E Permyakov
- Protein Research Group, Institute for Biological Instrumentation of the Russian Academy of Sciences, Pushchino, Moscow region, 142290 Russia
| | - Daniele Dell'Orco
- Department of Life Sciences and Reproduction, Section of Biological Chemistry and Center for BioMedical Computing, University of Verona, Verona, 37134 Italy
| | - Pavel P Philippov
- Department of Cell Signaling, Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992 Russia
| | - Karl-W Koch
- Department of Neurosciences, Biochemistry Group, University of Oldenburg, Oldenburg, 26111 Germany.
| |
Collapse
|
33
|
Pandalaneni S, Karuppiah V, Saleem M, Haynes LP, Burgoyne RD, Mayans O, Derrick JP, Lian LY. Neuronal Calcium Sensor-1 Binds the D2 Dopamine Receptor and G-protein-coupled Receptor Kinase 1 (GRK1) Peptides Using Different Modes of Interactions. J Biol Chem 2015; 290:18744-56. [PMID: 25979333 PMCID: PMC4513130 DOI: 10.1074/jbc.m114.627059] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Indexed: 11/25/2022] Open
Abstract
Neuronal calcium sensor-1 (NCS-1) is the primordial member of the neuronal calcium sensor family of EF-hand Ca2+-binding proteins. It interacts with both the G-protein-coupled receptor (GPCR) dopamine D2 receptor (D2R), regulating its internalization and surface expression, and the cognate kinases GRK1 and GRK2. Determination of the crystal structures of Ca2+/NCS-1 alone and in complex with peptides derived from D2R and GRK1 reveals that the differential recognition is facilitated by the conformational flexibility of the C-lobe-binding site. We find that two copies of the D2R peptide bind within the hydrophobic crevice on Ca2+/NCS-1, but only one copy of the GRK1 peptide binds. The different binding modes are made possible by the C-lobe-binding site of NCS-1, which adopts alternative conformations in each complex. C-terminal residues Ser-178–Val-190 act in concert with the flexible EF3/EF4 loop region to effectively form different peptide-binding sites. In the Ca2+/NCS-1·D2R peptide complex, the C-terminal region adopts a 310 helix-turn-310 helix, whereas in the GRK1 peptide complex it forms an α-helix. Removal of Ser-178–Val-190 generated a C-terminal truncation mutant that formed a dimer, indicating that the NCS-1 C-terminal region prevents NCS-1 oligomerization. We propose that the flexible nature of the C-terminal region is essential to allow it to modulate its protein-binding sites and adapt its conformation to accommodate both ligands. This appears to be driven by the variability of the conformation of the C-lobe-binding site, which has ramifications for the target specificity and diversity of NCS-1.
Collapse
Affiliation(s)
- Sravan Pandalaneni
- From the NMR Centre for Structural Biology, Institute of Integrative Biology, and
| | - Vijaykumar Karuppiah
- From the NMR Centre for Structural Biology, Institute of Integrative Biology, and the Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, and
| | - Muhammad Saleem
- the Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, and
| | - Lee P Haynes
- the Physiological Laboratory, Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool L37 4BY, United Kingdom
| | - Robert D Burgoyne
- the Physiological Laboratory, Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool L37 4BY, United Kingdom
| | - Olga Mayans
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB
| | - Jeremy P Derrick
- the Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, and
| | - Lu-Yun Lian
- From the NMR Centre for Structural Biology, Institute of Integrative Biology, and
| |
Collapse
|
34
|
Girard F, Venail J, Schwaller B, Celio M. The EF-hand Ca2+-binding protein super-family: A genome-wide analysis of gene expression patterns in the adult mouse brain. Neuroscience 2015; 294:116-55. [DOI: 10.1016/j.neuroscience.2015.02.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 02/10/2015] [Accepted: 02/10/2015] [Indexed: 01/13/2023]
|
35
|
Rajamanoharan D, McCue HV, Burgoyne RD, Haynes LP. Modulation of phosphatidylinositol 4-phosphate levels by CaBP7 controls cytokinesis in mammalian cells. Mol Biol Cell 2015; 26:1428-39. [PMID: 25717182 PMCID: PMC4395124 DOI: 10.1091/mbc.e14-07-1243] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 02/13/2015] [Indexed: 12/29/2022] Open
Abstract
For more than 25 years, lysosomes have been known to cluster at the intercellular bridge during cytokinesis, but why has remained a mystery. This study provides evidence that phosphoinositide metabolism is important for this clustering and that lysosome activity is required for cytokinesis. Calcium and phosphoinositide signaling regulate cell division in model systems, but their significance in mammalian cells is unclear. Calcium-binding protein-7 (CaBP7) is a phosphatidylinositol 4-kinaseIIIβ (PI4KIIIβ) inhibitor required during cytokinesis in mammalian cells, hinting at a link between these pathways. Here we characterize a novel association of CaBP7 with lysosomes that cluster at the intercellular bridge during cytokinesis in HeLa cells. We show that CaBP7 regulates lysosome clustering and that PI4KIIIβ is essential for normal cytokinesis. CaBP7 depletion induces lysosome mislocalization, extension of intercellular bridge lifetime, and cytokinesis failure. These data connect phosphoinositide and calcium pathways to lysosome localization and normal cytokinesis in mammalian cells.
Collapse
Affiliation(s)
- Dayani Rajamanoharan
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3BX, United Kingdom
| | - Hannah V McCue
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3BX, United Kingdom
| | - Robert D Burgoyne
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3BX, United Kingdom
| | - Lee P Haynes
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3BX, United Kingdom
| |
Collapse
|
36
|
Rajanikanth V, Sharma AK, Rajyalakshmi M, Chandra K, Chary KVR, Sharma Y. Liaison between Myristoylation and Cryptic EF-Hand Motif Confers Ca2+ Sensitivity to Neuronal Calcium Sensor-1. Biochemistry 2015; 54:1111-22. [DOI: 10.1021/bi501134g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Anand Kumar Sharma
- CSIR-Centre for
Cellular and Molecular Biology (CCMB), Hyderabad 500007, India
| | - Meduri Rajyalakshmi
- CSIR-Centre for
Cellular and Molecular Biology (CCMB), Hyderabad 500007, India
| | - Kousik Chandra
- Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India
| | - Kandala V. R. Chary
- Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India
- Center
for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Hyderabad 500075, India
| | - Yogendra Sharma
- CSIR-Centre for
Cellular and Molecular Biology (CCMB), Hyderabad 500007, India
| |
Collapse
|
37
|
Burgoyne RD, Haynes LP. Sense and specificity in neuronal calcium signalling. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1853:1921-32. [PMID: 25447549 PMCID: PMC4728190 DOI: 10.1016/j.bbamcr.2014.10.029] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 10/25/2014] [Accepted: 10/29/2014] [Indexed: 11/02/2022]
Abstract
Changes in the intracellular free calcium concentration ([Ca²⁺]i) in neurons regulate many and varied aspects of neuronal function over time scales from microseconds to days. The mystery is how a single signalling ion can lead to such diverse and specific changes in cell function. This is partly due to aspects of the Ca²⁺ signal itself, including its magnitude, duration, localisation and persistent or oscillatory nature. The transduction of the Ca²⁺ signal requires Ca²⁺binding to various Ca²⁺ sensor proteins. The different properties of these sensors are important for differential signal processing and determine the physiological specificity of Ca(2+) signalling pathways. A major factor underlying the specific roles of particular Ca²⁺ sensor proteins is the nature of their interaction with target proteins and how this mediates unique patterns of regulation. We review here recent progress from structural analyses and from functional analyses in model organisms that have begun to reveal the rules that underlie Ca²⁺ sensor protein specificity for target interaction. We discuss three case studies exemplifying different aspects of Ca²⁺ sensor/target interaction. This article is part of a special issue titled the 13th European Symposium on Calcium.
Collapse
Affiliation(s)
- Robert D Burgoyne
- Department of Cellular and Molecular Physiology, The Physiological Laboratory, Institute of Translational Medicine, University of Liverpool, Crown Street, Liverpool, L69 3BX, United Kingdom.
| | - Lee P Haynes
- Department of Cellular and Molecular Physiology, The Physiological Laboratory, Institute of Translational Medicine, University of Liverpool, Crown Street, Liverpool, L69 3BX, United Kingdom
| |
Collapse
|
38
|
Graña P, Folgueira M, Huesa G, Anadón R, Yáñez J. Immunohistochemical distribution of calretinin and calbindin (D-28k) in the brain of the cladistian Polypterus senegalus. J Comp Neurol 2014; 521:2454-85. [PMID: 23296683 DOI: 10.1002/cne.23293] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 10/05/2012] [Accepted: 12/13/2012] [Indexed: 12/19/2022]
Abstract
Polypteriform fishes are believed to be basal to other living ray-finned bony fishes, and they may be useful for providing information of the neural organization that existed in the brain of the earliest ray-finned fishes. The calcium-binding proteins calretinin (CR) and calbindin-D28k (CB) have been widely used to characterize neuronal populations in vertebrate brains. Here, the distribution of the immunoreactivity against CR and CB was investigated in the olfactory organ and brain of Polypterus senegalus and compared to the distribution of these molecules in other ray-finned fishes. In general, CB-immunoreactive (ir) neurons were less abundant than CR-ir cells. CR immunohistochemistry revealed segregation of CR-ir olfactory receptor neurons in the olfactory mucosa and their bulbar projections. Our results confirmed important differences between pallial regions in terms of CR immunoreactivity of cell populations and afferent fibers. In the habenula, these calcium-binding proteins revealed right-left asymmetry of habenular subpopulations and segregation of their interpeduncular projections. CR immunohistochemistry distinguished among some thalamic, pretectal, and posterior tubercle-derived populations. Abundant CR-ir populations were observed in the midbrain, including the tectum. CR immunoreactivity was also useful for characterizing a putative secondary gustatory/visceral nucleus in the isthmus, and for distinguishing territories in the primary viscerosensory column and octavolateral region. Comparison of the data obtained within a segmental neuromeric context indicates that some CB-ir and CR-ir populations in polypteriform fishes are shared with other ray-finned fishes, but other positive structures appear to have evolved following the separation between polypterids and other ray-finned fishes.
Collapse
Affiliation(s)
- Patricia Graña
- Department of Cell and Molecular Biology, Faculty of Sciences, University of A Coruña, 15008-A Coruña, Spain
| | | | | | | | | |
Collapse
|
39
|
Martin VM, Johnson JR, Haynes LP, Barclay JW, Burgoyne RD. Identification of key structural elements for neuronal calcium sensor-1 function in the regulation of the temperature-dependency of locomotion in C. elegans. Mol Brain 2013; 6:39. [PMID: 23981466 PMCID: PMC3765893 DOI: 10.1186/1756-6606-6-39] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 08/24/2013] [Indexed: 11/10/2022] Open
Abstract
Background Intracellular Ca2+ regulates many aspects of neuronal function through Ca2+ binding to EF hand-containing Ca2+ sensors that in turn bind target proteins to regulate their function. Amongst the sensors are the neuronal calcium sensor (NCS) family of proteins that are involved in multiple neuronal signalling pathways. Each NCS protein has specific and overlapping targets and physiological functions and specificity is likely to be determined by structural features within the proteins. Common to the NCS proteins is the exposure of a hydrophobic groove, allowing target binding in the Ca2+-loaded form. Structural analysis of NCS protein complexes with target peptides has indicated common and distinct aspects of target protein interaction. Two key differences between NCS proteins are the size of the hydrophobic groove that is exposed for interaction and the role of their non-conserved C-terminal tails. Results We characterised the role of NCS-1 in a temperature-dependent locomotion assay in C. elegans and identified a distinct phenotype in the ncs-1 null in which the worms do not show reduced locomotion at actually elevated temperature. Using rescue of this phenotype we showed that NCS-1 functions in AIY neurons. Structure/function analysis introducing single or double mutations within the hydrophobic groove based on information from characterised target complexes established that both N- and C-terminal pockets of the groove are functionally important and that deletion of the C-terminal tail of NCS-1 did not impair its ability to rescue. Conclusions The current work has allowed physiological assessment of suggestions from structural studies on the key structural features that underlie the interaction of NCS-1 with its target proteins. The results are consistent with the notion that full length of the hydrophobic groove is required for the regulatory interactions underlying NCS-1 function whereas the C-terminal tail of NCS-1 is not essential. This has allowed discrimination between two potential modes of interaction of NCS-1 with its targets.
Collapse
Affiliation(s)
- Victoria M Martin
- Department of Cellular and Molecular Physiology, The Physiological Laboratory, Institute of Translational Medicine, University of Liverpool, Liverpool, L69 3BX, UK.
| | | | | | | | | |
Collapse
|
40
|
Findeisen F, Rumpf CH, Minor DL. Apo states of calmodulin and CaBP1 control CaV1 voltage-gated calcium channel function through direct competition for the IQ domain. J Mol Biol 2013; 425:3217-34. [PMID: 23811053 DOI: 10.1016/j.jmb.2013.06.024] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Revised: 06/12/2013] [Accepted: 06/18/2013] [Indexed: 01/08/2023]
Abstract
In neurons, binding of calmodulin (CaM) or calcium-binding protein 1 (CaBP1) to the CaV1 (L-type) voltage-gated calcium channel IQ domain endows the channel with diametrically opposed properties. CaM causes calcium-dependent inactivation and limits calcium entry, whereas CaBP1 blocks calcium-dependent inactivation (CDI) and allows sustained calcium influx. Here, we combine isothermal titration calorimetry with cell-based functional measurements and mathematical modeling to show that these calcium sensors behave in a competitive manner that is explained quantitatively by their apo-state binding affinities for the IQ domain. This competition can be completely blocked by covalent tethering of CaM to the channel. Further, we show that Ca(2+)/CaM has a sub-picomolar affinity for the IQ domain that is achieved without drastic alteration of calcium-binding properties. The observation that the apo forms of CaM and CaBP1 compete with each other demonstrates a simple mechanism for direct modulation of CaV1 function and suggests a means by which excitable cells may dynamically tune CaV activity.
Collapse
Affiliation(s)
- Felix Findeisen
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158-9001, USA
| | | | | |
Collapse
|
41
|
Sorensen AB, Søndergaard MT, Overgaard MT. Calmodulin in a Heartbeat. FEBS J 2013; 280:5511-32. [DOI: 10.1111/febs.12337] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 04/28/2013] [Accepted: 05/07/2013] [Indexed: 01/16/2023]
Affiliation(s)
- Anders B. Sorensen
- Department of Biotechnology, Chemistry and Environmental Engineering; Aalborg University; Denmark
| | - Mads T. Søndergaard
- Department of Biotechnology, Chemistry and Environmental Engineering; Aalborg University; Denmark
| | - Michael T. Overgaard
- Department of Biotechnology, Chemistry and Environmental Engineering; Aalborg University; Denmark
| |
Collapse
|
42
|
Gruschus JM, Yap TL, Pistolesi S, Maltsev AS, Lee JC. NMR structure of calmodulin complexed to an N-terminally acetylated α-synuclein peptide. Biochemistry 2013; 52:3436-45. [PMID: 23607618 PMCID: PMC3758425 DOI: 10.1021/bi400199p] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Calmodulin (CaM) is a calcium binding protein that plays numerous roles in Ca-dependent cellular processes, including uptake and release of neurotransmitters in neurons. α-Synuclein (α-syn), one of the most abundant proteins in central nervous system neurons, helps maintain presynaptic vesicles containing neurotransmitters and moderates their Ca-dependent release into the synapse. Ca-Bound CaM interacts with α-syn most strongly at its N-terminus. The N-terminal region of α-syn is important for membrane binding; thus, CaM could modulate membrane association of α-syn in a Ca-dependent manner. In contrast, Ca-free CaM has negligible interaction. The interaction with CaM leads to significant signal broadening in both CaM and α-syn NMR spectra, most likely due to conformational exchange. The broadening is much reduced when binding a peptide consisting of the first 19 residues of α-syn. In neurons, most α-syn is acetylated at the N-terminus, and acetylation leads to a 10-fold increase in binding strength for the α-syn peptide (KD = 35 ± 10 μM). The N-terminally acetylated peptide adopts a helical structure at the N-terminus with the acetyl group contacting the N-terminal domain of CaM and with less ordered helical structure toward the C-terminus of the peptide contacting the CaM C-terminal domain. Comparison with known structures shows that the CaM/α-syn complex most closely resembles Ca-bound CaM in a complex with an IQ motif peptide. However, a search comparing the α-syn peptide sequence with known CaM targets, including IQ motifs, found no homologies; thus, the N-terminal α-syn CaM binding site appears to be a novel CaM target sequence.
Collapse
Affiliation(s)
- James M. Gruschus
- Laboratory of Molecular Biophysics, Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Thai Leong Yap
- Laboratory of Molecular Biophysics, Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Sara Pistolesi
- Laboratory of Molecular Biophysics, Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Alexander S. Maltsev
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Jennifer C. Lee
- Laboratory of Molecular Biophysics, Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
43
|
Di Donato V, Auer TO, Duroure K, Del Bene F. Characterization of the calcium binding protein family in zebrafish. PLoS One 2013; 8:e53299. [PMID: 23341937 PMCID: PMC3547026 DOI: 10.1371/journal.pone.0053299] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 11/30/2012] [Indexed: 11/18/2022] Open
Abstract
Calcium Binding Proteins (CaBPs), part of the vast family of EF-Hand-domain containing proteins, modulate intracellular calcium levels. They thereby contribute to a broad spectrum of biological processes – amongst others cell migration, gene expression and neural activity. In this study we identified twelve members of this protein family in zebrafish including one gene (cabp4b) currently not present in the zebrafish genome assembly. To gain insight into their biological functions, we carried out a detailed analysis of the expression patterns of these genes during zebrafish late embryonic and early larval development. We detected specific transcription for most of them in different neuronal cell populations including the neuroretina, the inner ear and the notochord. Our data supports potential roles for CaBPs during neuronal development and function and provides a starting point for genetic studies to examine CaBPs' function in these tissues and organs.
Collapse
Affiliation(s)
- Vincenzo Di Donato
- Institut Curie, Centre de Recherche, Paris, France
- CNRS UMR 3215, Paris, France
- INSERM U934, Paris, France
| | - Thomas O. Auer
- Institut Curie, Centre de Recherche, Paris, France
- CNRS UMR 3215, Paris, France
- INSERM U934, Paris, France
- Centre for Organismal Studies Heidelberg, Im Neuenheimer Feld 230, University of Heidelberg, Heidelberg, Germany
| | - Karine Duroure
- Institut Curie, Centre de Recherche, Paris, France
- CNRS UMR 3215, Paris, France
- INSERM U934, Paris, France
| | - Filippo Del Bene
- Institut Curie, Centre de Recherche, Paris, France
- CNRS UMR 3215, Paris, France
- INSERM U934, Paris, France
- * E-mail:
| |
Collapse
|
44
|
Hradsky J, Mikhaylova M, Karpova A, Kreutz MR, Zuschratter W. Super-resolution microscopy of the neuronal calcium-binding proteins Calneuron-1 and Caldendrin. Methods Mol Biol 2013; 963:147-169. [PMID: 23296610 DOI: 10.1007/978-1-62703-230-8_10] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Calcium (Ca(2+)) signaling in neurons is mediated by plethora of calcium binding proteins with many of them belonging to the Calmodulin family of calcium sensors. Many studies have shown that the subcellular localization of neuronal EF-hand Ca(2+)-sensors is crucial for their cellular function. To overcome the resolution limit of classical fluorescence and confocal microscopy various imaging techniques have been developed recently that improve the resolution by an order of magnitude in all dimensions. This new microscope techniques make co-localization studies of Ca(2+)-binding proteins more reliable and help to get insights into the macromolecular organization of intracellular structures and signaling pathways beyond the diffraction limit of visible light.
Collapse
Affiliation(s)
- Johannes Hradsky
- Research Group, Neuroplasticity, Leibniz Institute for Neurobiology (LIN), Magdeburg, Germany
| | | | | | | | | |
Collapse
|
45
|
Reyes-Bermudez A, Miller DJ, Sprungala S. The Neuronal Calcium Sensor protein Acrocalcin: a potential target of calmodulin regulation during development in the coral Acropora millepora. PLoS One 2012; 7:e51689. [PMID: 23284743 PMCID: PMC3524228 DOI: 10.1371/journal.pone.0051689] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 11/05/2012] [Indexed: 12/28/2022] Open
Abstract
To understand the calcium-mediated signalling pathways underlying settlement and metamorphosis in the Scleractinian coral Acropora millepora, a predicted protein set derived from larval cDNAs was scanned for the presence of EF-hand domains (Pfam Id: PF00036). This approach led to the identification of a canonical calmodulin (AmCaM) protein and an uncharacterised member of the Neuronal Calcium Sensor (NCS) family of proteins known here as Acrocalcin (AmAC). While AmCaM transcripts were present throughout development, AmAC transcripts were not detected prior to gastrulation, after which relatively constant mRNA levels were detected until metamorphosis and settlement. The AmAC protein contains an internal CaM-binding site and was shown to interact in vitro with AmCaM. These results are consistent with the idea that AmAC is a target of AmCaM in vivo, suggesting that this interaction may regulate calcium-dependent processes during the development of Acropora millepora.
Collapse
Affiliation(s)
- Alejandro Reyes-Bermudez
- ARC Centre of Excellence for Coral Reef Studies and School of Pharmacy and Molecular Sciences, James Cook University, Townsville, Queensland, Australia
- Okinawa Institute of Science and Technology, Okinawa, Japan
| | - David J. Miller
- ARC Centre of Excellence for Coral Reef Studies and School of Pharmacy and Molecular Sciences, James Cook University, Townsville, Queensland, Australia
| | - Susanne Sprungala
- ARC Centre of Excellence for Coral Reef Studies and School of Pharmacy and Molecular Sciences, James Cook University, Townsville, Queensland, Australia
- * E-mail:
| |
Collapse
|
46
|
Zimmer DB, Eubanks JO, Ramakrishnan D, Criscitiello MF. Evolution of the S100 family of calcium sensor proteins. Cell Calcium 2012; 53:170-9. [PMID: 23246155 DOI: 10.1016/j.ceca.2012.11.006] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 11/01/2012] [Accepted: 11/03/2012] [Indexed: 12/01/2022]
Abstract
The S100s are a large group of Ca(2+) sensors found exclusively in vertebrates. Transcriptomic and genomic data from the major radiations of mammals were used to derive the evolution of the mammalian S100s genes. In human and mouse, S100s and S100 fused-type proteins are in a separate clade from other Ca(2+) sensor proteins, indicating that an ancient bifurcation between these two gene lineages has occurred. Furthermore, the five genomic loci containing S100 genes have remained largely intact during the past 165 million years since the shared ancestor of egg-laying and placental mammals. Nonetheless, interesting births and deaths of S100 genes have occurred during mammalian evolution. The S100A7 loci exhibited the most plasticity and phylogenetic analyses clarified relationships between the S100A7 proteins encoded in the various mammalian genomes. Phylogenetic analyses also identified four conserved subgroups of S100s that predate the rise of warm-blooded vertebrates: A2/A3/A4/A5/A6, A1/A10/A11/B/P/Z, A13/A14/A16, and A7s/A8/A9/A12/G. The similarity between genomic location and phylogenetic clades suggest that these subfamilies arose by a series of tandem gene duplication events. Examination of annotated S100s in lower vertebrates suggests that the ancestral S100 was a member of the A1/A10/A11/B/P/Z subgroup and arose near the emergence of vertebrates approximately 500 million years ago.
Collapse
Affiliation(s)
- Danna B Zimmer
- Center for Biomolecular Therapeutics and Department of Biochemistry & Molecular Biology, University of Maryland School of Medicine, 108 North Greene Street, Baltimore, MD 20102, USA.
| | | | | | | |
Collapse
|
47
|
McCue HV, Patel P, Herbert AP, Lian LY, Burgoyne RD, Haynes LP. Solution NMR structure of the Ca2+-bound N-terminal domain of CaBP7: a regulator of golgi trafficking. J Biol Chem 2012; 287:38231-43. [PMID: 22989873 PMCID: PMC3488092 DOI: 10.1074/jbc.m112.402289] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 09/12/2012] [Indexed: 12/12/2022] Open
Abstract
Calcium-binding protein 7 (CaBP7) is a member of the calmodulin (CaM) superfamily that harbors two high affinity EF-hand motifs and a C-terminal transmembrane domain. CaBP7 has been previously shown to interact with and modulate phosphatidylinositol 4-kinase III-β (PI4KIIIβ) activity in in vitro assays and affects vesicle transport in neurons when overexpressed. Here we show that the N-terminal domain (NTD) of CaBP7 is sufficient to mediate the interaction of CaBP7 with PI4KIIIβ. CaBP7 NTD encompasses the two high affinity Ca(2+) binding sites, and structural characterization through multiangle light scattering, circular dichroism, and NMR reveals unique properties for this domain. CaBP7 NTD binds specifically to Ca(2+) but not Mg(2+) and undergoes significant conformational changes in both secondary and tertiary structure upon Ca(2+) binding. The Ca(2+)-bound form of CaBP7 NTD is monomeric and exhibits an open conformation similar to that of CaM. Ca(2+)-bound CaBP7 NTD has a solvent-exposed hydrophobic surface that is more expansive than observed in CaM or CaBP1. Within this hydrophobic pocket, there is a significant reduction in the number of methionine residues that are conserved in CaM and CaBP1 and shown to be important for target recognition. In CaBP7 NTD, these residues are replaced with isoleucine and leucine residues with branched side chains that are intrinsically more rigid than the flexible methionine side chain. We propose that these differences in surface hydrophobicity, charge, and methionine content may be important in determining highly specific interactions of CaBP7 with target proteins, such as PI4KIIIβ.
Collapse
Affiliation(s)
- Hannah V. McCue
- From the Physiological Laboratory, Department of Cellular and Molecular Physiology, Institute of Translational Medicine, and
| | - Pryank Patel
- From the Physiological Laboratory, Department of Cellular and Molecular Physiology, Institute of Translational Medicine, and
| | - Andrew P. Herbert
- From the Physiological Laboratory, Department of Cellular and Molecular Physiology, Institute of Translational Medicine, and
| | - Lu-Yun Lian
- the NMR Centre for Structural Biology, Institute of Integrative Biology, University of Liverpool, Liverpool L69 3BX, United Kingdom
| | - Robert D. Burgoyne
- From the Physiological Laboratory, Department of Cellular and Molecular Physiology, Institute of Translational Medicine, and
| | - Lee P. Haynes
- From the Physiological Laboratory, Department of Cellular and Molecular Physiology, Institute of Translational Medicine, and
| |
Collapse
|
48
|
Raghuram V, Sharma Y, Kreutz MR. Ca(2+) sensor proteins in dendritic spines: a race for Ca(2+). Front Mol Neurosci 2012; 5:61. [PMID: 22586368 PMCID: PMC3347464 DOI: 10.3389/fnmol.2012.00061] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2012] [Accepted: 04/18/2012] [Indexed: 12/21/2022] Open
Abstract
Dendritic spines are believed to be micro-compartments of Ca2+ regulation. In a recent study, it was suggested that the ubiquitous and evolutionarily conserved Ca2+ sensor, calmodulin (CaM), is the first to intercept Ca2+ entering the spine and might be responsible for the fast decay of Ca2+ transients in spines. Neuronal calcium sensor (NCS) and neuronal calcium-binding protein (nCaBP) families consist of Ca2+ sensors with largely unknown synaptic functions despite an increasing number of interaction partners. Particularly how these sensors operate in spines in the presence of CaM has not been discussed in detail before. The limited Ca2+ resources and the existence of common targets create a highly competitive environment where Ca2+ sensors compete with each other for Ca2+ and target binding. In this review, we take a simple numerical approach to put forth possible scenarios and their impact on signaling via Ca2+ sensors of the NCS and nCaBP families. We also discuss the ways in which spine geometry and properties of ion channels, their kinetics and distribution, alter the spatio-temporal aspects of Ca2+ transients in dendritic spines, whose interplay with Ca2+ sensors in turn influences the race for Ca2+.
Collapse
Affiliation(s)
- Vijeta Raghuram
- Centre for Cellular and Molecular Biology, CSIR Hyderabad, India
| | | | | |
Collapse
|
49
|
Sharma RK, Duda T. Ca(2+)-sensors and ROS-GC: interlocked sensory transduction elements: a review. Front Mol Neurosci 2012; 5:42. [PMID: 22509149 PMCID: PMC3321474 DOI: 10.3389/fnmol.2012.00042] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 03/20/2012] [Indexed: 02/01/2023] Open
Abstract
From its initial discovery that ROS-GC membrane guanylate cyclase is a mono-modal Ca(2+)-transduction system linked exclusively with the photo-transduction machinery to the successive finding that it embodies a remarkable bimodal Ca(2+) signaling device, its widened transduction role in the general signaling mechanisms of the sensory neuron cells was envisioned. A theoretical concept was proposed where Ca(2+)-modulates ROS-GC through its generated cyclic GMP via a nearby cyclic nucleotide gated channel and creates a hyper- or depolarized sate in the neuron membrane (Ca(2+) Binding Proteins 1:1, 7-11, 2006). The generated electric potential then becomes a mode of transmission of the parent [Ca(2+)](i) signal. Ca(2+) and ROS-GC are interlocked messengers in multiple sensory transduction mechanisms. This comprehensive review discusses the developmental stages to the present status of this concept and demonstrates how neuronal Ca(2+)-sensor (NCS) proteins are the interconnected elements of this elegant ROS-GC transduction system. The focus is on the dynamism of the structural composition of this system, and how it accommodates selectivity and elasticity for the Ca(2+) signals to perform multiple tasks linked with the SENSES of vision, smell, and possibly of taste and the pineal gland. An intriguing illustration is provided for the Ca(2+) sensor GCAP1 which displays its remarkable ability for its flexibility in function from being a photoreceptor sensor to an odorant receptor sensor. In doing so it reverses its function from an inhibitor of ROS-GC to the stimulator of ONE-GC membrane guanylate cyclase.
Collapse
Affiliation(s)
- Rameshwar K. Sharma
- Research Divisions of Biochemistry and Molecular Biology, The Unit of Regulatory and Molecular Biology, Salus University, Elkins ParkPA, USA
| | | |
Collapse
|
50
|
A mathematical model for astrocytes mediated LTP at single hippocampal synapses. J Comput Neurosci 2012; 33:341-70. [PMID: 22454034 DOI: 10.1007/s10827-012-0389-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 02/21/2012] [Accepted: 02/22/2012] [Indexed: 02/07/2023]
Abstract
Many contemporary studies have shown that astrocytes play a significant role in modulating both short and long form of synaptic plasticity. There are very few experimental models which elucidate the role of astrocyte over Long-term Potentiation (LTP). Recently, Perea and Araque (Science 317:1083-1086, 2007) demonstrated a role of astrocytes in induction of LTP at single hippocampal synapses. They suggested a purely pre-synaptic basis for induction of this N-methyl-D-Aspartate (NMDA) Receptor-independent LTP. Also, the mechanisms underlying this pre-synaptic induction were not investigated. Here, in this article, we propose a mathematical model for astrocyte modulated LTP which successfully imitates the experimental findings of Perea and Araque (Science 317:1083-1086, 2007). Our study suggests the role of retrograde messengers, possibly Nitric Oxide (NO), for this pre-synaptically modulated LTP.
Collapse
|