1
|
Issa H, Singh L, Lai KS, Parusheva-Borsitzky T, Ansari S. Dynamics of inflammatory signals within the tumor microenvironment. World J Exp Med 2025; 15:102285. [DOI: 10.5493/wjem.v15.i2.102285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/31/2024] [Accepted: 01/11/2025] [Indexed: 04/16/2025] Open
Abstract
Tumor stroma, or tumor microenvironment (TME), has been in the spotlight during recent years for its role in tumor development, growth, and metastasis. It consists of a myriad of elements, including tumor-associated macrophages, cancer-associated fibroblasts, a deregulated extracellular matrix, endothelial cells, and vascular vessels. The release of proinflammatory molecules, due to the inflamed microenvironment, such as cytokines and chemokines is found to play a pivotal role in progression of cancer and response to therapy. This review discusses the major key players and important chemical inflammatory signals released in the TME. Furthermore, the latest breakthroughs in cytokine-mediated crosstalk between immune cells and cancer cells have been highlighted. In addition, recent updates on alterations in cytokine signaling between chronic inflammation and malignant TME have also been reviewed.
Collapse
Affiliation(s)
- Hala Issa
- Division of Health Sciences, Higher Colleges of Technology, Abu Dhabi 25026, United Arab Emirates
| | - Lokjan Singh
- Department of Microbiology, Karnali Academy of Health Sciences, Jumla 21200, Karnali, Nepal
| | - Kok-Song Lai
- Division of Health Sciences, Higher Colleges of Technology, Abu Dhabi 25026, United Arab Emirates
| | - Tina Parusheva-Borsitzky
- Division of Health Sciences, Higher Colleges of Technology, Abu Dhabi 25026, United Arab Emirates
| | - Shamshul Ansari
- Division of Health Sciences, Higher Colleges of Technology, Abu Dhabi 25026, United Arab Emirates
| |
Collapse
|
2
|
Chakraborty S, Dutta A, Roy A, Joshi A, Basak T. The theatrics of collagens in the myocardium: the supreme architect of the fibrotic heart. Am J Physiol Cell Physiol 2025; 328:C1893-C1920. [PMID: 40257077 DOI: 10.1152/ajpcell.01043.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/24/2025] [Accepted: 04/14/2025] [Indexed: 04/22/2025]
Abstract
Heart failure (HF) mediated by cardiac fibrosis (CF) is characterized by an excessive accumulation of collagen-based extracellular matrix (ECM) in the myocardium. CF is a common pathophysiological condition in many heart diseases and can be distinctly categorized into two types: replacement and interstitial. In ischemic heart diseases, sudden loss of cardiomyocytes leads to the replacement of CF to prevent ventricular rupture. In contrast, excessive collagen deposition in the interstitial space between cardiomyocytes (often in response to pressure overload, chronic cardiac stress, hypertension, etc.) is termed interstitial CF. The progression of HF due to cardiac fibrosis is mainly driven by compromised diastolic function, resulting from increased stiffness of the heart wall muscle due to collagen-based scar formation. Increased myocardial stiffness is primarily catalyzed by the differential cross linking of deposited collagens forming the scar in the fibrotic heart. Although collagen deposition remained a hallmark of fibrosis, the pathophysiological progression due to biochemical alterations and mechanistic discrepancy of collagens across cardiac fibrosis subtypes remains elusive. With the advent of next-generation RNA sequencing and high-resolution mass spectrometry, mechanistic insights into collagen-mediated scar maturation have gained impetus. A deeper understanding of the spatiocellular transcriptional heterogeneity and site-specific collagen posttranslational modifications (PTMs) in maneuvering ECM remodeling is gaining attention. The unexplored mechanisms of posttranslational modifications and subsequent collagen cross linking in various cardiac fibrosis may provide the prime target for therapeutic interventions. This review comprehensively summarizes the detailed pattern, role, signaling, and mechanical contributions of different collagens and their PTMs, including cross-linking patterns as newer therapeutic regimens during cardiac fibrosis.
Collapse
Affiliation(s)
- Sanchari Chakraborty
- School of Biosciences and Bioengineering, Indian Institute of Technology - Mandi, Mandi, Himachal Pradesh, India
| | - Abhi Dutta
- School of Biosciences and Bioengineering, Indian Institute of Technology - Mandi, Mandi, Himachal Pradesh, India
| | - Antara Roy
- School of Biosciences and Bioengineering, Indian Institute of Technology - Mandi, Mandi, Himachal Pradesh, India
| | - Ashutosh Joshi
- School of Biosciences and Bioengineering, Indian Institute of Technology - Mandi, Mandi, Himachal Pradesh, India
| | - Trayambak Basak
- School of Biosciences and Bioengineering, Indian Institute of Technology - Mandi, Mandi, Himachal Pradesh, India
| |
Collapse
|
3
|
Wu L, Coletta DK. Obesity and type 2 diabetes mellitus: insights from skeletal muscle extracellular matrix remodeling. Am J Physiol Cell Physiol 2025; 328:C1752-C1763. [PMID: 40244268 DOI: 10.1152/ajpcell.00154.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 03/23/2024] [Accepted: 04/08/2025] [Indexed: 04/18/2025]
Abstract
Obesity and type 2 diabetes mellitus (T2DM) are metabolic diseases at epidemic proportions. The economic burden for these diseases is at an all-time high, and as such, there is an urgent need for advancements in identifying targets for treating these complex disorders. The extracellular matrix (ECM), comprising collagen, fibronectin, laminin, elastin, and proteoglycan, surrounds skeletal muscles and plays a critical role in maintaining tissue homeostasis by providing structural support and facilitating cell-to-cell communication. Disruption of the ECM signaling results in changes to its micro/macroenvironment, thereby modifying tissue homeostasis. Skeletal muscle ECM remodeling has been shown to be associated with insulin resistance, an underlying feature of obesity and T2DM. This narrative review explores the critical components of skeletal muscle ECM and its accumulation and remodeling in metabolic diseases. In addition, we discuss potential treatments to mitigate the effects of ECM remodeling in skeletal muscle. We conclude that targeting ECM remodeling in skeletal muscle represents a promising yet underexplored therapeutic avenue in the management of metabolic disorders.
Collapse
Affiliation(s)
- Linda Wu
- Department of Physiology, University of Arizona, Tucson, Arizona, United States
| | - Dawn K Coletta
- Department of Physiology, University of Arizona, Tucson, Arizona, United States
- Division of Endocrinology, Department of Medicine, University of Arizona, Tucson, Arizona, United States
- Center for Disparities in Diabetes, Obesity, and Metabolism, University of Arizona, Tucson, Arizona, United States
| |
Collapse
|
4
|
Lee JJ, Ng KY, Bakhtiar A. Extracellular matrix: unlocking new avenues in cancer treatment. Biomark Res 2025; 13:78. [PMID: 40426238 DOI: 10.1186/s40364-025-00757-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 03/05/2025] [Indexed: 05/29/2025] Open
Abstract
The extracellular matrix (ECM) plays a critical role in cancer progression by influencing tumor growth, invasion, and metastasis. This review explores the emerging therapeutic strategies that target the ECM as a novel approach in cancer treatment. By disrupting the structural and biochemical interactions within the tumor microenvironment, ECM-targeted therapies aim to inhibit cancer progression and overcome therapeutic resistance. We examine the current state of ECM research, focusing on key components such as collagen, laminin, fibronectin, periostin, and hyaluronic acid, and their roles in tumor biology. Additionally, we discuss the challenges associated with ECM-targeted therapies, including drug delivery, specificity, and potential side effects, while highlighting recent advancements and future directions. This review underscores the potential of ECM-focused strategies to enhance the efficacy of existing treatments and contribute to more effective cancer therapies.
Collapse
Affiliation(s)
- Jia Jing Lee
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500, Selangor, Malaysia
| | - Khuen Yen Ng
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500, Selangor, Malaysia
| | - Athirah Bakhtiar
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500, Selangor, Malaysia.
| |
Collapse
|
5
|
Lee E, Hong JJ, Samcam Vargas G, Sauerwald N, Wei Y, Hang X, Theesfeld CL, Volmar JAA, Miller JM, Wang W, Wang S, Laevsky G, DeCoste CJ, Kang Y. CXCR4 + mammary gland macrophageal niche promotes tumor initiating cell activity and immune suppression during tumorigenesis. Nat Commun 2025; 16:4854. [PMID: 40413176 PMCID: PMC12103607 DOI: 10.1038/s41467-025-59972-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Accepted: 05/09/2025] [Indexed: 05/27/2025] Open
Abstract
Tumor-initiating cells (TICs) share features and regulatory pathways with normal stem cells, yet how the stem cell niche contributes to tumorigenesis remains unclear. Here, we identify CXCR4+ macrophages as a niche population enriched in normal mammary ducts, where they promote the regenerative activity of basal cells in response to luminal cell-derived CXCL12. CXCL12 triggers AKT-mediated stabilization of β-catenin, which induces Wnt ligands and pro-migratory genes, enabling intraductal macrophage infiltration and supporting regenerative activity of basal cells. Notably, these same CXCR4+ niche macrophages regulate the tumor-initiating activity of various breast cancer subtypes by enhancing TIC survival and tumor-forming capacity, while promoting early immune evasion through regulatory T cell induction. Furthermore, a CXCR4+ niche macrophage gene signature correlates with poor prognosis in human breast cancer. These findings highlight the pivotal role of the CXCL12-CXCR4 axis in orchestrating interactions between niche macrophages, mammary epithelial cells, and immune cells, thereby establishing a supportive niche for both normal tissue regeneration and mammary tumor initiation.
Collapse
Affiliation(s)
- Eunmi Lee
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
- Ludwig Institute for Cancer Research Princeton Branch, Princeton, NJ, 08544, USA
| | - Jason J Hong
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
| | | | - Natalie Sauerwald
- Center for Computational Biology, Flatiron Institute, New York, NY, 10010, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, 08544, USA
| | - Yong Wei
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
- Ludwig Institute for Cancer Research Princeton Branch, Princeton, NJ, 08544, USA
| | - Xiang Hang
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
- Ludwig Institute for Cancer Research Princeton Branch, Princeton, NJ, 08544, USA
| | - Chandra L Theesfeld
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, 08544, USA
| | - Jean Arly A Volmar
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, 08544, USA
| | - Jennifer M Miller
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, 08544, USA
| | - Wei Wang
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, 08544, USA
| | - Sha Wang
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
| | - Gary Laevsky
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
| | - Christina J DeCoste
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
| | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA.
- Ludwig Institute for Cancer Research Princeton Branch, Princeton, NJ, 08544, USA.
- Cancer Metabolism and Growth Program, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, 08903, USA.
| |
Collapse
|
6
|
Jordan SN, Li X, Rossello-Martinez A, Liang Z, Gong X, Xiao H, Mak M. Macromolecular crowding-based biofabrication utilizing unmodified extracellular matrix bioinks. Acta Biomater 2025; 198:37-48. [PMID: 40268621 DOI: 10.1016/j.actbio.2025.02.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 02/15/2025] [Accepted: 02/24/2025] [Indexed: 04/25/2025]
Abstract
The extracellular matrix (ECM) is the body's natural cell-scaffolding material, and its structure and content are often imitated for applications in tissue engineering and regenerative medicine to promote biocompatibility. One approach toward biomimicking natural ECMs is to utilize decellularized extracellular matrices (dECMs), which involve removing cellular components from native tissues to preserve natural components. Solubilizing dECMs to produce bioinks therefore holds high potential for 3D biofabrication and bioprinting of bioactive scaffolds and tissues. However, solubilized ECMs have low printability owing to their slow gelation times, which necessitates additional artificial modifications (e.g. crosslinking) to facilitate biofabrication applications. In this study, we demonstrate a method utilizing macromolecular crowding (MMC) to confer printability, via rapid gelation, to solubilized unmodified dECMs from a variety of tissue types - heart, muscle, liver, small intestine, and large intestine. We show cell spreading and contractility in cell-laden dECM gels fabricated through MMC, highlighting biocompatibility with our method. Finally, we demonstrate successful extrusion bioprinting of complex 3D structures using unmodified dECM solutions as bioinks, revealing the potential of our MMC-based fabrication method for layer-by-layer building of user-designed bioinks made from wide-ranging fully physiological tissues. STATEMENT OF SIGNIFICANCE: Decellularized extracellular matrix (dECM) bioinks are among the most promising materials for simulating native organ-specific extracellular matrices. However, standard methods for gelling solubilized dECMs are slow and result in poor mechanical and structural characteristics, reducing printability. dECM solutions are typically supplemented with additional crosslinkers for the formation of robust hydrogels. The crosslinkers may be toxic to cells, and they often need UV light for activation. Here, we present a method that allows wide-ranging dECMs to be easily patternable and 3D printable in their unmodified forms. We demonstrate cell spreading and contractility in cell-laden unmodified dECM gels created demonstrating cell viability and bioactivity. We also demonstrated successful extrusion bioprinting of complex 3D structures utilizing low concentration unmodified dECM bioinks and normal healthy lung fibroblasts.
Collapse
Affiliation(s)
- Seyma Nayir Jordan
- Yale University, Department of Biomedical Engineering, New Haven, CT, USA
| | - Xianmu Li
- Yale University, Department of Biomedical Engineering, New Haven, CT, USA
| | | | - Zixie Liang
- Yale University, Department of Biomedical Engineering, New Haven, CT, USA
| | - Xiangyu Gong
- Yale University, Department of Biomedical Engineering, New Haven, CT, USA; Stony Brook University, Department of Pharmacological Sciences, Stony Brook, USA
| | - Hugh Xiao
- Yale University, Department of Biomedical Engineering, New Haven, CT, USA; Stony Brook University, Department of Pharmacological Sciences, Stony Brook, USA
| | - Michael Mak
- Yale University, Department of Biomedical Engineering, New Haven, CT, USA; Stony Brook University, Department of Pharmacological Sciences, Stony Brook, USA.
| |
Collapse
|
7
|
Zou AE, Kongthong S, Mueller AA, Brenner MB. Fibroblasts in immune responses, inflammatory diseases and therapeutic implications. Nat Rev Rheumatol 2025:10.1038/s41584-025-01259-0. [PMID: 40369134 DOI: 10.1038/s41584-025-01259-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2025] [Indexed: 05/16/2025]
Abstract
Once regarded as passive bystander cells of the tissue stroma, fibroblasts have emerged as active orchestrators of tissue homeostasis and disease. From regulating immunity and controlling tissue remodelling to governing cell growth and differentiation, fibroblasts assume myriad roles in guiding normal tissue development, maintenance and repair. By comparison, in chronic inflammatory diseases such as rheumatoid arthritis, fibroblasts recruit and sustain inflammatory leukocytes, become dominant producers of pro-inflammatory factors and catalyse tissue destruction. In other disease contexts, fibroblasts promote fibrosis and impair host control of cancer. Single-cell studies have uncovered striking transcriptional and functional heterogeneity exhibited by fibroblasts in both normal tissues and diseased tissues. In particular, advances in the understanding of fibroblast pathology in rheumatoid arthritis have shed light on pathogenic fibroblast states in other chronic diseases. The differentiation and activation of these fibroblast states is driven by diverse physical and chemical cues within the tissue microenvironment and by cell-intrinsic signalling and epigenetic mechanisms. These insights into fibroblast behaviour and regulation have illuminated therapeutic opportunities for the targeted deletion or modulation of pathogenic fibroblasts across many diseases.
Collapse
Affiliation(s)
- Angela E Zou
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Suppawat Kongthong
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Alisa A Mueller
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA and Palo Alto Veterans Affairs Health Care System, Palo Alto, CA, USA
| | - Michael B Brenner
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
8
|
Faa G, Ziranu P, Pretta A, Cau F, Castagnola M, Spanu D, Saba G, D'Agata AP, Tiwari E, Suri JS, Scartozzi M, Saba L. Cancer-associated fibroblasts (CAFs) and plaque-associated fibroblasts (PAFs): Unraveling the cellular crossroads of atherosclerosis and cancer. Biomed Pharmacother 2025; 188:118145. [PMID: 40373629 DOI: 10.1016/j.biopha.2025.118145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 05/04/2025] [Accepted: 05/05/2025] [Indexed: 05/17/2025] Open
Abstract
Atherosclerosis is a complex process involving various cells and molecules within the atherosclerotic plaque. Recent evidence suggests that plaque-associated fibroblasts (PAFs), also known as atherosclerosis-associated fibroblasts (AAFs), might play a significant role in the development and progression of the disease. The microenvironment of the atherosclerotic plaque, resembling the tumor microenvironment (TME), includes various cellular populations like plaque-associated macrophages (PAMs), plaque-associated neutrophils (PANs), vascular smooth muscle cells (VSMCs), myeloid-derived suppressor cells (MDSCs), and PAFs. Similar to cancer-associated fibroblasts (CAFs) in tumors, PAFs exhibits a wide range of characteristics and functions. Their interactions with endothelial cells, smooth muscle cells, and other stromal cells, including adventitial fibroblast precursors, significantly influence atherosclerosis progression. Moreover, the ability of PAFs to express various markers such as alpha-SMA, Desmin, VEGF, and GFAP, highlights their diverse origins from different precursor cells, including vascular smooth muscle cells, endothelial cells, glial cells of the enteric nervous system, adventitial fibroblast precursors, as well as resident and circulating fibrocytes. This article explores the molecular interactions between PAFs, cells associated with atherosclerosis, and other stromal cells. It further examines the role of PAFs in the development and progression of atherosclerosis, and compares their features with those of CAFs. The research suggests that studying tumor-associated fibroblasts can help understand fibroblast subpopulations in atherosclerotic plaque. Identifying specific subpopulations could provide new insight into atherosclerosis complexity and lead to the development of innovative drugs for medical intervention.
Collapse
Affiliation(s)
- Gavino Faa
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy; Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, USA
| | - Pina Ziranu
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari 09042, Italy.
| | - Andrea Pretta
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari 09042, Italy
| | - Flaviana Cau
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Massimo Castagnola
- Laboratory of Proteomics, Centro Europeo di Ricerca sul Cervello, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Dario Spanu
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari 09042, Italy
| | - Giorgio Saba
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari 09042, Italy
| | - Alessandra Pia D'Agata
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari 09042, Italy
| | - Ekta Tiwari
- Department of Innovation. Global Biomedical Technologies, Inc., Roseville, CA 95661, USA
| | - Jasjit S Suri
- Department of ECE, Idaho State University, Pocatello, ID, 83209, USA; Department of CE, Graphics Era Deemed to be University, Dehradun 248002, India; University Center for Research & Development, Chandigarh University, Mohali, India; Symbiosis Institute of Technology, Nagpur Campus, Symbiosis International (Deemed University), Pune, INDIA; Stroke Diagnostic and Monitoring Division, AtheroPoint, Roseville, CA 95661, USA
| | - Mario Scartozzi
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari 09042, Italy
| | - Luca Saba
- Department of Medical Sciences and Public Health, Unit of Radiology, University fo Cagliari, Cagliari, Italy
| |
Collapse
|
9
|
Sonia N, Saikia S, Limaye AM. Estrogenic control of matrix metalloproteinases: a perspective on breast tumor invasion and metastasis. Mol Biol Rep 2025; 52:453. [PMID: 40358843 DOI: 10.1007/s11033-025-10555-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 04/29/2025] [Indexed: 05/15/2025]
Abstract
Metastasis is the major cause of mortality in breast cancer patients, and presents an invincible therapeutic challenge. It is a complex process of dissemination of tumor epithelial cells, which is associated with disruption of tissue homeostasis, and alterations in the tumor microenvironment through extracellular matrix (ECM) remodeling, stromal alteration, and epithelial-mesenchymal transition. Matrix metalloproteinases (MMPs) constitute a group of more than 25 zinc-dependent endopeptidases. By virtue of their ability to degrade a wide variety of ECM-associated proteins, they enable ECM remodelling during development, and disease. A large body of clinical data, and experimental evidences implicate MMPs in the invasion and metastasis of breast tumors. While MMPs are aberrantly expressed in breast tumors, few appear to have a dual role in disease progression; either promoting or inhibiting metastasis. Given the role of estrogen in breast cancer development, it is natural to ask whether this steroid hormone has any role in breast cancer metastasis. This review is a round-up of the prominent literature that presents estrogenic control of MMPs, which in turn implies its influence on the tumor microenvironment and metastasis.
Collapse
Affiliation(s)
- Ningthoujam Sonia
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Snigdha Saikia
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Anil Mukund Limaye
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.
| |
Collapse
|
10
|
Quartey BC, Sapudom J, Tipay PS, Hunashal Y, Alshehhi S, Arnoux M, Cardoso T, Quilez J, Piano F, Teo JC. Hydrogel-Based Tumor Tissue Microarchitecture Reshapes Dendritic Cell Metabolic Profile and Functions. Adv Healthc Mater 2025; 14:e2500681. [PMID: 40134371 DOI: 10.1002/adhm.202500681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Indexed: 03/27/2025]
Abstract
The extracellular matrix (ECM) plays a pivotal role in immunomodulation, providing structural and biochemical cues that shape immune cell function. In pathological conditions like cancer and chronic inflammation, dysregulated remodeling often results in altered ECM composition and architecture, with fibrillar alignment being a hallmark linked to disease progression. Here, how ECM alignment influences dendritic cell (DC) behavior using 3D biomimetic collagen matrices with controlled fibril anisotropy is investigated. This results show that immature DCs in aligned matrices exhibited increased expression of CD86 and HLA-DR with elevated secretion of CXCL8 and CCL2 chemokines, which may enhance immune cell recruitment. However, transcriptomic and metabolomic analysis revealed significant downregulation of oxidative phosphorylation and an insufficient compensatory shift toward glycolysis, resulting in reduced ATP production. This metabolic constraint correlated with impaired/reduced DC migratory speed and distance. In contrast, mature DCs displayed minimal sensitivity to ECM alignment, maintaining uniform differentiation and functional profiles across matrix conditions. T-cell coculture experiments revealed that ECM alignment dampens T-cell activation and proliferation, likely through direct modulation of T-cell behavior. These findings highlight the stage-specific effects of ECM alignment on DC function, highlighting its role in DC immunomodulation, with implications for therapeutic development in cancer and other pathological contexts.
Collapse
Affiliation(s)
- Brian Chesney Quartey
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, 129188, UAE
- Department of Biomedical Engineering, Tandon School of Engineering, New York University, NY, 11201, USA
| | - Jiranuwat Sapudom
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, 129188, UAE
| | | | - Yamanappa Hunashal
- Biology Program, Science Division, New York University Abu Dhabi, Abu Dhabi, 129188, UAE
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, 129188, UAE
| | - Shaikha Alshehhi
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, 129188, UAE
| | - Marc Arnoux
- Core Technology Platforms, New York University Abu Dhabi, Abu Dhabi, 129188, UAE
| | | | | | - Fabio Piano
- Biology Program, Science Division, New York University Abu Dhabi, Abu Dhabi, 129188, UAE
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, 129188, UAE
- Department of Biology, Center for Genomics and Systems Biology, New York University, NY, 10003, USA
| | - Jeremy Cm Teo
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, 129188, UAE
- Department of Biomedical Engineering, Tandon School of Engineering, New York University, NY, 11201, USA
- Department of Mechanical Engineering, Tandon School of Engineering, New York University, NY, 11201, USA
| |
Collapse
|
11
|
Seidel T, Ohri N, Glaß M, Sunami Y, Müller LP, Kleeff J. Stromal Cells in Early Inflammation-Related Pancreatic Carcinogenesis-Biology and Its Potential Role in Therapeutic Targeting. Cancers (Basel) 2025; 17:1541. [PMID: 40361466 DOI: 10.3390/cancers17091541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2025] [Revised: 04/28/2025] [Accepted: 04/28/2025] [Indexed: 05/15/2025] Open
Abstract
The stroma of healthy pancreases contains various non-hematopoietic, non-endothelial mesenchymal cells. It is altered by chronic inflammation which in turn is a major contributor to the development of pancreatic adenocarcinoma (PDAC). In PDAC, the stroma plays a decisive and well-investigated role for tumor progression and therapy response. This review addresses the central role of stromal cells in the early inflammation-driven development of PDAC. It focuses on major subpopulations of pancreatic mesenchymal cells, i.e., fibroblasts, pancreatic stellate cells, and multipotent stroma cells, particularly their activation and functional alterations upon chronic inflammation including the development of different types of carcinoma-associated fibroblasts. In the second part, the current knowledge on the impact of activated stroma cells on acinar-to-ductal metaplasia and the transition to pancreatic intraepithelial neoplasia is summarized. Finally, putative strategies to target stroma cells and their signaling in early pancreatic carcinogenesis are reflected. In summary, the current data show that the activation of pancreatic stroma cells and the resulting fibrotic changes has pro- and anti-carcinogenetic effects but, overall, creates a carcinogenesis-promoting microenvironment. However, this is a dynamic process and the therapeutic targeting of specific pathways and cells requires in-depth knowledge of the molecular interplay of various cell types.
Collapse
Affiliation(s)
- Tina Seidel
- Department of Internal Medicine, University Hospital Halle, 06120 Halle (Saale), Germany
| | - Nupur Ohri
- Department of Visceral, Vascular and Endocrine Surgery, University Hospital Halle, 06120 Halle (Saale), Germany
| | - Markus Glaß
- Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, 06108 Halle (Saale), Germany
| | - Yoshiaki Sunami
- Department of Visceral, Vascular and Endocrine Surgery, University Hospital Halle, 06120 Halle (Saale), Germany
| | - Lutz P Müller
- Department of Internal Medicine, University Hospital Halle, 06120 Halle (Saale), Germany
| | - Jörg Kleeff
- Department of Visceral, Vascular and Endocrine Surgery, University Hospital Halle, 06120 Halle (Saale), Germany
| |
Collapse
|
12
|
Lee HJ, Park SW, Lee JH, Chang SY, Oh SM, Mun S, Kang J, Park JE, Choi JK, Kim TI, Kim JY, Kim P. Differential cellular origins of the extracellular matrix of tumor and normal tissues according to colorectal cancer subtypes. Br J Cancer 2025; 132:770-782. [PMID: 40032993 PMCID: PMC12041468 DOI: 10.1038/s41416-025-02964-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 01/07/2025] [Accepted: 02/13/2025] [Indexed: 03/05/2025] Open
Abstract
BACKGROUND Understanding the proteomic-level heterogeneity of the tumor microenvironment (TME) in colorectal cancer (CRC) is crucial due to its well-known heterogeneity. While heterogenous CRC has been extensively characterized at the molecular subtype level, research into the functional heterogeneity of fibroblasts, particularly their relationship with extracellular matrix (ECM) alterations, remains limited. Addressing this gap is essential for a comprehensive understanding of CRC progression and the development of targeted therapies. METHODS 24 tissue samples from 21 CRC patients, along with adjacent normal tissues (NAT), were collected and decellularized using a detergent-based method to enrich the ECM component. Proteomic analysis of ECM-enriched samples was performed using tandem mass tag (TMT) spectrometry, followed by statistical analysis including differential expression protein (DEP) analysis. Single-cell RNA sequencing (scRNA-Seq) data from public datasets were integrated and analyzed to delineate cell states within the TME. Bulk tissue RNA-Seq and bioinformatics analysis, including consensus molecular subtype (CMS) classification and single-cell level deconvolution of TCGA bulk RNA-seq data, were conducted to further explore gene expression patterns and TME composition. RESULTS Differential cellular origin of the NAT and tumorous ECM proteins were identified, revealing 110 ECM proteins enriched in NAT and 28 ECM proteins in tumor tissues. Desmoplastic and WNT5A+ inflammatory fibroblasts were indicated as the sources of tumor-enriched ECM proteins, while ADAMDEC1+ expressing fibroblasts and PI16+ expressing fibroblast were identified as the sources of NAT-enriched ECM proteins. Deconvolution of bulk RNA-seq of CRC tissues discriminated CMS-specific fibroblast state, reflecting the biological traits of each CMS subtype. Specially, seven ECM genes specific to mesenchymal subtype (CMS4), including PI16+ fibroblast-related 4 genes (SFRP2, PRELP, OGN, SRPX) and desmoplastic fibroblast-related 3 genes (THBS2, CTHRC1, BGN), showed a significant association with poorer survival in patient with CRC. CONCLUSION We conducted an extracellular matrix (ECM)-focused profiling of the TME by integrating quantitative proteomics with single-cell RNA sequencing (scRNA-seq) data from CRC patients. We identified the ECM proteins of NAT and tumor tissue, and established a cell-matrisome database. We defined mesenchymal subtype-specific molecules associated with specific fibroblast subtypes showing a significant association with poorer survival in patients with CRC. Our ECM-focused profiling of tumor stroma provides new insights as indicators for biological processes and clinical endpoints.
Collapse
Affiliation(s)
- Hyun Jin Lee
- Department of Bio and Brain Engineering, KAIST, Daejeon, 34141, Republic of Korea
| | - Sang Woo Park
- Korea Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Ochang, 28119, Republic of Korea
| | - Jun Hyeong Lee
- Department of Bio and Brain Engineering, KAIST, Daejeon, 34141, Republic of Korea
| | - Shin Young Chang
- Department of Internal Medicine, Institute of Gastroenterology, Brain Korea 21 Project for Medical Science, Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Sang Mi Oh
- Department of Internal Medicine, Institute of Gastroenterology, Brain Korea 21 Project for Medical Science, Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Siwon Mun
- Department of Bio and Brain Engineering, KAIST, Daejeon, 34141, Republic of Korea
| | - Junho Kang
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, Republic of Korea
| | - Jong-Eun Park
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, Republic of Korea
- SCL-KAIST Institute of Translational Research, KAIST, Daejeon, Republic of Korea
| | - Jung Kyoon Choi
- Department of Bio and Brain Engineering, KAIST, Daejeon, 34141, Republic of Korea
- SCL-KAIST Institute of Translational Research, KAIST, Daejeon, Republic of Korea
| | - Tae Il Kim
- Department of Internal Medicine, Institute of Gastroenterology, Brain Korea 21 Project for Medical Science, Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
| | - Jin Young Kim
- Korea Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Ochang, 28119, Republic of Korea.
| | - Pilnam Kim
- Department of Bio and Brain Engineering, KAIST, Daejeon, 34141, Republic of Korea.
- SCL-KAIST Institute of Translational Research, KAIST, Daejeon, Republic of Korea.
| |
Collapse
|
13
|
Tavarez JR, Kenney J, Gabunia S, Nelson DA, Larsen M. Temporal evolution of fibroblast responses following salivary gland ductal ligation injury. FRONTIERS IN DENTAL MEDICINE 2025; 6:1581376. [PMID: 40375832 PMCID: PMC12078207 DOI: 10.3389/fdmed.2025.1581376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Accepted: 04/15/2025] [Indexed: 05/18/2025] Open
Abstract
Extracellular matrix remodeling is a natural response to injury but, excessive extracellular matrix accumulation, or fibrosis, is a causative factor in hundreds of diseases that limit organ function, regenerative responses, and can interfere with regenerative therapies. Fibrosis is closely related to inflammation, both of which occur in the salivary glands of patients treated with radiation for head and neck cancers and in patients suffering from autoimmune conditions, such as Sjögren's Disease. Despite the known involvement of fibrosis in disease and the inhibitory effects of fibrosis on tissue regeneration, the mechanisms through which extracellular matrix is elaborated in the salivary gland are poorly understood. Stromal fibroblasts are the primary matrix-producing cells and are known to drive both fibrosis and inflammation. To define the temporal responses of fibroblasts to injury, we induced a temporary obstructive injury though ligation of the primary submandibular and sublingual salivary gland ducts and then performed single-cell RNA sequencing and pathway analysis at timepoints immediately following the injury. Using bioinformatic approaches, we identified three unique fibroblast groups that dynamically respond to the injury. We characterized the changes in matrisomal and inflammatory gene expression over a 7-day time course and identified one group of fibroblasts to be the primary injury-responsive fibrogenic cell type. Understanding how fibroblasts respond at the early and later injury timepoints, along with defining signaling pathways regulated by fibroblasts, could lead to a better understanding of the contribution of fibroblast to acute injury responses to facilitate the development of therapeutics that minimize fibrosis and promote regenerative gland responses in chronic disease states.
Collapse
Affiliation(s)
- Joey R. Tavarez
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, Albany, NY, United States
- Molecular, Cellular, Developmental, and Neural Biology Graduate Program, Department of Biological Sciences, University at Albany, State University of New York, Albany, NY, United States
| | - James Kenney
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, Albany, NY, United States
| | - Sergo Gabunia
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, Albany, NY, United States
| | - Deirdre A. Nelson
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, Albany, NY, United States
| | - Melinda Larsen
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, Albany, NY, United States
- Molecular, Cellular, Developmental, and Neural Biology Graduate Program, Department of Biological Sciences, University at Albany, State University of New York, Albany, NY, United States
| |
Collapse
|
14
|
Ros-Tarraga P, Villanueva-Badenas E, Sanchez-Gonzalez E, Gallego-Ferrer G, Donato MT, Tolosa L. Challenges of in vitro modelling of liver fibrosis. Front Cell Dev Biol 2025; 13:1567916. [PMID: 40371390 PMCID: PMC12075197 DOI: 10.3389/fcell.2025.1567916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 04/10/2025] [Indexed: 05/16/2025] Open
Abstract
Liver fibrosis has been proposed as the most important predictive indicator affecting prognosis of patients with chronic liver disease. It is defined by an abnormal accumulation of extracellular matrix components that results from necrotic and inflammatory processes and eventually impairs organ function. With no approved therapy, comprehensive cellular models directly derived from patient's cells are necessary to understand the mechanisms behind fibrosis and the response to anti-fibrotic therapies. Primary human cells, human hepatic cell lines and human stem cells-derived hepatic stellate-like cells have been widely used for studying fibrosis pathogenesis. In this paper, we depict the cellular crosstalk and the role of extracellular matrix during fibrosis pathogenesis and summarize different in vitro models from simple monolayers to multicellular 3D cultures used to gain deeper mechanistic understanding of the disease and the therapeutic response, discussing their major advantages and disadvantages for liver fibrosis modelling.
Collapse
Affiliation(s)
- Patricia Ros-Tarraga
- Experimental Hepatology Unit, Health Research Institute La Fe (IISLAFE), Valencia, Spain
| | - Estela Villanueva-Badenas
- Experimental Hepatology Unit, Health Research Institute La Fe (IISLAFE), Valencia, Spain
- Faculty of Medicine and Dentistry, Department of Biochemistry and Molecular Biology, University of Valencia, Valencia, Spain
| | - Estela Sanchez-Gonzalez
- Center for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, Valencia, Spain
- Biomedical Research Networking Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Carlos III Health Institute, Valencia, Spain
| | - Gloria Gallego-Ferrer
- Center for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, Valencia, Spain
- Biomedical Research Networking Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Carlos III Health Institute, Valencia, Spain
| | - M. Teresa Donato
- Experimental Hepatology Unit, Health Research Institute La Fe (IISLAFE), Valencia, Spain
- Faculty of Medicine and Dentistry, Department of Biochemistry and Molecular Biology, University of Valencia, Valencia, Spain
- Biomedical Research Networking Center in Hepatic and Digestive Diseases (CIBERehd), Carlos III Health Institute, Madrid, Spain
| | - Laia Tolosa
- Experimental Hepatology Unit, Health Research Institute La Fe (IISLAFE), Valencia, Spain
- Biomedical Research Networking Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Carlos III Health Institute, Valencia, Spain
| |
Collapse
|
15
|
Sarkar M, Hossain MT, Ewoldt RH, Laukaitis C, Johnson AW. Stiffening of a fibrous matrix after recovery of contracted inclusions. SOFT MATTER 2025; 21:3314-3330. [PMID: 40183246 DOI: 10.1039/d5sm00087d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Disordered fibrous matrices in living tissues are subjected to forces exerted by cells that contract to pull on matrix fibers. To maintain homeostasis or facilitate disease progression, contracted cells often push on matrix fibers as they recover their original sizes. Recent advances have shown that matrix geometry encodes loading history into mechanical memory independently of plasticity mechanisms such as inter-fiber cohesion or fiber yielding. Conceptualizing cells as inclusions undergoing sequential contraction and recovery, prior work documented matrix remodeling surrounding a solitary recovered inclusion. However, because the remodeling induced by the contraction of multiple inclusions differs from that caused by a single contracted inclusion, we investigate how matrix remodeling occurs when multiple contracted inclusions recover simultaneously, a scenario that more accurately reflects real tissues containing many closely spaced cells. Using mechanics-based computational models of fibrous matrices embedded with clusters of inclusions, we studied the mechanical remodeling of the matrix during the simultaneous recovery of inclusions after contraction. The results revealed permanent mechanical remodeling of the matrix within the cluster, with stiffening observed in areas of the matrix enclosed by closely spaced inclusions. This stiffening was driven by microstructural changes in matrix geometry and was corroborated in experiments, where collagen matrices permanently remodeled by the contraction and recovery of closely spaced embedded cells also exhibited stiffening. By enriching the understanding of memory formation in fibrous matrices, this study opens new possibilities for estimating cell forces on matrix substrates and refining metamaterial design strategies.
Collapse
Affiliation(s)
- Mainak Sarkar
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, USA.
| | - Mohammad Tanver Hossain
- Mechanical Science and Engineering, Grainger College of Engineering, University of Illinois Urbana-Champaign, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, USA
| | - Randy H Ewoldt
- Mechanical Science and Engineering, Grainger College of Engineering, University of Illinois Urbana-Champaign, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, USA
- Materials Research Laboratory, University of Illinois Urbana-Champaign, USA
| | - Christina Laukaitis
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, USA.
- Biomedical and Translational Sciences, Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, USA
- Clinical Sciences, Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, USA
- Carle Health, Urbana, Illinois, USA
| | - Amy Wagoner Johnson
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, USA.
- Mechanical Science and Engineering, Grainger College of Engineering, University of Illinois Urbana-Champaign, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, USA
- Biomedical and Translational Sciences, Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, USA
- CZ Biohub Chicago, LLC, Chicago, Illinois, USA
| |
Collapse
|
16
|
Guizzetti M, Mangieri RA, Ezerskiy LA, Hashimoto JG, Bajo M, Farris SP, Homanics GE, Lasek AW, Mayfield RD, Messing RO, Roberto M. ASTROCYTES AND ALCOHOL THROUGHOUT THE LIFESPAN. Biol Psychiatry 2025:S0006-3223(25)01147-3. [PMID: 40311830 DOI: 10.1016/j.biopsych.2025.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 03/31/2025] [Accepted: 04/21/2025] [Indexed: 05/03/2025]
Abstract
Evidence for involvement of astrocytes in several neurodegenerative disorders and in drug addiction has been emerging over the last two decades, but only in recent years have astrocytes been investigated for their roles in alcohol use disorder (AUD). As a result, there is a need to evaluate existing preclinical literature supporting involvement of astrocytes in the effects of alcohol exposure. Here we review emerging evidence about responses of astrocytes to alcohol, and the contributions of astrocytes to the development of AUD. We review studies of single-cell RNA sequencing with a focus on alcohol and astrocyte heterogeneity, astrocyte reactivity, and the role of astrocytes in remodeling the extracellular matrix. Effects of alcohol on astrocyte-modulated synaptic transmission are also discussed emphasizing studies never reviewed before. Since astrocytes play essential roles in brain development, we review recent research on the role of astrocytes in fetal alcohol spectrum disorders (FASD) which may also shed light on fetal development of psychiatric disorders that have a high prevalence in individuals affected by FASD. Finally, this review highlights gaps in knowledge about astrocyte biology and alcohol that need further research. Particularly, the dire need to identify astrocyte subpopulations and molecules that are susceptible to alcohol exposure and may be targets for therapeutic intervention.
Collapse
Affiliation(s)
- Marina Guizzetti
- Oregon Health & Science University and Portland VA Health Care System, Portland, OR.
| | | | | | - Joel G Hashimoto
- Oregon Health & Science University and Portland VA Health Care System, Portland, OR
| | - Michal Bajo
- The Scripps Research Institute, La Jolla, CA
| | | | | | - Amy W Lasek
- Virginia Commonwealth University, Richmond, VA
| | | | | | | |
Collapse
|
17
|
Ding X, Liang Y, Zhou S, Wu Y, Sałata P, Mikolajczk-Martinez A, Khosrawipour V, Zhang Z. Targeting tumor extracellular matrix with nanoparticles to circumvent therapeutic resistance. J Control Release 2025; 383:113786. [PMID: 40306575 DOI: 10.1016/j.jconrel.2025.113786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/21/2025] [Accepted: 04/25/2025] [Indexed: 05/02/2025]
Abstract
Each stage of tumor development is intrinsically linked to the tumor microenvironment (TME), wherein the extracellular matrix (ECM) serves as a vital and abundant component in tumor tissues. The ECM is a non-cellular, three-dimensional macromolecular network scaffold that provides structural support to cells, stores bioactive molecules, and mediates signaling pathways through specific binding to cell surface receptors. Moreover, the ECM in tumor tissues plays a crucial role in impeding drug diffusion and resisting apoptosis induced by conventional anti-cancer therapies that primarily target cancer cells. Therefore, directing attentions towards the tumor ECM can facilitate the identification of novel targets and the development of new therapies. This review aims to summarize the composition, structure, remodeling, and function of tumor ECM, its association with drug resistance, and current targeting strategies, with a specific emphasis on nanoparticles (NPs).
Collapse
Affiliation(s)
- Xinyue Ding
- School of Pharmacy, Key laboratory of smart drug delivery (Ministry of Education) & National key laboratory of complex drug formulations for overcoming delivery barriers, Fudan University, Shanghai 201203, China
| | - Yiyu Liang
- School of Pharmacy, Key laboratory of smart drug delivery (Ministry of Education) & National key laboratory of complex drug formulations for overcoming delivery barriers, Fudan University, Shanghai 201203, China
| | - Siyuan Zhou
- School of Pharmacy, Key laboratory of smart drug delivery (Ministry of Education) & National key laboratory of complex drug formulations for overcoming delivery barriers, Fudan University, Shanghai 201203, China
| | - Yao Wu
- School of Pharmacy, Key laboratory of smart drug delivery (Ministry of Education) & National key laboratory of complex drug formulations for overcoming delivery barriers, Fudan University, Shanghai 201203, China
| | - Patricia Sałata
- Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | | | | | - Zhiwen Zhang
- School of Pharmacy, Key laboratory of smart drug delivery (Ministry of Education) & National key laboratory of complex drug formulations for overcoming delivery barriers, Fudan University, Shanghai 201203, China.
| |
Collapse
|
18
|
Greco V, Lanza V, Tomasello B, Naletova I, Cairns WRL, Sciuto S, Rizzarelli E. Copper Complexes with New Glycyl-l-histidyl-l-lysine-Hyaluronan Conjugates Show Antioxidant Properties and Osteogenic and Angiogenic Synergistic Effects. Bioconjug Chem 2025; 36:662-675. [PMID: 40123442 DOI: 10.1021/acs.bioconjchem.4c00545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
In recent years, hyaluronic acid (HA) and the natural tripeptide glycyl-l-histidyl-l-lysine (GHK), especially its copper(II) complex (GHK-Cu), individually have been shown to exert helpful properties for bone protection and regeneration. However, they are not strong enough to handle oxidative stress, hydrolytic attack, or environmental conditions. Being aware that conjugation chemistry has recently emerged as an appealing approach for generating new molecular entities capable of preserving the molecular integrity of their moieties or delaying their degradation, herein we present the synthesis of conjugates of HA with GHK (GHK-HA), at different loadings of the tripeptide. GHK-HA binds copper(II) ions and potentiates the chemical and biological properties of the two components in in vitro assays. The results highlight copper's role in promoting the expression and release of certain trophic, angiogenic, and osteogenic factors, including brain-derived neurotrophic factor (BDNF), vascular endothelial growth factor (VEGF), as well as bone morphogenetic protein-2 (BMP-2). The protective and regenerative activities of the metal ion are related to the translocation of its intracellular chaperones Copper Chaperone for Superoxide Dismutase (CCS) and Antioxidant-1 (Atox1) to the nucleus where they act as transcription factors.
Collapse
Affiliation(s)
- Valentina Greco
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Valeria Lanza
- Institute of Crystallography, National Council of Research (CNR), Via P. Gaifami 18, 95126 Catania, Italy
| | - Barbara Tomasello
- Department of Drug and Health Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Irina Naletova
- Institute of Crystallography, National Council of Research (CNR), Via P. Gaifami 18, 95126 Catania, Italy
| | - Warren R L Cairns
- CNR-Institute of Polar Sciences (CNR-ISP), Via Torino 155, 30172 Venice, Italy
| | - Sebastiano Sciuto
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Enrico Rizzarelli
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
- Institute of Crystallography, National Council of Research (CNR), Via P. Gaifami 18, 95126 Catania, Italy
| |
Collapse
|
19
|
Khalili-Tanha G, Radisky ES, Radisky DC, Shoari A. Matrix metalloproteinase-driven epithelial-mesenchymal transition: implications in health and disease. J Transl Med 2025; 23:436. [PMID: 40217300 PMCID: PMC11992850 DOI: 10.1186/s12967-025-06447-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Accepted: 03/30/2025] [Indexed: 04/14/2025] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a process in which epithelial cells, defined by apical-basal polarity and tight intercellular junctions, acquire migratory and invasive properties characteristic of mesenchymal cells. Under normal conditions, EMT directs essential morphogenetic events in embryogenesis and supports tissue repair. When dysregulated, EMT contributes to pathological processes such as organ fibrosis, chronic inflammation, and cancer progression and metastasis. Matrix metalloproteinases (MMPs)-a family of zinc-dependent proteases that degrade structural components of the extracellular matrix-sit at the nexus of this transition by dismantling basement membranes, activating pro-EMT signaling pathways, and cleaving adhesion molecules. When normally regulated, MMPs promote balanced ECM turnover and support the cyclical remodeling necessary for proper development, wound healing, and tissue homeostasis. When abnormally regulated, MMPs drive excessive ECM turnover, thereby promoting EMT-related pathologies, including tumor progression and fibrotic disease. This review provides an integrated overview of the molecular mechanisms by which MMPs both initiate and sustain EMT under physiological and disease conditions. It discusses how MMPs can potentiate EMT through TGF-β and Wnt/β-catenin signaling, disrupt cell-cell junction proteins, and potentiate the action of hypoxia-inducible factors in the tumor microenvironment. It discusses how these pathologic processes remodel tissues during fibrosis, and fuel cancer cell invasion, metastasis, and resistance to therapy. Finally, the review explores emerging therapeutic strategies that selectively target MMPs and EMT, ranging from CRISPR/Cas-mediated interventions to engineered tissue inhibitors of metalloproteinases (TIMPs), and demonstrates how such approaches may suppress pathological EMT without compromising its indispensable roles in normal biology.
Collapse
Affiliation(s)
- Ghazaleh Khalili-Tanha
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Evette S Radisky
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | - Derek C Radisky
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | - Alireza Shoari
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
20
|
Rodimova S, Gubarkova E, Bobrov N, Shchechkin I, Kozlova V, Zolotova N, Potapov A, Kiseleva E, Gelikonov G, Gladkova N, Zagainov V, Zagaynova E, Kuznetsova D. Optical Coherence Tomography Angiography, Elastography, and Attenuation Imaging for Evaluation of Liver Regeneration. Diagnostics (Basel) 2025; 15:977. [PMID: 40310384 PMCID: PMC12025902 DOI: 10.3390/diagnostics15080977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/08/2025] [Accepted: 04/09/2025] [Indexed: 05/02/2025] Open
Abstract
Background/Objectives: As a result of metabolic changes and the disruption of tissue architecture and microcirculation, the regenerative potential of the liver decreases with violations at both micro and macro levels. The development of intraoperative approaches for assessing its regenerative potential is important for reducing the risk of the occurrence of post-resection liver failure. In this study, we used multimodal optical coherence tomography (MM OCT), a combination of three optical coherence tomography modalities-OCT-angiography (OCTA), attenuation coefficient mapping, and OCT-elastography (OCE) to provide real-time three-dimensional and label-free assessment of changes in microcirculation, and in the structure and stiffness of the liver during regeneration. Methods: In our study, the regeneration of a healthy liver was induced by 70% partial hepatectomy. Monitoring of changes was carried out on the 0 (normal liver), 3rd and 7th day of regeneration using modalities of MM OCT. OCT offers the benefits of higher resolution and specificity compared with other clinical imaging modalities, and can be used, even intraoperatively. Results: By the 3rd day of liver regeneration, a decreased density of all observable vessels, together with increased values of the liver tissue's attenuation coefficient and stiffness, was revealed compared to their initial state. However, by the 7th day, the studied parameters tended to return to their normal values, except that the density of large-caliber vessels continued to increase further. Histological and biochemical blood analysis methods were used to verify the MM OCT data. Conclusions: Such data are a first step towards further investigation of liver regeneration in pathology, and, taken in perspective, this should serve as a basis for predictive intraoperative assessment of the regenerative potential of the liver in a clinical setting.
Collapse
Affiliation(s)
- Svetlana Rodimova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky sq., 603000 Nizhny Novgorod, Russia; (E.G.); (D.K.)
| | - Ekaterina Gubarkova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky sq., 603000 Nizhny Novgorod, Russia; (E.G.); (D.K.)
| | - Nikolai Bobrov
- The Volga District Medical Centre of Federal Medical and Biological Agency, 14 Ilinskaya St., 603000 Nizhny Novgorod, Russia
| | - Ilya Shchechkin
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky sq., 603000 Nizhny Novgorod, Russia; (E.G.); (D.K.)
- Institute of Biology and Biomedicine, N.I. Lobachevsky Nizhny Novgorod National Research State University, 23 Gagarina Ave., 603022 Nizhny Novgorod, Russia
| | - Vera Kozlova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky sq., 603000 Nizhny Novgorod, Russia; (E.G.); (D.K.)
- The Volga District Medical Centre of Federal Medical and Biological Agency, 14 Ilinskaya St., 603000 Nizhny Novgorod, Russia
| | - Natalia Zolotova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky sq., 603000 Nizhny Novgorod, Russia; (E.G.); (D.K.)
| | - Arseniy Potapov
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky sq., 603000 Nizhny Novgorod, Russia; (E.G.); (D.K.)
| | - Elena Kiseleva
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky sq., 603000 Nizhny Novgorod, Russia; (E.G.); (D.K.)
| | - Grigory Gelikonov
- A.V. Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences, 46 Ulyanova Street, 603950 Nizhny Novgorod, Russia
| | - Natalia Gladkova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky sq., 603000 Nizhny Novgorod, Russia; (E.G.); (D.K.)
| | - Vladimir Zagainov
- Nizhny Novgorod Regional Clinical Oncologic Dispensary, Delovaya St., 11/1, 603126 Nizhny Novgorod, Russia
| | - Elena Zagaynova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky sq., 603000 Nizhny Novgorod, Russia; (E.G.); (D.K.)
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 1a Malaya Pirogovskaya St., 119435 Moscow, Russia
| | - Daria Kuznetsova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky sq., 603000 Nizhny Novgorod, Russia; (E.G.); (D.K.)
- Laboratory of Omics and Regenerative Technologies, Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., 119991 Moscow, Russia
| |
Collapse
|
21
|
Arafat Y, Cuesta-Apausa C, Castellano E, Reyes-Aldasoro CC. Fibre tracing in biomedical images: An objective comparison between seven algorithms. PLoS One 2025; 20:e0320006. [PMID: 40209168 PMCID: PMC11984972 DOI: 10.1371/journal.pone.0320006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 02/01/2025] [Indexed: 04/12/2025] Open
Abstract
Obtaining the traces and the characteristics of elongated structures is an important task in computer vision pipelines. In biomedical applications, the analysis of traces of vasculature, nerves or fibres of the extracellular matrix can help characterise processes like angiogenesis or the effect of a certain treatment. This paper presents an objective comparison of six existing methodologies (Edge detection, CT Fire, Scale Space, Twombli, U-Net and Graph Based) and one novel approach called Trace Ridges to trace biomedical images with fibre-like structures. Trace Ridges is a fully automatic and fast algorithm that combines a series of image-processing algorithms including filtering, watershed transform and edge detection to obtain an accurate delineation of the fibre-like structures in a rapid time. To compare the algorithms, four biomedical data sets with vastly distinctive characteristics were selected. Ground truth was obtained by manual delineation of the fibre-like structures. Three pre-processing filtering options were used as a first step: no filtering, Gaussian low-pass and DnCnn, a deep-learning filtering. Three distance error metrics (total, average and maximum distance from the obtained traces to the ground truth) and processing time were calculated. It was observed that no single algorithm outperformed the others in all metrics. For the total distance error, which was considered the most significative, Trace Ridges ranked first, followed by Graph Based, U-Net, Twombli, Scale Space, CT Fire and Edge Detection. In terms of speed, Trace Ridges ranked second, only slightly slower than Edge Detection. Code is freely available at github.com/youssefarafat/Trace_Ridges.
Collapse
Affiliation(s)
- Youssef Arafat
- Department of Computer Science, School of Science and Technology, City St George’s, University of London, London, United Kingdom
| | | | - Esther Castellano
- Tumour-Stroma Signalling Lab, Universidad de Salamanca, Salamanca, Spain
| | - Constantino Carlos Reyes-Aldasoro
- Department of Computer Science, School of Science and Technology, City St George’s, University of London, London, United Kingdom
- Integrated Pathology Unit, Division of Molecular Pathology, The Institute of Cancer Research, Sutton, United Kingdom
| |
Collapse
|
22
|
Pandit R, Yurdagul A. The Atherosclerotic Plaque Microenvironment as a Therapeutic Target. Curr Atheroscler Rep 2025; 27:47. [PMID: 40172727 PMCID: PMC11965263 DOI: 10.1007/s11883-025-01294-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2025] [Indexed: 04/04/2025]
Abstract
PURPOSE OF REVIEW Atherosclerosis is traditionally viewed as a disease triggered by lipid accumulation, but growing evidence underscores the crucial role of the plaque microenvironment in disease progression. This review explores recent advances in understanding how cellular and extracellular components of the plaque milieu drive atherosclerosis, with a focus on leveraging these microenvironmental factors for therapeutic intervention. This review highlights recent advances in cell-cell crosstalk and matrix remodeling, offering insights into innovative therapeutic strategies for atherosclerotic cardiovascular disease. RECENT FINDINGS While atherosclerosis begins with the subendothelial retention of apolipoprotein B (ApoB)-containing lipoproteins, its progression is increasingly recognized as a consequence of complex cellular and extracellular dynamics within the plaque microenvironment. Soluble factors and extracellular matrix proteins shape mechanical properties and the biochemical landscape, directly influencing cell behavior and inflammatory signaling. For instance, the deposition of transitional matrix proteins, such as fibronectin, in regions of disturbed flow primes endothelial cells for inflammation. Likewise, impaired clearance of dead cells and chronic extracellular matrix remodeling contribute to lesion expansion and instability, further exacerbating disease severity. Targeting the plaque microenvironment presents a promising avenue for stabilizing atherosclerotic lesions. Approaches that enhance beneficial cellular interactions, such as boosting macrophage efferocytosis to resolve inflammation while mitigating proatherogenic signals like integrin-mediated endothelial activation, may promote fibrous cap formation and reduce plaque vulnerability. Harnessing these mechanisms may lead to novel therapeutic approaches aimed at modifying the plaque microenvironment to combat atherosclerotic cardiovascular disease.
Collapse
Affiliation(s)
- Rajan Pandit
- Department of Molecular and Cellular Physiology, LSU Health Sciences Center at Shreveport, Shreveport, LA, USA
| | - Arif Yurdagul
- Department of Molecular and Cellular Physiology, LSU Health Sciences Center at Shreveport, Shreveport, LA, USA.
- Department of Pathology and Translational Pathobiology, LSU Health Sciences Center at Shreveport, Shreveport, LA, USA.
| |
Collapse
|
23
|
Zhang E, Yan X, Shen H, Zhao M, Gao X, Huang Y. Intracranial Aneurysm Biomarkers: A Convergence of Genetics, Inflammation, Oxidative Stress, and the Extracellular Matrix. Int J Mol Sci 2025; 26:3316. [PMID: 40244203 PMCID: PMC11989888 DOI: 10.3390/ijms26073316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 03/30/2025] [Accepted: 03/30/2025] [Indexed: 04/18/2025] Open
Abstract
Intracranial aneurysm (IA) is a common cerebrovascular disease in which sacral aneurysms occurring in the Wills ring region can lead to devastating subarachnoid hemorrhage. Despite advances in research, the underlying mechanisms of IA formation and rupture remain incompletely understood, hindering early diagnosis and effective treatment. This review comprehensively summarizes the current landscape of IA biomarkers, encompassing genetic markers, DNA, RNA, inflammatory molecules, oxidative stress proteins, and extracellular matrix (ECM) components. Accumulating evidence suggests that various biomarkers are associated with different stages of IA pathogenesis, including initiation, progression, and rupture. Aberrant ECM composition and remodeling have been observed in IA patients, and extracellular matrix-degrading enzymes are implicated in IA growth and rupture. Biomarker research in IA holds great potential for improving clinical outcomes. Future studies should focus on validating the existing biomarkers, identifying novel ones, and investigating their underlying mechanisms to facilitate the development of personalized preventive and therapeutic strategies for IA.
Collapse
Affiliation(s)
- Enhao Zhang
- Ningbo Key Laboratory of Nervous System and Brain Function, Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo 315010, China; (E.Z.); (X.Y.); (H.S.); (M.Z.)
| | - Xu Yan
- Ningbo Key Laboratory of Nervous System and Brain Function, Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo 315010, China; (E.Z.); (X.Y.); (H.S.); (M.Z.)
| | - Hangyu Shen
- Ningbo Key Laboratory of Nervous System and Brain Function, Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo 315010, China; (E.Z.); (X.Y.); (H.S.); (M.Z.)
| | - Mingyue Zhao
- Ningbo Key Laboratory of Nervous System and Brain Function, Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo 315010, China; (E.Z.); (X.Y.); (H.S.); (M.Z.)
| | - Xiang Gao
- Ningbo Key Laboratory of Nervous System and Brain Function, Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo 315010, China; (E.Z.); (X.Y.); (H.S.); (M.Z.)
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo 315010, China
| | - Yi Huang
- Ningbo Key Laboratory of Nervous System and Brain Function, Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo 315010, China; (E.Z.); (X.Y.); (H.S.); (M.Z.)
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo 315010, China
| |
Collapse
|
24
|
Konstantaraki M, Berdiaki A, Neagu M, Zurac S, Krasagakis K, Nikitovic D. Understanding Merkel Cell Carcinoma: Pathogenic Signaling, Extracellular Matrix Dynamics, and Novel Treatment Approaches. Cancers (Basel) 2025; 17:1212. [PMID: 40227764 PMCID: PMC11987840 DOI: 10.3390/cancers17071212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 03/28/2025] [Accepted: 03/31/2025] [Indexed: 04/15/2025] Open
Abstract
Merkel cell carcinoma (MCC) is a rare but aggressive neuroendocrine skin cancer, driven by either Merkel cell polyomavirus (MCPyV) integration or ultraviolet (UV)-induced mutations. In MCPyV-positive tumors, viral T antigens inactivate tumor suppressors pRb and p53, while virus-negative MCCs harbor UV-induced mutations that activate similar oncogenic pathways. Key signaling cascades, including PI3K/AKT/mTOR and MAPK, support tumor proliferation, survival, and resistance to apoptosis. Histologically, MCC consists of small round blue cells with neuroendocrine features, high mitotic rate, and necrosis. The tumor microenvironment (TME) plays a central role in disease progression and immune escape. It comprises a mix of tumor-associated macrophages, regulatory and cytotoxic T cells, and elevated expression of immune checkpoint molecules such as PD-L1, contributing to an immunosuppressive niche. The extracellular matrix (ECM) within the TME is rich in proteoglycans, collagens, and matrix metalloproteinases (MMPs), facilitating tumor cell adhesion, invasion, and interaction with stromal and immune cells. ECM remodeling and integrin-mediated signaling further promote immune evasion and therapy resistance. Although immune checkpoint inhibitors targeting PD-1/PD-L1 have shown promise in treating MCC, resistance remains a major hurdle. Therapeutic strategies that concurrently target the TME-through inhibition of ECM components, MMPs, or integrin signaling-may enhance immune responses and improve clinical outcomes.
Collapse
Affiliation(s)
- Maria Konstantaraki
- Department of Histology-Embryology, Medical School, University of Crete, 71003 Heraklion, Greece; (M.K.); (A.B.)
- Dermatology Department, University Hospital of Heraklion, 71110 Heraklion, Greece;
| | - Aikaterini Berdiaki
- Department of Histology-Embryology, Medical School, University of Crete, 71003 Heraklion, Greece; (M.K.); (A.B.)
| | - Monica Neagu
- Immunology Laboratory, “Victor Babes” National Institute of Pathology, 99-101 Splaiul Independenței, 050096 Bucharest, Romania;
- Pathology Department, Colentina Clinical Hospital, 19-21 Sos Stefan Cel Mare, 020125 Bucharest, Romania;
| | - Sabina Zurac
- Pathology Department, Colentina Clinical Hospital, 19-21 Sos Stefan Cel Mare, 020125 Bucharest, Romania;
- Faculty of Dentistry, University of Medicine and Pharmacy, 8 Eroilor Sanitari Boulevard, 050474 Bucharest, Romania
| | | | - Dragana Nikitovic
- Department of Histology-Embryology, Medical School, University of Crete, 71003 Heraklion, Greece; (M.K.); (A.B.)
| |
Collapse
|
25
|
Rasouli M, Safari F, Roudi R, Sobhani N. Investigation of mesenchymal stem cell secretome on breast cancer gene expression: A bioinformatic approach to identify differentially expressed genes, functional networks, and potential therapeutic targets. Comput Biol Chem 2025; 115:108331. [PMID: 39752852 DOI: 10.1016/j.compbiolchem.2024.108331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/11/2024] [Accepted: 12/24/2024] [Indexed: 02/26/2025]
Abstract
The mesenchymal stem cell (MSC) secretome plays a pivotal role in shaping the tumor microenvironment, influencing both cancer progression and potential therapeutic outcomes. In this research, by using publicly available dataset GSE196312, we investigated the role of MSC secretome on breast cancer cell gene expression. Our results raveled differentially expressed genes, including the upregulation of Phosphatidylinositol-3,4,5-Trisphosphate Dependent Rac Exchange Factor 1 (PREX1), C-C Motif Chemokine Ligand 28 (CCL28), and downregulation of Collagen Type I Alpha 1 Chain (COL1A1), Collagen Type I Alpha 3 Chain (COL1A3), Collagen Type III Alpha 1 Chain (COL3A1), which contributing to extra cellular matrix (ECM) weakening and promoting cell migration. Functional enrichment analyses also highlighted suppression of ECM remodeling pathways, and activation of calcium ion binding and Rap1 signaling pathway. We proposed that Ca2 + medicated activation of Ras-related protein 1 (Rap1) through its its downstream pathways such as Matrix Metalloprotease (MMP), PI3K/Akt, and MEK/ERK signaling pathway contribute to promotion of cell migration. However, the co-culture model by reducing Fibronectin 1 (FN1) and Secreted Protein Acidic and Cysteine Rich (SPARC) gene expression in cancer cells, emphasized on therapeutical aspects of MSC secretome. These findings emphasize on the dual edge sword nature of MSC secretome on cancer cell behaviors, while our major results emphasize on the cancer progression through ECM remodeling, the therapeutic aspects should not be underscored.
Collapse
Affiliation(s)
- Mohammad Rasouli
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran
| | - Fatemeh Safari
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran.
| | - Raheleh Roudi
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University, Stanford, CA 94305, USA.
| | - Navid Sobhani
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| |
Collapse
|
26
|
Fatima S. Tumor Microenvironment: A Complex Landscape of Cancer Development and Drug Resistance. Cureus 2025; 17:e82090. [PMID: 40351953 PMCID: PMC12066109 DOI: 10.7759/cureus.82090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2025] [Indexed: 05/14/2025] Open
Abstract
Cancer is responsible for nearly one in six global fatalities, making it a major health issue worldwide. Despite advancements in early detection, surgery, and targeted therapies, effective treatment remains challenging due to the complexity and heterogeneity of the disease. A key factor in cancer progression and resistance to treatment is the tumor microenvironment (TME). It is a complex ecosystem comprising cancer cells, stromal cells, immune cells, extracellular matrix (ECM), and soluble factors like cytokines and chemokines. These components interact dynamically to influence tumor growth, metastasis, immune evasion, and treatment resistance. Cancer cells drive the formation of the TME by releasing signaling molecules, while stromal cells, such as fibroblasts and endothelial cells, support tumor metabolism, angiogenesis, and invasion. Immune cells within the TME can either suppress or promote tumor progression, depending on their activation state. Additionally, the TME can promote the growth of immunosuppressive cells that aid cancer cells in evading immune surveillance, such as regulatory T-cells and myeloid-derived suppressor cells. The TME also impedes drug delivery by creating defective blood vessels, contributing to drug resistance. Recent technological advancements have deepened our understanding of the TME, revealing its role in immune modulation, metabolism, and extracellular matrix remodeling. As a result, targeting the TME has become a promising strategy to overcome treatment resistance and improve cancer therapy outcomes.
Collapse
Affiliation(s)
- Sohaila Fatima
- Pathology, College of Medicine, King Khalid University, Abha, SAU
| |
Collapse
|
27
|
Chaulagain RP, Padder AM, Shrestha H, Gupta R, Bhandari R, Shrestha Y, Qasem Moqbel A, Gautam S, Lal N, Jin S. Deciphering the Matrisome: Extracellular Matrix Remodeling in Liver Cirrhosis and Hepatocellular Carcinoma. Cureus 2025; 17:e82171. [PMID: 40370880 PMCID: PMC12076258 DOI: 10.7759/cureus.82171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2025] [Indexed: 05/16/2025] Open
Abstract
Liver cirrhosis and hepatocellular carcinoma (HCC) are major public health concerns due to their high morbidity and mortality rates. The liver, a vital organ for metabolism, detoxification, and homeostasis, depends on the matrisome, a complex and dynamic network of extracellular matrix (ECM) components for maintaining structural and functional integrity. Chronic liver inflammation, induced by factors such as alcohol abuse, viral hepatitis, and non-alcoholic fatty liver disease, leads to fibrosis and cirrhosis, progressing to HCC. The matrisome, composed of ECM proteins including collagen, fibronectin, and laminin, plays a critical role in regulating tissue homeostasis, cell signaling, and tissue repair. Dysregulation of ECM components contributes to the pathogenesis of both liver cirrhosis and cancer. In cirrhosis, matrisome alterations are characterized by excessive ECM deposition and fibrosis, which disrupt the liver's architecture and impair its function. Activated hepatic stellate cells (HSCs) are the principal mediators of fibrosis, producing large quantities of ECM components. In liver cancer, matrisome remodeling facilitates tumorigenesis by promoting cancer cell proliferation, invasion, and metastasis. The tumor microenvironment, shaped by ECM alterations, further supports tumor growth and dissemination. Matrix metalloproteinases (MMPs) play a pivotal role in ECM degradation, fibrosis progression, and tumor invasion, while tissue inhibitors of metalloproteinases (TIMPs) modulate MMP activity. A comprehensive understanding of the molecular mechanisms that link matrisome alterations with the progression from cirrhosis to liver cancer is essential for identifying novel diagnostic and therapeutic targets. This review highlights the dynamic responses of the hepatic matrisome to both acute and chronic insults, emphasizing the complex interplay between ECM components, cellular behavior, and disease progression. Elucidating these interactions may inform strategies aimed at improving clinical outcomes for patients with liver cirrhosis and HCC.
Collapse
Affiliation(s)
- Ram Prasad Chaulagain
- Internal Medicine, Second Affiliated Hospital of Harbin Medical University, Harbin, CHN
| | - Aadil Mushtaq Padder
- Gastroenterology and Hepatology, Second Affiliated Hospital of Harbin Medical University, Harbin, CHN
| | | | - Radheshyam Gupta
- Urology Surgery, Cancer Hospital, Harbin Medical University, Harbin, CHN
| | - Rameshor Bhandari
- Surgical Gastroenterology, Grande International Hospital, Kathmandu, NPL
| | - Yelona Shrestha
- Dermatology, First Affiliated Hospital of Xinjiang Medical University, Xinxiang, CHN
| | | | - Smriti Gautam
- Dermatology, Kathmandu Medical College, Kathmandu, NPL
| | - Nand Lal
- Physiology, School of Biomedical Sciences, Harbin Medical University, Harbin, CHN
| | - Shizhu Jin
- Gastroenterology and Hepatology, Second Affiliated Hospital of Harbin Medical University, Harbin, CHN
| |
Collapse
|
28
|
Seth P, Friedrichs J, Limasale YDP, Fertala N, Freudenberg U, Zhang Y, Lampel A, Werner C. Interpenetrating Polymer Network Hydrogels with Tunable Viscoelasticity and Proteolytic Cleavability to Direct Stem Cells In Vitro. Adv Healthc Mater 2025; 14:e2402656. [PMID: 39506429 PMCID: PMC11973941 DOI: 10.1002/adhm.202402656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/18/2024] [Indexed: 11/08/2024]
Abstract
The dynamic nature of cellular microenvironments, regulated by the viscoelasticity and enzymatic cleavage of the extracellular matrix, remains challenging to emulate in engineered synthetic biomaterials. To address this, a novel platform of cell-instructive hydrogels is introduced, composed of two concurrently forming interpenetrating polymer networks (IPNs). These IPNs consist of the same basic building blocks - four-armed poly(ethylene glycol) and the sulfated glycosaminoglycan (sGAG) heparin - are cross-linked through either chemical or physical interactions, allowing for precise and selective tuning of the hydrogel's stiffness, viscoelasticity, and proteolytic cleavability. The studies of the individual and combined effects of these parameters on stem cell behavior revealed that human mesenchymal stem cells exhibited increased spreading and Yes-associated protein transcriptional activity in more viscoelastic and cleavable sGAG-IPN hydrogels. Furthermore, human induced pluripotent stem cell (iPSC) cysts displayed enhanced lumen formation, growth, and pluripotency maintenance when cultured in sGAG-IPN hydrogels with higher viscoelasticity. Inhibition studies emphasized the pivotal roles of actin dynamics and matrix metalloproteinase activity in iPSC cyst morphology, which varied with the viscoelastic properties of the hydrogels. Thus, the introduced sGAG-IPN hydrogel platform offers a powerful methodology for exogenous stem cell fate control.
Collapse
Affiliation(s)
- Prannoy Seth
- Leibniz Institute of Polymer Research DresdenMax Bergmann Center of Biomaterials Dresden01069DresdenGermany
| | - Jens Friedrichs
- Leibniz Institute of Polymer Research DresdenMax Bergmann Center of Biomaterials Dresden01069DresdenGermany
| | - Yanuar Dwi Putra Limasale
- Leibniz Institute of Polymer Research DresdenMax Bergmann Center of Biomaterials Dresden01069DresdenGermany
| | - Nicole Fertala
- Leibniz Institute of Polymer Research DresdenMax Bergmann Center of Biomaterials Dresden01069DresdenGermany
| | - Uwe Freudenberg
- Leibniz Institute of Polymer Research DresdenMax Bergmann Center of Biomaterials Dresden01069DresdenGermany
| | - Yixin Zhang
- Cluster of Excellence Physics of Lifeand B CUBE – Center for Molecular BioengineeringDresden University of Technology01307DresdenGermany
| | - Ayala Lampel
- Shmunis School of Biomedicine and Cancer ResearchGeorge S. Wise Faculty of Life SciencesCenter for Nanoscience and Nanotechnology Sagol Center for Regenerative Biotechnologyand Center for the Physics and Chemistry of Living Systems Tel Aviv UniversityTel Aviv69978Israel
| | - Carsten Werner
- Leibniz Institute of Polymer Research DresdenMax Bergmann Center of Biomaterials Dresden01069DresdenGermany
- Center for Regenerative Therapies Dresdenand Cluster of Excellence Physics of LifeDresden University of Technology01062DresdenGermany
| |
Collapse
|
29
|
Mivehchi H, Eskandari-Yaghbastlo A, Ghazanfarpour M, Ziaei S, Mesgari H, Faghihinia F, Zokaei Ashtiani N, Afjadi MN. Microenvironment-based immunotherapy in oral cancer: a comprehensive review. Med Oncol 2025; 42:140. [PMID: 40153139 DOI: 10.1007/s12032-025-02694-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 03/19/2025] [Indexed: 03/30/2025]
Abstract
Oral cancer, a prevalent form of head and neck malignancy, accounts for 4% of global cancer cases. The most common type, oral squamous cell carcinoma (OSCC), has a survival rate of about 50%. Even though emerging molecular therapies show promise for managing oral cancer, current treatments like surgery, radiotherapy, and chemotherapy have significant side effects. In addition, the complex tumor microenvironment (TME), involving the extracellular matrix (ECM) and cells like fibroblasts and stromal cells like immune cells, promotes tumor growth and inhibits immune responses, complicating treatment. Nonetheless, immunotherapy is crucial in cancer treatment, especially in oral cancers. Indeed, its effectiveness lies in targeting immune checkpoints such as PD-1 and CTLA-4 inhibitors, as well as monoclonal antibodies like pembrolizumab and cetuximab, adoptive cell transfer methods (including CAR-T cell therapy), cytokine therapy such as IL-2, and tumor vaccines. Thus, these interventions collectively regulate tumor proliferation and metastasis by targeting the TME through autocrine-paracrine signaling pathways. Immunotherapy indeed aims to stimulate the immune system, leveraging both innate and adaptive immunity to counteract cancer cell signals and promote tumor destruction. This review will explore how the TME controls tumor proliferation and metastasis via autocrine-paracrine signaling pathways. It will then detail the effectiveness of immunotherapy in oral cancers, focusing on immune checkpoints, targeted monoclonal antibodies, adoptive cell transfer, cytokine therapy, and tumor vaccines.
Collapse
Affiliation(s)
- Hassan Mivehchi
- Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | | | | | - SeyedMehdi Ziaei
- Faculty of Dentistry, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hassan Mesgari
- Oral and Maxillofacial Surgery Department, Faculty of Dentistry, Islamic Azad University, Tehran Branch, Tehran, Iran
| | - Farbod Faghihinia
- School of Dentistry, Yasuj University of Medical Sciences, Yasuj, Iran
| | | | - Mohsen Nabi Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
30
|
Heinmäe E, Mäemets-Allas K, Maasalu K, Vastšjonok D, Klaas M. Pathological Changes in Extracellular Matrix Composition Orchestrate the Fibrotic Feedback Loop Through Macrophage Activation in Dupuytren's Contracture. Int J Mol Sci 2025; 26:3146. [PMID: 40243889 PMCID: PMC11988646 DOI: 10.3390/ijms26073146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/19/2025] [Accepted: 03/27/2025] [Indexed: 04/18/2025] Open
Abstract
Dupuytren's contracture belongs to a group of fibrotic diseases that have similar mechanisms but lack effective treatment and prevention options. The excessive accumulation of connective tissue in Dupuytren's disease leads to palmar fibrosis that results in contracture deformities. The present study aimed to investigate how the tissue microenvironment in Dupuytren's contracture affects the phenotypic differentiation of macrophages, which leads to an inflammatory response and the development of chronicity in fibrotic disease. We utilized a decellularization-based method combined with proteomic analysis to identify shifts in extracellular matrix composition and the surrounding tissue microenvironment. We found that the expression of several matricellular proteins, such as MFAP4, EFEMP1 (fibulin-3), and ANGPTL2, was elevated in Dupuytren's tissue. We show that, in response to the changes in the extracellular matrix of Dupuytren's contracture, macrophages regulate the fibrotic process by cytokine production, promote myofibroblast differentiation, and increase the fibroblast migration rate. Moreover, we found that the extracellular matrix of Dupuytren's contracture directly supports the macrophage-to-myofibroblast transition, which could be another contributor to Dupuytren's disease pathogenesis. Our results suggest that interactions between macrophages and the extracellular matrix should be considered as targets for novel fibrotic disease treatment and prevention strategies in the future.
Collapse
Affiliation(s)
- Elizabeth Heinmäe
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23b, 51010 Tartu, Estonia; (E.H.); (K.M.-A.); (D.V.)
- Department of Cell and Molecular Biology, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Kristina Mäemets-Allas
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23b, 51010 Tartu, Estonia; (E.H.); (K.M.-A.); (D.V.)
| | - Katre Maasalu
- Department of Traumatology and Orthopedics, Institute of Clinical Medicine, University of Tartu, 51010 Tartu, Estonia;
- Clinic of Traumatology and Orthopedics, Tartu University Hospital, 51010 Tartu, Estonia
| | - Darja Vastšjonok
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23b, 51010 Tartu, Estonia; (E.H.); (K.M.-A.); (D.V.)
| | - Mariliis Klaas
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23b, 51010 Tartu, Estonia; (E.H.); (K.M.-A.); (D.V.)
| |
Collapse
|
31
|
Wang Y, Zhou H, Ju S, Dong X, Zheng C. The solid tumor microenvironment and related targeting strategies: a concise review. Front Immunol 2025; 16:1563858. [PMID: 40207238 PMCID: PMC11979131 DOI: 10.3389/fimmu.2025.1563858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 03/12/2025] [Indexed: 04/11/2025] Open
Abstract
The malignant tumor is a serious disease threatening human life. Increasing studies have confirmed that the tumor microenvironment (TME) is composed of a variety of complex components that precisely regulate the interaction of tumor cells with other components, allowing tumor cells to continue to proliferate, resist apoptosis, evade immune surveillance and clearance, and metastasis. However, the characteristics of each component and their interrelationships remain to be deeply understood. To target TME, it is necessary to deeply understand the role of various components of TME in tumor growth and search for potential therapeutic targets. Herein, we innovatively classify the TME into physical microenvironment (such as oxygen, pH, etc.), mechanical microenvironment (such as extracellular matrix, blood vessels, etc.), metabolic microenvironment (such as glucose, lipids, etc.), inflammatory microenvironment and immune microenvironment. We introduce a concise but comprehensive classification of the TME; depict the characteristics of each component in TME; summarize the existing methods for detecting each component in TME; highlight the current strategies and potential therapeutic targets for TME; discuss current challenges in presenting TME and its clinical applications; and provide our prospect on the future research direction and clinical benefits of TME.
Collapse
Affiliation(s)
- Yingliang Wang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, China
- Hubei Provincial Clinical Research Center for Precision Radiology & Interventional Medicine, Wuhan, China
| | - Huimin Zhou
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuguang Ju
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, China
- Hubei Provincial Clinical Research Center for Precision Radiology & Interventional Medicine, Wuhan, China
| | - Xiangjun Dong
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, China
- Hubei Provincial Clinical Research Center for Precision Radiology & Interventional Medicine, Wuhan, China
| | - Chuansheng Zheng
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, China
- Hubei Provincial Clinical Research Center for Precision Radiology & Interventional Medicine, Wuhan, China
| |
Collapse
|
32
|
Gebril M, Mulder S, Das R, Nallasamy S. Extracellular Matrix Reorganization During Endometrial Decidualization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.22.644728. [PMID: 40196626 PMCID: PMC11974745 DOI: 10.1101/2025.03.22.644728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Extracellular matrix reorganization, a concurrent process of endometrial decidualization, has garnered widespread recognition. However, our understanding of this process remains limited. In this study, we aimed to investigate the expression, spatial distribution, and reorganization of fibrillar collagens, elastin, and lysyl oxidases within the decidua. Using second harmonic generation imaging, we successfully recorded fibrillar collagen reorganization between preimplantation and decidualized endometrium. Upon embryo implantation, the fibrillar collagens align themselves parallel to the direction of embryo invasion. Furthermore, we employed confocal imaging analysis to reveal distinct expression and spatial distribution patterns of elastin and lysyl oxidase-like enzymes. Elastin expression begins to manifest surrounding the implanting embryo, extends into the decidua, and exhibits a high concentration in the mesometrial region after gestation day 8. All lysyl oxidase-like enzymes are localized within the decidua, although they exhibit varying expression patterns. To gain further insights, we utilized an in vitro stromal cell decidualization model and provided compelling evidence that stromal cells serve as the primary source of the extracellular matrix components during endometrial decidualization. Additionally, we demonstrated that the genes encoding factors involved in the synthesis, processing, and assembly of fibrillar collagen and elastic fibers exhibit differential expression patterns during in vitro decidualization. Genes such as asporin, decorin, thrombospondin 2, fibulin 2, fibulin 5, and lysyl oxidase show significant induction during in vitro decidualization. In summary, our comprehensive analysis provides a detailed evaluation of the expression, spatial distribution, and reorganization of fibrillar collagens, elastin, and lysyl oxidases during the process of endometrial decidualization.
Collapse
Affiliation(s)
- Mona Gebril
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Larner College of Medicine University of Vermont, Burlington, VT
| | - Sparhawk Mulder
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Larner College of Medicine University of Vermont, Burlington, VT
| | - Rimi Das
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Larner College of Medicine University of Vermont, Burlington, VT
| | - Shanmugasundaram Nallasamy
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Larner College of Medicine University of Vermont, Burlington, VT
| |
Collapse
|
33
|
Aggarwal S, Chakraborty A, Singh V, Lory S, Karalis K, Rahme LG. Revealing the impact of Pseudomonas aeruginosa quorum sensing molecule 2'-aminoacetophenone on human bronchial-airway epithelium and pulmonary endothelium using a human airway-on-a-chip. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.21.644589. [PMID: 40196568 PMCID: PMC11974707 DOI: 10.1101/2025.03.21.644589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Pseudomonas aeruginosa (PA) causes severe respiratory infections utilizing multiple virulence functions. Our previous findings on PA quorum sensing (QS)-regulated small molecule, 2'-aminoacetophenone (2-AA), secreted by the bacteria in infected tissues, revealed its effect on immune and metabolic functions favouring a long-term presence of PA in the host. However, studies on 2-AA's specific effects on bronchial-airway epithelium and pulmonary endothelium remain elusive. To evaluate 2AA's spatiotemporal changes in the human airway, considering endothelial cells as the first point of contact when the route of lung infection is hematogenic, we utilized the microfluidic airway-on-chip lined by polarized human bronchial-airway epithelium and pulmonary endothelium. Using this platform, we performed RNA-sequencing to analyse responses of 2-AA-treated primary human pulmonary microvascular endothelium (HPMEC) and adjacent primary normal human bronchial epithelial (NHBE) cells from healthy female donors and potential cross-talk between these cells. Analyses unveiled specific signaling and biosynthesis pathways to be differentially regulated by 2-AA in epithelial cells, including HIF-1 and pyrimidine signaling, glycosaminoglycan, and glycosphingolipid biosynthesis, while in endothelial cells were fatty acid metabolism, phosphatidylinositol and estrogen receptor signaling, and proinflammatory signaling pathways. Significant overlap in both cell types in response to 2-AA was found in genes implicated in immune response and cellular functions. In contrast, we found that genes related to barrier permeability, cholesterol metabolism, and oxidative phosphorylation were differentially regulated upon exposure to 2-AA in the cell types studied. Murine in-vivo and additional in vitro cell culture studies confirmed cholesterol accumulation in epithelial cells. Results also revealed specific biomarkers associated with cystic fibrosis and idiopathic pulmonary fibrosis to be modulated by 2-AA in both cell types, with the cystic fibrosis transmembrane regulator expression to be affected only in endothelial cells. The 2-AA-mediated effects on healthy epithelial and endothelial primary cells within a microphysiological dynamic environment mimicking the human lung airway enhance our understanding of this QS signaling molecule. This study provides novel insights into their functions and potential interactions, paving the way for innovative, cell-specific therapeutic strategies to combat PA lung infections.
Collapse
|
34
|
Gorji RB, Mohammadi M, Makkiabadi B. Novel multiple focal point technique for laser-induced shear wave generation in deep tissue: simulation insights. Biomed Phys Eng Express 2025; 11:035007. [PMID: 39965257 DOI: 10.1088/2057-1976/adb755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 02/18/2025] [Indexed: 02/20/2025]
Abstract
Purpose. Laser applications in biomedical imaging have several decades of history; however, some unexplored corners remain for study. While previous studies contain massive data on photoacoustic imaging, optical coherence imaging/elastography, and surface acoustic waves, the generation of shear waves in bulk by laser remained rarely investigated. Here, we study the applicability of multipoint laser exposure to generate deep tissue shear waves, which have potential applications in dynamic elastography.Method. Previous studies used single shots of laser to induce shear waves and create weak waves. Based on this, we suggest a multipoint approach to enhancing the amplitude of the shear wave in bulk. These approaches contain supersonic exposure, overlay Mach 1, and comb-push exposure in a finite element simulation environment.Result. Although the results showed a linear relationship between laser power and shear wave amplitude, the supersonic and overlay exposure increased the amplitude from 15 nm to over 60 nm and 230 nm, respectively.Conclusion. Our approaches showed a potentially successful increase in shear wave amplitude in the simulation environment. However, experimental data still need to be investigated before these techniques can be suggested for laser-induced shear wave elastography in the deep medium.
Collapse
Affiliation(s)
- Reza Bahrami Gorji
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mohammadi
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahador Makkiabadi
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Research Centre for Biomedical Technology and Robotics (RCBTR), Institute of Advanced Medical Technologies (IAMT), Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
35
|
Borjini N, Fernandez M, Giardino L, Sorokin L, Calzà L. Pharmacological Inhibition of Microglial Proliferation Supports Blood-Brain Barrier Integrity in Experimental Autoimmune Encephalomyelitis. Cells 2025; 14:414. [PMID: 40136663 PMCID: PMC11941641 DOI: 10.3390/cells14060414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/28/2025] [Accepted: 03/03/2025] [Indexed: 03/27/2025] Open
Abstract
Blood-brain barrier dysfunction (BBB) is a primary characteristic of experimental autoimmune encephalomyelitis (EAE), an experimental model of multiple sclerosis (MS). We have previously shown that blocking microglial proliferation using GW2580, a selective inhibitor of CSF1R (Colony stimulating factor 1 receptor), reduced disease progression and severity and prevented the relapse phase. However, whether this was due to effects of GW2580 on the functional integrity of the BBB was not determined. Therefore, here, we examine BBB properties in rats during EAE under GW2580 treatment. Our data suggest that blocking early microglial proliferation through selective targeting of CSF1R signaling has a therapeutic effect in EAE by protecting BBB integrity and reducing peripheral immune cell infiltration. Taken together, our results identify a novel mechanism underlying the effects of GW2580, which could offer a novel therapy for MS.
Collapse
Affiliation(s)
- Nozha Borjini
- Research & Development, Chiesi Farmaceutici S.p.A, via Palermo 26/A, 43100 Parma, Italy
- IRET Foundation, via Tolara di Sopra 41/E, Ozzano Emilia, 40064 Bologna, Italy;
- Department de Fisiología Médica y Biofísica, Instituto de Biomedicina de Sevilla (IBiS, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla), 41013 Sevilla, Spain
- Facultad de Medicina and CIBERNED ISCIII, 41013 Sevilla, Spain
| | - Mercedes Fernandez
- IRET Foundation, via Tolara di Sopra 41/E, Ozzano Emilia, 40064 Bologna, Italy;
- Health Science and Technologies Interdepartmental Center for Industrial Research (HST-ICIR), University of Bologna, via Tolara di Sopra 41/E, Ozzano Emilia, 40064 Bologna, Italy; (L.G.); (L.C.)
| | - Luciana Giardino
- Health Science and Technologies Interdepartmental Center for Industrial Research (HST-ICIR), University of Bologna, via Tolara di Sopra 41/E, Ozzano Emilia, 40064 Bologna, Italy; (L.G.); (L.C.)
- Department of Veterinary Medical Sciences, University of Bologna, via Tolara di Sopra 50, Ozzano Emilia (BO), 40064 Bologna, Italy
| | - Lydia Sorokin
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, 48149 Muenster, Germany;
- Cells-in-Motion Interfaculty Centre (CIMIC), University of Muenster, 48149 Muenster, Germany
| | - Laura Calzà
- Health Science and Technologies Interdepartmental Center for Industrial Research (HST-ICIR), University of Bologna, via Tolara di Sopra 41/E, Ozzano Emilia, 40064 Bologna, Italy; (L.G.); (L.C.)
- Department of Pharmacy and Biotechnology, University of Bologna, via Tolara di Sopra 41/E, Ozzano Emilia, 40064 Bologna, Italy
| |
Collapse
|
36
|
Morabito M, Thibodot P, Gigandet A, Compagnon P, Toso C, Berishvili E, Lacotte S, Peloso A. Liver Extracellular Matrix in Colorectal Liver Metastasis. Cancers (Basel) 2025; 17:953. [PMID: 40149289 PMCID: PMC11939972 DOI: 10.3390/cancers17060953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/06/2025] [Accepted: 03/08/2025] [Indexed: 03/29/2025] Open
Abstract
The liver is the most common site of metastasis of colorectal cancer (CRC), and colorectal liver metastasis is one of the major causes of CRC-related deaths worldwide. The tumor microenvironment, particularly the extracellular matrix (ECM), plays a critical role in CRC metastasis and chemoresistance. Based on findings from clinical and basic research, this review attempts to offer a complete understanding of the role of the ECM in colorectal liver metastasis and to suggest potential ways for therapeutic intervention. First, the ECMs' role in regulating cancer cell fate is explored. We then discuss the hepatic ECM fingerprint and its influence on the metastatic behavior of CRC cells, highlighting key molecular interactions that promote metastasis. In addition, we examine how changes in the ECM within the metastatic niche contribute to chemoresistance, focusing on ECM remodeling by ECM stiffening and the activation of specific signaling pathways. Understanding these mechanisms is crucial for the development of novel strategies to overcome metastasis and improve outcomes for CRC patients.
Collapse
Affiliation(s)
- Marika Morabito
- General, Emergency and Transplant Surgery Department, ASST Settelaghi, University Hospital and Faculty of Medicine of Insubria, 21100 Varese, Italy
| | - Pauline Thibodot
- Hepato-Biliary Center, Paul-Brousse Hospital, Assistance Publique-Hôpitaux de Paris, 94800 Villejuif, France
| | - Anthony Gigandet
- School of Medecine, Faculty of Medecine, University of Geneva, 1211 Geneva, Switzerland
| | - Philippe Compagnon
- Division of Transplantation, Department of Surgery, Geneva University Hospitals and Faculty of Medicine, 1205 Geneva, Switzerland;
| | - Christian Toso
- Division of Abdominal Surgery and Transplantation, Department of Surgery, Geneva University Hospitals and Faculty of Medicine, 1205 Geneva, Switzerland
| | - Ekaterine Berishvili
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, 1211 Geneva, Switzerland;
| | - Stéphanie Lacotte
- Hepatology and Transplantation Laboratory, Department of Surgery, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland;
| | - Andrea Peloso
- Hepato-Biliary Center, Paul-Brousse Hospital, Assistance Publique-Hôpitaux de Paris, 94800 Villejuif, France
- Division of Transplantation, Department of Surgery, Geneva University Hospitals and Faculty of Medicine, 1205 Geneva, Switzerland;
- Division of Abdominal Surgery and Transplantation, Department of Surgery, Geneva University Hospitals and Faculty of Medicine, 1205 Geneva, Switzerland
| |
Collapse
|
37
|
Karsdal M, Cox TR, Parker AL, Willumsen N, Sand JMB, Jenkins G, Hansen HH, Oldenburger A, Geillinger-Kaestle KE, Larsen AT, Black D, Genovese F, Eckersley A, Heinz A, Nyström A, Holm Nielsen S, Bennink L, Johannsson L, Bay-Jensen AC, Orange DE, Friedman S, Røpke M, Fiore V, Schuppan D, Rieder F, Simona B, Borthwick L, Skarsfeldt M, Wennbo H, Thakker P, Stoffel R, Clarke GW, Kalluri R, Ruane D, Zannad F, Mortensen JH, Sinkeviciute D, Sundberg F, Coseno M, Thudium C, Croft AP, Khanna D, Cooreman M, Broermann A, Leeming DJ, Mobasheri A, Ricard-Blum S. Advances in Extracellular Matrix-Associated Diagnostics and Therapeutics. J Clin Med 2025; 14:1856. [PMID: 40142664 PMCID: PMC11943371 DOI: 10.3390/jcm14061856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/28/2025] [Accepted: 02/08/2025] [Indexed: 03/28/2025] Open
Abstract
The extracellular matrix (ECM) is the common denominator of more than 50 chronic diseases. Some of these chronic pathologies lead to enhanced tissue formation and deposition, whereas others are associated with increased tissue degradation, and some exhibit a combination of both, leading to severe tissue alterations. To develop effective therapies for diseases affecting the lung, liver, kidney, skin, intestine, musculoskeletal system, heart, and solid tumors, we need to modulate the ECM's composition to restore its organization and function. Across diverse organ diseases, there are common denominators and distinguishing factors in this fibroinflammatory axis, which may be used to foster new insights into drug development across disease indications. The 2nd Extracellular Matrix Pharmacology Congress took place in Copenhagen, Denmark, from 17 to 19 June 2024 and was hosted by the International Society of Extracellular Matrix Pharmacology. The event was attended by 450 participants from 35 countries, among whom were prominent scientists who brought together state-of-the-art research on organ diseases and asked important questions to facilitate drug development. We highlight key aspects of the ECM in the liver, kidney, skin, intestine, musculoskeletal system, lungs, and solid tumors to advance our understanding of the ECM and its central targets in drug development. We also highlight key advances in the tools and technology that enable this drug development, thereby supporting the ECM.
Collapse
Affiliation(s)
- Morten Karsdal
- Nordic Bioscience, 2730 Herlev, Denmark; (N.W.); (J.M.B.S.); (A.T.L.); (F.G.); (S.H.N.); (A.-C.B.-J.); (J.H.M.); (D.S.); (D.J.L.)
| | - Thomas R. Cox
- Garvan Institute of Medical Research, Sydney 2010, Australia; (T.R.C.); (A.L.P.)
- School of Clinical Medicine, St Vincent’s Clinical Campus, UNSW Medicine & Health, UNSW, Sydney 2010, Australia
| | - Amelia L. Parker
- Garvan Institute of Medical Research, Sydney 2010, Australia; (T.R.C.); (A.L.P.)
- School of Clinical Medicine, St Vincent’s Clinical Campus, UNSW Medicine & Health, UNSW, Sydney 2010, Australia
| | - Nicholas Willumsen
- Nordic Bioscience, 2730 Herlev, Denmark; (N.W.); (J.M.B.S.); (A.T.L.); (F.G.); (S.H.N.); (A.-C.B.-J.); (J.H.M.); (D.S.); (D.J.L.)
| | - Jannie Marie Bülow Sand
- Nordic Bioscience, 2730 Herlev, Denmark; (N.W.); (J.M.B.S.); (A.T.L.); (F.G.); (S.H.N.); (A.-C.B.-J.); (J.H.M.); (D.S.); (D.J.L.)
| | - Gisli Jenkins
- Margaret Turner Warwick Centre for Fibrosing Lung Disease, National Heart and Lung Institute, NIHR Imperial Biomedical Research Centre, Imperial College London, London SW7 2AZ, UK;
| | | | | | - Kerstin E. Geillinger-Kaestle
- Department of Immunology and Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, 88400 Biberach an der Riss, Germany;
| | - Anna Thorsø Larsen
- Nordic Bioscience, 2730 Herlev, Denmark; (N.W.); (J.M.B.S.); (A.T.L.); (F.G.); (S.H.N.); (A.-C.B.-J.); (J.H.M.); (D.S.); (D.J.L.)
| | | | - Federica Genovese
- Nordic Bioscience, 2730 Herlev, Denmark; (N.W.); (J.M.B.S.); (A.T.L.); (F.G.); (S.H.N.); (A.-C.B.-J.); (J.H.M.); (D.S.); (D.J.L.)
| | - Alexander Eckersley
- Wellcome Centre for Cell Matrix Research, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, University of Manchester, Manchester M13 9PL, UK;
| | - Andrea Heinz
- LEO Foundation Center for Cutaneous Drug Delivery, Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark;
| | - Alexander Nyström
- Department of Dermatology, Faculty of Medicine, Medical Center—University of Freiburg, 79106 Breisgau, Germany;
| | - Signe Holm Nielsen
- Nordic Bioscience, 2730 Herlev, Denmark; (N.W.); (J.M.B.S.); (A.T.L.); (F.G.); (S.H.N.); (A.-C.B.-J.); (J.H.M.); (D.S.); (D.J.L.)
| | | | | | - Anne-Christine Bay-Jensen
- Nordic Bioscience, 2730 Herlev, Denmark; (N.W.); (J.M.B.S.); (A.T.L.); (F.G.); (S.H.N.); (A.-C.B.-J.); (J.H.M.); (D.S.); (D.J.L.)
| | - Dana E. Orange
- Hospital for Special Surgery, The Rockefeller University, New York, NY 10065, USA;
| | - Scott Friedman
- Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA;
| | | | - Vincent Fiore
- Boehringer Ingelheim, 55218 Ingelheim am Rhein, Germany;
| | - Detlef Schuppan
- Institute of Translational Immunology, University Medical Center, Johannes Gutenberg University Mainz, 55131 Mainz, Germany;
| | - Florian Rieder
- Department of Inflammation and Immunity, Cleveland Clinic Foundation, Cleveland, OH 44195, USA;
| | | | - Lee Borthwick
- FibroFind Ltd., FibroFind Laboratories, Medical School, Newcastle upon Tyne NE2 4HH, UK;
- Newcastle Fibrosis Research Group, Biosciences Institute, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Mark Skarsfeldt
- Nordic Bioscience, 2730 Herlev, Denmark; (N.W.); (J.M.B.S.); (A.T.L.); (F.G.); (S.H.N.); (A.-C.B.-J.); (J.H.M.); (D.S.); (D.J.L.)
| | - Haakan Wennbo
- Takeda, Translational Medicine Biomarkers Gastrointestinal & Global, Boston, MA 02110, USA; (H.W.); (P.T.)
| | - Paresh Thakker
- Takeda, Translational Medicine Biomarkers Gastrointestinal & Global, Boston, MA 02110, USA; (H.W.); (P.T.)
| | - Ruedi Stoffel
- Roche Diagnostics International Ltd., 6343 Rotkreuz, Switzerland;
| | - Graham W. Clarke
- Translational Science and Experimental Medicine, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, 431 83 Gothenburg, Sweden;
- School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King’s College, London E1 9RT, UK
| | - Raghu Kalluri
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Darren Ruane
- Janssen Immunology, Translational Sciences and Medicine, La Jolla, CA 92037, USA;
| | - Faiez Zannad
- Division of Heart Failure and Hypertension, and of the Inserm CIC, University of Lorraine, 54000 Metz, France;
| | - Joachim Høg Mortensen
- Nordic Bioscience, 2730 Herlev, Denmark; (N.W.); (J.M.B.S.); (A.T.L.); (F.G.); (S.H.N.); (A.-C.B.-J.); (J.H.M.); (D.S.); (D.J.L.)
| | - Dovile Sinkeviciute
- Nordic Bioscience, 2730 Herlev, Denmark; (N.W.); (J.M.B.S.); (A.T.L.); (F.G.); (S.H.N.); (A.-C.B.-J.); (J.H.M.); (D.S.); (D.J.L.)
| | - Fred Sundberg
- Sengenics Corporation LLC, Wilmington, DE 19801, USA; (F.S.); (M.C.)
| | - Molly Coseno
- Sengenics Corporation LLC, Wilmington, DE 19801, USA; (F.S.); (M.C.)
| | - Christian Thudium
- Nordic Bioscience, 2730 Herlev, Denmark; (N.W.); (J.M.B.S.); (A.T.L.); (F.G.); (S.H.N.); (A.-C.B.-J.); (J.H.M.); (D.S.); (D.J.L.)
| | - Adam P. Croft
- National Institute for Health and Care Research (NIHR) Birmingham Biomedical Research Centre, University of Birmingham, Birmingham B15 2TT, UK;
- Institute of Inflammation and Ageing, Queen Elizabeth Hospital, University of Birmingham, Birmingham B15 2TT, UK
| | - Dinesh Khanna
- Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA;
| | | | - Andre Broermann
- Department of CardioMetabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, 88400 Biberach an der Riss, Germany;
| | - Diana Julie Leeming
- Nordic Bioscience, 2730 Herlev, Denmark; (N.W.); (J.M.B.S.); (A.T.L.); (F.G.); (S.H.N.); (A.-C.B.-J.); (J.H.M.); (D.S.); (D.J.L.)
| | - Ali Mobasheri
- Faculty of Medicine, University of Oulu, 90570 Oulu, Finland;
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania
- Faculté de Médecine, Université de Liège, 4000 Liège, Belgium
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Sylvie Ricard-Blum
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS), UMR 5246 CNRS, ICBMS, University Lyon 1, 69622 Villeurbanne Cedex, France;
| |
Collapse
|
38
|
Liu G, Hsu AC, Geirnaert S, Cong C, Nair PM, Shen S, Marshall JE, Haw TJ, Fricker M, Philp AM, Hansbro NG, Pavlidis S, Guo Y, Burgess JK, Castellano L, Ieni A, Caramori G, Oliver BGG, Chung KF, Adcock IM, Knight DA, Polverino F, Bracke K, Wark PA, Hansbro PM. Vitronectin regulates lung tissue remodeling and emphysema in chronic obstructive pulmonary disease. Mol Ther 2025; 33:917-932. [PMID: 39838644 PMCID: PMC11897773 DOI: 10.1016/j.ymthe.2025.01.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 11/21/2024] [Accepted: 01/17/2025] [Indexed: 01/23/2025] Open
Abstract
Vitronectin (VTN) is an important extracellular matrix protein in tissue remodeling, but its role in chronic obstructive pulmonary disease (COPD) is unknown. We show that VTN regulates tissue remodeling through urokinase plasminogen activator (uPA) signaling pathway in COPD. In human COPD airways and bronchoepithelial cells and the airways of mice with cigarette smoke (CS)-induced experimental COPD, VTN protein was not changed, but downstream uPA signaling was altered (increased plasminogen activator inhibitor-1) that induced collagen and airway remodeling. In the parenchyma, VTN levels were decreased, uPA signaling pathway differentially altered and collagen reduced in lung fibroblasts from human and lung parenchyma in experimental COPD. Vtn inhibition with siRNA in mouse fibroblasts altered uPA signaling increased matrix metalloproteinase-12, and reduced collagen, whereas over-expression restored collagen production after CS extract challenge. Vtn-/- and Vtn small interfering RNA-treated mice had exaggerated inflammation, emphysema, and impaired lung function compared with controls with CS-induced COPD. Restoration of VTN in the parenchyma may be a therapeutic option for emphysema and COPD.
Collapse
Affiliation(s)
- Gang Liu
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia.
| | - Alan C Hsu
- Immune Health, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Silke Geirnaert
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Christine Cong
- Pulmonary and Critical Care Division, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Prema M Nair
- Immune Health, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Sj Shen
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, NSW, Australia
| | - Jacqueline E Marshall
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, NSW, Australia
| | - Tatt Jhong Haw
- Immune Health, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Michael Fricker
- Immune Health, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Ashleigh M Philp
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, NSW, Australia; St Vincent's Medical School, University of New South Wale Medicine, University of New South Wale, Sydney, NSW, Australia
| | - Nicole G Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, NSW, Australia
| | - Stelios Pavlidis
- The Airway Disease Section, Data Science Institute, National Heart & Lung Institute, Imperial College London, London, UK
| | - Yike Guo
- Data Science Institute, National Heart & Lung Institute, Imperial College London, London, UK
| | - Janette K Burgess
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen Research Institute of Asthma and COPD, Groningen, the Netherlands
| | | | - Antonio Ieni
- Department of Pathology, University of Messina, Messina, Italy
| | - Gaetano Caramori
- Pulmonology, Department of Medicine and Surgery, University of Parma, Parma PR, Italy
| | - Brain G G Oliver
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - K Fan Chung
- The Airway Disease Section, Data Science Institute, National Heart & Lung Institute, Imperial College London, London, UK
| | - Ian M Adcock
- Data Science Institute, National Heart & Lung Institute, Imperial College London, London, UK
| | - Darryl A Knight
- Immune Health, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia; Research and Academic Affairs, Providence Health Care Research Institute, Vancouver, BC, Canada; Departemnt of Anaesthesiology, Pharmacology and Therapeutics, University of British Columbia, Faculty of Medicine, Vancouver, BC, Canada
| | - Francesca Polverino
- Pulmonary and Critical Care Division, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Ken Bracke
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Peter A Wark
- Immune Health, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia; Department of Respiratory and Sleep Medicine, John Hunter Hospital, Newcastle, NSW, Australia
| | - Philip M Hansbro
- Immune Health, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia; Centre for Inflammation, Centenary Institute and University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, NSW, Australia.
| |
Collapse
|
39
|
Li L, Zhang J, Yue P, Feng JJ. Mechanical interaction between a hydrogel and an embedded cell in biomicrofluidic applications. BIOMICROFLUIDICS 2025; 19:024104. [PMID: 40190650 PMCID: PMC11972092 DOI: 10.1063/5.0263344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 03/12/2025] [Indexed: 04/09/2025]
Abstract
Thanks to their softness, biocompatibility, porosity, and ready availability, hydrogels are commonly used in microfluidic assays and organ-on-chip devices as a matrix for cells. They not only provide a supporting scaffold for the differentiating cells and the developing organoids, but also serve as the medium for transmitting oxygen, nutrients, various chemical factors, and mechanical stimuli to the cells. From a bioengineering viewpoint, the transmission of forces from fluid perfusion to the cells through the hydrogel is critical to the proper function and development of the cell colony. In this paper, we develop a poroelastic model to represent the fluid flow through a hydrogel containing a biological cell modeled as a hyperelastic inclusion. In geometries representing shear and normal flows that occur frequently in microfluidic experiments, we use finite-element simulations to examine how the perfusion engenders interstitial flow in the gel and displaces and deforms the embedded cell. The results show that pressure is the most important stress component in moving and deforming the cell, and the model predicts the velocity in the gel and stress transmitted to the cell that is comparable to in vitro and in vivo data. This work provides a computational tool to design the geometry and flow conditions to achieve optimal flow and stress fields inside the hydrogels and around the cell.
Collapse
Affiliation(s)
- Lei Li
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | | | - Pengtao Yue
- Department of Mathematics, Virginia Tech, Blacksburg, Virginia 24061, USA
| | | |
Collapse
|
40
|
Leck LYW, Abd El-Aziz YS, McKelvey KJ, Park KC, Sahni S, Lane DJR, Skoda J, Jansson PJ. Cancer stem cells: Masters of all traits. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167549. [PMID: 39454969 DOI: 10.1016/j.bbadis.2024.167549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 10/01/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024]
Abstract
Cancer is a heterogeneous disease, which contributes to its rapid progression and therapeutic failure. Besides interpatient tumor heterogeneity, tumors within a single patient can present with a heterogeneous mix of genetically and phenotypically distinct subclones. These unique subclones can significantly impact the traits of cancer. With the plasticity that intratumoral heterogeneity provides, cancers can easily adapt to changes in their microenvironment and therapeutic exposure. Indeed, tumor cells dynamically shift between a more differentiated, rapidly proliferating state with limited tumorigenic potential and a cancer stem cell (CSC)-like state that resembles undifferentiated cellular precursors and is associated with high tumorigenicity. In this context, CSCs are functionally located at the apex of the tumor hierarchy, contributing to the initiation, maintenance, and progression of tumors, as they also represent the subpopulation of tumor cells most resistant to conventional anti-cancer therapies. Although the CSC model is well established, it is constantly evolving and being reshaped by advancing knowledge on the roles of CSCs in different cancer types. Here, we review the current evidence of how CSCs play a pivotal role in providing the many traits of aggressive tumors while simultaneously evading immunosurveillance and anti-cancer therapy in several cancer types. We discuss the key traits and characteristics of CSCs to provide updated insights into CSC biology and highlight its implications for therapeutic development and improved treatment of aggressive cancers.
Collapse
Affiliation(s)
- Lionel Y W Leck
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia; Cancer Drug Resistance & Stem Cell Program, School of Medical Science, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Yomna S Abd El-Aziz
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia; Oral Pathology Department, Faculty of Dentistry, Tanta University, Tanta, Egypt
| | - Kelly J McKelvey
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia
| | - Kyung Chan Park
- Proteina Co., Ltd./Seoul National University, Seoul, South Korea
| | - Sumit Sahni
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia
| | - Darius J R Lane
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience & Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Jan Skoda
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic.
| | - Patric J Jansson
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia; Cancer Drug Resistance & Stem Cell Program, School of Medical Science, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia.
| |
Collapse
|
41
|
Yuan S, Khodursky S, Geng J, Sharma P, Spin JM, Tsao P, Levin MG, Damrauer SM. Identifying Circulating Protein Mediators in the Link Between Smoking and Abdominal Aortic Aneurysm: An Integrated Analysis of Human Proteomic and Genomic Data. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.02.27.25322973. [PMID: 40061319 PMCID: PMC11888489 DOI: 10.1101/2025.02.27.25322973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Background Smoking is a well-established risk factor for abdominal aortic aneurysm (AAA). However, the molecular pathways underlying this relationship remain poorly understood. This study aimed to identify circulating protein mediators that may explain the association between smoking and AAA. Methods We conducted a network Mendelian randomization (MR) study utilizing summary-level data from the largest available genome-wide association studies. Our primary smoking exposure was the lifetime smoking index, with smoking initiation and cigarettes per day included as supplementary traits. The AAA dataset comprised 39,221 cases and 1,086,107 controls. Protein data were sourced from two large cohorts: UKB-PPP, where proteins were measured using the Olink platform in 54,219 individuals, and deCODE, where proteins were measured using the SomaScan platform in 35,559 individuals. Two-sample MR was employed to estimate the association between smoking and AAA (βtotal) and between smoking and circulating protein levels (β1). Summary data-based MR was then used to assess the association between smoking-related proteins and AAA risk (β2). Mediation pathways were identified based on the directionality of effect estimates, and the corresponding mediation effects were quantified. Results Genetically predicted smoking traits were consistently associated with an increased risk of AAA. The lifetime smoking index was associated with the levels of 543 out of 5,764 unique circulating proteins, with 470 of these associations replicated in supplementary analyses using additional smoking traits and protein sources. Among the smoking-related proteins, genetically predicted levels of 22 were associated with AAA risk. Eight mediation pathways were identified accounting for 42.7% of the total smoking-AAA association and with mediation effects >4% for ADAMTS15, IL1RN, MMP12, PGF, PCSK9, and UXS1. Conclusion This study identified numerous circulating proteins potentially causally linked to smoking, and eight of these proteins were found to mediate the association between smoking and AAA risk.
Collapse
Affiliation(s)
- Shuai Yuan
- Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Samuel Khodursky
- Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Jiawei Geng
- School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Pranav Sharma
- Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Joshua M. Spin
- VA Palo Alto Healthcare System, Palo Alto, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Philip Tsao
- VA Palo Alto Healthcare System, Palo Alto, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael G. Levin
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
- Division of Cardiovascular Medicine, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Scott M. Damrauer
- Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
42
|
Dong W, Yang C, Guo D, Jia M, Wang Y, Wang J. PTX3-assembled pericellular hyaluronan matrix enhances endochondral ossification during fracture healing and heterotopic ossification. Bone 2025; 192:117385. [PMID: 39732447 DOI: 10.1016/j.bone.2024.117385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 12/30/2024]
Abstract
Endochondral ossification (EO) is a pivotal process during fracture healing and traumatic heterotopic ossification (HO), involving the cartilaginous matrix synthesis and mineralization. Unlike the extracellular matrix, the hyaluronan (HA)-rich pericellular matrix (PCM) directly envelops chondrocytes, serving as the frontline for extracellular signal reception and undergoing dynamic remodeling. Pentraxin 3 (PTX3), a secreted glycoprotein, facilitates HA matrix assembly and remodeling. However, it remains unclear whether PTX3 affects EO by regulating HA-rich PCM assembly of chondrocytes, thereby impacting fracture healing and traumatic HO. This study demonstrates that PTX3 deficiency impairs fracture healing and inhibits traumatic HO, but dose not affect growth plate development in mice. PTX3 expression is up-regulated during chondrocyte matrix synthesis and maturation and is localized in the HA-rich PCM. PTX3 promotes the assembly of HA-rich PCM in a serum- and TSG6-dependent manner, fostering CD44 receptor clustering, activating the FAK/AKT signaling pathway, and promoting chondrocyte matrix synthesis and maturation. Local injection of PTX3/TSG6 matrix protein mixture effectively promotes fracture healing in mice. In conclusion, PTX3-assembled HA-rich PCM promotes chondrocyte matrix synthesis and maturation via CD44/FAK/AKT signaling. This mechanism facilitates EO during fracture healing and traumatic HO in mice.
Collapse
Affiliation(s)
- Wei Dong
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Chang Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Donghua Guo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Meie Jia
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Yan Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Jiawei Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| |
Collapse
|
43
|
NADOUR M, LEATIS RIVALETTEREVENO, BIARD M, FRÉBAULT N, RIVOLLET L, ST-LOUIS P, BLANCHETTE CR, THACKERAY A, PERRAT P, BEVILACQUA C, PREVEDEL R, CAPPADOCIA L, RAPTI G, DOITSIDOU M, BÉNARD CY. Remodeling of extracellular matrix collagen IV by MIG-6/papilin regulates neuronal architecture. RESEARCH SQUARE 2025:rs.3.rs-5962240. [PMID: 39989960 PMCID: PMC11844652 DOI: 10.21203/rs.3.rs-5962240/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Neuronal architecture established embryonically must persist lifelong to ensure normal brain function. However, little is understood about the mechanisms behind the long-term maintenance of neuronal organization. To uncover maintenance mechanisms, we performed a suppressor screen in sax-7/L1CAM mutants, which exhibit progressive disorganization with age. We identified the conserved extracellular matrix protein MIG-6/papilin as a key regulator of neuronal maintenance. Combining incisive molecular genetics, structural predictions, in vivo quantitative imaging, and cutting-edge Brillouin microscopy, we show that MIG-6/papilin remodels extracellular matrix collagen IV, working in concert with the secreted enzymes MIG-17/ADAMTS and PXN-2/peroxidasin. This remodeling impacts tissue biomechanics and ensures neuronal stability, even under increased mechanical stress. Our findings highlight an extracellular mechanism by which MIG-6/papilin supports the integrity of neuronal architecture throughout life. This work provides critical insights into the molecular basis of sustaining neuronal architecture and offers a foundation for understanding age-related and neurodegenerative disorders.
Collapse
Affiliation(s)
- Malika NADOUR
- Université du Québec à Montréal, Department of Biological Sciences, Montreal, QC, Canada
- Centre d’Excellence en Recherche sur les Maladies Orphelines – Fondation Courtois (CERMO-FC Research Center), Université du Québec à Montréal, Montreal, QC, Canada
| | - Robert I. VALETTE REVENO LEATIS
- Université du Québec à Montréal, Department of Biological Sciences, Montreal, QC, Canada
- Centre d’Excellence en Recherche sur les Maladies Orphelines – Fondation Courtois (CERMO-FC Research Center), Université du Québec à Montréal, Montreal, QC, Canada
| | - Marie BIARD
- Université du Québec à Montréal, Department of Biological Sciences, Montreal, QC, Canada
- Centre d’Excellence en Recherche sur les Maladies Orphelines – Fondation Courtois (CERMO-FC Research Center), Université du Québec à Montréal, Montreal, QC, Canada
| | - Noémie FRÉBAULT
- Université du Québec à Montréal, Department of Biological Sciences, Montreal, QC, Canada
- Centre d’Excellence en Recherche sur les Maladies Orphelines – Fondation Courtois (CERMO-FC Research Center), Université du Québec à Montréal, Montreal, QC, Canada
| | - Lise RIVOLLET
- Université du Québec à Montréal, Department of Biological Sciences, Montreal, QC, Canada
- Centre d’Excellence en Recherche sur les Maladies Orphelines – Fondation Courtois (CERMO-FC Research Center), Université du Québec à Montréal, Montreal, QC, Canada
| | - Philippe ST-LOUIS
- Université du Québec à Montréal, Department of Biological Sciences, Montreal, QC, Canada
- Centre d’Excellence en Recherche sur les Maladies Orphelines – Fondation Courtois (CERMO-FC Research Center), Université du Québec à Montréal, Montreal, QC, Canada
| | | | - Andrea THACKERAY
- University of Massachusetts Chan Medical School, Department of Neurobiology, MA, USA
| | - Paola PERRAT
- University of Massachusetts Chan Medical School, Department of Neurobiology, MA, USA
| | - Carlo BEVILACQUA
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Robert PREVEDEL
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory, Rome, Italy
- Interdisciplinary Center of Neurosciences, Heidelberg University, Heidelberg, Germany
| | - Laurent CAPPADOCIA
- Centre d’Excellence en Recherche sur les Maladies Orphelines – Fondation Courtois (CERMO-FC Research Center), Université du Québec à Montréal, Montreal, QC, Canada
- Université du Québec à Montréal, Department of Chemistry, Montreal, QC, Canada
- Quebec Network for Research on Protein Function, Engineering and Applications (PROTEO), QC, Canada
| | - Georgia RAPTI
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory, Rome, Italy
- Interdisciplinary Center of Neurosciences, Heidelberg University, Heidelberg, Germany
- FENS-KAVLI Network of Excellence, Brussels, Belgium
| | - Maria DOITSIDOU
- University of Edinburgh, Centre for Discovery Brain Sciences, Edinburgh, Scotland
| | - Claire Y. BÉNARD
- Université du Québec à Montréal, Department of Biological Sciences, Montreal, QC, Canada
- Centre d’Excellence en Recherche sur les Maladies Orphelines – Fondation Courtois (CERMO-FC Research Center), Université du Québec à Montréal, Montreal, QC, Canada
- University of Massachusetts Chan Medical School, Department of Neurobiology, MA, USA
| |
Collapse
|
44
|
Metzcar J, Duggan BS, Fischer B, Murphy M, Heiland R, Macklin P. A Simple Framework for Agent-Based Modeling with Extracellular Matrix. Bull Math Biol 2025; 87:43. [PMID: 39937344 PMCID: PMC11821717 DOI: 10.1007/s11538-024-01408-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 12/21/2024] [Indexed: 02/13/2025]
Abstract
Extracellular matrix (ECM) is a key component of the cellular microenvironment and critical in multiple disease and developmental processes. Representing ECM and cell-ECM interactions is a challenging multiscale problem as they span molecular-level details to tissue-level dynamics. While several computational frameworks exist for ECM modeling, they often focus on very detailed modeling of individual ECM fibers or represent only a single aspect of the ECM. Using the PhysiCell agent-based modeling platform, we developed a framework of intermediate detail with the ability to capture bidirectional cell-ECM interactions. We represent a small region of ECM, an ECM element, with three variables describing its local microstructure: anisotropy, density, and overall fiber orientation. To spatially model the ECM, we use an array of ECM elements. Cells remodel local ECM microstructure and in turn, local microstructure impacts cellular motility. We demonstrate the utility of this framework and reusability of its core cell-ECM interaction model through examples in cellular invasion, wound healing, basement membrane degradation, and leader-follower collective migration. Despite the relative simplicity of the framework, it is able to capture a broad range of cell-ECM interactions of interest to the modeling community. Furthermore, variables representing the ECM microstructure are accessible through simple programming interfaces. This allows them to impact cell behaviors, such as proliferation and death, without requiring custom code for each interaction, particularly through PhysiCell's modeling grammar, enabling rapid modeling of a diverse range of cell-matrix biology. We make this framework available as a free and open source software package at https://github.com/PhysiCell-Models/collective-invasion .
Collapse
Affiliation(s)
- John Metzcar
- Intelligent Systems Engineering, Indiana University, 700 N. Woodlawn, Bloomington, IN, 47408, USA
- Informatics, Indiana University, 901 E. Tenth Street, Bloomington, IN, 47408, USA
| | - Ben S Duggan
- Computer Science, Indiana University, 700 N. Woodlawn, Bloomington, IN, 47408, USA
| | - Brandon Fischer
- Intelligent Systems Engineering, Indiana University, 700 N. Woodlawn, Bloomington, IN, 47408, USA
| | - Matthew Murphy
- Informatics, Indiana University, 901 E. Tenth Street, Bloomington, IN, 47408, USA
| | - Randy Heiland
- Intelligent Systems Engineering, Indiana University, 700 N. Woodlawn, Bloomington, IN, 47408, USA
| | - Paul Macklin
- Intelligent Systems Engineering, Indiana University, 700 N. Woodlawn, Bloomington, IN, 47408, USA.
| |
Collapse
|
45
|
Nadour M, Valette Reveno Leatis RI, Biard M, Frébault N, Rivollet L, St-Louis P, Blanchette CR, Thackeray A, Perrat P, Bevilacqua C, Prevedel R, Cappadocia L, Rapti G, Doitsidou M, Bénard CY. Remodeling of extracellular matrix collagen IV by MIG-6/papilin regulates neuronal architecture. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.10.637428. [PMID: 39990436 PMCID: PMC11844411 DOI: 10.1101/2025.02.10.637428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Neuronal architecture established embryonically must persist lifelong to ensure normal brain function. However, little is understood about the mechanisms behind the long-term maintenance of neuronal organization. To uncover maintenance mechanisms, we performed a suppressor screen in sax-7 / L1CAM mutants, which exhibit progressive disorganization with age. We identified the conserved extracellular matrix protein MIG-6/papilin as a key regulator of neuronal maintenance. Combining incisive molecular genetics, structural predictions, in vivo quantitative imaging, and cutting-edge Brillouin microscopy, we show that MIG-6/papilin remodels extracellular matrix collagen IV, working in concert with the secreted enzymes MIG-17/ADAMTS and PXN-2/peroxidasin. This remodeling impacts tissue biomechanics and ensures neuronal stability, even under increased mechanical stress. Our findings highlight an extracellular mechanism by which MIG-6/papilin supports the integrity of neuronal architecture throughout life. This work provides critical insights into the molecular basis of sustaining neuronal architecture and offers a foundation for understanding age-related and neurodegenerative disorders.
Collapse
|
46
|
Shah S, Osuala KO, Brock EJ, Ji K, Sloane BF, Mattingly RR. Three-Dimensional Models: Biomimetic Tools That Recapitulate Breast Tissue Architecture and Microenvironment to Study Ductal Carcinoma In Situ Transition to Invasive Ductal Breast Cancer. Cells 2025; 14:220. [PMID: 39937011 PMCID: PMC11817749 DOI: 10.3390/cells14030220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/30/2025] [Accepted: 01/31/2025] [Indexed: 02/13/2025] Open
Abstract
Diagnosis of ductal carcinoma in situ (DCIS) presents a challenge as we cannot yet distinguish between those lesions that remain dormant from cases that may progress to invasive ductal breast cancer (IDC) and require therapeutic intervention. Our overall interest is to develop biomimetic three-dimensional (3D) models that more accurately recapitulate the structure and characteristics of pre-invasive breast cancer in order to study the underlying mechanisms driving malignant progression. These models allow us to mimic the microenvironment to investigate many aspects of mammary cell biology, including the role of the extracellular matrix (ECM), the interaction between carcinoma-associated fibroblasts (CAFs) and epithelial cells, and the dynamics of cytoskeletal reorganization. In this review article, we outline the significance of 3D culture models as reliable pre-clinical tools that mimic the in vivo tumor microenvironment and facilitate the study of DCIS lesions as they progress to invasive breast cancer. We also discuss the role of CAFs and other stromal cells in DCIS transition as well as the clinical significance of emerging technologies like tumor-on-chip and co-culture models.
Collapse
Affiliation(s)
- Seema Shah
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA; (S.S.); (E.J.B.)
| | | | - Ethan J. Brock
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA; (S.S.); (E.J.B.)
| | - Kyungmin Ji
- Department of Neurology, Henry Ford Health, Detroit, MI 48202, USA
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Bonnie F. Sloane
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA; (S.S.); (E.J.B.)
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Raymond R. Mattingly
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| |
Collapse
|
47
|
Rappold R, Kalogeropoulos K, La Regina G, auf dem Keller U, Slack E, Vogel V. Relaxation of mucosal fibronectin fibers in late gut inflammation following neutrophil infiltration in mice. NPJ BIOLOGICAL PHYSICS AND MECHANICS 2025; 2:4. [PMID: 39917413 PMCID: PMC11794144 DOI: 10.1038/s44341-024-00006-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 09/13/2024] [Indexed: 02/09/2025]
Abstract
The continuously remodeled extracellular matrix (ECM) plays a pivotal role in gastrointestinal health and disease, yet its precise functions remain elusive. In this study, we employed laser capture microdissection combined with low-input proteomics to investigate ECM remodeling during Salmonella-driven inflammation. To complement this, we probed how fibronectin fiber tension is altered using a mechanosensitive peptide probe. While fibronectin fibers in healthy intestinal tissue are typically stretched, many lose their tension in intestinal smooth muscles only hours after infection, despite the absence of bacteria in that area. In contrast, within the mucosa, where Salmonella is present starting 12 h post infection, fibronectin fiber relaxation occurred exclusively during late-stage infection at 72 h and was localized to already existing clusters of infiltrated neutrophils. Using N-terminomics, we identified three new cleavage sites in fibronectin in the inflamed cecum. The unique, tissue layer-specific changes in the molecular compositions and ECM fiber tension revealed herein might trigger new therapeutic strategies to fight acute intestinal inflammation.
Collapse
Affiliation(s)
- Ronja Rappold
- Institute of Translational Medicine, ETH Zurich, Zurich, Switzerland
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | | | - Gianna La Regina
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Ulrich auf dem Keller
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Emma Slack
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
- Botnar Research Center for Child Health, Basel, Switzerland
| | - Viola Vogel
- Institute of Translational Medicine, ETH Zurich, Zurich, Switzerland
- Botnar Research Center for Child Health, Basel, Switzerland
| |
Collapse
|
48
|
Wuergezhen D, Gindroz E, Morita R, Hashimoto K, Abe T, Kiyonari H, Fujiwara H. An eGFP-Col4a2 mouse model reveals basement membrane dynamics underlying hair follicle morphogenesis. J Cell Biol 2025; 224:e202404003. [PMID: 39656438 PMCID: PMC11629887 DOI: 10.1083/jcb.202404003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 10/26/2024] [Accepted: 11/11/2024] [Indexed: 12/12/2024] Open
Abstract
Precisely controlled remodeling of the basement membrane (BM) is crucial for morphogenesis, but its molecular and tissue-level dynamics, underlying mechanisms, and functional significance in mammals remain largely unknown due to limited visualization tools. We developed mouse lines in which the endogenous collagen IV gene (Col4a2) was fused with a fluorescent tag. Through live imaging of developing hair follicles, we reveal a spatial gradient in the turnover rate of COL4A2 that is closely coupled with both the BM expansion rate and the proliferation rate of epithelial progenitors. Epithelial progenitors are displaced with directionally expanding BMs but do not actively migrate on stationary BM. The addition of a matrix metalloproteinase inhibitor delays COL4A2 turnover, restrains BM expansion, and increases perpendicular divisions of epithelial progenitors, altering hair follicle morphology. Our findings highlight the spatially distinct dynamics of BM and their key roles in orchestrating progenitor cell behavior and organ shape during development.
Collapse
Affiliation(s)
- Duligengaowa Wuergezhen
- Laboratory for Tissue Microenvironment, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
- Graduate School of Medicine, Osaka University, Suita, Japan
| | - Eleonore Gindroz
- Laboratory for Tissue Microenvironment, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Ritsuko Morita
- Laboratory for Tissue Microenvironment, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Kei Hashimoto
- Laboratory for Tissue Microenvironment, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
- Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo, Japan
| | - Takaya Abe
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Hiroshi Kiyonari
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Hironobu Fujiwara
- Laboratory for Tissue Microenvironment, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
- Graduate School of Medicine, Osaka University, Suita, Japan
| |
Collapse
|
49
|
Humphries TLR, Lee S, Urquhart AJ, Vesey DA, Micallef AS, Winterford C, Kassianos AJ, Galloway GJ, Francis RS, Gobe GC. Metabolite pathway alterations identified by magnetic resonance metabolomics in a proximal tubular epithelial cell line treated with TGF-β1. Physiol Rep 2025; 13:e70249. [PMID: 39957082 PMCID: PMC11830627 DOI: 10.14814/phy2.70249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 01/24/2025] [Accepted: 01/24/2025] [Indexed: 02/18/2025] Open
Abstract
Tubulointerstitial fibrosis is a characteristic hallmark of chronic kidney disease (CKD). Metabolic perturbations in cellular energy metabolism contribute to the pathogenesis of CKD, but the chemical contributors remain unclear. The aim of this investigation was to use two dimensional 1H-nuclear magnetic resonance (2D-COSY) metabolomics to identify the chemical changes of kidney fibrogenesis. An in vitro transforming growth factor-β1 (TGF-β1)-induced model of kidney fibrogenesis with human kidney-2 (HK-2) proximal tubular epithelial cells (PTEC) was used. The model was validated by assaying for various pro-fibrotic molecules, using quantitative PCR and Western blotting. 2D-COSY was performed on treated cells. Morphological and functional changes characteristic of tubulointerstitial fibrosis were confirmed in the model; expression of fibronectin, collagen type IV, smooth muscle actin, oxidative stress enzymes increased (p < 0.05). NMR metabolomics provided evidence of altered metabolite signatures associated with glycolysis and glutamine metabolism, with decreased myo-inositol and choline, and metabolites of the oxidative phase of the pentose phosphate pathway with increased glucose and glucuronic acid. The altered PTEC cellular metabolism likely supports the rapid fibrogenic energy demands. These results, using 2D-COSY metabolomics, support development of a biomarker panel of fibrosis detectable using clinical magnetic resonance spectroscopy to diagnose and manage CKD.
Collapse
Affiliation(s)
- Tyrone L. R. Humphries
- Kidney Disease Research CollaborativeThe University of Queensland and Translational Research InstituteBrisbaneQueenslandAustralia
- School of Biomedical Sciences, Macgregor BuildingThe University of QueenslandSt LuciaQueenslandAustralia
- Department of Kidney and Transplant ServicesPrincess Alexandra HospitalWoolloongabbaQueenslandAustralia
| | - Soobin Lee
- Kidney Disease Research CollaborativeThe University of Queensland and Translational Research InstituteBrisbaneQueenslandAustralia
- School of Biomedical Sciences, Macgregor BuildingThe University of QueenslandSt LuciaQueenslandAustralia
| | - Aaron J. Urquhart
- Kidney Disease Research CollaborativeThe University of Queensland and Translational Research InstituteBrisbaneQueenslandAustralia
- School of Biomedical Sciences, Macgregor BuildingThe University of QueenslandSt LuciaQueenslandAustralia
| | - David A. Vesey
- Kidney Disease Research CollaborativeThe University of Queensland and Translational Research InstituteBrisbaneQueenslandAustralia
- Department of Kidney and Transplant ServicesPrincess Alexandra HospitalWoolloongabbaQueenslandAustralia
| | - Aaron S. Micallef
- Central Analytical Research FacilityQueensland University of TechnologyBrisbaneQueenslandAustralia
| | - Clay Winterford
- QIMR‐Berghofer Medical Research InstituteBrisbaneQueenslandAustralia
| | - Andrew J. Kassianos
- Conjoint Internal Medicine Laboratory, Chemical PathologyPathology QueenslandBrisbaneQueenslandAustralia
| | - Graham J. Galloway
- Kidney Disease Research CollaborativeThe University of Queensland and Translational Research InstituteBrisbaneQueenslandAustralia
- Herston Imaging Research FacilityThe University of QueenslandHerstonQueenslandAustralia
| | - Ross S. Francis
- Kidney Disease Research CollaborativeThe University of Queensland and Translational Research InstituteBrisbaneQueenslandAustralia
- Department of Kidney and Transplant ServicesPrincess Alexandra HospitalWoolloongabbaQueenslandAustralia
| | - Glenda C. Gobe
- Kidney Disease Research CollaborativeThe University of Queensland and Translational Research InstituteBrisbaneQueenslandAustralia
- School of Biomedical Sciences, Macgregor BuildingThe University of QueenslandSt LuciaQueenslandAustralia
| |
Collapse
|
50
|
Markasz L, Mobini-Far H, Sindelar R. Early and late postnatal lung distribution of collagen type VI in preterm and term infants. Respir Physiol Neurobiol 2025; 332:104366. [PMID: 39577825 DOI: 10.1016/j.resp.2024.104366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 11/24/2024]
Abstract
Collagen type VI (COL6) is an important component of the extracellular matrix (EM) and may have a major role in lung development and disease. Studies on COL6 expression during lung development are mainly based on animal models. The aim of the study was to define COL6 expression pattern in lung parenchyma in infants with different lung maturational stages. COL6 expression in 115 lung samples from deceased newborn infants (21-41 weeks' gestational age; 0-228 days' postnatal age) was studied by immunohistochemistry combined with digital image analysis. The distribution of COL6 expression was generally heterogeneous in the lung parenchyma of preterm and term infants. The size of the high-density and low-density areas appeared with logarithmic correlation and COL6 defined the basement membrane (BM) with a prominent expression around the air spaces in the canalicular stage during the first postnatal week. Infants at the alveolar stage showed linear correlation and a fine filamentous appearance during the first week of postnatal life, similarly to adults. COL6 is condensed to areas corresponding to the BM during the first postnatal week of the canalicular stage of lung development. After the first postnatal week COL6 expression changes to a microfibrillar appearance in the ECM, similar to the pattern that characterizes the later alveolar stage and adults. The localization of COL6 during the canalicular and saccular stages might have a higher impact on lung development than the amount of COL6.
Collapse
Affiliation(s)
- Laszlo Markasz
- Department of Women's and Children's Health, Uppsala University, Uppsala SE-751 85, Sweden.
| | - Hamid Mobini-Far
- Department of Pathology, Uppsala University Hospital, Uppsala SE-751 85, Sweden
| | - Richard Sindelar
- Department of Women's and Children's Health, Uppsala University, Uppsala SE-751 85, Sweden
| |
Collapse
|